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Preface to the First Edition

... the progress of physics will to a large extent
depend on the progress of nonlinear mathe-
matics, of methods to solve nonlinear equations
... and therefore we can learn by comparing
different nonlinear problems.

WERNER HEJSEKBERG

I undertook to write this book for two reasons. First. I wanted to make
easily available the basics of both the theory of hyperbolic conservation laws
and the theory of systems of reaction-diffusion equations, including the
generalized Morse theory as developed by C. Conley. These important
subjects seem difficult to learn since the results are scattered throughout the
research journals.' Second, I feel that there is a need to present the modern
methods and ideas in these fields to a wider audience than just mathe-
maticians. Thus, the book has some rather sophisticated aspects to it, as well
as certain textbook aspects. The latter serve to explain, somewhat, the reason
that a book with the title Shock Waves and Reaction-Diffusion Equations has
the first nine chapters devoted to linear partial differential equations. More
precisely, I have found from my classroom experience that it is far easier to
grasp the subtleties of nonlinear partial differential equations after one has
an understanding of the basic notions in the linear theory.

This book is divided into four main parts: linear theory, reaction-
diffusion equations, shock wave theory, and the Conley index, in that order.
Thus, the text begins with a discussion of ill-posed problems. The aim here
was to show that partial differential equations are not divorced from side
conditions; indeed specific side conditions are required for specific equations.
And in view of Lewy's example, which is presented in its entirety, no side
conditions can force solutions on some equations. We discuss an example of
a nonlinear scalar conservation law which has no global classical solution,
thereby foreshadowing the notion of "weak" solution. In Chapter 2 we
consider characteristics, an important notion which comes up widely in
nonlinear contexts. Chapter 3 deals with the simple one-dimensional wave
equation. Here is where we introduce the reader to the important ideas of

`This is not quite true; there are some good survey articles on shock waves (e.g., (Lx 5l) but
these do not contain many proofs. Also in the theory of reaction-diffusion equations, there are
the books [FiJ and (Mu), but they both seem to me to be research monographs.
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domains of dependence. energy integrals, and finite differences. The purpose
of the following chapter is to demonstrate the power, generality, and elegance
of energy integral methods. In the course of the development we present
several basic techniques for obtaining inequalities.

The next chapter is devoted to Holmgrcn's uniqueness theorem. We view
it in a modern context, where we can use it later to motivate Oleinik's
uniqueness theorems for conservation laws. In Chapter 6 we consider
general hyperbolic operators and show how energy integrals, together with
Fourier transform methods, are used to prove global existence theorems.
The uniqueness of these solutions is obtained via Holmgren's theorem.
Chapter 7 is devoted to the theory of distributions. The importance of this
subject for linear operators is, of course, well known. This author firmly
believes that the great advances in nonlinear partial differential equations
over the last twenty years could not have been made were it not for
distribution theory. The ideas of this discipline provided the conceptual
framework for studying partial differential equations in the context of weak
solutions. This "philosophy" carried over, rather easily, to many important
nonlinear equations. In Chapters 8 and 9 we study linear elliptic and
parabolic equations, respectively, and we prove the basic maximum
principles. We also describe the estimates of Schauder, as well as those of
Agmon, Douglis, and Nirenberg, which we need in later chapters. The
proofs of these important estimates are (happily) omitted since it is difficult to
improve upon the exposition given in Gilbarg Trudinger (GTl. (We point
out here that the material in Chapters 1-9 can serve as an introductory
course in partial differential equations.)

A quick glance at the contents serves to explain the flavor of those topics
which form the major portion of the book. I have made a deliberate effort to
explain the main ideas in a coherent, readable manner, and in particular I
have avoided excess generality. To be specific, Chapter 10 contains a
discussion of how far one can go with the maximum principle for a scalar
nonlinear parabolic (or elliptic) equation. It is used to prove the basic
comparison and existence theorems; the latter done via the method of upper
and lower solutions. The text contains several carefully chosen examples
which are used both to illustrate the theorems and to prepare the way for
some later topics; e.g., bifurcation theory. The next chapter begins with a
development of the variational properties of the eigenvalucs for a linear
second-order elliptic operator on a bounded domain in R. There follows a
careful discussion of linearized stability for a class of evolution equations
broad enough to include systems of reaction--diffusion equations. In
Chapter 12, we give a complete development of degree theory in Banach
spaces for operators of the form (Id. + compact). The discussion begins with
the finite-dimensional case, culminating with Brouwer's fixed point theorem.
This is applied to flows on manifolds; specifically, we give two applications,
one to flows on balls and one to flows on tori. The Leray-Schauder degree is
then developed, and we illustrate its use in nonlinear elliptic equations. The
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second half of this chapter is devoted to Morse theory. Our aim is to reinter-
pret the Morse index in an intrinsic topological way (using the stable mani-
fold theorem), as the homotopy type of a quotient space. This is done in
preparation for Chapters 22 and 23, where we consider Conley's extension of
the Morse index. We give a proof of Reeb's theorem on the characterization
of spheres in terms of Morse functions. The chapter ends with an appendix
on algebraic topology where homotopy theory, homology theory, and co-
homology theory arc discussed. The goal was to make these important ideas
accessible to nonspecialists.

In Chapter 13, some of the standard bifurcation theorems are proved;
namely, those which come under the heading "bifurcation from a simple
eigenvalue." We then use degree theory to prove the bifurcation theorems of
both Krasnoselski and Rabinowitz. Again, these theorems are illustrated by
applications to specific differential equations. In the final section we discuss,
with an example, another more global type of bifurcation which we term
"spontaneous" bifurcation. This is related back to earlier examples, and it is
also made use of in Chapter 24.

Chapter 14 may be considered the "high point" in this group. It is here
where the notion of an invariant region is defined, and all of the basic
theorems concerning it are proved. As a first application, we prove a
comparison theorem which allows us to obtain rather precise (but somewhat
coarse) qualitative statements on solutions. We then give a general theorem
on the asymptotic behavior of solutions. Thus, we isolate a parameter
which, when positive, implies that for large time, every solution gets close to
a spatially independent one; in particular, no bifurcation to nonconstant
steady-state solutions can occur. There follows a section which makes
quantitative the notion of an invariant region; the statement is that the flow
is gradient-like near the boundary of this region. This means that attracting
regions for the kinetic equations are also attracting regions for the full
system of reaction-diffusion equations, provided that the geometry of the
region under consideration is compatible with the diffusion matrix. In the
final section, these results are applied to the general Kolmogorov form of
the equations which describe the classical two-species ecological interac-
tions, where now diffusion and spatial dependence are taken into account
One sees here how the standard ecological assumptions lead in a fairly direct
way to the mathematical conditions which we have considered.

In Chapter 15, we begin to discuss the theory of shock waves. This is a
notoriously difficult subject due to the many subtleties not usually
encountered in other areas of mathematics. The very fact that the entire
subject is concerned with discontinuous functions, means that many of the
modern mathematical techniques are virtually inapplicable. I have given
much effort in order to overcome these difficulties, by leading the reader
gently along, step by step. It is here where I have leaned most upon my
classroom experience. Thus, the development begins with a chapter
describing the basic phenomena: the formation of shock waves, the notion
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of a weak solution and its consequences, the loss of uniqueness, the entropy
conditions, etc. These things are all explained with the aid of examples.
There follows next a chapter which gives a rather complete description of
the theory of a single conservation law: existence, uniqueness, and
asymptotic behavior of solutions. The existence proof follows Oleinik and is
done via the Lax-Friedrichs difference scheme. The reasons why I have
chosen this method over the several other ones available are discussed at the
beginning of the chapter; suffice it to say that it requires no sophisticated
background, and that the method of finite differences is, in principle,
capable of generalization to systems. The entrance into systems of
conservation laws, is made via a discussion of the Riemann problem for the
"p-system." Here it is possible to explain things geometrically, by actually
drawing the shock- and rarefaction-wave curves. We then develop the basic
properties of these waves, and following Lax, we solve the Riemann
problem for general systems. These ideas are applied in the next chapter to
the equations of gas dynamics, where we solvc the Riemann problem for
arbitrary data, both analytically and geometrically. We prove Weyl's
entropy theorem, as well as von Neumann's shock-interaction theorem. The
next chapter, the Glimm Difference Scheme, is one of the most difficult ones
in the book (the others being Chapters 22 and 23 on the Conley index).
Glimm's theorem continues to be the most important result in conservation
laws, and it must be mastered by anyone seriously interested in this field. 1
feel that the proof is not nearly as difficult as is commonly believed, and I
have tried hard to make it readable for the beginner.

The final chapter in this group is designed to give the reader a flavor of
some of the general results that are known for systems, the emphasis being
on systems of two equations. I have also included a proof of Oleinik's
uniqueness theorem for the p-system; her paper is available only in the
original Russian. Having been sufficiently "turned on" by the superb
lectures of T. Nishida at Michigan (in academic ycar 1981182), 1 was unable
to resist including a chapter on quasi-linear parabolic systems. The main
result here is Kanel's existence proof for the isentropic gas dynamics
equations with viscosity.

With Chapter 22, 1 begin Part Four of the book. These last three chapters
deal mainly with the Conley index, together with its applications. Thus, the
first chapter opens with a long descriptive discussion in which the basic ideas
of the theory are explained; namely the concept of an isolated invariant set
and its index, together with their main properties. These are illustrated by an
easily understood example, in which things are worked out in detail and the
connections with the classical Morse index are noted. I have also included a
discussion of the so-called "Hopf bifurcation," from this point of view.
Although the sections which follow are independent of this one, I strongly
recommend that the reader not skim over it, but rather that he give it serious
thought. The remaining sections in this chapter contain all of the basic
definitions, together with proofs of the existence of an isolating block, and
the theorem that the index of the isolated invariant set is independent of the
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particular isolating block containing it. This is all done for flows, where the
reader can "see" the geometrical and topological constructions. I have also
given some applications to differential equations in R", as well as a proof of
the "connecting orbit" theorem. In Chapter 23, the theory is developed from
a more general, more abstract point of view, in a form suitable for applica-
tions to partial differential equations. We define the notions of index pairs,
and Morse decompositions of an isolated invariant set. The concept of local
flow is also introduced, again with an eye towards the applications. We prove
both the existence of index pairs for Morse decompositions, as well as the
well-definedness of the Conley index. That is, we show that the index h(S) of
an isolated invariant set S, depends only on the homotopy class of the space
N, INa, where (N,, No) is any index pair for S. This result immediately puts at
our disposal the algebraic invariants associated with the cohomology groups
which form exact sequences on a Morse decomposition of S. These are pow-
erful tools for computing indices, in addition to being of theoretical use. They
lead, for example, to an easy proof of the "generalized" Morse inequalities.
We then prove the continuation property of the Conley index, in a rather
general setting. The final section serves both to illustrate some of the theo-
rems, as well as to derive additional results which will be used in the applica-
tions. We point out that these two chapters monotonically increase in diffi-
culty as one proceeds. This is done by design in order to meet the needs of
readers having assorted degrees of mathematical maturity-one can proceed
along as far as his background will take him (and further, if he is willing to
work hard!).

The last chapter contains a sample of the applications to travelling waves.
We first study the shock structure problem of the existence of an orbit
connecting two rest points, and in particular, we solve the shock structure
problem for magnetohydrodynamic shock waves having arbitrary strength.
We then prove the existence of a periodic travelling wave solution for the
Nagumo equations. An isolating neighborhood is constructed, and the
Conley index is explicitly computed, in order to demonstrate the different
topological techniques which are involved. We also show how to obtain the
desired information a different way by using an exact sequenceof cohomology
groups in order to determine the nontriviality of the index. Next follows a
long section, where we apply the theory to reaction-diffusion equations, and
we use the Conley index together with some previously obtained (global)
bifurcation diagrams, to study the stability of steady-state solutions, and to
determine in some cases, the entire global picture of the solution set. The
chapter closes with a section in which we give some instability theorems for
nonconstant stationary solutions of the Neumann problem.

Each of the four sections in this book (in any order) is suitable for a one-
semester graduate course. In particular, as we have remarked earlier, the
first section can be used for an introductory graduate-level course in partial
differential equations. The prerequisite for this is one year of graduate-level
mathematics as given in the average American university.
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Our present analytical methods seem unsuitable for the solution of the
important problems arising in connection with nonlinear partial differential
equations and, in fact, with virtually all types of nonlinear problems in pure
mathematics. The truth of this statement is particularly striking in the field
of fluid dynamics. Only the most elementary problems have been solved
analytically in this field ....

The advance of analysis is, at this moment, stagnant along the entire front
of nonlinear problems. That this phenomenon is not of a transient nature but
that we are up against an important conceptual difficulty.. .. yet no decisive
progress has been made against them ... which could be rated as important
by the criteria that are applied in other, more successful (linear!) parts of
mathematical physics.

It is important to avoid a misunderstanding at this point. One may be
tempted to qualify these(shock wave and turbulence) problems as problems
in physics, rather than in applied mathematics, or even pure mathematics.
We wish to emphasize that it is our conviction that such an interpretation
is wholly erroneous.

JomN VON NEUMANN, 1946
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Basic Linear Theory





Chapter 1

I11-Posed Problems

Problems involving differential equations usually come in the following
form: we arc given an equation for the unknown function u, P(u) = f, on a
domain S2 together with some "side" conditions on u. For example, we may
require that u assumes certain preassigned values on OR or that u is in L2((1),
or that u is in class Ct in Q. At first glance, it would seem that any of these
extra conditions are quite reasonable, and that one is as good as the other.
However, we shall see that this is far from being true, and that whichever
additional supplementary conditions one assigns is intimately connected
with the form of equation.

In general, the equations come from the sciences: physics, chemistry, and
biology, and the "physical" equations come together with quite specific
"side" conditions. At least, this is the way the theory of partial differential
equations began. It is the purpose of this chapter to illustrate these ideas by
some examples. The chapter ends with the remarkable example of H. Lewy
[Le].

§A. Some Examples

1. Let S be the region in R2 defined by

Q={(x,y):x2+y2 < l,y>0},

and consider the "Cauchy problem" I in i2 for Laplace's equation :

d2u a2u

Y22

= 0, (x,y)en, (1.1)AU = axZ +

together with the "initial" conditions

u(x, 0) = 0, uy(x, 0) = f (X), -1 < x < 1. (1.2)

' This is often called an "initial-value" problem, for reasons to be made clear later.
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Suppose that u(x, y) is a C2 solution of (1.1), (1.2) in Q. We extend u to be a
C2 function in the unit disk by setting u(x, y) = -u(x, -y), in the region
y < 0. Since the unit disk is simply connected, the function

r (x.y)
v(x,y) =

J
uydx - uxdy

(o.o

is a harmonic conjugate of u (because u + iv satisfies the Cauchy-Riemann
equations). Thus u + iv is an analytic function, so the same is true of u, and
in particular, ur(x, 0) = f (x) must be a real analytic function. Thus the "data "
f (x), assigned along y = 0 cannot be arbitrary; it must be a real analytic
function.

2. Consider the set of "initial-value" problems in the upper half-plane
in R2, for n = 1, 2, ... ,

Au=0, y>0,

u(x, 0) = 0, uy(x, 0) =
sin nx,

x c R,
n

and

Du=0, y>0,

u(x, 0) = 0, u,(x, 0) = 0, x E -R.

The problems and (P°) have the solutions

u"(x, y) =
1£

sinh ny sin nx,
n

and

u°(x, y) = 0,

respectively. Observe that as n -+ oc, the data for (P") tends uniformly to
zero, the data of (P°). However, we have

lira I u"(x, y) - 11°(x, y) I = + cc, y > 0,

for each point (x, y). In fact, the functions u" do not converge to u° in any
reasonable topology. Thus arbitrarily small changes in the data lead to large
changes in the solution; the mapping from the "data space" to "solution
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space" is not continuous--there is a lack of stability. If this mathematical
problem were obtained from a physical problem, we would have that small
changes in the measurement of the data would induce large changes in the
predicted phenomena. Obviously such a mathematical theory would be
useless.

3. Consider the equation in two independent variables, uxy, = 0. Since
u is a pure function of x, say ux = "'(x), it - ¢ is independent of x, so that
u - 0 = 0(y), for some function O. Thus all solutions of our partial differen-
tial equation are of the form O(x) + '(y), where 0 and tlr are (at least)
differentiable functions.

Now consider the "boundary-value" problem in the unit square
Q={(x,)..):0<x,y<1}:

uxr = 0 in Q,

(1.3)
u = uo on OQ.

If 0 = (0,0), P = (1,0), Q = (1, 1) and R = (0, 1), then we sec that uo
must satisfy the relation

uo(O) + uo(Q) = uo(P) -+- uo(R). (1.4)

It follows that (1.3) has no solution if (1.4) fails to hold.
We shall show in Chapter 3, that u., = 0 is actually equivalent to the

wave equation, u,,,, - urj. = 0, via a change of variables. Thus the boundary
value problem is, generally speaking, not correct for the wave equation.

These very simple examples show that one must be extremely careful in
selecting the "data" for problems involving partial differential equations-
if not, the corresponding problems may not be "well-posed." Fortunately,
the problems obtained from the "physical world" are usually well-posed,
i.e., they have unique solutions, which depend continuously on the "data,"
in some (reasonable) topology. However, as the next example shows, it may
not be apparent how to show these things.

4. Consider the simple nonlinear equation

u, + uux = 0, (1.5)

defined in (x - r) space, where t > 0. This equation arises in the study of
nonlinear wave phenomena ; e.g., in gas dynamics. Here r denotes the "time,"
and x the "space." It is required to obtain a solution of (1.5), defined for all
t > 0 which satisfies the "initial" condition

u(x, 0) = u0(x), x e R. (1.6)
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The equation (1.5) implies that along the curves

dr dx_
TS =

1,
ds =

u(x' t).

it must be constant. Indeed, along such a curve

(IS
-u`ds+uxds=U,+uus=0.

The curves defined by (1.7) obviously have slopes

dt 1

dx u(x, t)

(1.7)

Since u is constant along these curves, it is easy to see that these curves must
all be straight lines, along which u is constant. That is, the value of u along
these curves must equal the value of it at the point on the line i = 0 at which
the given curve starts. Thus the solution is completely determined by its
values at t = 0; i.e., by uo(x). This is illustrated in Figure 1.1.

t4

uo(7(x - z)

this lint,
= uo(x).

z

Figure 1.1

1. 111-Posed Problems

x

Now suppose that we take the following function for uo(x):

1, x < 0,

uo(x)= I - x, 0 : x<1,
0, x> 1.

If we make the above computations for this data we find that

1, x<r,
u(x,t)= (1 -x)?(l -r), r<x<1,

0, x> 1,
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and this function "blows up" at t = 1. Hence, no global solution (i.e., solu-
tion defined for all t > 0) exists! On the other hand, we have remarked that
the problem (1.5), (1.6) arises in physical contexts. How do we get out of this
dilemma? The answer is to weaken the notion of solution, and not demand
that u be even continuous. Indeed, we have an example here of a "shock-
wave" forming at time r = 1. This physical phenomenon occurs quite na-
turally (and generally!). We shall study such equations in Chapter 15.

A final word about this example. It is not too difficult to show that the
lack of existence of a global solution is a distinctly nonlinear phenomenon
-such things do not occur for linear equations. The following celebrated
example of Hans Lewy [Le] shows that still worse things can happen, even
for linear equations.

§B. Lewy's Example

We shall give an example here of a linear partial differential operator in
which no solution exists, in any open set of the domain space. The operator
in question is

A(u) = u,, + iu, - 2i(x + iy)u,, (x, y, t) e R3, (1.9)

where i2 = - 1. Notice that the coefficients arc all analytic functions. Thus,
if f (x, y, t) were an analytic function, then from the classical Cauchy-
Kowalewski theorem (see [Ga]), the equation A(u) = f would admit ana-
lytic solutions. The point here is that we shall show that there are C'° func-
tionsf for which A(u) = f has no solutions. This will be done in a sequence
of lemmas, the most important of which is the first one. We begin by stating
the theorem.

Theorem 1.1. There exist C'° functions f (x, y, t) such that the equation A(u) = f
has no C2 ' solution anywhere in R3.

In fact, we shall show that the set of such f forms a set of the second
category in the space of C°` functions.

Lemma 1.2. Let A(u) be defined by (1.9). Then the equation A(u) = ¢'(t) has
no C1 solution in any neighborhood of 0 e R3, if 0 is not analytic at t = 0.

Proof. Let a be a solution in z < R, I t I < T, where z = x + iy. In the region
It I<T,05r<R,let

g(t,r)= udz= udx+iudy.
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From Green's theorem, we have

Or, r) = f r (iux - uy) dx dy = i
JJ

(u,, + iuy) dx dy

I:I s r I:I s r

r 2n

= r J j
o

(u,, + iu),)pdpd0.
0

Set y = r2, IJi(t, y) = g(t, r2); then &s = g,r, = g,12r, so that using our
equation, we find

dz

IsI=,: z

dz
2izu,

2

dz
+

1

O(t)J - - J -
I:I=r= Z 2 IzI_,2 Z=

= if u, dz + 2(2ni)q'(t)

= iY'r + in#'(t).

If we let S(t, y) = &(t, y) + ito(t), then S, = v',, S, = Iy, + no'(t) = - iay,.
= -iSp. Thus S satisfies the Cauchy-.Riemann equations, and since S is a
C' function, S is an analytic function of r + iy. Since S(t, 0) = ni(t), we see
that S is real on y = 0. By the Schwarz reflection principle, S can be extended
to an analytic function in the region, -R2 < y :5,, 0, 1 t I < T, by defining
S(i + iy) = S(t - iy) for y 5 0. Thus no(t) = S(t, 0) is analytic at t = 0, and
the proof of the lemma is complete.

We remark that, in effect, we have reduced the equation A(u) = 46'(t) to
an equation in two independent variables, by integrating with respect to 0
over S', (the boundary of the unit disc); this allows the technique of separa-
tion of variables to be applied.

By a change of coordinates, we get the following lemma.

Lemma 1.3. If u is C' near (xo, yo, to), then the equation A(u) = 4'(t - to
- 2yox + 2xoy) implies that 0 is analytic in a neighborhood of 0.

Proof..Letx=x-xo,y=y-yo,f=t -to-2yox+2xoy;then

A(u) = u- - 2you7 + 07 + 2xou1) - 2i[3F + xo + i(9 + yo)]u1

= ux + iu.,, - 2i(9 + iy)u



§B. Lcwy's Example 9

Hence A(u) = 4'(t - to - 2yox -t- 2xoy) has a solution in a neighborhood
of (x, y, r) if and only if A(u) = ¢'(T) has a solution in a neighborhood of
(0, 0, 0).

Now we shall construct periodic C' nowhere analytic functions F of the
form

11*

F(x, y, t) = E a,O(s ),
J=I

where: Sj=t -tj-2yjx+2xjy,theset ((xj,yj,tj):j= 1,2,...) is dense in
R', and i/i is nowhere analytic. Of course, this is somewhat delicate since
the a, must be chosen with care in order to ensure that F not be analytic.

Before doing this we must show that there are functions which arc C"
but nowhere analytic. To this end, let

K. = (x a R": IxI s m}.

Then K" is compact, K"+, K. and u K. = R". Let p" be the seminorm
on C'°(R") defined by (cf. below)

p"(4,) = sup{IDa4,(x)I: x e K", Ixl < n};

then p"+, >- p". We make C(R") into a complete metric space by defining
the standard metric,

d(O, 41) _ 2
P"(O - 0)
+ P0 -

Now observe that 0 e C'(R") is (real) analytic at P e i2 if there is an R > 0
such that for Ix - PI < R, we have

4,(-i = Y- - j)(x - P)=,

where a = (a,, ... , a"), a, c- Z, D' = D;' ... DR^, a! = fl a; !, and (x - P)'
= fl (x; - P,)''. Also, if 0 is analytic at P then

sup
D 4,

P) r1=1 < x for all r, 0 < r < R.
a x.

where a = a, + + a". We define the set CD by

CD = (0 E C"(R"): 0 is real analytic at some P ei2).

We can now state the following result.
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Proposition 1.4. The set m is of the first category in C°°(R").

We shall carry out the proof in several steps. First we define the sets
M(P, r) by

DaO(P
M(P, r) e sup I )Iral < oc

where 61 denotes the class of periodic C°° functions.

Lemma 1.5. M(P, r) is of the first category in C°'(R").

Proof. Consider the linear functional L. on C00(R") defined by

La(4)) =
D" '

P) rl °l.
a.

Now it is evident that there do not exist n e Z+ and constants C in R such
that for all 0 and a,

ILQ(q5)I s Cp"(o).

Thus from the uniform boundedness principle the set M(P, r) is of the first
category.

Now we fix P e R", and let

M(P) = { e C°°(R"): 0 is analytic at P}.

Since M(P) c U°= I M(P, 1/n), we see from Lemma 1.5 that M(P) is a set of
the first category.

We can now complete the proof of Proposition 1.4. To this end, we choose
{P,} to be a countable and dense set in Q. Then U; M(P,1) is a set of the first
category. If 0 is real analytic at some P e Q, then 0 is real analytic at some
Pi so 0 e M(P1); hence 4' c Uj M(Pt), and so dy is a set of the first category.
The proof is complete. Q

We can now turn to the proof of the theorem. Choose t #(t) e &0(R t) such
that 4 is nowhere analytic. Let P; = (xj, yj, t) be a countable dense set in R3,
let c, = max(j,Ixjl,Iyjl), and define Uj = {PeR3:IP - PjI < 1/j}, j = 1,
2,.... Obviously every open set in R3 contains some bl..

For a pair of positive integers in and n, and U°p" a R3, let be
the class of Holder continuous functions on U having constant m and
exponent 1/n, and let H(U) be the class of Holder continuous functions on

' Recall that this states that if X is a Banach space and (F.) is a countable family of semi-
norms such that if sup. F.(x) < oo for x in a set of sooond category, then there is a constant c with
F.(x) 5 cj(xj! for all n and x.
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U. It is obvious that H(U) is the union of the HM,f(U). Note that if f e C2 on
some bounded open set containing C, then f E H(U). Finally, set

Hm.n(U)).

and let lx denote the complete metric space of bounded real sequences
a = (ao, a a2....), with norm Hall = sup{ Ia;I : j = 0, 1, 2, ... }. For a e lam,
define a real-valued function by

F,(x. y. r) = X a; c; ''O'(4 j).
j20

Claim 1. F. E ("'(111).

If V = (v1, v2, v3), where each v; is an integer >-0, and lvI = v, +
then consider the formal series (in a given compact set K s R),

2y;x+2x,y.

DT., = af, C,,lVI *'(Sj)(-)'j)",(X))"z2Y1+.:.

j> 0

V2 + V3,

Since I aj I S I , a I I , and 1 1 0" 1'1 1, La,(K) < Mj"1, 1 (for some finite constants
Mi"i+1 ), and both Ix;I < c, and f yjI 5 c,, the formal series is majorized by

hall 7 c;"1
j>0

But for j large,

CtVj-cf < ccIr2-c, S c j/2 S j-J.2 :5j-2,

so that the formal series D'F, converges absolutely and uniformly in K.
Since v and K were arbitrary we see that F. e C°°(R3); this proves Claim 1.

For positive integers in, it, I and j, set

B(m, n, 1j) = if c- Ham,.,,: 11 U1.f jI Lm(R31 < 1. i = 1, 2, 3, and f (P;) = 0).

It is easy to see that B(ni, n,1, j) is a compact subset of IIi,,,,, under the topol-
ogy of pointwise convergence of the function together with its first derivatives.
Let

E(m, n, I,j) = {a e 1,.,: A(u) = F. has a solution is e B(m, it, 1j)).

Fix in, n,1 j, and let F = Eon, n,1, j).
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Claim 2. F is nowhere dense in !,,

We postpone the proof of the claim and complete the proof of the theorem.
By the Baire category theorem 1. cannot be the union of the n,1, f); thus
let a,, e lam,'.. U E(m, n, 1, j). Then A(u) = F, has no solution in any of the
classes B(m, n,1, j). Suppose that A(u) = F,. had a Holder continuous (on
derivatives) solution u(x, y, t) in H(U) for some opcn subset U e R3. Pick j
such that UJ c U. Note that we may assume that u(P)) = 0; otherwise replace
u by v = u - u(Pj). Now u e H,',,,,, for some m, and n, and if P e U,,

ID1u(P)I < I D;u(P) - D;u(P;)I + ID;u(P,)I

S m + max I D, u(P,)I.
i = 1.2.3

Thus, if 12: in + max,=1.2.31D;u(p1)I, we see that ueB(nl,n,Q). This is the
desired contradiction.

We complete the proof of the theorem by proving Claim 2. We first show
that E is closed. Thus, let ak E E, ak -+ a in I,p. We have uk E B = B(m, n,1, j)
such that A(uk) = F,... Since B is compact, we may assume that uk converges
in B; i.e., there exists u E B such that us: -+ u, D,uk - D1u in U,, i = 1, 2, 3.
Then A(uk) -A (u) in UJ and F,,, -+ F. in L, (R3). Thus, A(u) = F(a) so
a e E and E is closed.

We show that E is nowhere dense by showing that E has empty interior.
Suppose, on the contrary that

S S(ao, e) = {a E 1,,: II or - ao 11 < e} = E.

Let d = (0,...,0.k;/2,0_.), i.e., 6 has a nonzero coordinate only in the jth
slot, and let a = ao + S. Then a - ao II = r.12 so a c- S. Thus there is
u 1 e H(N ) such that A(u 1) = F. = F,. +- F4. Since ao a E, there is a v 1 in
H(N) such that A(v1) = F.O. Therefore A(u1 - v1) = F4, and u1 - v, is in
H(N,). But since

Fe where ti, = I - t, - 2y,x + 2yx,,

we have A(2c`'(u1 - v1)/e) = 0'(i;), where 2c;f(u1 - v1)/t; is in C`(R3). This
contradicts Lemma 1.3, and completes the proof of the theorem. 0

NOTES

The results in §A of this chapter are classical, and are found in most standard
books on the subject; see [Ga]. The equation (1.5) is called the Burgers
equation (without viscosity) and its study by l-iopf [Hf 2] was the starting
point for the mathematical theory of shock waves; see Chapters 15 R The
interesting example in §B is due to H. Lewy [Le]. It too was the starting
point of a flurry of research on such equations; see [Ho 2].



Chapter 2

Characteristics and Initial-Value Problems

Roughly speaking, characteristics are curves which carry information. They
are particularly relevant in the study of "initial-value" problems; that is. in
solving partial differential equations, in which the solution surface is required
to assume prescribed values "initially." Such a problem presupposes the
existence of a distinguished coordinate, , where the equation = 0 defines
the "initial " surface. Of course, as we have seen in the last chapter, one needs
some kind of compatibility between the equation and the initial surface. The
notion of characteristic serves to classify and make more precise these
intuitive ideas.

We begin by considering a rather general linear partial differential
operator of order in :

P(x, D) = E a,(x)D° + E a,(x)D° + a(x). (2.1)
tal m lal <m

Here x = (x0, x,, ... , a Rn+', a is a multi-index, a = (as, ai, ... , a.),
where each at is a nonnegativc integer. I a a;, is the length of a, D
= (Do, D1,. .. , DR) is a differential operator where D; = 0'/ox;, and Da is the
partial differential operator defined by Da = clal/cx'o . Ox.-. We also set
xa = xo x.^. Finally, we call

a,(x)D,
tal=m

the principal part of the operator P(x, D).
We consider the equation

P(x. D)u = 0. (2.2)

and we assume that this equation is defined in a neighborhood of a smooth
n-dimensional surface S given by f (x) = 0. The initial-value problem for
(2.2) consists of assigning u and its derivatives of order <m on S, and it is
required to solve (2.2) in a neighborhood of S.
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For example, if P(x, D) = a2/012 - 82/0x2 (xo = t), the one-dimensional
wave operator, and S = {t = 0}, we assign u(x, 0) and u,(x, 0), and try to
solve the equation u - u,,, = 0 in t > 0.

We proceed to solve the general problem as follows. First we change
coordinates in a neighbourhood of S, by introducing the new independent
variables So, ',, ... , ,,, where S,, ... , . are (independent) coordinates on
S, and 5o = f : i.e., S corresponds to 4o = 0.

In the above example, we can also put o = t, t = x. A less trivial
example would be obtained if we set S = ((x, t): x = t) ; then o = x - t,

= X + I.
Note that since t, ... ,." are coordinates in S. and u is given on S, all the

derivatives of u with respect to S,, ... , S. (interior derivatives) are known on
S.

By repeated use of the chain rule, we obtain, for a = (ao, ... , a ), I a I = m,

DaG
0--u 0"'11 a'0)20

= rXao" ... Cam" Gbo

lixo\(1ox4tl i

where the last dots represent derivatives of u with respect to o of orders
in, together with derivatives of u with respect to 0, and are thus all

known quantities. The equation (2.2) becomes

1am!!a(X)1
GX0)a0...

(11"11 r ... = Q,\\o
where the dots represent quantities known on S. Now in order to be able to
solve this equation for o, and to thereby obtain information on u not
previously known, it is necessary and sufficient that

rG4o °° Goo
""

aa(x)( ) ) i 0,
lal° Gxo Gx

or equivalently, that

aa(x)(of(x))' a,(x) `f
(x°"... !Gf())a"

lal=m lal-M Gxo (\ Ox

0, for all x E S.

This is the desired compatibility condition between the initial surface S and
the operator P(x, D). When (2.4) fails to hold, the initial-value problem would
be unreasonable, and in this case we would say that S is a characteristic
surface. Formally, we have the following definitions.
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Definition 2.1. The surface S = {x: 4(x) = 0} is said to be characteristic at
p e S, for the operator (2.1) if

Y_ aa(x)Vt (x)aIx=p = 0.
lal=m

S is a characteristic surface for the operator (2.1) if it is characteristic at each
point.

We call the equation

aa(x)o" = 0, (2.5)
l2l-I"

a = (a0, . . . , the characteristic equation for the operator (2.1).
In these terms, we see that a surface S is characteristic at p e S, for the

operator (2.1), provided that the normal vector to S at p satisfies the charac-
teristic equation.

We shall now discuss a few examples. In what follows, let a = (an,. .. , a.)
denote a unit normal vector at a given point on S, i.e., ak is the cosine of the
angle between the normal to S and the xk-axis, and

R

E ak = 1.
0

EXAMPLE 1. The n-dimensional wave equation:

uxaxu - Uxkxk = 0.
k=L

(Here one usually denotes x0 as t, the "time.") The characteristic equation is

which, together with (2.6) yields 2a0 2 = 1 and a0 = ± 1/12. Thus, a surface
is characteristic for the wave equation if and only if its normal makes an
angle of 7r/4 with respect to the x0-axis. In particular, for the one-dimensional
wave equation, u,, - uxx = 0, the characteristic surfaces are the lines which
make 450 angles with the t-axis.

EXAMPLE 2. Laplace's equation: Y. ux,x, = 0. Here the characteristic equa-
tion is Y ak = 0 which is incompatible with (2.6); thus there are no (real)
characteristics.
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EXAMPLE 3. The n-dimensional heat equation :

uxo - z uxjxj = 0.
1

The characteristic equation is a? = 0 and thus from (2.6), oo = 1. It
follows that a surface is characteristic if and only if its normals are parallel
to the x0 axis; thus they are hyperplanes x0 = const.

EXAMPLE 4. First-order linear equation :

a(x, y)ux + b(x, y)ur = ((x, y)u + d(x, y).

The characteristic equation is aao + bat = 0; solving this together with
(2.6) gives

It follows that the characteristic curves are solutions of the system of autono-
mous ordinary differential equations x = a(x, y), y = b(x, y).

Observe now, that if c(x( , ... , 0 is a characteristic surface for the
operator (2.1), (2.3) shows that the differential equation imposes an additional
restriction on the data ; namely, the "known quantities," denoted by the
dots in (2.3) must vanish. For example, consider the equation

uxx - urr + a(x, t)ux + b(x, t)u, + c(x, t)u + d(x, () = 0.

The line S: {x = t} is a characteristic surface. Suppose that on S we assign
data u(x, x) = O(x) and ua(x, x) = O(x), where 0 is the direction of the normal
to S. If we change variables c = x + t, n = x - t, then S is given by n = 0.
In these coordinates, the differential equation becomes

4u.,,+(a+b)u,+(a-b)u,,+cu+d=0. (2.7)

Since x = (c + i)/2, the initial conditions become u(4, 0) = 0(e/2), and
uq(c, 0) = iI,(c12). Thus if we evaluate (2.7) on >7 = 0, we obtain

20'(c12) + i(a + b)0'(c/2) + 2(a + b)ti(c12) + c4(;12) + d = 0,

which is an additional restriction on the initial data.

NOTE

The results here are all classical; see [Ga].



Chapter 3

The One-Dimensional Wave Equation

In this chapter we study a simple but quite interesting equation for which
the initial-value problem is well-posed. The ideas which we introduce here
will be used in various places throughout the book, albeit at a "higher
dialectical" level. The equation is derived from physical considerations, and
in the case we consider here, the solution u(x, t), may be thought of as des-
cribing the position of a vibrating string at a point x at a time t.

The equation we consider is

u - c2uxx = 0, (x, t)ER x R+. (3.1)

The constant c is usually called the wave-speed ; it can be of either sign, and
for definiteness, we choose c > 0.

Since x and t are both scalar variables, the characteristic surfaces S are
really curves whose unit normal vectors n = (0,qi) satisfy the equations

,W 1,2 - c202 = 0. 02 + 02 = 1,

from which it follows that

f) = fl +
c2(l, ±c).

With the aid of Figure 3.1, we obtain tan 0 = i/il0 _ ±c, tan y = -cot 0
±c-', so that the characteristics are the lines t = ±cx + const, or

x ± ct = const. That is, they are straight lines of slope ±c"'.
We change variables by setting x + ct = ., x - ct = q; then in these

coordinates we find that (3.1) becomes ui, = 0. We can immediately integrate
this equation to get u = J'(4) + g(q), where f and g are arbitrary (but
differentiable) functions. Thus, we find that the solution of (3.1) is given by

u(x, t) = f (x + et) + g(x - ct), (3.2)

where f and g are arbitrary. The functions f(x + ct) and g(x - ct) can be
thought of as representing "waves" moving at speeds ±c.
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t

S

Figure 3.1

Now we consider the initial-value problem for (3.1); i.e., we seek a solution
of (3.1) which at time t = 0 assumes the data

u(x, 0) = a(x), u,(x, 0) = fl(x), (3.3)

where a E CZ, fi E C'. We find the functions f and g as follows. When t = 0,

a(x) = P x) + g(x), f(x) = c(f'(x) - gr(x))

Thus

f (x) - g(x) = c J P(s) ds,
0

and

.l (x) = '2a(X) + I f X P (s) ds,
0

so

px

g(x) = 4a(x) - J f(s) ds.
0

This yields the following formula for the solution of the problem (3.1). (3.3):

1 X+41

u(x, t) = 3 [a(x + Ct) + a(x - ct)] + - f fl(s) ds. (3.4)

Observe that this implies at once that the given problem is uniquely
solvable. Next, note that if a, and f t are uniformly close to a and fi, i.e.,

Ila - a, IL <e, IIR - fill. < e, a>0,
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and if v(x, t) is the solution of (3.1) with data tjx, 0) = a,(x), v,(x, 0) _ #,(x),
then v is of the form (3.4), with a and fi replaced by a, and Q,. respectively.
Thus,

lu-ol <la(x+ct)-a,(x+ct)I+ja(x-ct)-ce(x-ct),
2

stet
/T(s) - j3 ,(s) Ids,

x-ct2c

so that for any t > 0,

II
t) - t) II r.,,(R) < c + e 2ct = s(1 + t).

Hence, for any T > 0, if a 0, then u - v 0 uniformly in x on [0, T].
This shows that the solutions depend continuously on the data (in this
topology!). The initial-value problem (3. 1), (3.3) is thus well-posed.

We next examine more closely the formula (3.4) for the solution. Consider
a point P = (xo, to), with to > 0. We draw the characteristics of (3.1) through
P, in the region t < to; these are called the backward characteristics, sec
Figure 3.2. The two characteristic lines meet the x-axis at the points xo ± cto.

Figure 3.2

Now consider the region

Do = {x: x0 - ct0 < x G xQ + Ctp}.

x

If we consider (3.4), we see that u(xa, to) depends only on the values of a and
fi in Do; in fact, it depends only on a(xo ± Cto), the value of a at the end-
points of Do, and the values of Jf on the complete interval Do. In other words,
if we change a and fi outside of Do, this will not affect the solution at P. We
say that Do is the domain of dependence of P(xo, to). Of course, it is easy to
see that if P, = (x,, t,) is any point in the depicted triangle, then the domain
of dependence of Pt is also contained in Do.
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On the other hand, we may reverse things, and ask what points in t > 0
are influenced by the data in an interval on t = 0. Thus if 1 = [a, b], we can
draw the forward characteristics of slope + I/c through b and of slope - I/c
through a; see Figure 3.3. The region D,, so determined is clearly (see (3.4))
the domain of influence of 1, in the sense that the nonzero values of the initial
functions a and /1 in I will affect the solution is only at points in D,. We say
that disturbances propagate with speed c. That is, suppose that a and f are
supported in 1. If an observer is at a point x 0 1, say x > b (see Figure 3.3) he
will not feel that disturbance for all times t < (x - b)/c. However, once
t z (x - b)/c, the observer will (forever) be influenced by the data. We remark
in passing that this is not the case in 3-space dimensions, (see [Ga]); the
observer in R3 is not influenced by the data for all sufficiently large time. In
this situation, a signal is felt at one particular time, and is not felt in all
subsequent times-think of sound waves.

Figure 3.3

Next, let us consider the inhomogeneous wave equation

u - c2ux., = O(x, t), t > 0, (3.5)

where 0 is a given Ct function. Suppose that u e C2(G) solves (3.5), where
G is a simply-connected region in t > 0 having a nice (= piecewise smooth)
boundary. We can rewrite (3.5) as (- c2ux)., + (u,), integrate over G, and
apply the divergence theorem to get

LG
- c2ux dt - u, dx = if 0 dx dt. (3.6)

G

Now for G, we take the triangular region depicted in Figure 3.4.
Then along 1, dt = 0, and !, - c2ux dt - u, dx u, dx, while along

C2, dx = -c dt and

J - c2ux dt - u, dx = J cit., dx + cu, dt
c, c,

= d(cu) = cu(xo, to) - cu(x2 , 0).
LZ
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(x 0) 1

Figurc 3.4

Similarly,

x2, 0)

- c2u,r dt - u, dx = cu(xo, to) - cu(x,, 0).
CI

Hence (3.6) becomes

x

x2 rr
u(xo, to) = i[u(x,, 0) +"u(x2, 0)] =-

2c
ur(s, 0) ds + Zc IJ O dx dt.f

,

G

Now if we consider the initial-value problem for (3.5), with data (3.3), and
use the fact that x, = xo - cto, and x2 = xo + cto, we obtain the following
formula for the solution:

1 Xo +- cro

u(xo, to) = c[a(xo + cto) + a(xo - cto)] + -
J

/3(s) ds
2C YO-CIO

+ Zc
,

0 dx dt.

G

Thus, we have shown that if a solution to (3.5), (3.3) exists, then it is unique
and is explicitly given by (3.7). Conversely, it is easy to check that (3.7) is
indeed a solution of the problem. Note too that (3.7) reduces to (3.4) when
¢ = 0, and that from the representation (3.7) it is easy to conclude that the
solution depends continuously on the data, and on 0 (with the same topology
as before). Finally, we see that in this case, the entire region G is the domain
of dependence for (xo, to).

We turn now to a different problem for the wave equation ; namely, a
mixed (= initial-boundary-value) problem. Thus, in most physical situations,
we are only concerned with a finite region of space, say an interval a < x < b,
and we wish to solve (3.5) subject to prescribed initial values u(x, 0) and
u,(x, 0) on a < x < b, and also subject to "boundary" values prescribed on
the lines x = a, x = b, in t > 0; see Figure 3.5. Physically one thinks of a
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uoru uoru

Figure 3.5

finite string, with a given initial displacement and velocity, which is being
held by two observers at points a and b, who are now moving the string; it is
required to find the position of the string at any time t > 0, when a <- x < b.

Mathematically, it is required to solve the following mixed initial-
boundary-value problem :

U" - cb(x, t), a < x < b. t > 0. (3.8)

with initial data

u(x, 0) = x(x), u,(x, 0) = /f(x), a < x < b, (3.9)

and with boundary data

u(a, r) = a(t) or ux(a, t) = a(t)
I > 0 (3.10)

u(b, 1) = b(t) or ux(b, r) = b(t)

We shall first prove that the solution to (3.8)-(3.10) is unique (if it exists!).
The technique is the simplest example of what is nowadays known as the
energy method. We shall consider many generalizations of this technique in
the subsequent chapters.

Theorem 3.1. There is at most one (smooth) solution to any of the problems
(3.8)-{3.10).

Proof. Suppose that v and w are solutions; then u = v - w is a solution to
the problem

lift -c2uzx=0, a < x < b, t > 0, (3.11)

with initial data

u(x, 0) = u,(x, 0) = 0, a < x < b, (3.12)
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and boundary data

u(a, t) = 0 or ux(a, t) = 0

u(b, t) = 0 or u,r(b, t) = 0
t > 0. (3.13)

Our goal is to show that (3.11){3.13) imply that u = 0. To this end, we
consider the "energy integral"

rb

1(t) = 2
J

(c2ux + u;) dx.

If we differentiate I with respect to t, we find

(c2u
uxr c2u uxx) dx

d! = J
b (c2ux ux1 + ur urr) dx =

J
b

O O

1
= c2 fQ ax(uxur)dx = c2uxurlx:o = 0,

in view of (3.11) and (3.13). Thus 1(t) is a constant, independent of t. Since
(3.12) implies that 1(0) = 0, we see that I(t) = 0 for all t > 0. It follows that
ux(x, t) = u,(x, t) 0 for all t L> 0, and all x, a S x S b. Hence u itself must
be a constant, and in view of (3.12) again, u - 0. This completes the proof. 0

We turn now to the existence problem; for simplicity, we assume that
c = 1. We need a preliminary lemma, which reduces the problem to one
involving finite differences.

Lemma 3.2. The thrice differentiable function u(x, t) is a solution of u,r - uxx
= 0 if and only if u satisfies (cf. Figure 3.6) the difference equation

u(x - k, t - h) + u(x + k, t + h) = u(x + h, t + k) + u(x - h, t - k) (3.14)

for all h, k z 0.
(We refer to such a region as a characteristic rectangle.)

C(x+k,t+h)

D(x-h,t-
h,t + k)

A(x-k,t-h)
Figure 3.6
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Proof. If u solves the differential equation, then u(x, t) is of the form u = f (x
+ t) + g(x - t) so that referring to Figure 3.6, we find u(A) + u(C) = u(D)
+ u(B), since this equality holds for both f and g.

Conversely, if u solves the difference equation, then set h = 0 in (3.14),
divide by k2 and add - 2u(x, t) to both sides to obtain

u(x - k, t) - 2u(x, t) + u(x + k, t)
k

u(x, t - k) - 2u(x, r) + u(x, t + k) (3.15)
k2

By a Taylor expansion, we get the two equations

u(x ± k, t) = u(x, t) ± ux(x, t)k + Zuxx(x, t)k2 + k2o(k).

Putting these in (3.15) yields

uxx - it,, = o(k),

and thus if k -e 0, we find that it satisfies the differential equation. This
completes the proof. Q

We shall use this lemma in order to construct a solution of the following
mixed initial-boundary-value problem:

a<x<b, t>0, (3.16)

u(x, 0) = x(x), u,(x, 0) _ l(x), a < x < b, (3.17)

u(a, t) = a(t), u(b, t) = b(t), t > 0, (3.18)

where we assume the compatibility conditions x(a) = a(0) and fl(b) = b(0).
The idea is geometric and very simple. It relies on the observation that the

boundary of the characteristic rectangle in Figure 3.6 is composed of charac-
teristics. Thus, we divide the region a < x < b, t > 0 into four subregions
I-TV, by drawing the characteristics from the points (a, 0) and (b, 0), see
Figure 3.7 (where c is not necessarily equal to 1).

We observe first, that the solution in region I is completely determined
by formula (3.4). To find the solution at a point P in region 11, we construct
the characteristic rectangle as depicted in Figure 3.7, and then use (3.14)
to find u(P). Similar remarks apply to region III. Thus the solution is now
known in the closed regions I. II, and III. To find u(Q) where Q lies in
region IV, we again construct the characteristic rectangle as depicted in
Figure 3.7, and then use (3.14). This yields u in the closed region IV. Now
repeat this process to obtain u in the entire region t > 0, a < x < b.
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x=a

Figure 3.7

NOTES

These ideas are all classical. I learned of the difference scheme technique in
John's notes [J 1 ].



Chapter 4

Uniqueness and Energy Integrals

We shall extend the method of energy integrals to more general second-order
(hyperbolic) operators. This "energy" method is a basic technique in the
modern theory of partial differential operators, and in the course of our
development, we shall establish some interesting and important classical
inequalities.

We begin by giving a somewhat different proof of the uniqueness theorem
for the wave equation. It is this modification which we shall extend to more
general equations. Thus, consider the wave equation, with c = 1 (for
simplicity)

u. - u,,,, = 0, (x, t) e R x R+, (4.1)

with vanishing initial data

u(x, 0) = u,(x, 0) = 0, x e R. (4.2)

We wish to prove that u = 0.
Let P = (x0, to), with to > 0, and let R be the triangular region APB in

the x - t plane, bounded by the line segment AB on t = 0, and the two
characteristics AP and BP, see Figure 4.1. Let 0 < h < to, and let r be the
subregion of R cut off by the line t = h, as depicted in Figure 4.1. Multiplying
(4.1) by -2u,, gives

0 = -2u,(u,, - uxx) = (us + u ), - 2(u.,, u,).,.

If we integrate this over r and apply the divergence theorem, we find

0 = ${(u2 + u, )t, - ds, (4.3)
or

where t, and x, are the components of the outer unit normal to Or, and s
denotes arc length. On the lines CA and DB, x.1 = t while on AB,
tv = -1, x = 0, and t,, = 1, x = 0 on CD. Thus, we obtain from (4.3)

0 = f - (ux + u?) dx + (us + dx + J 1 [uxr - ds.
AB CD AB*BD tV
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P(xo.to)

Figure 4.1

D

Using the nonnegativity of the last term, we find

t=h

J(u + u) dx J
s

+u)dx.
AB

But since u(0, x) = u,(O. x) = 0 along AB, we have

fco
(us+11,)dx=0,

and thus ux + u? = 0 on CD. Hence u, = u, = 0 on CD. So since It was
arbitrary. u is a constant in R. But on AB, u = 0 -. thus u = 0 in R, so in parti-
cular u(xo, to) = 0. Since P = (xo. to) was any point in t > 0, we have shown
that u-Din t>0,xeR.

We shall show that this particular technique is quite general, and carries
over for arbitrary second-order linear partial differential equations of the
form

e n

L(u) = u _ (a;,{x)ujx, - a(x)u = 0. (4.4)

where we assume that a1, a,, and it are continuous functions, with aid a C2,
for each i and j. We also assume that aid = a,,, and that there exist constants
Cm, cm > 0 such that

A R

c. r S a,j(x);i5t csf S
1=1 i./=1 i-1

for each S = (g1, ... , ;,) e R. This latter condition is called a uniform ellipti-
city condition on the square matrix A(x) = It can also be written as

c.21 1 25(A(xg,S)ScM 2.
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where < , > denotes the usual Euclidean inner product. Note that for the
wave equation u - Z°_ 1 ux,x, = 0. at; = 6,j. the Kronecker delta, and
c,,, = Cm = 1.

Now let P = (xo, to) to > 0, and through P we draw the backwards
characteristic cone, generated by the characteristic surface S through P;
i.e., the unit normal to S, v = (v,, vx...... satisfies the equation

v1 - Za,,{x)vx, vx, = 0. (4.6)

We note that (4.5) implies that v, 0, so that the characteristic surface can
be locally extended,' see Figure 4.2. We let C(h) be the part of S generated
by AC u BD in Figure 4.2, and we let R(h) = CD and R(0) = AB. Then the
following theorem holds.

Figure 4.2

Theorem 4.1. If u = u, = 0 on R(0), then u = 0 in S.

Proof Since S is compact, there exists an M > 0 such that ja,{x)j + la(x)l
< M. if x e S. Now we rewrite (4.4) using summation convention (repeated
indices i and j are understood to be summed from I to n):

u - (a,Xx)ux,)s, - at(x)ux, - a(x)u = 0. (4.7)

Let G = G. be the region ACDB in Figure 4.2, and let

E(h) = f (u? + a,, ux, ux)) dx, (4.8)
R(A)

' The characteristic surface exists locally, but generally speaking, singularities (caustics)
may develop in the large. One way out of this is to let r be the backward cone of speed cu. This
gives a less sharp result since the domain of dependence will be larger. We shall suppose that
the characteristic surface is extendable to r - 0.
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denote the "energy" along t = h, and E(O) the energy along t = 0. Note
that E(h) 0 in view of (4.5). We shall show that there exists a constant
C = C(M, n, c,, cm) such that

E(h) < ec''E(0). (4.9)

Since E(0) = 0 by hypothesis, we obtain from (4.9), that E(h) = 0, for all
h. 0 S h < to. Then u, + a,ju,r,u,r, = 0, so that (4.5) implies u? = ux, = 0,

n, in the entire region S, and thus u is a constant in S. Since
u = 0 on R(0), we have u - 0 in S, and this is what we want to prove. We
thus must show that (4.9) holds.

We multiply (4.4) by 2u, to get

2u,L(u) = 0. (4.10)

and then compute. We have

z

(-2u,ajux,)x, + 2u,x,Q,jt/x,

_ (-2u,a(jus)x, + (a(iUx,uxf),,

so that

0 = 2u,L(u) = (u, + a,ju:,u:,), - (2a(jux,ur)x, - 2B, (4.11)

where

B = a, u u, + auu,. (4.12)

We integrate (4.11) over G and apply the divergence theorem to get

L (u, + aijux,uxj)vr - (2a(jux,ur)vx, - 2
J

B = 0,
G

so that with the obvious notation,

G

fR(h) +
fR(O)

+
f(*(h) - 2 f B = 0.

Now on R(h), v, = 1, v, = 0, and thus

(u, + a, jux ux,) dx = E(h).
RU,) R(R)

(4.13)

(4.14)



30 4. Uniqueness and Energy Integrals

Similarly,

JR(O)

= - E(0).

On C(h), (4.6) implies that v, > 0, and

(4.15)

= JC(h) [2v+ uu,V1 - 2aiju,utV,Vt]
v,

L
1 [u2 a,, v., v., + aijux,ux,v, - 2aijux,GtVxiv,] (by (4.6))- h) Vr

f ij [ui
Vxi V., + U" U" V2 - 2rfxi Vx, u, Vt]

C(h) Vt

a1/ [u, )'x, - ux, Vt] LGt Vx, - Gx, Vtl
C(h) Vt

C2
> r (ut v." - ux" v) (G, Vx, - ux, Vt) (by (4.5))

C(h) V,

z0.

This, together with (4.13H4.15) implies

E(h) 5 E(0) + 2 f B. (4.16)
c.

We now estimate JG B = 1. To do this we need a lemma.

Lemma 4.2 (Poincar6's Inequality).2

ff u2 dx dt < h2 $5 (u2 + u ux,) dx dt. (4.17)

Gh Gh

Proof. Since u(x, 0) = 0, we can write

rt
u(x, t) =

.
u,(x, r) dr,

0

and using the Schwarz inequality,

t 112

(5'
u(x, t) 5 f dr f u dT)

2 See Chapter 11. Theorem 11.3 for a sharper version.
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Squaring gives

u(x, t)2 5 t u
J0

dr,

so that

J RI"u2dx 5 =t JJ u' dxdr.
G,

If we integrate this from t = 0 to t = h, we obtain

J$u2dxdr=$$RI,t u2 dx dt< ro (t if u, dx dr) dtIf
J G.

jh($udxd)dtS
c,,

S h2 f J u? dxdr,
c

and this implies the desired result, (4.17). 0

Now we have

rA r
1) 5

J J
auu, dx dt. (4.18)

0 RIt1

But, for each i, Iaju,,,u,I 5 M l u u, 5 M(uX, + u,')/2, similarly I auu,

5 M(u2 + u,2)/2, Using these in (4.18) together with Poincare's inequality
yields

J

M
(ux, ux( + nut) +

Al
h2(nu, + u.,',

u.")
+

nM
uif

A

0 Rcn 2 2 2

But from (4.5), ux, ux, 5 al; ux, so that

ill < f
h Jr (M + Mh aijux,ux + (M(n + 1) +. (4.19)

o RU) 2
Mn")

J

Let

a 2c.7 - 2
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then (4.19) implies
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h G

f fitM u" + a;fu,,,uj E(t)dt.
JO 2

This together with (4.16) yields

b

E(h) 5 E(0) + C E(t) dt, 0 < h < to.
fo

Now for 0 < t < to, we have, from (4.20)

dt
{c-c, f E(T) (IT } = PaI E(t) - C I E(r) dzl < e c'E(0)

o ) L Jo J

Integrate this from t = 0 tot = h, to get

1 - e- Ch
e' cti f E(T) dT < E(0),

0

so

E(h) - E(0) < C
J

E(T) dT S (ec' - 1)E(0),
0

from which (4.9) follows. This completes the proof. 0

(4.20)

We remark that the result that (4.20) yields (4.9) is commonly called
Gronwairs inequality. It holds for any function E(t) > 0, and for any constant
C>0.

No'r s

The general theorem presented here was shown tome by E. C. Zachmanoglou.



Chapter 5

Holmgren's Uniqueness Theorem

There is a well-known theorem, called the Cauchy-Kowaleski theorem.
which asserts that there exists a unique analytic solution of an analytic
initial-value problem. Here, by an analytic initial-value problem, we mean
a problem in which everything (the terms in the equation, the initial data,
and the initial hypersurface), is analytic in a neighbourhood of a point
(see [Ga]). The possibility is thereby left open as to whether there can exist
a nonanalytic solution to this problem. Holmgren's uniqueness theorem
denies this possibility. We shall also find this result useful in Chapter 6
where we shall apply it to determine qualitative information on domains of
dependence. For this reason, we shall prove a rather general version of the
theorem.

Before stating the theorem, we would like to recall a (nowadays) rather
familiar technique used to prove uniqueness theorems. Thus, suppose that
. is a Hilbert space, and A is an operator on %ef . If A(A) and q(A) denote
the range and null-space of A, respectively, then we know that R(A*) S n(A)1,
where A* is the adjoint of A, and 1 denotes orthogonal complement. Thus,
if 9E(A*) is "large," n(A)1 must be "large," so that q(A) itself is "small."
That is, the existence of sufficiently-many solutions of the adjoint equation
implies that the null-space of A is zero; i.c., A has unique solutions. In symbols,
if Ax = Ay, we choose w such that A*w = x - y; then

x-Y112=<x-y,x-Y)=Cx-y,A*w>=<A(x-y),w>=0,

so that x = y. This is the idea behind Holmgren's method. It was a striking
insight in Holmgren's time.

Let

L = I A,(x)Da, x e R". (5.1)
lal sm

be an mth order linear differential operator with coefficients A,2 (x) which are
N x N matrices having coefficients in C"i+2 (recall the notation defined in
Chapter 2). For S = ( ,, ... , i;"), we denote by

Y (X. S) = m! Aa(x)g=,
Isl =+"
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the characteristic matrix of L, and we let

P(x, ) = det 9(x,

a form of degree rN, be the characteristic form of L.
We extend the notion of characteristic surface to vector-valued operators

L as follows. A surface S given by 4(x) = 0, is called noncharacteristic with
respect to L at xa e S if

P(xo. V (xo)) 0.

S is called noncharacteristic with respect to L if it is noncharacteristic at
each point. For a scalar operator, it is easy to see that this condition reduces
to the old one, namely

Y A.(xo)V (xo)' 0.
121-M

We shall now motivate and explain the Holmgren approach. Suppose
that G is a region in R' with boundary, OG = I', Q I. Let u be a column
vector and v a row vector such that

DAu(x) = 0 if f I S m - 1, x e 1'1. (5.2)

DPu(x) = 0 if 1#15 m - 1, x e r2 . (5.3)

We are interested in the uniqueness problem for

L(u) = 0 in G (5.4)

with data satisfying (5.2); i.e., we want to conclude that u = 0. Here is the
way of doing this via Holmgren's method.

If we integrate by parts, we get, from (5.2) and (5.3),

V (
A,D°u dx = fo (jai (-1)I'1D'(vA,)udx. (5.5)fc N155m

Let M be the (adjoint) operator defined by

,11(v) _ (-1)1"D(vA,).
I l5m

Now suppose that the equation

M(v(x)) = w(x), x e G, (5.7)
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with initial data (5.3), had a solution for each w. Then from (5.5) we obtain

J
wu dx =

J
M(v)u dx =

J
v(Lu) dx = 0, (5.8)

v c c

from which we conclude that u - 0 (by setting w = u', the transpose of u).
Thus, if the initial-value problem (5.7). (5.3) had a solution for all w, then the
solution of (5.4), (5.2) is unique. The same conclusion holds if we can solve
(5.7), (5.3) for all w in a dense set of functions; that is, if for w e C(V), there
was a sequence w" converging uniformly to w, such that for each n, we can
find v" with

M(v")=w". Ddv"=0. 1PI<m- 1 on r2

Then

I wudx= limw"udx=0,
c IG

from which we could again conclude that u - 0.
Thus, we have shown that the initial-value problem (5.4), (5.2) has at most

one solution if the initial-value problem (5.7), (5.3) can be solved for a dense
set of functions w. (We are leaving things a little vague here in that we have
not defined a topology on the class of functions containing w; this will be
made precise below.)

We now state and prove the theorem of this chapter.

Theorem 5.1 (Holmgren's Uniqueness Theorem). The equation

L(u) _ A](x)D'u = f (x), x e R", (5.9)
lalsm

with analytic coefficients A., with data

Ddu(x) = gd(x), 1#1 < m - 1, x e S, (5.10)

given on an analytic noncharacteristic surface S, has at most one solution in
a neighbourhood of S.

Before giving the proof, a few remarks are in order.

1. Note that neither gd nor f is assumed to be analytic.

2. We can write (5.6) as

M"(v*)= Y (-1)I°ID°(AQv*), (5.6)
s m
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where the asterisk's denote adjoints. From this it follows that the principal
part of M* is

l v Z Aa (x)b',
lal =+,u

and the characteristic equation of M* is

(_ lr detl Aatta = det[(- lr A;il'J = 0.
121= L Isl-T

From this we see that the characteristic equations for M* and L are the
same. Hence, S is characteristic with respect to M* if and only if S is charac-
teristic with respect to L.

3. Since the coefficients of L are analytic functions, we are led by the
Cauchy-Kowalcwski theorem to take w to be in the class of analytic func-
tions, these being dense in, e.g., C(RA). The Cauchy-Kowalewski theorem
guarantees the local existence of a solution v of the equation M(v) = w,
with zero initial data on S, if S is analytic. But the region of existence depends
on w. We must find a neighbourhood of S which is independent of w.

Proof of Theorem 5.1. Let S = {x: O(x) = 0} be noncharacteristic with
respect to L, and let So be a compact subset of S. We deform So by an analytic
deformation (homotopy), keeping the boundary of So fixed. To this end, we
consider a family of surfaces S,, = (x: 0(x, A) = 0), 0 < A 5 , each having
the same boundary. The functions O(x, 7.) are analytic in both x and A. If
0 5 i,, < i.2 < ;, we denote by R2, A. the region determined by the S;,,
A! < A 5 A2 ; see Figure 5.1. We assume that dSo = {x: O(x) = 0} n
{x: a(x) = 0) where x is an analytic function, and we set O(x, A) =
(I - A)O(x) + Aa(x). Note that for small A, P(x, VO(x, A)) # 0 for x in the
compact set S;,, provided that P(x, V4(x)) A 0 for x in the set So n (x: O(x)
=0). That is, we choose 4(x, A) such that all the sets S,, with 0 5 A 5 i
are noncharacteristic with respect to L; this really defines i. Finally, let
R=Rol.
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We shall show that a solution of L(u) = f in R is determined uniquely
by its data on So. We first need a lemma.

Lemma 5.2. There exists an c > 0 such that if 0 < A < p < i and It < A + e,
then the equation M(v) = w, in RA,,, with data Dsv = 0 on S,,, I f I S m -- 1,
has solutions v for w in a dense set in C(R,,,,).

Proof. From the Cauchy-Kowalewski theorem. if K is a compact subset of
a noncharacteristic analytic surface, and w is analytic in a neighborhood of
K, there is a solution of M(v) = w in a neighborhood of K, which has zero
initial data on K.

Let w be an entire function of x and a parameter and
let the SA be noncharacteristic surfaces, as above. For each with 1& I : 1,
and each p, 0 <- p <- %, we seek a solution v(x, ;, p) of the equation ,bf(v)

with zero initial data on S.
We view the equations M(v) = w as a system of equations for a function

v of 2n + 1 variables, x,, ... , x,,, ;,, ... , .,,,u, for which no derivatives with
respect to the last (n + 1) variables enter the equations. We seek a solution
in which all derivatives of v of order 5 m - 1, vanish on the analytic hyper-
surface O(x, p) = 0, in (x, S, p)-spacc. Now the set

K = {(x,S,p):xESa,0 <-p 1},

is a compact analytic hypcrsurface in (x, , p) space. Furthermore, since the
characteristic matrix of M is unchanged by the addition of more variables,
K is noncharacteristic for M. Thus, again by the Cauchy-Kowalewski
theorem, there exists a solution of our problem in some neighborhood of K.

Therefore there exists S > 0, such that for any , p with 0 < p < Z, and
5 1, the function v(x, S, p) is defined for x in a S-neighborhood of S_.

It follows that by taking p so close to a such that the 6-neighborhoods of
S,, and S meet, that we can find an r > 0 such that v(x, S, p) is defined in
Ra for every A, ,u with 0 < p - A < e and for all , with y 15 1. In total, if
0 < p - A < s, then the problem M(v) = w(x, in R;,, with zero data on
S has a solution for all ;, with I S I <_ 1.

If we can find w(x, ) such that their linear combinations are C°-dense for
I; I S 1, then the problem M(v) = w in RAM, D'3v = 0 in SM, III < m, has
solution v for a dense set of iv in C(RA,,), and this would complete the proof
of the lemma. To this end we take w(x, 4) = exp(x 4). Then every monomial
x° = xi' - 4' can be uniformly approximated in every bounded subset
of x-space by linear combinations of the w(x. 41141 5 1; namely,

(esM
- 11

xa = lim
Sk
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Since the linear combinations of the monomials are dense, the same holds
true for linear combinations of the w(x, ), I s1 5 1. Thus M(v) = w has a
solution v in R,,,, with zero data on S, for a dense set of w if A - p < v. This
proves the lemma. O

We can now complete the proof of the theorem. Thus, suppose that
I on So. We find a finite set

0=ao<Ar < <.ik= such that ,1j,,-i,< j=0.1....,k-1,
where the s > 0 is obtained from our lemma. Using the lemma, we know
that for a dense set of w there are solutions of Nf(v) = w in RO,,,,with zero
data on S.,,. Since 4RoA,) = So u Sx,. and u has zero data on So, and v
has zero data on S,,,, we obtain (as above) that u 0 in R0;,,. We repeat
this argument finitely many times to conclude u = 0 in Rox. This completes
the proof of the theorem. El

We close this chapter with a small observation. We have really shown
that the solution of the initial-value problem is uniquely determined at all
points which can be reached by deforming a portion of the initial surface
analytically through noncharacteristic surfaces having the same boundary.
Thus the "region of uniqueness" depends only on the geometry of the
characteristic surface.

Nom
The original theorem goes back to the beginning of the twentieth century;
the proof given here follows John [BJS], see also [Ga].



Chapter 6

An Initial-Value Problem for a
Hyperbolic Equation

We consider the equation for the homogeneous operator P:

P(u) _ Y a3D°u = 0, x = (t, ) E R+ x R", (6.1)
iQi = m

with initial data

0<j<m. (6.2)

We assume that each as is constant, and that the hyperplane t = 0 is non-
characteristic with respect to P. Since the normal vector to the surface
t = 0 is (1, 0,..., 0), this means am...0 * 0; thus we assume am o = 1.

We shall reduce this problem to the solvability of the equation (6.1)
together with the data of the form

Dou(O,G)=
0, 0:5 k<m1,

(6.3)k=m-1.

Lemma 6.1. If P(u) = 0 with data (6.3) is solvable, then so is (6.1), (6.2).

Proof. If u solves (6.1), (6.2), we set

m-t 1
v(x) = u(x) - E k()tk

k=o k.

Then v solves a problem of the form

P(v) = O(x), Do' v(0, ii) = 0, 0 S k < m - 1. (6.5)

Conversely, if v solves (6.5), then u, defined by (6.4), solves (6.1) and (6.2).
Now if v(t, , s) solves P(v) = 0, with data Dav(s, , s) = 0, 0 5 k < m - 1
and D' v(s,l:,s)=i(s,i),weset

rr

u(t, s) =
.

v(t. c, s) ds,
0

and we check easily that u solves (6.5). 0



40 6. An Initial-Value Problem for a Hyperbolic Equation

Thus, we consider the problem (6.1), (6.3). In order to solve this, we shall
show that it is "formally" solvable by employing a separation of variables
technique, together with a systematic use of the Fourier transform. If the
"data" g(y) decays sufficiently fast at infinity, we can show that the formal
solution is actually a rigorous solution. We begin by recalling the definition
and some standard properties of the Fourier transform (see [Ru 1]).

Definition 6.2. If f e L, (R'), the Fourier transform j off is defined by

1(Y) = (2n)-"12 yER",
it

where Y = Y_SiYi

We recall that if jalso is in L,(R"), then inversion holds; i.e.,

f(S) = (2n)-"12

$
e1'''' j(Y)dy.

Moreover, if f e Co(R"), then supreR^IY'J(Y)I is finite, so ifs > n, this implies
that j e L,(R") and thus inversion holds. Finally, the mapping f - j is an
isometry from L2(R") onto L2(R").

We now return to the problem (6.1), (6.3). Before solving it, we shall
first give some idea of the method. Thus, suppose that we can solve P(u) = 0,
(6.3) for functions g(y) = e'1"4, where e R"; i.e., suppose that we can solve
the equation P(v) = 0 with data

DJ t,1(0, -
J0, OSk<m - 1,

o =
k = m - 1. (6.6)

Then a formal solution to (6.1), (6.3) is given by

u(x) = (2n)-O f .(Y)v(x, y) dy. (6.7)

To see this, note that

P(u) = (2n)-"12 f f(Y)P(v)d1' = 0,

Dou(O, S) = (2n)-"r2 $f()D v(0, y) dy = 0,
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if 0 < k < in - 1, while the inversion formula gives

D"'-' u(O, x) = (270 - "rz Ld v = f (x)

In particular, this formal procedure will be valid provided that:

(i) equation (6.7) is well defined,
(ii) f satisfies the inversion formula,

(iii) the differential operators can be taken under the integral signs, and
finally,

(iv) P(v) = 0 with data, (6.6) has a solution.

We shall show that this procedure actually works if f e Q(R") where
s ? in + n + 1. provided that the operator is "hyperbolic," in the sense
of the following definition.

Definition 6.3. The operator P is hyperbolic if the (algebraic) equation
P(t, y) = 0 has only real roots t for each y e R".

We proceed with the details. We first solve NO = 0 with data, (6.6). To do
this we use separation of variablcs, and seek a solution in the form

v(r, x, y) = erx y t`,(t y).

Substituting this in the equation gives

0 = P(e'E' yeti{t, y)) _ F a,(D;' ... D"aI et: ,)Do +:(t, )')
lal=m

= ere r I a,[(iyt)` ... (iy")'"Do %v]
lal-m

= e'' aQ(Do e'` 'P(D0. iv)w.
12]=M

Also, since

Da c(0, y) = e' 'Do w(0. y), 0 5 k f,- in - 1,

we see that w must solve the ordinary differential equation

P(D0, iy)w(t. y) = 0,

with initial data

10, 0<k<m-
D°w(0,y)= 1, k=m-1.
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Conversely, a solution w of (6.8), (6.9) gives us the desired solution v. We
thus proceed to solve (6.8). (6.9). It turns out that we can solve this problem
explicitly, namely.

1 Ir e "'
w(t, )')

= 21r P(iz. iy) dz,
(6.10)

where r is any simple oriented contour surrounding the roots r of the
polynomial equation P(r, y) = 0.

In this case, a formal solution of P(u) = 0. with data, (6.3) is given by

u(t, (27r)-"2 e"'"wIt. y).f (y) dy. (6.11)

where w is defined by (6.10). This formula would define an actual solution
provided that f e Co(R") for sufficiently large s, and that w has polynomial
growth in y, since if this were so, then we could pass the differential operators
through the integral in (6.11). We shall show that the assumption of hyper-
bolicity ensures that w has polynomial growth in y.

Theorem 6.4. If P is a hyperbolic operator, then (6.11) defines a solution
u e C'"(R") of P(u) = 0, with data, (6.3) if f e Ca(R"), s = m + n + 1.

Proof. Let R = {rk(y): 0 5 k 5 m} denote the (real) roots t of P(t. y) = 0.
Let r = r(y) be a (not necessarily connected) contour in C containing these
roots, where r c-IR and R is the union of squares of side 2, with centers
at rk. Notice that dist(r, R) >- 1, and in the length of r, is equal to c, c
independent of y.

Lemma 6.5. There is an M > 0, depending only on P such that for each
k=1,2, . ,m

Irk(y)I s MIyI. (6.12)

Proof. If 0 is a root of the monic polynomial p(x) = D'_ob;x, and 0 _> I
then

-0''=Y- b,0', so 191sEIbrll0l' <EIbil;
i-o i-o 1-0

thus for any root 0, 101 S max { 1, E°'=o 1b1). Applying this to the polynomial
equation P(rk/lyl, y/Iyl) = 0, we find that the lemma holds with

M = max{ 1, I'Z.ja,. Iy,)al r = max{1, I*ZIaQI}.
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Now if r E T', I r - rk 1 5 V2 for some k and thus by the lemma I r < My
I

+ ,/2. Hence for t >_ 0.

`
I Do w(t, ),) I

It

J

yRersr

dz
7ni" r P(z, Y)

(MIYI + i'
Ir

er `I dz
27r IP(z, Y) I

MIlI + ,2s
et c,

(2n
ec',

since z E r implies both I P(z, y) I z 1 and Ie" r I < er. Thus for each t > 0,
and each k, 05k5 m

Y)I = e'O(IYt.f(Y)I) = erO(vl-t),

as Iy) -+ oo. This justifies all of the differentiations under the integral sign
in (6.11), and completes the proof.

Corollary 6.6. The equation (6.1) for the hyperbolic operator P with initial
data (6.2) on the noncharacteristic hypersurface t = 0 is solvable if each 9/k(Y)
is in C'(R"), s = m + n + 1.

We next show that the solution which we have just obtained is unique
and has a bounded domain of dependence. This will be done with the aid
of Holmgren's theorem. We recall that this theorem states that the equation
P(u) = 0, with initial data given on an analytic noncharacteristic hyper-
surface, is uniquely determined in a region generated by analytic deformations
of the original hypersurface.

Now by assumption, the hyperplanes t = const. are noncharacteristic
with respect to P. Hence the same holds true for an analytic hypersurface
whose normal vector makes a sufficiently small angle with the t-axis. Thus,
consider a hypersurface S of the form t - f 0. The characteristic
equation for P with respect to S is 1 + A(- V f) = 0, where

a
apt

lal - m
a0.m

Since A(0) = 0, there is a constants > 0, such that if I5I < c, then I + A(;)
# 0. It follows that S is noncharacteristic provided Iof I2 < r=, at each
point.

It is easy to write down a family of analytic hypersurfaces which are
everywhere noncharactcristic. For example, for (to, yo) e R x R", and 0 < .
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let S, be the analytic, noncharacteristic hypersurface consisting of those
points (t, y) in R x R" for which

vet

o

o + si.ly - YoI21tz toI - to = - t+A Y - to.
I

One checks easily that these generate the conical region R = {0 S t < to
- fly y - yo l } n fly y - yo l < to/e}, having vertex at (to, yo), and having the
common boundary {t = 0} n fly - yol = tolE}.

Thus by Holmgren's theorem. u is determined uniquely in R by the
values of P(u) in R and by the data on So = {t = 0} n { y - yo < tot} ;
that is, R is the domain of dependence of (to, yo). We have thus proved the
following theorem.

Theorem 6.7. The solution of (6.1), (6.2) is unique and has a bounded domain
of dependence. In particular, if each ci3(y) has compact support, then the same
is true for u on any line t = const. > 0.

NOTES

The original ideas are due to Pctrovsky and GArding [GA]; the proof given
here is adopted from [BJS]. There is an extension to the case where P is
not a homogeneous operator. Here one requires that the roots of Pm(t, y) = 0
are real and distinct. The initial-value problem need not he well-posed if this
condition fails to be true [BJS]. For a nice geometric interpretation of
hyperbolicity, see [BJS].



Chapter 7

Distribution Theory

§A. A Cursory View

Consider the partial differential equation (in R2), us,, = f. If 0 E C2(R2), then
multiplying both sides of this equation by 0, and integrating by parts, gives
lu4x,. = if 0. Now suppose that it is not necessarily smooth, but that this
last equation holds for each 0 e Co (R2). We could then say that f is the
"weak" mixed derivative of u. We could actually go one step further and
consider the linear functional on Ca (R2) defined by

0 J'R2 u4x,..

Then we could say u,,,, = f " weakly " provided that the above linear functional
agrees with the linear functional on Co (R") given by 0 JRZ f 4,. This is the
key idea in the theory of distributions-replace functions by functionals.

We let c be an open set in R", and define the differential operator D) by
Di = - i a/axf. Note that this definition differs from that in Chapter 2; we
include the - i here in order to simplify things later where we employ
Fourier transforms.

Definition 7.1. A distribution Ton C is a linear functional on C0 'Q) such that
T4, -+ 0 for every sequence {¢,} c C'(0) satisfying the following two
properties :

(i) spt 4; e K e i2, where K is compact and independent of j,
(ti) H D'4,J Il 0 as j -+ ao for all a with ja l >- 0.

In this case we write 4; -. 0 in Co ()).

We denote by 1'(0), the space of distributions on ft We pause to give a
few examples.
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EXAMPLE. 1. Let f be a locally integrable function on R"; then the formula
Tf 0 = J'R, f 0 defines a distribution on R" since if 0 E Co (R"),

1 1 0
t 9

if I.
ep

Thus if Co(R"),Tf¢j-y0.

EXAMPLE 2. Let a e R. and define, for k a nonnegative integer.

One checks easily that 8; is a distribution. If k = a = 0, this distribution is
usually called the " Dirac delta function." and is written simply as 6. We can
obviously extend the definitions to functions on R", n > 1.

EXAMPLE 3. Let u be a Radon measure on R"; then u defines a distribution by
the formula u(4)) = In, ¢ du.

If {T)} c 2'(c2), we say T converges to zero in P'(Q), and write Tf 0.
provided that TO -' 0 for each 0 e CO'Q) (that is, T converges weakly to
zero). For T e "'(Q), we say that T is zero on an open set w c S if To = 0 for
each 0 e Co (w). The support of T c 9,'(Q) is the set of points in Q which have
no neighborhood on which T is zero. e"(S2) denotes the space of distributions
having compact support in S2.

EXAMPLE 4. If d is the Dirac delta function, then spt a = {0}. To see this,
observe that if x A 0, then there is an open set w about x such that 0 4 co. So
if spt ¢ e co, then 8(4)) = 4)(0) = 0.

We now turn to the "raison d'etre" for studying distribution theory. We
begin with an example.

EXAMPLI; 5 (Weak-Derivatives). Let u be a locally integrable function in f4
and let a be any multi-index. A locally integrable function v on Q is called the
a-weak derivative of u if

Jv4)dx = (-1)1"I f uDa4) dx,
n st

for every 0 e Co (Q). We write v = D°u. It is easy to check (Example 1) that
v e A function u is k-times weakly differentiable if all of its a-weak
derivatives exist for I a I < k. The space of k-times weakly differentiable
functions is denoted by Wk(f ); clearly Ck(S) c Wk(S2) c 9'(( ). The notion
of weak derivative is thus an extension of the usual concept of derivative, in
which the above "integration by parts" formula is valid.
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by

We can go one step further with this example and define the WP(Q) spaces

W!'(0) = {u e Wk(fl): Dau E L..((2) if Ia 5 k).

o(fl) is a Banach space with the norm defined by

l u 11 p.k = f Y (Dau)o dx

4Vp (S2) is the closure of Co(i2) in WD (Q). (Thus one can take "derivatives"; i.e.,
weak derivatives on these spaces, and elements in these spaces can serve as
candidates for solutions of differential equations.) These spaces are of impor-
tance in studying elliptic and parabolic equations, see Chapters 8, 9, and 10.

Definition 7.2. Let TE and let a be any multi-index of nonnegative
integers. The derivative D"Tis defined by

DaT _ (- 1)Ial T- Da0i 0 E Co (S2).

It is easy to see that DT again is in 2'(S2). For, if 4 j -. 0 in C(S)D°4'j -. 0
in C0 '(0), and so T - Dalbj - 0. Thus, every distribution has a derivative
which itself is a distribution; in short, distributions are "infinitely differ-
entiable." In fact, all continuous functions have derivatives of all orders (in
the above sense!). Therefore we may consider differential operators acting on
distributions. In this way we can extend the class of objects which can serve
as solutions to differential equations, from smooth functions to distributions.
This increases our chances of finding a solution to a given differential equa-
tion. Of course, there remains the problem of "regularity"; i.e., the problem
of showing that the distribution "solution" is actually a smooth function.

EXAMPLE 6 (The Heaviside Function). We define the function H(x) by

H(x) _
0 x < 0,

1, x>0.

H E.9' (R) since H is locally integrable. We show H' = 6. To see this, let
(P E CO(R), then

f 4'(x)dx=0(0)
0

EXAMPLE 7. Let K be defined on R by

K(x)_ 0, x <0,(z,
x > 0.
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Then K' = H; more generally. if

K"(x) =
0. x<0,

lx".n!, x > 0.

then K;,=K"_1,n - 1

EXAMPLE 8. Obviously 6'- Qi = - 0'(0) if 0 e C0 '(R). Thus 6' is not a measure.

If f e C'°(12), and T e !L'(12), then we can define the product f T by

fT.0 = T(f0). 0eC0"' (0).

It is easy to see that f Te 9'(Q).

Next, we shall define the convolution of distributions. In order to motivate
the definition, let's first consider again the situation for functions. Thus, if
f and g are in L1(R"), the convolution off and g, f * g is the function defined
by

(f * g)(x) = f. f(y)g(x - y) dy.
a

The product is obviously commutative, and an application of Fubini's
theorem shows f * g e L1(R"); in fact 11 f * g 11 < 11 f 11 1 g Il where the norms
are L1-norms. Thus f * g c-.9' (R'). Hence, for 0 e Ca(R")

(f * g) 0 = f (f * g) (x)O(x) dx =
J ( ff(y)(x -Y) dy) 4(x) dx

= f f(Y)( f g(x - y)O(x)dx l dy.

= Jf(y)(j(z)(y + z) dz) dy = f,. (g: 0(y + z)).

This motivates us to define the convolution of T e ?'(R"), S E 8'(R") by

(T * S)o = Tx [Sy qS(x + Y)] ;

the same expression is taken as the definition if T e 9'([V), and S e Y(R").
Then it is not very hard to show the following properties are valid (cf.
[Ho 2])

(A) (T * S) e 2''(R").
(B) T*S=S*T.
(C) If U e 6'(R"), then (T* S) * U = T * (S * U).
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(D) spt(Ts S) c spt T + spt S.
(E) If f E Co (Q), and T E .x''(12), then T s f E C"(R"), and (T s f)(x)

y).

Proposition 7.3. If T e 3'(R"), and S E 9'(R"), then

D'(T*S) = (D'T)*S = T*(D'S).

Proof. If 0 e Co(R"), then

D'(T s S) _ (-1)I'I(Ts S)(D'(b) _ (-1)I"I7 [S ' D24(x + y)]
= T.[(- 1)IaISy. D'cb(x + y)] = T,[D'Ss' 4(x + y)]

Thus D'(T s S) = T s D'S; the rest follows from property (B) above. 0

EXAMPLE 9. Let T e -?'(R"), then T s cS = T. For, if 0 E C (R"),

(T s 6)4 = T,61i (x + y) = T1¢(x) = T Qt.

More generally, if a is any multi-index, T* D°d = D'T, since T* D'8
= D'T s d = D'T.

We next turn to the Fourier transform of distributions. Just as not all
functions have Fourier transforms, we must find a subclass of Q' which have
Fourier transforms. These functionals are defined on a space ,5 = Ca C. so
that i'a(Co)'=-9'.

We define the space Y of rapidly decreasing functions by

re C°`(R"): lim I x'DOf(x)j = 0 for all multi-indices a and fiT
IxI-, J

A sequence {0"} a Y is said to converge to zero in ©, 0. -, 0 in Y. if

lim sup I x'Ddq"(x) = 0,
n_%, xeR"

for all multi-indices a and /3. Note that Co c Y. and that ' R, Co , since,
e.g., a-Ix1' is in fP\Co .

It follows easily from (7.1) that ;P c L,(R") so that each function in Y has
a Fourier transform. Moreover, a straightforward integration by parts shows
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that f is also in L, (R") whenever f c -.9P. Thus the inversion formula holds
(see p. 40), for functions in Y.

Concerning the functions in the class 99, we have the following proposition :

Proposition 7.4. Let ¢, 4 c -.V; then the following hold :

(i) The map -+ is injective and bicontinuousfrom .' onto fP.

(ii) where (x) x).

(iii) D;o _ ;o, where we recall, DJ = -i a/ax,.

(iv) x1o(x = D;¢.

(v) * 4' _ (27r)`^r2(k

(vi) 04, = (2rt)-4'2

Proof. If ¢ e 9', then 0 is in L2 and by Plancherel's formula, II II2 = II II 2'
so 0 -+ is 1-1. Since inversion holds, the map is also onto. In view of the
equation

(2n)";2 f
dx,

we see that (iv) holds. Also,

y (2n)"'2 f (e-tx*Yyjt)(- x°`o(x)) dx

= (2n)_R/2 f (Dae-'x r)(x'4(x)) dx,

so

(27r)-1r2 f l)IBlxaO(x)) dx. (7.2)

If we set a = 0, we see that (iii) holds. (7.2) also shows that yaL$q (Y) - 0
as I y I -> oo. so that

Iy s 11 (1 + Ix11"+1De(x°4(x))'i. f 0 + 1x11- +udx.
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Thus the map ¢ - $ is continuous on Y. Using (ii) (which is obvious from the
inversion formula), we see that 4 4, is also continuous. Thus (i) holds. To
prove (v), we compute

4(Y) = (21r)-W2

f ifi)(x)dx

= (27z)-"12 JeY(J(t)(x - 1) dt I dx

= (2n)-n,'2 $o(t)(Jeix,i/(x - t) dx) dt

= (2n)-"i2 J(t) (dz) dt

= (21r)-rkr2

f
e-i"YO(t) dr f e-1:-rifi(z) dz

=

Finally, from (v),

= (2n)"'4tA = (2n)"j20-t

so that

* = (2nrr2(4-o -) - = (22b.
This proves (vi) and completes the proof.

Definition 7.5. The space of tempered distributions, J' a 9Y, consists of those
functionals on .9' such that if 0" -+ 0 in P, then To. -. 0. If Te So', the
Fourier transform t of T is defined by t 4, = T- for all 44 e Y. T. - 0
in cach0eY.

Note that if 0" -+ 0 in 90, to. = Ti" 0 in view of (i) above. Thus
T c,P'. We now give some examples.

EXAMPLE 10. If 0 e .9', then (2n)-"`2 1 O(x) dx; whence
3 = (27r)-"'21.

EXAMPLE 11. IfaeR. and 0e.`f',

elx 4' = ''ax. f
e' ' (x) dx = (27W`24(a) =

(27t)"raga
- 4

.so that (e"" T = (27r)".126.
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Theorem 7.6. The map T --* T from f' into .9' is injective and bicontinuous.
Also, the following properties hold :

(i) tSES', TESL', then 9c-C' and T* S E Ef'.
(ii) S*T=9T'ifSe8'andTE. `

(iii) !f is a polynomial, then P(D)u = P(-t)t for all u e.'.
(iv) )S = - DID' if S E 9'.

The proofs of (1) and (ii) can be found in [Ho 2]. For (iii), we use (iv) of
Proposition 7.4. Thus

P(D)u = P(D)u = u P(- D) = u P(- )O = II P(- )O
= P(-

The proof of (iv) is similar.

§B. Fundamental Solutions

We shall now show one way in which distributions are useful in studying
partial differential equations. To this end, let P be a differential operator of
order m with constant coefficients. We consider the equation

P(D)u = f, f e Co . (7.3)

In order to solve this, it suffices to find a fundamental solution, i.e., a
solution to the equation

P(D)v = 6. (7.4)

If one can solve (7.4). then if u = v* f. we have P(D)u = P(D)v * f
= 6 *.f = J. Thus it is only necessary to solve (7.4). We turn our attention to
this problem.

We note that for certain differential operators it is easy to find fundamental
solutions; e.g., if A = E;. I D,?, we have the following lemma.

Lemma 7.7. Let N be an integer such that 4N z n + 1; then there exists
H e L2(R") such that (1 + A)NH = S.

Proof. Let G(4) = (1 + 1 12)-Y; since 4N >- n + 1, G e L2(R"). Thus
(cf. Chapter 6) there is an F e L2(R") such that F = G. Since
(1 + 1, we havc (1 + 2)s'(2n)-"`2F() = I and from Theo-
rem 7.6(iv), (I + A)' (2nt)-"`2F = S. p

The next lemma gives us a strategy for solving (7.3).
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Lemma 7.8. If there exists a subspace 11 such that L2(R") S H S Q'(R"), and
P(D)H ? H, then a fundamental solution of P exists.

Proof. Let F be as in Lemma 7.7. Then F e P(D)H so there is a G in H such
that P(D)G = F. If v = (1 - 0)"G, then

P(D)v = P(D)(1 - A)"`G = (1 - 0)"P(D)G = (1 - 0)"F = 8.

In view of this lemma, our problem is to find such a space H. To this end.
let E(x) = exp(Ix12/2), and let H f be the spaces defined by

H+ = {f:EfeL2(R")}. H_ = {f:E-ifeL2(R")}.

We define inner products on these spaces by

<f 0. = f E2(x)f(x)9(x)dx
R'

<f.9>- = J ^ E-2(x)f(x))(x)dx.
R

1

It is an easy exercise to show that H. are both Hilbert spaces and that
Co (R") is dense in H_. It will turn out that 11 - is the space that we seek.

We first verify the easy part of the hypotheses in Lemma 7.8. Namely,
we have the following lemma.

Lemma 7.9. L2(R") s 11- S'(R").

Proof. If f e L2(R") then

2 _ E- 2(x)1 f(x)1 2 dx < If(x)12dx ¢ c'.Ilf llf f= fit, fit.

so f e H _ . On the other hand, if 0" -. 0 in C0 '(R"), and f e H _, then there is a
compact set K s R" such that each 0" is supported in K. We have

f, 0. = f. 0" = I (fE-1)(Ed)") s i f 11 . (f E24
K c K

s
a

E2) _0 asn - cc.

) 1,2

Thus H- c Q'(R"). and the proof is complete.
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We now obtain some properties of the spaces Ht.

7. Distribution Theory

Proposition 7.10.

(a) The mapping f - E2f is an isometrv from H. into H_ and takes
Co (R") onto itself.

(b) The dual of H , is H here the duality pairing is with respect to the
L2-inner product.

Proof. . If f e H +, then

11fE2II? = f (f2E°)E-2 = f f2E2 = II.1I!+.

so that the first part of (a) holds. The last sentence in (a) is obvious. To prove
(b) let 0 e H_ and define a functional on H+ by

0.f= f Of, feH+.

Since

Ifi.fI = f (OE-')(Ef)1 s 110 11 - 11 f 11 ..

we see that 0 defines a continuous linear functional on H+ . Conversely, if (b
is a continuous linear functional on H+, then by the Riesz representation
theorem, there exists 01 e H+ such that

(f) _ «t. f>+, f e H+.

Let 01 El then

fi(f) = J14).

and

10II? = f 1012E-2 = f I0t12E2 = IIpt II < 00.

Thus 0 E H_ and' is represented by an element in H_. This completes the
proof. E]
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We next prove the main lemma in this section.

Lemma 7.11. If the inequality

11011. 5 K 1; P(D)T it +, 0 E C0 `(R ), (7.5)

holds for all 0 e Co (R"), where K is independent of 0, then P has a fundamental
solution.

Proof. From Lemmas 7.8 and 7.9, it suffices to show that H.. c P(D)H-.
To do this, first note that the mapping P(D)4) -- 0. where 0 e Co, is well
defined and continuous in the H. norm, in view of (7.5). We can thus extend
this mapping to a mapping G, defined by continuity to the closure of P(D)C'
in H. and setting G equal to zero on the orthogonal complement of this
closure. This defines G on all of H, i.e.,

G: H. -+ H+, GP(D)4) = 0 if0eCo.

Now G induces a mapping G*: H- -, H - defined by (G*g, h) = (g, Gh),
g E H _, h E H+, where the brackets denote the L inner product. This mapping
is obviously continuous since if g" -> 0 in H_, then (g", Gh) - 0 so
(G*,q", h) - 0.

We can now show H _ S P(D)H _ . Thus, if g c- H _, and 0 E Co ,

9.0 = (g, 0) = (g. GP(D)4)) = (G*g, P(D)4)) = G*9 P(D)O,

so that g 0 = P(- D)G*g 0. It follows that g = P(- D)G*g, and since
G*g e H _, we have proved that P(- D)H_ ? H If we now replace the
polynomial P(x) by P(-x), the same argument shows that P(D)H- 2 H-
and the proof is complete. C3

Thus, the existence of a fundamental solution for P(D) reduces to proving
the estimate (7.5). The heart of this inequality is basically algebraic, as we
shall now show.

Let d be an algebra with unity I over the complex numbers C, and let a
and b be elements in .4 such that their commutator [a. b] _- ab - ha = 1.
Let p(x) and q(x) be polynomials in the scalar x, with coefficients in C.

Lemma 7.12.

q(b)p(a) _ I ( i )k p(')(a)g(k)(b),
k-o k.

where p(k)(x) = dkp(x)/dxk.
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Proof. We claim first that it suffices to prove the lemma for monomials, i.e.,
p(x) = x", q(x) = xm, where nt and n are nonnegative integers. To see this, let
p(x) = >a"x", q(x) = Yfl",x'; then assuming the validity for monomials,
we have

y(b)P(a) _
F3mx"bma" _ 13.3t"

(k 11r D(a")D (bm)
".m m." k-0

Y
(- )« Y NmanDk(a")Dk(bm) _ (- )k

p(k'(a)9(k'(b),
k-0 k. m.n k=0 k!

which is of the desired form.
Thus, let p(x) = x", q(x) = xm, we want to show

1

q(b)p(a)
(L1) n(n - 1) ... (n - k + 1)m(nt - 1)

(m-k+1)(e-kbm-k

We do this by induction. Observe first that if in = 0 or it = 0. the result is
trivial using Taylor's formula. Let n = 1: we induct on it. If it >- 1,

q(b)p(a) = ban = (ba)a"-1 = (ab - 1)a"-' = a(ba"- 1) - an

By our induction hypothesis, ba"-' = a"-`b - (n - 1)a"' *2, so

q(b)p(a)=a(a"-Ib-(n- 1)a-2)-a"-1 =a"b-(n- l)a"-' - a"

= a"b-na"-',

and the result holds for m = 1 and all n.
Now let n be arbitrary (and fixed), and we shall induct on in. Thus we

assume

n-1 m = ` (- 1)k m-k -1-kb a (r k 1 C..kC"-t.ka b"
k-0

where ca, p = x(a - 1) (a - J3 + 1), c,.0 = 1. We have

q(b)p(a) .kam-kb"-1
k

q(b)p(a) = b"am =
b(b"-lam) = b Y

k-0
( 1),

.
I

= F., (
)kCm,kCw-I,k(bam-k)b"-t-k

k=o
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Since the result holds for n = I and any n, we have ba'"-k = a"-kb
-(m - k)am-k-', so that

q(b)p(a) = Y- ( cn'.kcn-t.kCa'-b - (m - k)a'-k-t]b"-t-k
k=p k

,
.

L k Cm.kCn-t.ka b"
k=0

Z ( 1)k n'-k-t n 1-k- k-o k_j cm.kcn-l.k(m - k)a b

In the first sum put k = p; in the second put k = p - I to get

q(b)p(a) =
1

b"
p-o P

p + I)am-Pb"-D

P-t (P

- cl".OCn-t.0a111 n

+
w (- I)p c1".Pcn-1.P c", p_tcn t.p-t(m - 1)

P=t (P - l)! P
+ p +

x a'"-Pbn-A

Thus, we will be done if we can show that the last expression in brackets is
cm pc",P/p. We have

1cl". Pcn - t . P cnr. Dcn -+ cm.P-is"-t.P-t(m - p - 1) =
P

+ pcn'.pcn-t.p-t

P

cm.P
=

P
Ic"-t.P + Pcn-t.P-t]

=cpP'c".P

The proof of the lemma is complete. Q

We extend this result to the case of polynomials in several variables.

Lemma 7.13. Let a1..... a", h1..... b" be elements ofd such that the following
commutation relations hold :

(i) [a;, ak] = [b1, bk] = [a), bk] = 0 if j k.

(ii) [as, b,] = 1.
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If p(x) and q(x) are polynomials in x = (x,,..., x,) and D' = (o'/axt)='
(a/ax")'^ for a = (a,, ... , a"), then

1 '
q(b)p(a) = c (

a)
D'p(a)D'q(b)

Proof. As before, it suffices to prove the lemma for monomials,
p(x) = x;' q(x) = x," x',^. We have, in view of (i),

q(b)p(a) = b; ... b ^a,' ... a.'- = bi'a3 , ...

From Lemma 7.12,

a , b,a°()k d,, (a)kbTt
k,=o k,. x, ax,

and so we are done. Q

We now consider C0 '(R") as a subspace of L2(R"), and let nd be the algebra
of endomorphisms on C0 -(R").

Let A,.... , A. be in ,4 and set B, = - A J, where * denotes the adjoint
operation, taken with respect to the L2-inner product. We assume that
hypotheses (i) and (ii) of Lemma 7.13 hold. This implies that for any poly-
nomial R(x) with real coefficients, if A = (A,..., A"), and [A,, Aj] = 0 for
i 0 j, R(A*) = R(A)*, since

R(A)* =
(ag)*=

> a(A)= E a2(Ai r ... A").
a 9

a.(AA,,...A11)* _ Yaa(Air,...(AA)'

= R(A*).

We shall now complete the proof of the existence of a fundamental
solution; i.e., we have the following theorem.

Theorem 7.14. If P(D) is a differential operator with (real) constant coefficients.
then P has a fundamental solution; i.e., the equation (7.4) is solvable in 0'.

Proof. Define Q(x) = P(-x), and let

A,= f(x -x), A!=-(ax +x,)=B,.
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An easy calculation shows that hypotheses (i) and (ii) of Lemma 7.13 hold
for these A,'s and B1's. Let A = (A1, ..., A.), B = -A*. Then

Q(B) = Q(-A*) = P(A*) = P(A)*,

D'Q(B) = D°Q(-A*) = DaP(A*) = DDP(A)* _ [(-1)Ia1D'P(A)]*

= (-1)I1[D°P(A)]*

Thus, if we apply Lemma 7.13 to P(x) and Q(x) we obtain

P(A)*P(A) _ It D'P(A)D'P(A)*.

So if 45 C- Col.

(P(A)*P(A)cb, 0) = 1:
1

a tt

(D'P(A)DaP(A)*4). 4)).

and

II P(A)4) 112 = Y, II D'P(A)*4) 11 2, ECO,

where the norms are L2 norms. Now if we apply (7.7) to D'P instead of P,
where 1#1 S m = order of P, we get

II D' P(A)O 112 =
Z II Da+ap(A)*

II

2

s Cl l IID'P(A)*4 2,

a 'x

1

!

= ct II P(A)4) 112.

in view of (7.7), where c1 depends only on P. Now choose fi
DdP(x) = const. 0. For this 3, we obtain

IIm112 s c11P(A)4)112. 0ECp,

such that

where c depends only on P. Applying (7.8) to the polynomial P(f xl,...,
gives

114)12

12

P` 1 -x . X.
ii -C,

1.. .. Xn
JJJ

where c' depends only P.
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If now 4' = Ei, / e Co', then

l -
x'/

-0

= `
- x;,) Etui = - x;,) exp(1(x; + ... +

c?x ix

_ - cxp(i Ix 12)4' - x; exp(i I x 12)1 = E a
ox) ax;

Thus x,, ... , ct!c'tx" - x")¢ = EP(D)tji, so (7.9) yields

IIlp II+2 112=IIEi sC'IIEP(D)41.2=CIIP(D)t/,II2

This completes the proof of the theorem. p

There are other proofs of this theorem, e.g., see [Ho 2, 3], which are not as
elementary, but which give more information on the fundamental solution ;
e.g., they give both global and local behavior of the fundamental solution.
Another alternate method is based on taking the Fourier transform of (7.4),
to obtain the equation P()u = 1. The idea is to show that this "problem in
division " has a solution "v in J'. One way of doing this is to show that the
mapping (k -p P4' from .9' into has a continuous inverse. Once this is known,
then for any Te .9', there exists an S e 7 such that P(g)S = T. To see this,
observe that the linear functional F: P( )4'(g) - T(4') on PSo is continuous
so it can be extended, by the Hahn-Banach theorem, to a continuous linear
functional on Y. Thus, there is an S e .9' such that S restricted to P,So is T.
If now 0 E Y, S(PO) = T4' ; i.e PS = T.

Thus the division problem is solvable in f' provided that the above
mapping 4' -+ P4 has a continuous inverse. This requires a careful study of
the zero set of the polynomial P(g). The main lemma is an interesting in-
equality [Ho 3] ; namely, if Z is the real zero set of P, then there are constants
c > 0 and p > 0 such that

j P(x) I >- c dist(x, Z)" if I x I< 1, x e R".

Somewhat surprisingly, this in turn depends on an algebraic-logic
theorem, called the Seidenberg-Tarski theorem [Ho]. Before stating it, we
need a definition. Let I', and Q; be polynomials in n-variables, with real
coefficients. A subset F e R" is called semialgebraic, if it is the finite union of
sets of the form

{x e R": P1(x) = 0, 1 < i r, Q;(x) > 0, 1 < j < s}.

A polynomial mapping 4': R" R' is mapping of the form x (4'1(x), ... ,

4',"(x)), where each 4; is a polynomial in n-variables, with real coefficients.
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The Scidenberg-Tarski theorem states that the image of a scmialgcbraic set
under a polynomial mapping is semialgcbraic. (This is false for algebraic
sets; e.g., let F = {(x, y) a R2 : xy - 1 = 0}, and let ¢(x, y) = y.)

§C. Appendix

A. We shall give a proof of the existence of a "partition of unity" sub-
ordinate to a given covering of a compact set. Before doing this however, we
shall have to construct Co -functions having certain properties. We shall
refer to a Co -function as a test function.

It is easy to construct a test function -0 supported in the unit ball in R";
namely. define f : R -. R by

f(t)=ell' if t < 0, f(t) = 0 ift>-0,

and set O(x) = f (I x 12 - 1), x e R. We can also construct test functions
supported in arbitrary compact sets, as the following lemma shows.

Lemma Al. Let Q be an open set in R" and let K be a compact subset of Q.
Then there exists 0 E Co (52) with 0 5 0 5 1 and = 1 in a neighborhood of K.

Proof. Let 6 = dist(K, 05)); 6 > 0. Choose numbers 0 < a < p < c + p < S.
Let K = {x: dist(x. K) 5 p}, and let 0 be the above function. Let w be the
characteristic function of Kv and set

w (x) =
fa.

w(x - Ey)O(y) dy = a-"
SR

" w(y)0 - Y) dy,
E lJ

where 0 is a multiple of 0 chosen so that (ql = 1. Then spt w, c K0+
is a C°°-function. and w, = 1 in a neighborhood of K. 0

Lemma A2 (Partition of Unity). Let Q1, 522, ... , 52h be an open covering of
the compact set K e 52. Then there are functions O1 E C' (521) such that q,, z 0,

¢1 5 1, and (Pj = I in a neighborhood of K.

Proof. For each j. choose a compact set K1 c Q1 with K (= v K). By Lemma
Al, we can find /i1 e Co (f2) with 0 5 t1 5 I and *j = 1 in a neighborhood
of K. Define

01 = 1 O1 = 01,41 - 1p)) ... (1 > I.

Then

(1 -X1)...(1 -01,)

and we see at once that all the statements in the theorem hold. C3
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B. We prove that Co is dense in L, and Co is dense in L, and C. To this
end, let 0 e Co (R") with

o. 11411L.,=I. spt0 c {IxI 5 1}.

If u is integrable, and F > 0, we can "regularize" u by convolution; namely,
define it, by

f $u(y)4>(T)t14,(x) =
J

u(x - ey)4>(y) d)' = e-"
x

}
F

dy.

Lemma B1. If It is integrable and has compact support in K c 11, then
u, a Co (S2) if e < dist(K, dfl). If u e L,, I S p < x, then II u, - u Il , 0 as
F - 0. If It is continuous, then 11 u, - u 11,,, - 0 as F -+ 0.

Proof. It is easy to see that u, is continuous, and the fact that u, is in CO comes
from differentiating the expression for u, under the integral sign.

Let d = dist(K, OQ). If u,(x) 4- 0, then there is a y, Iyl s I such that
x - eye K ; hence spi it,. c {x: dist(x, K) < F} and this last set is compact for
F < d. Thus it, e C0 '(Q).

Let it be continuous ; then

uJx) - u(x) = $[u(x - ey) - u(x)]4>(y) dy,

and the uniform continuity of it on the compact set spt 0, shows that
Ilu, - ulla, -e0as

e L,. From Minkowski's inequality, lI;II, < i!ui+.,, since
114>IIL, = I and ¢ z 0. Given n > 0, we can find a continuous function u
with compact support such that II it - u II , < r1, and thus !I u, - it, Il , <
Then using the result just proved,

limllU,-ull"<1im11u,-14 11"+IIu-fill"+limllfi,-fill,
C"-o s- o 1-o

< 2>i. 0

Nom
The roots of the subject go back to the works of Bochner [Bo], Friedrichs
[Fr 1.2], and Sobolcv [So], in addition to the use of "d-functions" and the
Heaviside function, in nonrigorous ways (sec [Sz] for a nice historical
discussion). The subject was put on a firm foundation, once and for all, by
Schwartz [Sz]. The appearance of this book gave birth to a flood of research
activity in partial differential equations. The notion of "weak derivative"
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is due to Friedrichs [Fr 2] ; the spaces Wp go back to the work of Sobolev
[So], and the space So is (more or less) discussed by Bochner [Bo]. The
important idea of taking the Fourier transform of distributions, is first found
in [Sz]; it is the key to the applications of distributions to partial differential
equations. The notion of a fundamental solution is classical; the earliest
existence theorems for fundamental solutions are due to Ehrenpreis [Ep] and
Malgrange [Ma]; see also Hormander [Ho 2]. The proof given here is due
to Trevcs, and is taken from his Paris thesis [Tr 1]. The operators At and A;
in the proof of Theorem 7.14 arise in quantum mechanics, where they are
known as "creation" and "annihilation" operators.

For a good exposition of the use of the Seidenberg Tarski theorem in
differential equations, see [Ho 2]; and also [Go].



Chapter 8

Second-Order Linear Elliptic Equations

Solutions of elliptic equations represent steady-state solutions; i.e., solutions
which do not vary with time. They often describe the asymptotic states
achieved by solutions of time-dependent problems, as t co. Physically
speaking, all the "rough spots" smooth out by the time this steady state is
achieved.

There are three basic principles which are obeyed by solutions of elliptic
equations. The first principle is. if solutions of elliptic equations have a
minimum amount of smoothness, they in fact are "exceedingly" smooth,
provided that their coefficients too are very smooth. Second, solutions of
elliptic equations are determined, in bounded sets, by "their values" on the
boundary of the set. Finally, solutions of elliptic equations obey some sort
of maximum principle; that is, their values in a bounded set are majorized
by their values on the boundary of the set.

These ideas can be easily illustrated by considering the simplest example of
an elliptic equation, Laplace's equation in R2: Au = uxx + uyy, = 0. One
knows from elementary function theory, that all continuous solutions of
Au = 0; i.e., all harmonic functions, are smooth and in fact are analytic. This
is not true for all solutions of Au = 0; namely, just consider the function
(which doesn't even define a distribution near the origin):

u(x,
y'(Reexp(z-4), z 4 0. z = x + iy,

_ 0.U,,

This function satisfies Au = 0, but it is not continuous at (0, 0). To get an idea
of what ought to be a "correct " problem for elliptic equations, suppose that
u and ti are CZ functions in a domain S2, where Bf2 is sufficiently smooth. Since
vAu + vxux + v,,ur = (vus)x + (vuy),, the divergence theorem can be applied
to yield

JJ
(vAu + Vv Vu)

n
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where duf do is the derivative of u in the direction of the outward normal to Q.
If now v = it, and it is harmonic, we obtain

JHVUI2=j'"n udnJ
n

This shows that the values of u on dig, in some sense determine u in 0. Thus,
if there were two harmonic functions u, and u2 which assumed the same values
on dig, then it = u, - u2 would satisfy

J!vztI2=0.
tz

This means ua = it, = 0 in Q so that it is constant in i2. But u = 0 on c12
forces u = 0 in 0; i.e., u, = u2 in f2. Observe that a similar argument works
if it, and u2 were two harmonic functions which agreed at each point D c 0X2
and whose normal derivatives agreed at each point N a ci2, where
D u N = dig and D has positive measure. (If meas D = 0, we could only
conclude that u, and u2 differed by a constant.) It seems reasonable then, to
consider boundary-value problems for Laplace's equation.

Finally, again from function theory, one knows that harmonic functions
obey a maximum principle; namely, if it is harmonic in i2 and continuous in
11, then for any (x, v) in Q.,

min u < u(x, y) < max U.n

We shall see that these properties all carry over, in some form or another,
to solutions of second-order elliptic equations.

§A. The Strong Maximum Principle

We shall prove a general maximum principle for second-order elliptic equa-
tions. Thus, consider the linear partial differential equation

P(u) = A(u) + au = J *1 (8.1)

where

A(u) _ i ajx)uX,Yk + ai(x)ux,, (8.2)
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in a bounded domain it c R", with cS2, the boundary of il, being sufficiently
smooth. We assume that aik(x) = aki(x), x E il, and that the functions aik, ai,
a, and f are all continuous in i. k = 1, 2,..., n. We assume too that P is
elliptic; by this we mean that for any x e il, and any = ,J 0

"

aik(x), > 0. (8.3)
i.k- I

Thus, if d = (a,k(x)) is the it x it matrix defined by the principal part of
P(x, D), (8.3) implies that the bilinear form determined by.W is nonnegative;
i.e.,(dc,;)> 0for all eR",S # 0.

By a solution of (8.1) we mean a function u E C(fl) n C2(il) which satisfies
(8.1) inil. Here is the statement of the strong maximum principle for solutions
of(8.1):

Theorem 8.1. Suppose that a(x) < 0 in D. If f(x) 5 0 (resp. f(x) >- 0) in il,
then every nonconstant solution of (8.1) attains its negative minimum (resp.
positive maximum), if it exists, on oil and not on Cl.

Before we give the proof, we remark that the theorem is false if a > 0. To
see this consider the equation u, + ur,, + 2u = 0, in the rectangle
it = {(x, y): 0 5 x, y 5 ,r}; then u(x, y) = sin x sin y takes its maximum
value + 1 at (n/2, n/2).

The next corollary shows that the solution depends continuously on the
boundary data, in the sup-norm.

Corollary 8.2. Let u, and u2 be solutions of Pu = fin Cl, with ui = Oi on dig,
i = 1, 2. Then if a 5 0 in i2, max,«hlu,(x) - u2(x)I < max,E,,r,10t(x)
- 02(x)I.

Proof of Corollary. If u = u, - u 2 ,then Pre = 0 in il, and u = 01 - 42 on oil.
Thus the result follows at once from the theorem. C]

Corollary 8.3. The boundary-value problem Pu = f in C, u = ¢ on Cil has at
most one solution if a 5 0 in 11.

We are now ready to prove the theorem. This will follow easily from the
following lemma.

Lemma 8.4. If Au z 0 (resp. Au 5 0) in it and 3xo a it such that u(x) < u(xo)
(resp. u(x) >- u(xo)) for all x c- CI, then u(x) = u(x0) in 0.

Proof of Theorem 8.1. Suppose that f ? 0 in Cl. If u has a positive maximum
at x0 e a and u(xo) = nl, let M = {x a Cl: u(x) = m}. Then M is closed and
nonvoid. Also, if x0 E ,bl, u(x) 5 u(xo) in an open ball S centered at x0, and
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u(x) > 0 in S. Since A(u) = -au -,- f -:a 0 in S, the lemma shows that u(x) - in
in S. whence S is open. Since S2 is connected, u(x) -= in in f. A similar proof
works if f <- 0 in S2. El

It remains to prove the lemma.

Proof of Lemma 8.4. We shall assume that Au L> 0: a similar proof will hold
if Au S 0. Suppose that u(xo) = in and let M = (x E (2: u(x) = m}. Assuming
that the theorem is false, M would be a proper nonvoid subset of Q.

If x, a Q%M. we connect x, to x0 by an arc y in Q. Since y is compact, we
can find c5 > 0 such that if p e y, dist(p. 3fl) >- S > 0. Since u(x0) > u(x,),
u(xo) > u(x) in some ball centered at x, of radius at most (5/2. If x, moves
along y towards x0, the boundary of this ball eventually contains a point in
M. Let x be the center of the first ball whose boundary meets M. Thus, there
exists a ball S whose closure is contained in S2 for which 00S n M # Q,, but
S r M = 0. Let us again call xo the point where OS n M # 0; see Figure 8.1.

Figure 8.1

Let S, e S be a smaller ball of radius r, such that x0 E (IS I. Then u < in in
S,'%,{xo}. Let S2 a S be a third ball centered at xo having radius r2 < r,.
If dS2 = T, v T. where T, = aSZ n S then T, is compact, so since it < in
on T1,uSin -con T,for some c>0.

We translate coordinates in R" to put the origin at the center of S, ; this
does not change the form of Au. Then we can consider the comparison function

h(x) = e-'1Xl2 - e-°'i,

where a > 0, will be chosen shortly. A direct computation yields

elkl' A(h) = 4a2 UikXi xk - 2x (a,, + aixi). (8.5)
i,k-i i-i
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Now since r2 < r,, 0 0 S2, and by the ellipticity hypothesis, Y° k=1 alkxtx,
Q > 0 in S2. Thus, (8.5) shows that A(h) > 0 in S2 if a is sufficiently large.
Let v(x) = u(x) + e,h(x) and let k = max{h(x): x c- Ti). Then on 7,,

v(x) 5 m - s + r,h(x) 5 m - c + e,k < m,

if e, < elk. Having chosen e, < Elk, we see that on T2, h(x) < 0 since
x I > r,. Therefore

v(x)=u(x)+e,h(x)<u(x):s nl.

Thus, v(x) < m on T, u T2 = c?S2. Since v(x0) = u(x0) = m, we see that v has
a maximum at a point . in S. Hence Vv(z) = 0, and for any e R",

t}xiXk(1i)SISk 0.

But by ellipticity, we have

R

KK[, aik(x)S,Sk 0-
i.k - I

Thus, the elementary result from matrix theory (sec the lemma below), yields

n

0 z (Au)(x) = (Au)(.) + c,(Ah)(Y) > (Au)(Y),
i,k = 1

which contradicts the assumption (Au)(x) >- 0 in Q. Q

Thus the proof will be complete if we prove the following elementary
lemma. Let tr(A) denote the trace of the matrix A.

Lemma 8.5. Suppose that A and B are symmetric n x n matrices with A > 0
and B 5 0. Then tr(AB) 5 0.

Proof. There exists an orthogonal matrix P such that

P°BP=A=diag(b,,...,bb), b,50, 1 Si5n.

Let PAP = C = (c(i); C is symmetric and C Z 0, so ct, z 0,1 S i S n. Then

tr(AB) = tr(PABP) = tr(CA) _ Y b,c;t 5 0. 0

It is often useful to know the behavior of u on 852; in particular, we are
interested in the signs of the directional derivatives of u on Of). Recall that if
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n is a unit outward-pointing normal vector at a point p E M the vector v
is said to be outward-pointing from S2 at p if n - v > 0; we use the notation
du?dv to represent the directional derivative of it at the boundary in the
direction v.

Now suppose we are given equation (8.1) in (2, where f ? 0 and a 5 0 in
fl, and e) is smooth, say C'. From Theorem 8.1, we know that the maximum
of u must be assumed at a point p c- Q. It is clear that du/dv Z 0 at p, where v
is any outward-pointing vector. But in fact, a stronger result is true; namely,
du/dv > 0 at p, unless u is constant in Q. This is the content of the next
theorem.

Theorem 8.6. Suppose that a(x) 5 0 in 0, Let u he a solution of (8.1). Then if
f (x) < 0 (resp. f (x) ? 0) in f, and u achieves its negative minimum (resp.
positive maxinnnn) at p e Q. then every outward-pointing directional deriva-
tive of it at p is negative (resp. positive), unless a is identically equal to a
constant in il

The proof will follow from a lemma.

Lemma 8.7. Suppose that it is continuous in 0, Au > 0 (resp. Au < 0) in f2,
and u achieves its maximum (resp. minimum) at p e Q. Then every outward-
pointing directional derivative of it at p is positive (resp. negative) unless u is
identically equal to a constant in Q.

Proof of Theorem 8.6. We suppose f z 0 in 5 and u achieves its positive
maximum at p; the proof of the other statement is similar. Since r3Q is
smooth, we can find a ball B e 3'f with B n rl = {p} and u >- 0 in B. If
duidv < 0 at p, then since Au = -au + f z 0 in B, our lemma implies
that it = u(p) in 11. 0

It remains to give the proof of Lemma 8.7. As above, we can find a ball
B e S2 with aB a 92 v 1p). Let r be the radius of B, and let q be the center of B.
We may assume, as in the proof of Lemma 8.4, that q = 0. Let K be a ball
centered at p of radius n'2; see Figure 8.2.

Figure 8.2
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Define the auxiliary function h(x) by

h(x) =
e1x12 - e x._,

where a > 0 is chosen so large as to make A(h) > 0 in K (cf. the proof
of Lemma 8.1). Again define v(x) = u(x) + sh(x). If u * u(p), then u < u(p)
in (B v aB)\{ p}. Choose a so small as to make v(x) 5 v(p) on OK n B.
Then by Theorem 8.1, v(x) 5 v(p) on K n B. Thus, at p, du/dv + t: dhjdv =
di./dv ;-> 0. We shall show that dh/dy < 0 at p; this will imply that durdv > 0
at p. Thus, we compute

(lh

3x,

so that if q = (q,,..., is the unit outward-pointing normal at p, then
q, = xj(xj. Thus, at p

dh_ _ 0.
dv

This completes the proof of Theorem 8.6.

§B. A-Priori Estimates

An a-priori estimate for solutions of a partial differential equation is simply
an inequality which is valid for all solutions whose data and coefficients obey
certain restrictions. Such an estimate can be used to "continue" the solution
as certain parameters vary. That is, one often perturbs the equation P(u) = f
by considering the family of equations AL(u) _ (1 - e)Q(u) + EP(u) = f,
where 0 < e < 1, and the problem Q(u) = f is known to be solvable (e.g.,
say Q(u) = Au). If one considers the set S = {e: At(u) = f is solvable), then
S 0, and the a-priori estimates are used to show that S is open and/or
closed. If one can show that S is both open and closed, then S = [0, 1];
whence e = I is in S and the original problem is solved. In Chapter 10, we
shall see how a-priori estimates are employed in a different way (but however,
for the same conclusion).

We begin with a result which follows in a fairly direct manner from the
maximum principle. Consider the following boundary-value problem in a
bounded domain f2, where M, is smooth:

P(u)-Au +au =f in 0, u=0 onc'S2, (8.6)

where, in what follows, we always take a < 0 in 0, and Au to be defined by
(8.2). We assume that (a,k(x)) is a symmetric matrix and that the coefficients of
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P, as well as f are continuous in S2, and that ¢ is continuous on MI. We
assume that P is uniformly elliptic, which means that there is a constant m > 0
such that

aUt(x)c1. Z (8.7)
I.A= I

for all S E R. Let k be a bound for the quantities Ia,A(x)I, Ia,(x)j, and la(x))
in S2, i, k = 1, 1, ... , n. Here is the first a-priori estimate.

Theorem U. If U E C(i2) r C2(i2) is a solution of (8.6), then there exists a
constant M = M(m, S2, K) such that

II U IIL..,(m s 11011L.012) + M II I IILmA (8.8)

We note that (8.8) shows that the problem (8.6) depends continuously (in
the sup-norm), on the data 0 and on the "right-hand side," I. Moreover, it
yields still another proof of the uniqueness of the solution to the problem (8.6).

Proof. If we change coordinates by a linear transformation, the problem in
the new coordinates stays of the same form, and (8.7) is invariant. Thus,
there is no loss in generality if we assume that x, z 0 in n. Let

h(x) = II II I (8.9)

where > max(x1: x eS2}, and a > 0 is chosen so large that both

mat - k(a + 1) 1 and e'4 > 2 max e'"' (8.10)

are valid. Note that h(x) z II II L.,tan) if x e 8i2. Also, if _ (1, 0, ... , 0), then
(8.7) shows a, 1

>- m so

Ph = -a iI 0II . + [- ae°t + a,a + a)] I II Lmin)
>- [-ae + e'"'(a11a2 + a1a + a)] 11

[ma2e"" - a(e4 - e'"') + a,ae'"' Lmtn)I ]"III
z [mat - a + a, a]es"' II f 11

[ma2 - k - ka]ey' II 1L.,tc
_ [mat - k(a + 1)]e II f

z e 'itfIIL,(n)>-,: IIIL.VQ

We shall use this to show

Iu(x)I < h(x), xE I (8.11)
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This will imply (8.8) since if x E S2,

u(x) 15 h(x) 5 II M II f II t.,(f:

where M = maxx,n(e <- e24 - 1.
We puty=u-h; then ona12,v=¢-h50andPv=Pu-Ph -f

- ! I f ;I l,arfl Z 0. Hence Theorem 8.1 shows v <- 0 in r l, i.e., u 5 h in 31.
Similarly, if v = u + h, then on OR v = ¢ + h >- 0 and Pv 5 f - II f II
5 0, so again from Theorem 8.1. u + h z 0 in a and u > -h in 3F. Thus
(8.11) holds and the proof is complete.

We remark that if we do not assume that a -< 0 in 0, we can still obtain an
estimate of the form

II a 11 L-(n) - c(II 0 II I-40(l) + II f II L-(0), (8.12)

where c depends on k, nt, and S2, provided that Q is sufficiently narrow in one
direction, say the x1-direction. More precisely, (8.12) will hold if

(e24 -1) II a Lmtfl < 1, (8.13)

where and a are as in the proof of the theorem. To see this, we let
b(x) = min(a(x), 0), and write the equation as

A(u) + bu = (h - a)u + f = g.

We can now apply (8.8) to this equation to get

u I 5 II 4) II L ,(' )1 + (e°,* - 1) 11 9 !I

5 11 0 II L.nOn) + (el -1)( II f II L,(n + U I` t (i! II a II L.A(n,)

so that

Il u lI,. n1 5
I

i )J

1) 11 f l9(i:)

§C. Existence of Solutions

In order to solve the problem (8.6), we require a sharper estimate than (8.8).
Before stating this estimate we shall need definitions of certain Banach
spaces of functions.
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We consider the space C%1), of Holder continuous functions on 11, having
Holder exponent x, with the norm

ll = sup l u(X) - u(Y)I < xU II,
x jrf? ix - `,la

xtY

We put a norm on C'(f)), by defining

u11 2 u 1l t> trn + max I!D)uII. ern + max 11D_Ddu11= a
t ;PSx t5i.jsn

We also define C2 4 (i2) to be the class of C2 functions on 0 whose sec-
ond derivatives arc in C'(fl); this space is made into a Banach space by
defining

lul!2, = ;iul12 + max 11 D,DJull .

t Si.jSn

The existence of a solution to (8.6), where A is uniformly elliptic depends
on establishing the sharp a-priori estimate (the "Schaudcr estimate,")

it ti ;l z +, < c 11.f il.x, (8.14)

for solutions u in class C2', of the problem

P(u) = f in 0, u = 0 on M. (8.15)

Here c = c(k,,n, 0), where m is the ellipticity constant and K is a bound
for the coefficients of P. We shall not prove this estimate here; see [GT] for a
proof.

It can be shown (see (GT]) that u e C2+a(S2) if f e C'(5) and 0 e C2+2 (a);
i.e., the solution is considerably smoother than the right-hand side ; in short,
"the solution gains derivatives."

Theorem 8.9. The problem (8.15) is uniquely solvable, for each f E C'(of2),
provided that A is uniformly elliptic in CI, and the coe f cients of P are in C(C).

Proof. We assume that (8.14) holds for all solutions u e C2+s. The idea is to
embed our problem in a family of problems

P,(u) = tP(u) + (I - t)Au = f in fl, it = 0 on dig, (8.16)

where t e l = [0, 1 ]. If t = 0, the problem is Au = f in S2, u = 0 on 3C),
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which we consider to be solved (see [GT]). Let

T = {t e 1: f e O(n) there is a solution u e CZ+'(fl) of (8.16)).

We shall show that T is both open and closed; then T = I, and in parti-
cular, I e T. We first show that T is open. Thus, let to E T ; we shall find an
E > 0 such that I t - to I < E implies that t e T. To this end, let r e 1 and
suppose u e C2+°(11). We define a mapping 4D, from C' "(11) into itself given
by 'D,(u) = v. where v is the unique solution of

P,ov = (t - to)[Au - P(u)] + f' in f2, v = 0 on Al. (8.17)

If 4), had a fixed point, i.e., if 1,(w) = w, then w = 0 on dQ and from (8.17)

P,ow = (t - to) [Aw - P(w)] + f in Q,

so that P,w = f. That is, fixed points of 4, correspond to solutions of (8.16).
Thus, to show that T is open, we shall find an e > 0 such that if I t - 101 < E,
then 4), has a fixed point. This latter statement will be proved by showing
that (D, is a contraction mapping for t sufficiently near to.

Thus, if it, and u2 are in C2+let v1 = D,(u1), v2 = D,(u2), so that

P,ovi = (t - to) [Auj - P(ui)] + f in Q, v, = 0 on t?S2,

for i = 1, 2. Subtracting gives

P,o(v1 - v2) = (t - to)[A(ut - u2) - P(ut - u2)].

Using (8.14) on this equation, we obtain

11'01(ut) -'0,(u2)112+a =11'1 - x2112+a <- c1r - tol IIA(ul - u2)

- P(u, - u2)113
scc,It-to111u1

u2112+2

for some constant c, independent of it,, u2, c, and t. If 8 = (2cc,)- t, then for
It - tot<E.

11'01011) - mr(u2)112+a < 11111 - u2112+.-

Thus Banach's theorem implies that 0, has a fixed point. Since this is true
for each t with I t - to I < e, we see that T is open.
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Since c is independent of c, c1, ut, u2, we can cover [0, 1] by [2js] intervals,
each of length e/2, so 0 e T implies l E T. E]

We shall extend the last theorem to problems of the form

Pu = f in S2, u = 0 on M, (8.18)

where f e C'(S2), 0 e C(?,S2), and where the operator A is uniformly elliptic in
Q (cf. (8.7)), a < 0 in i2, and the coefficients of P are in C°(i2). Let K be abound
for Ia,,1, 1 alI, and IaI in k, i, k = 1, 2,..., n.

Theorem 8.10. The problem Pu = f in 0, It = 4) on cX1, where f e C' and
0 e C°, has a unique solution u e C2 "(0).

Proof. We first assume 0 e C2+'(M. ). Let h be the solution of

Ph=0 in Q, h=0 on Oil

Using Theorem 8.9, let v be the solution of

Pv=f ini2, v=0 on OM.

Then ifu=v+h,wchavcPu=f inaandu = 4onct.
Now assume that 0 e C°(Ci2). Let cj be a sequence of functions in C2 "(cfl)

such that 0j 46 uniformly on oil (for example, the 0j can be polynomials
obtained from the Weierstrass approximation theorem). Let uj be the solution
of Pu j = fin Cl, uj = Oj on M. By the maximum principle, we see that uj con-
verges uniformly in Cl to a function u e C°(?) and that u = 0 in oil.

Now if Q is any compact subset of Cl, one has the "interior estimate" for
the solutions of Pu = f ; namely,

11u11c:z,-(0) <_ c(II f 11 C'(i) + U11L''ifl)),

where c = c(m, k, Cl, Q). The proof of this is similar to (8.14); see [Ag]. It
follows that

j 3[j - uII C2'-40) :!9 C11 uJ - U11 L°'lrt),

so that uj -e u in C2+1(Q) for every compact Q e Cl. Thus u E C"(0) and
f = limj-,,, Puj = Pu, at each point in 11 This finishes the proof. 0
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§D. Elliptic Regularity

In this short section, we shall describe some other methods of obtaining
solutions for elliptic boundary-valuc problems; in particular, the notions of
weak solution arc important here. We shall only give the statement of the
various results; the proofs can be found in [Ag] or [GT].

We consider a weak solution of (8.6); i.e., a function it e W2'(0) which
satisfies, for all ui e C'(Q),

f aui] dx =
J

f 4i, (8.19)
n

and (u - 4)) E W2 (Q). One shows that if f c- L2(i2), and each a a,, is in
L2(Q) n L.(SZ), then if ¢ e WZ'(1), this problem is uniquely solvable. The
proof is via functional analysis and Hilbert space techniques ([GT]). The
remarkable thing is that the solution is actually a classical solution; this
follows from the celebrated estimates of Agmon, Douglis, and Nirenbcrg,
which we shall describe below.

Thus, we consider problem (8.6), where f c- C(D), and 0 is assumed to
have a C2 +Q extension into rl. Then Agmon, Douglis, and Nirenbcrg [ADN]
prove the inequality

lit 1!P.2 s cP(I1 f11P+ 1I0IIP.2),

where c is independent of u. Moreover, for classical solutions, one has in
addition the Schauder estimate

II11112+2 < C.(11 C. + II01I2-3)'

where again c doesn't depend on u.
These estimates are used to show that the operator T: f - u given by

P(u) = fin Q, it = 0 on dfl takes C(5) continuously into C2 "R(0), provided
that 4) can be extended to W,2(0), and 00 is smooth, say of class C2.

These results are all valid for more general boundary conditions. For
example, we could take boundary conditions of the form

du _
dt

+ p(`)"

where v is any outward derivative on dQ, and p(x) >_ 0 on c''fl. Again, for a
proof see [GT].
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The strong maximum principle was proved by Hopf in [Hf I]. The technique
in the proof of Theorem 8.9 is due to Schauder, as are the estimates appearing
in the text ; see [GT] for modern statements, as well as references. The
elliptic regularity theorems arc due to Agmon, Douglis, and Nirenberg
[ADN]; see also Agmon's book [Ag] as well as the Gilbarg--Trudinger
book [GT].



Chapter 9

Second-Order Linear Parabolic Equations

Parabolic equations arise in diffusion processes, and more generally in
"irreversible" time-dependent processes. Mathematically, this is reflected
in the fact that the equations are not invariant under the reversal of time; i.e..
under the transformation t -+ - t. This means that knowledge about the
"past" is lost as time increases. For example, there may be dissipation
effects which lead to an increase in entropy and a consequent loss of informa-
tion.

The simplest example of a parabolic equation is the equation of "heat
conduction

flu -u,-kdu=0, (9.1)

where A is the Laplace operator, and k is a positive constant. It is quite
clear that this equation changes form when t is replaced by -t. Observe
however, that (9.1) is preserved under the transformation (x, t) - (ax, a2t).
This transformation also leaves invariant the expression Ix12/t; indeed we
shall see that this latter expression plays an important role in the study of
(9.1).

We shall show that solutions of parabolic equations obey a maximum
principle, and that parabolic operators are "smoothing," in the sense that
the solutions are more smooth than the data.

§A. The Heat Equation

We consider the equation (9.1) in a cylindrical region of x - t space of the
form

2=Rx(0,T). T'<ac,

where R is a bounded region in R". We let

9' = cl(R) x (t = 0) v OR x [0, T];

see Figure 9.1.
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Figure 9.1

Theorem 9.1. Suppose U E Cl()) n C2(P) is a solution of (9.1). Then both
max u and min u in are taken on at a point in -q'.

Proof. We prove the theorem for max u only. Thus, let M = max u in 19', For
e > 0, define the auxiliary function

v(x, t) = u(x, t) + e l x I';

then Hu = -2nks < 0. Let `t be any number 0 < I < T and let K = R
x [0, t]. The maximum of v in K cannot be taken on at a point in R x (0, t],
for at these points, v, z 0 and Av S 0, so Hv >- 0. Thus max v on K is taken
on at a point in K n 9'; i.e., at a point where u 5 M. Hence, in K, u S v
5 M + Ec, where c is an upper bound for I x 12 in R. Since a is arbitrary, we
see u < M in K. Since t was arbitrary, the result follows. C3

Corollary 9.2. The boundary-value problem Hu = in 2 and u = f on
has at most one solution in C° (!2) n C2(9).

We also have a maximum principle for infinite regions of the form
= R" x (0, T), 0 < T < co. We also require u not to grow too fast at co.

Theorem 9.3. Let u e C(9) n C2(fl be a solution of (9.1) with u(x, 0) = f(x),
x e R". If Iu(x, t)l 5 Me`I`h' in 2, then Iu(x, t) I s

Proof. It suffices to prove that u(x, t) 5 sup (fix): x e R"). Also, if we prove
this inequality under the assumption 4cT < 1, then the result follows upon
dividing the interval [0, T] into equal parts of lengths I < ic. Finally, for
simplicity, we assume k = 1 in (9.1).

Now there is an e > 0 such that 4c(T + e) < 1. Fix y, and for 0 a positive
constant, and 0 5 t 5 T, consider the function

ue(x, t) = u(x, t) - 0[4x(T + e - ()]-"t2 exp[jx - y12/4(T + e - t)]

u(x, t) - OG(T + e - t, (x - y)).
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Since G,=AG,wehave (u9),-Due=O.Iffl={(x,t):Ix-yI<p,0<t<T},
then by Theorem 9.1, u8(x, t) 5 max(u(x, t): (x, t) a 12'}. On {t = 01 n dln,
ue(x, 0) S u(x, 0) < supx f(x), since 9G > 0. On the remaining part of QY,

ue(x, t) S Me`lXl' - 9[4n(T + e - t)]-"/2 exp[p2/4(T + e - t)]

S Me`(ly' °t' - 9[4ir(T + e)]-"12 exp[p2/4(T + e)] :r,. sup f(x),
x

if p is sufficiently large. Thus maxn ue < supx f(x), and thus

ue(y, t) = u(y, t) - 9[47t(T + e - t)]_",'2 s sup f(x)
X

If now we let 0 -, 0, we get the desired inequality. 0

Corollary 9.4. The initial-value problem Hu = 0 in -0, u(x, 0) = f(x), x e R",
has at most one solution u e C2(l) n C°(2), satisfying the growth condition
Iu(x, t)I <_ Me«i'.

We remark that this corollary is false if u grows too fast at infinity; see
[Fn 31. For example, if n = 1. the function

u(x t) = k' 2k i ' 2k dk a 111 2

TtA

satisfies Hu = 0 and u(x, 0) = 0.
We now turn to the construction of a solution of the initial-value problem

(9.1) with data

u(x, 0) = 95(x). (9.2)

We shall motivate our construction by giving a formal derivation of the
solution. For simplicity, let n = I and k = 1. Then if we take the Fourier
transform of (9.1) with respect to x, we get the equation

whose solution is u(S, t) = ce- t=', where c is an arbitrary function of S. To
evaluate c, we make the reasonable assumption that

lim t) = (lim u(x, t))^.
t-o, t-o.

This yields c =(S), so that we have

h(S t) = (,)e - 0. (9.3)
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Now define the function
a s

I(A) = f e-°42e-u4 d = f e-42 cos ). dS,

where a is a constant, a > 0. Then

I 2a f n
[e2af )) sin i. d

2a f e-042 cos J,

Thus f satisfies the equation f + (A,1 2a) f = 0. It follows that f = ke-"''a
where k is constant. To evaluate k, notice that f(0) = k so that

k = f e-u42d _ yin?a.

Thus

and

Ifnowa = 1/4t, we get

Using this in (9.3) gives

(e-°42)' = f(A) =
,

ae-xh/4a.

A2144 12y

e-i2t = (e
,Vl 4_rz_t

e-4".'1- e-x2,a,

and finally

1 m e
11(x' t) = fi * e-x2,(49 = - (j,(Y)

_V'4
- dy.

ti? 4nt J u .zt

We shall show now that this formula actually defines a solution of the
initial-value problem (9.1), (9.2).

Theorem 9.5. If O(x) is continuous and unifbrmly bounded on R. then

u(x, t) = J N
(4knt)-°(2 e-Ia-x121'4AS(A(z)dz

R
f
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is the unique hounded solution of (9.1), (9.2). This function is analytic for all
xcC" and forall t e C' with Re t > 0.

P r o o f. Let G(t, z - x) = (4ttkt)- 2 exp(- I - X12 f4kt). Then since G and
all of its derivatives decay exponentially as I z - x I CC for each fixed t > 0,
we see that u defines an analytic function for any x e C" and t E C' with
Re t > 0. A straightforward calculation shows that H(G) = 0, for any t > 0
and any z ; thus flu = 0. It remains to show that (9.2) holds. To this end. we
shall first show that the following two properties hold :

(i)
J

G(t, z - x) d---- = 1 for all x e R" and t > 0.
R"

(ii) lim I G(t. z - x) dz = 0 for every a > 0.
r--0. It-X1>0

For (i), note that (9.4) implies

e-r?f" dyt = 4Rkt,J-
so that

J
G(t, z - x) dz = fe. G(t, y) d y = fl

,
(4ttkt)-1 r'1" dy = 1.

it. i=1 a

To show (ii). we write z - x =

r p

J
G r"-'G(t, dr) d(t, z - x) dz = J

(f."',k-xl>a I{I=t

m
_ f r"-'(4nkt)-^r2e-.Jrakr dr/It d

ICI=t Je

=c E
f

a"e-o'da,

for some constant c. Since this latter integral tends to zero as t -' 0, , (ii)
follows.

We can now show (9.2). Thus, if 101 < M on R", and e > 0 is given, let
a = a(x) > 0 be such that

OW - O(z) I <
3

if r < a,
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r = I z - x 1. From (ii), there exists T = T(x, r) > 0 such that

i.. G(t,z-x)dz<3 ' , 0<t < T.

Thus, using (i), we have, for 0 < t < T.

Ju(x, t) - '(x) I = I G(t, z - x)(5(x) - O(-')) dz

5
J n

G(t. z - x) I 4i(x) - 4(z)I dz

G(t. z - x) I O(x) - ¢,(z) I dz
rco

This shows that

+ G(t, z - x) I O(x) - dzL.a

< G(r,z -x)dx+2M1 G(t,z-x)d=
3 r. r>0

<3+2M. -1-c'

83

lim u(x, t)
r--0.

so that (9.2) holds. To see that it is continuous at t = 0, note that on any
compact set. a can be chosen independently of x. Thus (9.5) holds uniformly
for bounded x. and so u is continuous in t > 0. Finally, since

O, z - x) dz = M.I u(x, 1) I < Al jn G
R

we see that it is bounded. Thus, in view of Corollary 9.4. u must be the unique
bounded solution of (9.1). (9.2). The proof is complete. p

§B. Strong Maximum Principles

In this section, we shall prove an extension of Theorem 9.1 to general
second-order parabolic equations. These theorems arc the analogues of
Theorems 8.1 and 8.6 which were valid for general second-order elliptic
equations. Indeed, the proofs which we shall give are actually modifications
of the "elliptic" proofs. The theorems we prove will be of use in studying
nonlinear equations, in that they will enable us to obtain "comparison"
theorems. These will be considered in Chapter 10.
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The general linear parabolic second-order equation in n-space variables
can be written in the form

Pu-Au +au =f, (9.6)

where u = u(x, t), and (x, t) e 2 c R" x R.,., with 9 being a domain (i.e., an
open, connected set). The operator A is defined by

Au = aij(x, t)DiDj u + a{x, t)D1 u - u (9.7)
i.j=t t=i

where all of the coefficients aij, ai, as well as the function a = a(x, t), are
bounded in 9. A is called uniformly parabolic in -9 if there is a constant y > 0
such that for any = in R,

"

Y- ai/x, µM2, (9.8)
i.j= I

for each (x, t) E 9. We shall assume that the above conditions on A and a are
valid, and (without loss of generality) that aij = aji, throughout this chapter.

In order to state the strong maximum theorems for (9.6), we need a simple
definition. Namely, let (x,, t,) and (x2, t2) be any two points in -9. We say
(x,, t) is connected in .9 to (x2, t2) by a horizontal segment if t, = 12 and the
points can be joined by a line segment lying in (t = t,) r Q. Similarly, we
say that these points can be joined by an upward vertical segment, if x, = x2,
t, < t2 and the line segment joining them is contained in -9. We can now
state the first theorem: the strong maximum principle.

Theorem 9.6. Suppose that A is uniformly parabolic in a domain .9, where a S 0
and f : 0 (resp. < 0) in 9. Let supg it = M >- 0 (resp. inf9 u = M < 0), and
suppose that u(x, i) < M for some (x, 1) E ! Then u(x, t) < M at all points in
2 which can be connected to (z, i) by an arc in .9 consisting of a finite number of
horizontal and upward vertical segments.

Corollary 9.7. If 9 is a cylinder in R" x R (i.e., 9 = n x [t,, t2], with
-oo < (, < 12 S co), and the hypotheses of Theorem 9.6 hold, then u = M
everywhere in (t Z l) r pl.

The proof of Theorem 9.6 follows from the next proposition, just as in the
elliptic case; see Lemma 8.4.

Proposition 9.8. Under the hypotheses of Theorem 9.6, assume Au >- 0 (resp.
S 0) in 9, a S 0 in 9 and sup; u = M. If u < M at a point in -9, then the
conclusion of Theorem 9.6 holds.

In order to prove Proposition 9.8, we need three lemmas. In these we
always assume Au >- 0 in .9; the other case has a similar proof.
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Lemma 9.9. Let K be a ball with K e 9?, and suppose u < M in K, and
u(x,, t1) = M, with (x, t,) a OK. Then t, is either the largest or smallest t-ualue
in K ; that is, (x1, t1) is either at the "top" or "bottom" of K.

Proof. Let (x, t) be the center of K. and let r be the radius of K. We shall
assume p - (x1, t1), with x, x, and arrive at a contradiction. We may
assume that p is the only boundary point on K with u = M ; otherwise we can
replace K by a smaller ball whose boundary is interior to K except at p.

Let K, be a ball centered at p having radius r, < Ix, - Yl, with
K, a 2; see Figure 9.2. (Note that if p = (x, t1), then we cannot find such an
r, .) We write 8K 1 = F, u r2, where 17, = 4K, n K. and F2 is the complement.
Since r, is compact and u < M on F1, there is a 6 > 0 with u < M - don 1-1.
Note too that u < M on r'2.

Figure 9.2

Now define the auxiliary function

h(x, t) = exp{ -a[ Ix - x 12 + (t - 1)2]) - e

where a > 0 will be chosen below. Then h > 0 in K, h = 0 on OK, and h < 0
outside of K. From (9.8), we have

Ah = exp{-a[Ix - XI2 + (t - i)2]) {4a2
I. 1- 1

ai;(xi - x,)(x, - x))
11

- 2a i [ail + ai(xi - xi)] + (t - F)I

> exp{-a[Ix - YI2 + (t - I)2])

x {2ILIx-xI2-2x [aii+ai(xi-x,)]+(9.9)
and since I x - z I >_ I x 1 - z r 1 > 0 in K 1, we can choose a so large as to

make Ah>0in K1.
Let u(x, t) = u(x, t) + ch(x, t), where e > 0 will be chosen below. Note



86 9. Second-Order Linear Parabolic Equations

that Av > 0 in K 1. Since u 5 M - S on r'1, we can choose c so small that
v < M on r'1. Sinceh < O on r'2, and u S M, v < M on ra. Thus v < M on
eK 1. Now on dK, It = 0 so v(x 1, t l) = M. Thus v achieves its maximum on
K1 at an interior point p. This implies that at p, each v,,, = 0, v, = 0, and
(DrDfv(p)) is negative definite. Since (av(p)) is positive definite, Lemma 8.5
implies that (Av)(p) 5 0 which contradicts Av > 0 in K1. The proof is
complete.

Lemma 9.10. Let Q be a domain in x - t space and suppose Au >- 0 in 2.
Let u 5 M in -0, and u(xo, to) < M for some (xo, to) e 1. Let r be the com-
ponent of {t = to} n -9 which contains (xo, to). Then u < M on F.

Figure 9.3

Note that this lemma gives part of the conclusion of Proposition 9.8;
namely, it yields the result pertaining to horizontal segments.

Proof. Assume that u(x1, to) = M where (x1, to) a r. By moving
nearer to (x0, to), if necessary, we can assume that

(x t, to)

u(x, to) < M if Ix - xoi < Ix, - xoI. (9.10)

We may assume that (x1, to) and (xo, to) are connected by a line segment in
2; otherwise we can connect these points by a finite number of line segments
int. , and we can work with each such line segment to obtain a contradiction.
Let L be the line segment from xo to x1, and let L(to) = {(x, to): x e L}.
Finally, define

00 = min[ Ix0 - x11. dist(L(to), ia2)].

For x satisfying 0 < Ix - xoI < b0, define

d(x) = dist[(x. to). n {(x, t): u(x, t) = M}].

Since u(x1, to) = M. d(x) 5 1 x - xl I.
By the previous lemma, the point in 9 nearest to (x, to). in which u = M, is

of the form (x, t); hence d(x) = Ito - t, I so that either u(x, to + d(x)) = M
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or u(x, to - d(x)) = M. If e > 0 is a given small number, and I q I = 1,

87

Ax + eq) < ..Jc2 + d(x)2 < d(x) +
82

(9.11)

(x, to + d(x))

,(x+ct,to+d(x+en))

d(x+cq)

(x. to) c (x + E q, to)

Figurc 9.4

see Figure 9.4. Replacing x by x + eq and E by -c gives

d(x) < v,r2 d(x + eq)2

so that

d(x+c>)) - .;d(x). (9.12)

We shall now show that d(x)- 0 in Ix - x0j < 80. If this were so, then
u(x, t0) = M if Ix - x, I < do S Ixo - xt 1, and this would contradict (9.10).
Thus, assume that d(x) > 0, for some x, Ix - x0I < d0 and let 0 < E < d(x). If
I q I = 1, we subdivide the line from (x, to) to (x + eq, to) into k equal parts.
Then (9.11) and (9.12) give, for 0 5 i < k - 1,

2 2

d x+(1+1)Eq d x+lcq 5 S
E

k - ( k 2k2d(x + (i/k)Eq) 2k2 d(x) - e

If we sum these from i = 0 to i = k - 1, we get

d(x + cq) - d(x) 5
e2

2k d(x)2 - c2

Letting k oo shows d(x + eq) < d(x) for each e > 0. In I = 1. Thus d is
nonincreasing along the line from (x,to) to (x + sit, to). Since d(x) < I x - xtl
and Ix - xt can be made arbitrarily small for x near x1, we see that d(x) _- 0
if I x - x, I < 80. This is a contradiction, and the proof of the lemma is
complete. C]

Our last lemma pertains to upward vertical segments in -9.
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Lemma 9.11. Suppose that Au >- 0 in.9 and that It < M in Q n (to < t < t,
for some to < It. Then u < M on 5 n {t = It).

Proof. Suppose that u(x1. t,) = Al for some (x,, t,) e !Y. Let K be a ball of
radius r centered at (x t,) contained in t > to. Define the auxiliary function

h(x,t)=cxp(-Ix-x,12-ait-t,1)- 1, a>0,

and compute

Ahzexp(-x-x,-cc I t-t,1)
x (411 x - x, 2 - 2Y [a,, + a,(x, - (x, ),)] + x}.

Thus we can choose x so large as to make Ah > 0 in K for t 5 t
The paraboloid

Ix-x,12+a(t-t,)=0

is tangent to the hyperplane t = t, at (x,. t,) (cf. Figure 9.5). If lb is the open
region determined by this paraboloid, let r, = 3K n m, 1-2 = oO n K,
and let D denote the open region determined by r, and r2; cf. Figure 9.4
Since u < Al on the compact set r,. we can find S > 0 such that It < M - S
on r,.

(x t,)

t=to

Figure 9.5

Let v(x, t) = u(x, t) + ch(x, t), where s > 0 is chosen so small that

(i) Av > 0 in 9, and
(ii) v<Monl2.

Note that (ii) can be achieved since h < 0 on r2. Since v < M on r,, we see
that v 5 M on 8D. In view of (i), v cannot attain its maximum over b in D
(cf. the last part of the proof of Lemma 9.9). Thus v attains its maximum on D.
Therefore M is the maximum of v in D, and it is attained at p = (x,, (,). It
follows that 8v/8t z 0 at p. But also Oh/8t = -a < 0 at p, so that Cu/cat > 0
at p. Since the maximum of tt on t = t, occurs at the interior point p, we have



§B. Strong Maximum Pnnciples 89

V.u(p) = 0, and (DiDju(p)) is negative definite. This implies, by Lemma 8.5,
that (Au)(p) < 0, and gives the desired contradiction.

We can now give the proof of Proposition 9.8. Let p = (z, 1) and let q be
any point which can be connected to p by an arc in 2 consisting of a finite
number of horizontal and vertical upward segments. Thus there are points
Qo = p, Q 1, Q2. . Qt = q in 2 where Q, is connected to Q, ,, by either a
horizontal or upward vertical segment contained in 9. Lemmas 9.10 and
9.11 show that u(q) < M. This completes the proof.

We shall now consider the behavior of the outward directional derivatives
at those points on the boundary of 2 in which the maximum of u in is
achieved. The results we obtain are analagous to the similar ones for elliptic
equations; namely, these derivatives are nonzero.

We assume that A given in (9.7), is uniformly parabolic in the domain
9 R" x R-, and that each coefficient ay, and a, of A, as well as a, is bounded
in 2.

Theorem 9.12. Suppose that u is a solution of (9.6) in 2 and that a S 0 in 2.
Suppose f >_ 0 in 2 and maxg u = M is attained at p e 02. Assume that 02 is
so regular at p that a ball S can be constructed through p with int(S) e 2
and u < M on int(S). Suppose too that the radial direction from the center of S
top is not parallel to the t-axis. Then d u(p)ldv > 0 for every outward direction v.
(A similar statement holds in the case f 5 0 in 2, where M = minx u and we
conclude du(p)/dv < 0.)

The condition that the radius vector to p is not parallel to the t-axis is
necessary, as Theorem 9.1 shows.

The proof of the theorem follows easily from the next proposition.

Proposition 9.13. Suppose that Au a 0, M = max u on ' is attained at
p E c?2, and that a ball S can he constructed through p which satisfies the
conditions of Theorem 9.12. Then du(p)/dv > 0 for every outward direction v.

Proof. We construct a ball S of radius r centered at (x,, t,) which is tangent
to 09 at p = (xo, to) and a ball S, centered at p having radius p < Ix, - X01;
see Figure 9.6.Letr1 =aS,n9,r2=asps,.

Figure 9.6
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and let D be the region enclosed by I", and F72. Since u < M on F',, there is a
6 > 0 such that (i) u 5 M - 6 on r',. Also (ii) u < M on 172\{p}, and (iii)
u(p) = M.

Let h(x, t) be the auxiliary function defined by

h(x,t)=exp{-a[Ix-x,12+(t-t,)2]}-e ", a>0.

Clearly h = 0 on OS, and choosing a sufficiently large, we can achieve Ah > 0
on D. Let v = u + ch, c > 0. Then Av = Au + Mh > 0 in D. In view of (i), we

can choose a so small that v < M on rt. From (ii), together with the fact that
h = 0 on 8S, we have v < M on F'2\{p}, and v(p) = M. Thus we can apply
Theorem 9.6 to conclude that the maximum of v in D is taken on only at p.
Hence, at p, dv/dv = du/dv + edh/dv z 0. But also, at p, dh/dv
= -2v nare-a 2, where n is the outward normal at p. Hence dh(p)/dv < 0
so that du(p)/dv > 0. The proof is complete. p

The following (method of proof in the) corollary is important in applying
the results of this section to nonlinear equations.

Corollary 9.14. Theorems 9.6 and 9.12 hold if M = 0 without the restriction
a 50.

Proof. Let w(x, t) = u(x, t)e '; then

0 < (A + a)u = ek'(A + a - k)w.

Since a is bounded from above, we can choose k so large that a - k 5 0.
Thus, the hypotheses of the theorems are valid for w. It follows that the
conclusions hold for w, and since M = 0, they also hold for u. Q

We end this chapter by noting that an existence theorem for the problem

Pu = f ins, u(x, 0) = 4(x) inn, u(x, t) = h(x, t) on 8S1 x (0, T)

can be given along the same general lines as for the elliptic problem discussed
at the end of the last chapter; see [Fn 3].

NOTES

The results on the heat equation are classical; see [Fn 3]. The example
following Corollary 9.4 is due to Tychanov [Tv]. The results in §B arc due to
Nirenberg [Ni 1], and Friedman [Fn 1, 2]; a nice reference book is [Fn 3];
see also the Protter-Weinbergcr book, [PW].
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Chapter 10

Comparison Theorems and
Monotonicity Methods

In this chapter we begin to study nonlinear partial differential equations.
The results which we obtain here all follow from the maximum principles
which were obtained in Chapters 8 and 9. We shall show how they apply to
nonlinear elliptic and parabolic partial differential equations. As a first
application, we will use the strong maximum principles to prove comparison
theorems; i.e., pointwise inequalities between different solutions. These say,
roughly, that if it and v are two solutions, and if it S v on 09, it follows that
u < v on !2. Such theorems can be quite useful in obtaining qualitative in-
formation about solutions. For example, comparison theorems are often
used to obtain information about the asymptotic behavior of solutions of
parabolic equations as t --+ -F- cc. As a second application of the maximum
principle, we shall show how it can be used to prove existence theorems. This
is the method of "upper" and "lower" solutions, the solution being the
limit of a monotone iteration scheme, where the monotonicity is a con-
sequence of the maximum principle.

§A. Comparison Theorems for Nonlinear Equations

We consider first nonlinear parabolic equations

Pu =,f(x,t,U), (x,t)ee', (10.1)

where.9 =0 x (0, T) is a bounded domain in R" x R+, with 00 smooth.
Here

- Pit = u, - Au _= u, - (a;,{x, t)ux,)x,, (10.2)

where (a,,) is a symmetric matrix, and each all is bounded in 9. Furthermore,
we assume that P is uniformly parabolic in 9, in the sense of Chapter 9, §B.
Finally, we assume that f is C' in it, and Holder continuous in x and t.
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Let u and v each be CZ functions of x in a C` functions of ton [0, T], and
consider the following three conditions:

Pu - f (X, t, u) 5 Pv - f (x, t, v), (x, t) e a (10.3)

U(x, 0) Z v(X, 0), x e i2, (10.4)

du +flu> dV+Jit',
dv TV

t) An (0, T), (10.5)

where f3 = ft(x, t) >- 0 on ail x (0, T), and v is any outward direction.
Assuming these conditions, we have the following "comparison" theorem.

Theorem 10.1. Under the above conditions on P and f, if (10.3}{10.5) hold,
then u(x. t) >- v(x, t) for all (x, () a Moreover, if an addition u(x, 0) > v(x, 0)
for each x in an open subset 0, c then u(x, t) > v(x, t) in N, x [0, T].

Proof. We let w(x, t) = u(x, t) - v(x, t), and note that w{x, 0) Z 0 if x c- fl, and
dw/dv + fiw >- 0 in M x (0, T). Furthermore, from (10.3), we have

Pw - S0, (x, t) e9,

where S = ©u + (1 - 9)v, 0 < 0 < 1. Assume that w < 0 at some point in !P.
Then a-"'w < 0 at this point, where k is chosen so large that f - k < 0 in
5. Let z(x, t) = e'`w(x, t); then Aw = e'Az, w, = ke"z + e"'z so in 2,

0 z P - t, )w = e"[Pz - kz -

Thus Pz+(-k-ff)z50in 9,z(x,0)z0inQ,and(d/dv)z+lizZ!! 0 in
ail x (0, T). Since z is negative at some point in 9, 0 > mina z(x, t) = m;
hence there is a point (x, T) c-5 with z(x, T) = m. We consider three cases:
First, if (Y, i) a 0" (or i = T, and x e Q), then since -f - k < 0 in 9 and
Pz + (-f - k)z 5 0 in .9, we may apply Lemma 9.11 to conclude z(x, T) =
m < 0. Now considering z(x, T) as a function of x, this function has a mini-
mum at x, z,,,(x, T) = 0, 1 5 i 5 n, and the hessian matrix T)) is
positive definite. It follows that Az(x, T) > 0 since A is strongly parabolic.
Also z,(x, T) 5 0 since z(x, t) >- z(x, T) for all t < T We thus obtain the
contradiction Pz(x, T) - (k + T) > 0. Finally, if (x, T) = p e ail x
(0, T), then from Theorem 9.12, az(p)/av < 0. If v = (v...... v._,, 0) is a direc-
tion perpendicular to the t-axis, then az(p)/av = e-"' aw(p)/av, and since
fz(p) 5 0, we get the contradiction

0 5 e-"[aw(p)/av + ftw(p)] = az(p)/av + flz(p) < 0.

Thus w >- 0 in 2 so u z v in 5. The proof of the second statement is
similar. 0
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In a similar way, we can consider the uniformly elliptic equation

Au = f (x, u), x e 0, (10.6)

where i2 and A arc defined as above (atj and at being functions of x), and f
is a C' function in x, and in u. Assume f(x, u) = a(x)u + g(x, u), where

0) = 0 for all x e Q, and a(x) >t 0 in fl.

Theorem 10.2. Suppose that u and v are solutions of (10.6) and that on c'i2,

cu 3v+ fluz +lv,
av ijv

where v is any outward direction, and f3 = fi'(x). Then It z c in a if g(x, u) :g
g(x,v)forallxe0.

Proof. Let iv =It -t::then aw;'Ov+iw>0in M. ,andini2

Au - au = g(x, u) S g(x, v) = At, - av

thus Aw - aw S 0 in Q. Now since a ? 0 in i2, Theorems 8.1 and 8.6 to-
gether imply that w > 0 in i2. This completes the proof 0

As a simple application of these theorems, consider the parabolic differen-
tial equation

u,=Au - u3, xEQcR", t>0, (10.7)

where A is the n-dimensional Laplace operator on i2. Suppose too that it
satisfies the initial conditions

u(x, 0) = uo(x). x E Q. (10.8)

and the boundary conditions

dudo=0 oniQx(0,x),

where n is the outward normal derivative.
Consider now the ordinary differential equations

dv dw

dt = -U3, V(O) = Af : dt =
w3, t1,10)

=
In,

(10.9)

where m < uo(x) < M, x E Q.
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Since u, v, and iv satisfy (10.7) and (10.9), we have, from Theorem 10.1

w(t) 5 u(x, t) < a(t), t > 0, (10.10)

uniformly in x c- 0. But it is trivial to see that all solutions of dz/dt = - z3
tend to zero, as t. -+ x. Thus, from (10.10) we conclude that u(x, t) 0 as
t -+ + uniformly in x e Q. This shows that all solutions of (10.7)-(10.9),
having bounded initial values, tend to zero, uniformly in x, as t -' + x. Of
course, we have not yet shown that (10.7)-(10.9) has a solution defined for all
t > 0; this will follow from the results in Chapter 14.

§B. Upper and Lower Solutions

In this section we shall show how to solve nonlinear elliptic equations by
iteration schemes. The convergence of these schemes is a consequence of
the strong maximum principle. We shall also consider the problem of
stability of our constructed solution, the solution now being considered as
a "steady-state" solution of the associated time-dependent parabolic
problem.

We begin by considering the nonlinear elliptic equation

Au + f(x,u) = 0. xES2,

together with Dirichlet boundary conditions

u-h one).

(10.11)

(10.12)

Here S2 is a bounded domain in R" having smooth boundary, f is Ct in is and
C' in x, 0 < a < 1, A is a uniformly elliptic operator defined by (10.2), and
h is a function in class C2+a.

A C2-function uo is called an upper solution of (10.11), (10.12) if uo satisfies
the following two conditions:

Auo + f(x, uo) < 0 in 0 (10.13)

and

u0 z It on fl. (10.14)

We also assume that u is not an actual solution. Similarly, we define a lower
solution by reversing the inequalities in (10.13) and (10.14).

Theorem 10.3. Suppose uo and vo are, respectively, tipper and lower solutions
of( 10.11), (10.12), with uo >_ v0 on Q. Then there exists a solution u of( 10.11),
(10.12) such that uo Z u z v0, pointwise on Q.
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We call attention to the fact that our proof will actually give a construe-
tivc, and computationally feasible method for obtaining the solution.

Proof. Let m and M denote, respectively, the minimum of vo and maximum
of uo on n. Let K > 0 be a constant which we choose so large that

df
+ K > 0 if (x, u) E 0 x [m, .kf ]. (10.15)

ell

We define a mapping T from the space C2(1) into itself, by fi = Ta, where
11 is the solution of

J A# - K P = - [ f (x, a) + Ka], X E S2,

ft=h on M. (10.16)

We note that the differential equation in (10.16) is a linear equation for f3,
and thus the solution exists from Theorem 8.10. We shall show that T is
monotone in the sense that if xt S .x2, then Tx, 5 Tae, provided that
nt < at, a2 < M. To see this, let 13; = Ta;, i = 1, 2; then

(A - K) A =- [ f (x, a,) + K*,] on f2.

Thus

(A - K)(fi2 - lit) _ -[f(x, x2) - f(x, al) + K(a2 - a,)],

and

f32-fi,=0 on MI.

If now a2 ? a,, then by choice of K,

(A - K)(f32 - fit) < 0 in i2,

xe0, (10.17)

(10.18)

so that (using (10.18)), the strong maximum principle (Theorem 8.1) implies
that #2 > $ 1 in a unless fi, l2. But if f, Q2, then the right-hand side of
(10.17) is identically zero, and at a2 in view of our choice of K. Thus T is
monotone in a somewhat stronger sense; namely, a2 > at implies that
Tx2 > Tal.

Next, we shall show that a > Ta provided that a is an upper solution.
Thus, if fi = Ta, then

(A-K)(fl-a)=-[Aa+f(x,a)]Z0 in S2,

and on c?Q, (f - a) = h - a <- 0. It follows again from the strong maximum
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principle for elliptic operators (Theorem 8.1), that f3 < x, unless ft - x. But
this latter possibility is excluded since a is not a solution of (10.11), (10.12).

These remarks allow us to define inductively two sequences and
(T(o, Tvo), and defining for n > (Tu.-,,

Tvn_,). Since uo is an upper solution, is, = Tuo < uo, and by the mono-
tonicity of T, Tut < Tuo = it,. Thus u,, for each n and similarly
V. > Again, since uo co, it follows by induction, that it. >- v+ for all
n. We conclude therefore, that is a pointwise decreasing sequence,
bounded from below by vo. Thus the pointwise limit

u = limit,,

exists at each point in S2 and uo >- i7i Z oo in i2.
Now let's take a closer look at the operator T. T is actually a composition

of two operators, T2 ` T, ; namely, the nonlinear operator T, : x - -f (x,
a) - tea, followed by the inverse of the operator T2: P -+ o, where (A - x) ft
= Cr in i2, and t3 = h on 010. It is easy to see that T, maps the set of bounded
pointwise convergent sequences into itself. Thus If Tits.) converges pointwise
in SI, and therefore it converges in LP(f) for each p z 1. The elliptic regularity
theorem (Chapter 8, §D) then implies that { Tu.} {T2 ' , T, is.} converges
in' and thus in W"(0). p > 1. Since WD (Q) is embedded continuously
in O(fl) if a = I - nip, (p > n),2 this sequence converges in C'(f2). Then the
Schauder elliptic estimates, and regularity theorems (Chapter 8, §D) imply
that {Tu.} = converges in C2+'(D). Since T takes C(CC) continuously
into C2 +2(a), we have

a = lim u = lim 7'u,, = T lim it. = Tu.

Thus a is a solution of (10.11), (10.12), and the proof is complete.

We remark that either vo or uo could be an actual solution, and the proof
would still go through. All that we really require is that not both uo and vo
are solutions.

Note that we could obtain another solution b by defining is - lim v.;
then 6 5 it in 12. However, we have no guarantee that v is different from it.
In any case, concerning these solutions, we have the following corollary.

Corollary 10.4. a and v are, respectively, maximal and minimal solutions, in
the sense that if u is any solution of (10.11), (10.12), with vo < it < uo in f2, then
i<it <aini2.

' Wj,(fl) is defined in Example 5 in Chapter 7.
= Strictly speaking this is not quite correct. GV; (f2) is embedded continuously in C(i1) if

:r = I - n jp, where It' "(n) is the closure of C"(D) in the ti (f2) norm. But if we make the (reason-
able) additional assumption that If has a smooth (C2) extension to a then we may assume
h = 0, since we put u = v + h, where Av + f(x, v) + Ah = 0 in 12, v = 0on M. Then the argu-
ment is correct for f. since T,,, now converges ts'1,(Q); sec [GT].
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Proof. u < uo implies it = Tu < Th0 = ut, so by induction, it < u for every
n. Thus u < u; similarly i <- it.

We remark that Theorem 10.3 has an analogue for parabolic problems
of the form

1 A - t it = J(x, t, it) in Q x (0, T), u(x, 0) = ¢(x), x e 0,

u = h(x, t) on dig x (0, T).

Namely, one defines the notions of upper and lower solutions in a straight-
forward analogous way, and one uses the strong maximal principle for para-
bolic equations (Theorems 9.6 and 9.12). We omit the details since in Chapter
14 we shall prove general existence theorems for parabolic systems. Next,
we want to point out that these theorems also hold for more general boundary
conditions: for example, (10.12) can be replaced by the condition

oil

c + J3(x)u = h(x) on ?S2,

where /3 > 0. For the details, see [Sa 2].

§C. Applications

In this section, we shall give a few applications of Theorem 10.3. We begin
with the following example. Consider the equation in the bounded open
set 0c R2.

Au+au(1 -u)=0, xef2, a > 0, (10.19)

with homogeneous Dirichlet boundary conditions

u = 0 on M. (10.20)

Such equations arise in population dynamics, where the nonlinear function
au(1 - u) is referred to as a "logistic" nonlinearity; cf Chapter 14. We arc
interested in constructing nonconstant positive solutions. We take for 0 the
square [ - L, L] x [ - L, L]. Let cp be the principal eigenfunction of - A on
S2 with homogeneous Dirichlet boundary conditions (so that -A¢ _ 20,
A > 0, > 0 in S2, 0 = 0 on dQ2; see §A in Chapter 11). If' a > A, and
w = 60, 6 > 0, then for small 6,

Aw+a(i)(1 -w)=646(-A+a-crhrb)>_0 in i2,

3 This will always be the case for large enough L; see §A. Chapter 11.
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so that co is a lower solution. If z(x) is a nonconstant positive solution of the
ordinary differential equation z" + az(1 - z) = 0 on -L < x < L, with
z(±L) = 0,° then z is an upper solution since z >- 0 on M. It follows from
our theorem that there is a solution it of (10.19), (10.20) with 80(x, y) 5 u(x, y)
5 z(x) on S2. Note that u * z since z does not satisfy (10.20).

As a second application of the theorem, we shall investigate the stability
of the solutions which we have obtained from Theorem 10.3. Here these
solutions will be considered as steady-state (i.e., equilibrium or time-
independent) solutions of the associated parabolic equation

u, = Au + f(x,u), (x.t)ES2 x R+ (10.21)

with Dirichlet boundary conditions

it = h on 3 x R4 . (10.22)

It is remarkable that the solutions obtained from the monotone iteration
scheme in Theorem 10.3 are always stable. Before we prove this fact, we must
define precisely our notion of stability.

We consider (10.21), (10.22) together with the initial condition

u(x, 0) = O(x), X E Q . (10.23)

We say that a solution v = vjx) of (10.11), (10.12) is a nunstahles solution of
(10.21), (10.22), if for every a > 0, there is a S > 0 such that if 110 - v11 .-tat
< (5, then 11 t) - z*) 11 t_(g) < a for all t > 0, where u(x, t) is the solution
of (10.21)-(10.23). If it is true that lim, 0, then we
say that v is a stable solution of (10.21H10.23). Thus, our stability notions
are taken in the sup-norm topology, (but other topologies are also useful
(cf. [He])). We can now prove that our previously constructed solutions are
stable.

Theorem 10.5. Let v be a solution of (10.11), (10.12), with vo < v 5 uo in S2,
where uo and vo are upper and lower solutions of (10.11), (10.12). respectively.

(i) If

Vo 5 0 5 uo in 0, (10.24)

the corresponding solution u of (10.21)-(10.23) satisfies V0(x, t) 5 u(x, t)
5 U0(x, t), in S2 x (0, T), where Vo and Uo are the solutions gf(10.21)-
(10.23) corresponding to 0 = vo and 0 = uo, respectively.

(ii) If T"vu / v and T"uo % v, then v is a stable solution of (10.21 )-410.23).

` Again such a solution will exist if L is sufficiently large.
nunstable - not unstable.
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Before giving the proof, a few remarks are in order. First, when we write
T"uo % v, we mean that v is the limit of the monotonically decreasing se-
quence of functions {T"uo} (={u"} _ {T,,,,}), which was constructed from
the upper solution uo, where T is the operator defined in the proof of Theorem
10.3 (cf. (10. 16)). Similar meaning is given to T"vo / v. Next, we call attention
to the fact that (ii) actually gives information on the "domain of attraction "
of the "rest point" (=rest state) v; namely, if vo(x) 5 u(x, 0) S uo(x) for all
x E Q, then u(x, t) tends to tjx) as t -, + cc, uniformly in x E Q.

The proof will follow from two lemmas, which themselves are of indepen-
dent interest.

Lemma 10.6. Let u,)(x) be an tipper solution in 0 of the problem Au + f(x, u)
= 0, it = 0 on M. Let u(x, t) be the" solution in 9, = sz x (0, T) of the
problem it, = Au + f (X, u), u(x, 0) = u0(x), x E i1where u = O on ail x (0, T).
Then 8u/at S 0 in 1.

Proof. In a manner analogous to the proof of Theorem 10.3, we define a
sequence of functions {u"} in -9, by uo(x, t) = uo(x), and for n z 1.

au" ('
Au" - Ku" - d [f(x, U"- 1) + KU"- 1),

(10.25)
u" = 0 on ail x (0, T), u"(x, 0) = uo(x).

Then as in the elliptic case, if (x, t) E 1,

uo(x) Z ut(x, t) >- .. >- u". 1(x, t) -> a"(x, 1) >_ . (10.26)

and u" %, v, where v, = Av + f (x, v) in .L, v(x, 0) = uo(x) in Q, and v = 0 on
Of) x (0, T). By uniqueness," we have v = it in 9.

Now for each n, we have by differentiating (10.25) with respect to t,

on oil x (0. T),(LU-)
auAl - a au" au"

A
of - K T J t?r Fr =

Q(x, t)

-It -.-)
wherewhere Q is a bounded function on 1. Also, for each n, if It > 0 and x e Q,

u"(x, h) - u"(x, 0) _ u"(x, h) - uo(x)
5 0,

h It

from (10.26). Hence au"(x, 0)/0t 5 0, x e Q. The strong maximum theorem
for parabolic equations (Theorem 9.6) implies that N,,& 5 0 in 1. But as

6 The uniqueness of the solution follows from Theorem 10.1.
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in the proof of Theorem 10.3, it can be shown that u. tends to u in C' +Q in the
t-variable on J,'. Hence au/ t < 0 in 9. This proves the lemma. 0

We shall apply Lemma 10.6 to obtain the following result.

Lemma 10.7. Let uo and vo be upper and lower solutions, respectively, of
(10.11), (10.12), (with h = 0), uo >- vo in S2. Let u(x, t) and v(x, t) be the corres-
ponding solutions of (10.21), (10.22) (for h = 0) with initial data uo and vo,
respectively. Then the pointwise limit, Iim,_.(u(x, t), v(x, t)) _ (u(x), e(x)),
exists for each x e 0, and both u and C are solutions of (10.11). (10.12) (for
h = 0).

Proof. As described in the proof of the last lemma, uo > u, vo z v and from
Corollary 9.14, u > v in rL = i2 x (0, T). Using Lemma 10.6, au/at 5 0,
av/at z 0 in Q, so that

lim(u(x, t), v(x, t)) _ (u(x), i(x)), x E 12,
t_x

exists. Since uo z vo, Theorem 10.1 gives is Z v in 9, and hence u >- C, in Q.
It remains to show that a and t: are solutions of (10.11). (10.12). with h = 0.

Now we know that a satisfies (10.21), it = 0 on M. x R+, and u(x, 0) =
uo(x), x e a If we multiply (10.21) by ¢ E C0 '(0) and integrate over 12, we get

in,0 = j(Au) O + fib.

Since ¢ has compact support in S2, we can integrate by parts to obtain

i u'0 U(.4*)= +f4.
n et

Multiplying this by lI7', and integrating from 0 to T gives

(' u(x, T) - u(x, 0) r

f
1 rr' )JnT 4dx fn A*O 7,J. u(x,t)dt + J0,T f(x,u)dt}dx.

)
(10.27)

Observe now that since we have the two estimates

I u(x, T) I s Iu(x, T) - u(x)I + Iu(x){,

and

.f (x, u(x, t)) - .f (x, fi(x)) <- .f.(x, S) 1 l u(x, t) - u(x)

< h 1 u(x, t) - u(x)1,
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where R doesn't depend on r. we may apply the Lebesguc dominated con-
vcrgcncc theorem to (10.27) as T oo to obtain

[(A*O)u + f (x, u)4 ] dx = 0. (10.28)
n

Thus f is a weak solution of (10.11), (10.12) (with h = 0).
We shall show now that a is a classical solution of this boundary-value

problem. The argument is similar to that of the proof of the regularity of
the constructed solution, in Theorem 10.3. It goes as follows. First we observe
that both A and A* are invertible-, this is just the strong maximum principle;
namely, if Au = 0 in 0 and u = 0 on 5Q, then u could not achieve a nonzero
value in the interior of C. Now in the usual notation for the L2(S2) inner
product, we have from (10.28),

(A- tf, A*4') _ (f, (A*)- to*O) = (f, fr)

where f is evaluated on it. Thus, since

(A - 'f + it, A*4,) = 0

for all 0 e Co (S2), and A* is invertible, it follows that

A - 1f (x, a(x)) + u(x) = 0, X E S2. (10.29)

Now the argument to show that u is regular proceeds just as before; namely
it e Lp(S2) for all p z 1 so u e WI (fl) by the elliptic regularity theorem [ADN].
If p > n, the embedding lemma [GT] implies u e C' +`(1), and the usual
Schaudcr estimates show u e C2 `(Cl). Thus we may operate on both sides
of (10.29) by A to conclude that Au + f (x, a) = 0 in 0. Since u = 0 on c?S2,
u is a classical solution. The same proof shows that v too is a classical solution.
This completes the proof of Lemma 10.7. Q

We can now give the proof of Theorem 10.5. First of all, we can assume
that for the problem (10.11), (10.12), h = 0; i.e., we have homogeneous
boundary conditions. This is no loss in generality since we can always
replace (10.11), (10.12) by the problem Au + f(x,u + v) = 0 in Q, with
u + v = 0 on tf2, where v is a solution of Av = 0 in i2, v = h on M. Then if
uo is an upper solution for the original problem, uo - v is an upper solution
for the new problem. (Similar remarks apply for the associated parabolic
equation.)

Now (i) is obviously a consequence of the comparison theorem, Theorem
10.1. For (ii), we have, from (i), t3(x) 5 lim,.,, u(x, t) < 11(x), where (u(x), i(x))
= lim,.,.(U0(x, t), V0(x, t)), and all these limits exist by virtue of Lemma 10.6.
Furthermore, each of these limiting functions are solutions of the elliptic
boundary-value problem. Now by Corollary 10.4, lim"- T"vo < lim,
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u(x, t) T'uo; i.e.,

v(x) = lim u(x, r), uniformly in x E Q.

Hence v is stable, and the proof of the theorem is complete. 0

We shall apply the stability theorem to the following problem :

All + flu - If 3 = 0. x e fl a R", (10.30)

where u = 0 on %). Here g is a small positive parameter. It is obvious that
u - 0 solves this problem. If p is sufficiently small, we claim that this is the
only solution. To see this, multiply (10.30) by u and integrate over f2 to get

-f IVu12+$;iu2-u3)=0.
n n

But as we shall show in the next chapter (in §A),

J
IVu12 5 -).J Iu12,

n o

where A > 0 in the largest eigenvalue of - A on 1 with homogenous Dirichlet
boundary conditions. Therefore,

P11U, - it') > ).
J

U
2,

so

oz _U4t :(i-Et) u2>0,In In

if A > It and u * 0. Thus if A > u, it = 0. This proves our claim.
Now let's suppose that i. > pi. and K is any positive number. If w is the

principal eigenfunction of -A on S2 with homogeneous Dirichlet boundary
conditions, then w >- 0' and -Aw = Aw; hence, if 0 = Kw,

(A + u)o -!b3 =Kw[(,u-A)-K2w2] <0.

Thus KO) is an upper solution, and similarly, -Kw is a lower solution. Since
the iterates T"(±K4) both coverage to it - 0 (by uniqueness), we sec that
the zero solution is stable, if A > p. (In fact, it is not too hard to show that

'See Chapter 11. §A.
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all solutions of the associated parabolic problem converge to 0 as t - oo,
uniformly in x E 0; see the proof of Theorem 10.5.)

Suppose now that A < p; we shall show that there are two non-constant
solutions of (10.30), with it = 0 on 00. Again, if we put u = icw, then u is a
lower solution if K > 0 is sufficiently small, and u is an up r solution if K < 0
and K is sufficiently small. If l') is a domain such that Q= 11, and let A be
the corresponding principal eigenvalue of -A on a with homogeneous
Dirichlct boundary conditions.

Thus, if $ > 0 is the corresponding cigenfunction and is = then

Au + pu - u3 = U[(f[ - /:) - C21p2],

and since ' > 0 on i, we have Au + Eau - u3 < 0 if C > 0, I C large, while
Au + Eat - it3 > 0 if C < 0, and C I is large. Thus, C is an upper solution
if C > 0 and I C I large, and it is a lower solution if C < 0 and I C large.
Hence by Theorem 10.3, there are solutions iti and u2 with

Chi>ui - K) - 0, K,C>0,
K(fi U2 Z C < 0.

As a final example, consider the problem

Au + it 2 = 0, x e !Q, It = 0 on c'S2. (10.31)

If 46 is any solution, then Atp = -02 S 0 so by the maximum principle
(Theorem 8.1), 0 > 0 on 0. Suppose that 4 0 on Q. and let ip = E(ji,
E > 0. Then

Alj' + W2 = -EIj/2 + 2202 = e(E - 1)lk2.

Thus 0 is an upper solution if 0 < E < I and a lower solution if r > 1. If it,
is the corresponding solution of the parabolic problem it, = All + u2, u - 0
on 60, u(x, 0) = 01, x E a then by Lemma 10.6, dug; c?t > 0 if e > 1, and
dud'8t < 0 if 0 < E < 1. Since c3u,? t > 0 for every E > I (Lemma 10.6), we
see that ¢(x) is not stable. Thus we have shown that any nonconstant
solution of (10.31) must he unstable.

Nom
The notion of upper and lower solutions was used by H. Keller and D. Cohen
[KC], in special cases. The general results are due to Amann [Am 11 and
Sattinger [Sa 2]. Our approach follows that of Sattinger. The stability
theorem is due to Sattinger, as are most of the examples given in the text.



Chapter I I

Linearization

There is a well-known theorem in ordinary differential equations, going
back to Poincarc, which states that the stability of a rest point can be inferred
from "linearization." More precisely, if one considers the ordinary differen-
tial equation in R", u' = f(u), and u is a rest point (so that f(u) = 0). then if
the differential (matrix) df(u) has all of its eigenvalues in the left-half plane,
Re z < 0, it follows that u is asymptotically stable; i.e., if uo is near u, then
the solution of the equation through uo tends to it as t + oo. It is the main
purpose of this chapter to prove an analogous theorem for partial differential
equations. one which is sufficiently general to include systems of reaction-
diffusion (parabolic) equations. In this context, the equation u = f(u) is
replaced by an abstract equation of the form u, = Au + f (u), where u takes
values in a Banach space B; i.e., for each t, u(t) is in B, and A is a linear
operator. The main example is the case where A is a linear elliptic operator.
The "rest points" fi, in this setting now are solutions of the equation Au
+ f (u) = 0, and the linearized operator becomes A + df (u). We shall show
that if the spectrum of this operator lies in the left-half plane, then again one
can conclude that u is asymptotically stable. This leads us quite naturally to
a study of the spectrum of such linear operators. We shall undertake this
study in §A, and in §B we shall prove a linearized stability theorem. The
techniques which we develop here will be applied to specific problems in
later chapters. In §C we shall give a useful extension of a result obtained in
§A; this is the celebrated Krein-Rutman theorem.

§A. Spectral Theory for Self-Adjoint Operators

We consider a linear second-order elliptic operator

Pu - Au + au = (a; J{x)ux)x, + a(x)u (11.1)

defined in a bounded domain 0 a R", where M is smooth. We assume that
the coefficients of P are smooth, and that a;; = a,, in 0. We further assume
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that A is strongly elliptic in Q. in the sense that there is an a > 0 such that
for all .

ajt(x)S,S > aI42, xet2. (11.2)

We consider the operator (11.1) together with homogeneous boundary
conditions of the form

a(x)
du

do
+ fl(x)u = 0 on 6a (11.3)

where a(x) ? 0, fl(x) >- 0, a2(x) + [P(x) r 0, and durdn is the outward
normal derivative of u on 00.

We are interested in the "spectrum" of the operator P, where we regard
P as an operator acting on functions in W2(Q) which satisfy (11.3) on eQ.
into L2(t)).

Definition 11.1. The spectrum of P is the set of Ac- C for which (P - Al) is not
invertible. We denote by a(P) the spectrum of P.

Since P is self-adjoint the spectrum of P is a subset of the real line. In
order to analyze the spectrum more carefully, we need a few preliminary
results.

Recall that a compact operator C on a Hilbert space H is one which takes
bounded sets into precompact sets; i.e., into sets whose closure is compact.
It is easy to see that compact operators are not invertible, so that 0Eo(P).
Moreover, it is a classical result, going back to F. Riesz, that if C is compact,
and A e C, then K = C - Al is a Fredholm operator, i.e., dim ker K and
dim coker K are both finite; for a proof see [BJS].

Lemma 11.2. Let C he a compact operator on !!. Then o(C) is discrete, and 0
is the only possible limit point of a(C).

Proof. Let A e a(C), ; * 0. Then C - Al is a Fredholm operator so it has a
finite-dimensional kernel [BJS] ; i.e., the set {x c- H: (C - d!)x = 0} is finite
dimensional. Let E0 = ker(C - )1), and let E1 be the orthogonal comple-
ment of E0. Then H = E0 ® E1, and El is invariant under C - Al. Take
c > 0 so small that C - 21 - r! is invertible on E1 (the set of invertible
operators is open), and since C - Al - el is invertible on Eo, we see that
C - i.l - el is invertible on H. Thus i is isolated and the proof is complete. Q

Now since A is a second-order elliptic operator, A maps W2(fl) into L2(Q).
Furthermore, A satisfies the celebrated Gfirding s inequality; namely, (see
[BJS]):

<A ,4>L, > c II0!:t+l - c2II45 IIL2, c1 > 0, c2 > 0 (11.4)
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(in our context, the proof of (11.4) is much simpler than the general case).
This inequality is used to show that A is a Fredholm operator with closed
range; see [BJS].

If now k is a constant such that k > c2. then (11.4) shows that (A + k1) is
injective. Since A + kl has closed and dense range, we see that A + k1 is
surjective and is thus an isomorphism. Let C = (A + k1)-' and let i be the
inclusion i: W'(1) -+ L2(0). Then i is compact, so that C = iC is also com-
pact. Moreover, a(A + k1) = {i.: i.-' E a(Ct)} = {i.: d-' a 6(C)}. Thus the
spectrum of A + k1 is discrete, and x. is its only possible accumulation point ;
the same conclusion is therefore valid for A. If A E o(A), then Au = ;.u, u * 0
so that

J(Au)u = AJ u2.
n n

If we integrate the left side by parts and use (11.2), we see that

- x i 1(2 > ) i u2,
n n

and this shows that A < 0. Choose k, < 0 such that k, + sup{ a(x)l: x e 0j
< 0. Then

i u(P + k1)u < (k, - a)J u2 + a(x)u2 < 0.
n in in

It follows that the spectrum of P + k, lies in {a < 0}. Thus, P can have at
most a finite number of positive eigcnvalucs. We have thus proved the
following theorem.

Theorem 11.3. The strongly elliptic operator P, defined by (11.1) in the bounded
set (I, with boundary conditions (11.3), has discrete spectrum consisting only
of real eigenvalues. If a(x) is bounded in a P can have at most a finite number of
positive eigenvahres.

We shall now show that the eigenvalues can be characterized as being
extremals of certain variational problems. For simplicity, we shall replace
Pu, as defined in (11.1), by the operator

Lu = Au + a(x)u, x E 0. (11.5)

where a e L,, and A is the Laplacian on 0. For the applications of this theory
which we have in mind (in later chapters), this simplification is quite sufficient.



§A. Spectral Theory for Self-Adjoint Operators 109

We shall study the equation Lu = 0. together with one of the following
homogeneous boundary conditions on OR

B1(u) -
dn

+ b(x)u = 0, or

B2(u)=_u=0, (11.6)

where h is a piecewise continuous function on U.
In order to study the cigenvalucs and eigenfunction of the operator L. we

define the following quadratic functionals on W2(0):

[n[-yp4I2 +ad'2] + rrnh4)2
Q M (11 7)I .

and

Q2(0) = Ink-
IV012+ a.,2]

(11.8)
11011,

where .1011 denotes the usual L2-norm on Q. Note that since a and b are
bounded, both Q1(4) and Q,(¢) arc bounded from above, independently
of 46.

Theorem 11.4. (1) The supremum of Q, is assumed by a fisnct ion 0 1, where 0 1

is an eigenfunction of L for the eigenvalue Q1(01), and B1(441) = 0 on
r?S2.

(2) The supremum of Q2, subject to the side condition B2(4) = 0 on CS),
is assumed by a function ¢2, where `fi2 is an eigenfuncrion of L for the
eigenvalue Q2(4)2).

Proof. We shall not show that these variational problems have C2 solutions;
for a proof see, e.g., [Ag].

In order to prove that solutions of these problems are cigenfunctions, we
introduce the bilinear forms,

41Ft(), 0) = f (-a4).O41 + a4Vi) +
f"C

b0
4

F2(0, 0) = f (- V0 O4) + a4O).
G
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We consider the variational problem only for Q, ; the proof is similar for Q2.
Let 0, he a solution of this variational problem; since Q, is homogeneous
of degree zero in 02, we may assume that 1101 k = 1. Let A, and
let 0 e W2I(S1). If c is an arbitrary constant, then

Q Jc6, + cd) s Al,

so that since Q,(41) = i.,, we have

2c F,(01, 0) - Ar«, 0r) + II0fl2[Qr(#) - J.,] } S 0,

where < . > denotes the L2-inner product.
Since c is arbitrary, and Q,(4) S A,, we may conclude that

F1(ci, 0) = 7.1«1, 0 > .

using the divergence theorem

+ fen
b460, + fen

O dO' Al f 46461.
do in

(11.9)

In view of the arbitrariness of 4i. this equation shows that L(Q,,) = At t P,
that B,(¢,) = 0 on M. Finally, if we put 0 = 0, in (11.9). we see that
A, = F,(¢,,, 0,) = Q,(0,). The proof is complete. 0

We shall refer to 0, and 02 as principal eigenjunctions for L, with the
corresponding boundary values, and we call i,, and AZ the corresponding
principal eigenvalues.

The variational character of the principal eigenvalues allows us to com-
pare principal eigenvalues corresponding to different boundary conditions.
This is the content of the next theorem.

Theorem 11.5. A2 < A,.

Proof. The proof is obvious since in obtaining A2 we put on 0 the additional
condition that 0 = 0 on Oil; thus the maximum is taken over a smaller class
of admissible functions. 0

In a similar way, we can prove the following theorem. (The notation
below is the obvious one is this context.)

Theorem 11.6. (1) If b(x) z F(x) for all x e c?Q, then A,(b) -e ;. I (b).
(2) If a(x) > a(x) for all x E i2, then A, (a) z i., (J-) and A2(a) z A2(a).
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Proof. These both follow at once from Theorem 11.4; for example, if b(x)
>- fi(x), then Q6(4i) > Q;(4)) for all admissible 0; whence the "sups" must

also satisfy this inequality.
Let us now show that the principal cigenvalue depends continuously on

a and b. To this end, let 0 be any admissible function, II 4 II = I. Then since

Qia sl(O) - Qtl.bt(o) 5 Ila - dlIL,tn + Ilb - b11Lrtenl = a,

we see that ia,h S a + 2a6; interchanging the roles of Q' °' and Qtr b' gives the
result. We state this formally in the next theorem.

Theorem 11.7. The principal eigenvalues, 22 and dt, depend continuously on a,
and on a and b, respectively, in the sup norm topology.

Next we shall show that the principal eigenvalues depend continuously
on 0. This requires that we make precise the notion of "closcncss" of two
domains Q and S '.

Definition 11.8. Let T = Id. + f be a C' injcctive transformation, mapping
the domain n onto the domain T. We say !Q is a-close to SY if !I f II m + Ildf II
< E.

With this definition of closeness, we can prove the following theorem.

Theorem 11.9. The principal eigenvalue of L, together with either boundary
condition (11.6), varies continuously with 0 in the above C' topology. It also
depends monotonically on S2 in the sense that if 0 1), then ).n > in.

Proof. Let E > 0 be given. Then take SY to be a-close to Q. Now consider,
e.g., the boundary condition B, u = 0. We write Tx = x + f(x), and use the
notation x' = Tx, 4)(x) = 4'(x), x E a b(s) = V(s), s r= M, and so on.

An easy computation shows that the functional Qt gets transformed into

Jcr I Ox ' 12 + a(¢')2 + Jrtr b(4)')2 + o(r)

It follows that

110' 11 2(1 + o(or t

Qt(0) = Q',(4)') + o(e),

from which the first result easily follows. The second statement is an easy
consequence of the variational characterization of A. O

We shall next prove an interesting tact concerning the principal cigen-
function ; namely, we shall show that we can find one which doesn't change
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sign. This eigenfunction is very useful for comparison theorems, as we have
seen in Chapter 10 (and as we shall see in subsequent chapters).

Theorem 11.10. There always exists a principal eigenfunction which is of one
sign in Q.

Proof. Suppose that it is a principal eigenfunction of L corresponding to one
of the boundary conditions (11.6). Notice that I u I satisfies the same boundary
condition as u, since Jill = ±u. Now we know that Q,(u) is a maximum for
both i = 1, 2. If we can show that Q,(I I) = Q.(u), then the theorem will
obviously be proved. The trouble is that V(1 u 1) is not defined at points where
it = 0. However, it is still true, for functions in W;(S2), that if f is a uniformly
Lipschitzian function in R, then the transformation it -+f(u) takes W'(Q)
into itself, and moreover (i3f(u)Jcx;) = j'(u)L'ufux; (where we agree that the
right-hand side vanishes if either one of its factors does): for a proof, see
[Tr 2, p. 261]. Applying this fact to the function f (u) = i u I gives the desired
result.

The variational method for the principal cigcnvaluc and cigcnfunction of
L, can easily be extended (see, e.g., [CH 1]) in order to obtain all of the
eigenvalues ),I > A2 ? , and eigcnfunctions of L. with either
one of the boundary conditions (11.6). One then shows that A - -x, and
that the set {o.} is a complete orthonormal system in L2(11). Using this basis,
we can prove some very important inequalities, relating L2 norms of functions
to their derivatives.

Theorem 11.11. Let it E W;(S2) ; then if It I is the smallest positive eigenvalue
0/, -A on SZ (with the appropriate boundary conditions), the following Poincare
inequalities hold:

IVu112 > It, IItt112

Ilatt,i2 ul

where u = (meas. (2)- `n u ; and

ifu=0 on i,10, (11.10)

2
duif-=0 on M, (11.11)
do

IIAu 2 Z fttIIVu112 ijue W;(Q) and
do

0 on (3Q. (11.12)

if = r, u r2, where r2 has positive (n - 1)-dimensional measure, then

Vu ll 2 Et : u lf 2, (11.13)

for every it e W1 (0), with du/dn = 0 on r,, a(x) du/dn + h(x)u = 0 on r2 ,
b > 0. Here it > 0 is independent of it.
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Proof. It suffices to prove these results for functions in C2(it), and then to
use standard approximation-type arguments.

Suppose first that it c- C2(ft), and it = 0 on zit. Let { W k } be a complete
orthonormal system of eigenfunctions of - A on f2 with homogeneous
Dirichlet boundary conditions (ok = 0 on M. for all k), and let {/tk} be their
corresponding eigenvalues. Then

]p d.

it = Y akq1k Au = k llk/lktp,
k-t k-1

and thus

!I Vu II 2 = j<Vu,V14> = - i <u, Au>
n n

_ [, ilk al G /I, Y_ al = pill U II 1-
k=1 k=1

This proves (11.10). If now we consider -A with homogeneous Neumann
boundary conditions, i.e., dufdn = 0 on Of), then 0, = I is a principal
cigcnfunction corresponding to the cigenvalue al = 0. Thus we have

cc W.

U = aktJ/k, Au = - Y !!k//k4lk so that
k=I k=2

Ilo1l112 = - $<u, Al/> _ flRak µ2 - ak = /12111! - uIi`,
k=2 k-2

sinceu = in <u, i,> = a,.To prove(11.12),we write All = a-=2 aktji1,where
l!k = !n <Au, tlrk>, q/I = I and at = t Jas: Au = fr.ndu/dn = 0. Since it

_ Zf 2 - akpk 10k + a1iY1, we have

r du `

II ou II
2

= J
{:!, - - I <11, AU>

J
<u, All>

do n in

W cc

Qk Elk 1 5 {l2 1 Uk X12
1

II A1! 112

k=2 k-2

thus (11.12) holds. For the proof of (11.13). we refer the reader to [Mc]. 0
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§B. Linearized Stability

We consider Cauchy problems for semilinear equations, of the form

u, = Au + f(u), u(to) = u0, (11.14)

where u(t) takes values in a Banach space (X, II II), and A generates a con-
tinuous senigroup on X. By this we mean that the operator' T(t) = e`A
(t >- 0), on X satisfies the following conditions:

(i) T(0) = 1, the identity.
(ii) T(t)T(s) = T(t + s) for all s, t ? 0.
(iii) lim,.o, T(t)x = x for each x c X.
(iv) The mapping t - T(t)x is continuous on t > 0 for each x E X.

The reader can easily check that if Au = - Au on a bounded domain S2 a R",
with, say, homogeneous Dirichlet boundary conditions, then A generates a
continuous semigroup.

Now returning to the equation (11.14), we make the following assump-
tions:

1. The mapping u - f (u) is locally Lipschitzian ; i.e., for all it, v e X,

f(u)-f(v) <k(`!, ui', u!)Ilu-v

where k is a continuous nonnegative real-valued function, which is increasing
in each variable.

2. f is Frcchet differentiable, with Frcchet derivative df, (see Chapter 13,
§A) and the mapping it -# df is continuous from X to Hom X. (Hom X is
the space of linear maps on X onto itself, with the usual norm-topology.)
We also require that for any bounded set B, a B, there is a constant c > 0
such that

11 f (u) - f (a) - df,(u - v) II < c 11 it - u lI 2, du, v e B,. (11.15)

We define C([t1, t2]; X) to be the set of continuous functions u(t) defined
on t, < t < t2 taking values in X. With this notation, we say that
it e C([t,, t2]; X) is a solution of (11.14) provided that for every t e [t,, t2],
we have

u(t) = + rr e (11.16)

Thus we see that the equation (11.14) is satisfied in a generalized sense;
however, for "parabolic" problems, one shows that solutions of (It. 16) are

' er" = lim"_,. (I - tAln)-" in the strong operator topology.
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"weak" solutions of (11.14), and then one uses the parabolic regularity
theorems to conclude that the solutions are classical solutions; see, e.g., [Re],
In our context, for ur to exist we want Au(t) to make sense; i.c., we require that
u e C([0, T]; D(A)), and to achieve this, the natural hypotheses is that
f : D(A) - D(A) is a locally Lipschitz function. If u(O) a D(A), then one expects
to have u a C`([0, T] : X) n C([0, T] : D(A)).

We shall now prove the existence of a local solution by a standard
contraction-mapping argument.

Theorem 11.12. Let uo e X and let to > 0. Then there exists a b > 0, depending
only on N uo II , such that (11.14) has a solution u e C([to. to + 6]; X).

Proof. If t, > to, define a mapping K from C([to, t,]; X) into itself by

(Ku)(t) = e"-'°tuo + etr-StAf(u(s)) ds, to 5 t 5 to + b.

We seek a fixed point of K. For 0 < 3 5 1, we define

S = (u a C([to, to + 5]; X): IIu(t) - e('-'°)AuoII 5 1, to 5 t 5 to + 6.

Let
M, = 1 + sup{ lieM1I:0 < r S 1} (1 + Iluoll).

and M = sup IIf(u)II
I'I sv,

Thcn if u, v e S, II u(s) II , II v(s) II S M,, to < s 5 to + b, and if to 5 t 5 to + 5,
and 25M, M < 1,

II(Ku)(t) - etr-r°tAu0Il =
0

(u(s)) ds
r° r IIr

5(t-to)M,M5SM,M< .
Thus K maps S into S. Furthermore,

II(Ku)(t) - (Kv)(t)II S 2(t - to)MM, < 1,

so that K is a contraction on S. Therefore by Banach's theorem, K has a fixed
point in S. 0

We next show that the solution of (11.14) is unique.

Theorem 11.13. There is a unique solution of (11.14) in C([t,, t2]; X).
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Proof. If u and v were two such solutions, then

`U(t) - v(t) = f ea -s)A(f(u(s)) - f (v(s))) ds.
rr

Let

M = sup erA p + sup k(II u(t)11,11 v(t)11),
osr5rl-r, t,s,sr:

then

u(t) - L(t)
, f2 u(s) - tic,) II ds,

11. Linearization

so that by Gronwall's inequality (see Chapter 4), we have u(t) = v(t) on
tl S t S t2. This completes the proof. El

We shall next show how we can "glue" local solutions together.

Theorem 11.14. Let ul and u2 be solutions of (11.14) for to < t < tl and
t, S t 5 t2, respectively, where u1(tl) = u2(tl). Then the function u(t) defined
by

U1(t), to C t < t1,
u(t) _

u2(t), tl < t < t2,

is a solution of (11.14) in to < t < t2.

Proof. We need to show that (11.16) holds for to < t < 12. This is obvious
on to :tStl;if tl :5 t :!g t2., then

t-)A f(u2(s))dsu(t) = u2(t) = e(t-,,)AUI(tl) + 1"S e(

= ell-r0AI e(ri-to)AU1(t0) + J"O ell, -11Af(U1(s))dsJ

r

+ j
e(t -s)Af

(u2(S)) ds
,,

= e(t -,o)A u(to) + f eu -1IA f(u(s)) ds
ro

If+ e(r -t)A f(u(s)) ds,

r

= elt-ro)AU(to) + e('-s)f(u(s))ds.
10

This completes the proof. Q
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We now prove an important result. Namely, if we have a solution u(t)
defined for 0 S t 5 T, then by taking initial data sufficiently close to u(0),
the corresponding solutions exist at least for time T.

Theorem 11.15. Let u E C([0, 7], X) be a solution of (11.14). Then there exists
a neighborhood N of u(0) such that if ¢o c N, there is a solution fi e C([0, T]; X)
of (11.14). with 0(0) = ¢o. Moreover, there is a constant c > 0 such that for
all such in N.

IIu(t) - 0(t) 11 s cIItto - 00 II. (11.17)

Proof. Suppose ui e C([0. T]: X). i = 1. 2. Then if t S T.

«i = J e0-s)Af(tti(5))ds.
0

so that if J(t) = ut(t) - u2(t), we have

fi(t) = e`AC5(0) + f(tt2(s))] ds.

If M > I + sup{IIe'AII + k(flu,(t)II + 1, Hu2(t)lI):0 < t S T}, then

tS(t) < M2 11 6(0) ' + ?112 Jo II8(s) II ds.

Thus Gronwall's inequality gives

5 M2b(0)I1e 2I < M2d(0)IIeMIT. (11.18)

It follows that if

II 6(0) II < Jvf - 2e .N=T. (11.19)

then II d(t) II < 1, so that II u2(t) II < 1 + sup{ II u,(t) I! : 0 < t < T}. In par-
ticular. if it, = it. we see that solutions with data u2(0) satisfying (11.19).
where it, = it, exist for at least time T. (It is a standard result, just as in the
case of ordinary differential equations. that solutions continue to exist,
provided that their norms stay bounded: see Theorem 14.4, Chapter 14).
Finally, (11.17) follows from (11.18). This completes the proof. L

Now let u e C([0. T] ; X). and let N be as in the last theorem. Suppose
that t¢0 E N, and let 0 e C([0, T]) ; X). be the solution of (11.14) with 0(0)
= 0o. We define the solution operator S : N X by

S(t)(4)(0)) = t¢(t). 0 < t < T. (11.20)
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Our immediate aim is to show that S(t) is Frechct differentiable. and that the
derivative

}'(t) = dS .(0)7(0)

solves the linearized equations

Y, = A}' + r{0) _ o. (11.21)

Recall that we assumed that the mapping i - df«,,,, is continuous with
values in Hom X. This will be used to show that linear equations arc solvable.

Theorem 11.16. Let D(t) be a continuous linear operator on X. defined for
0 5 t 5 T. Then for each yo e X. there is a unique solution yE C([0, T] ; X)
of the linear equation y, = Ay + D(t)y, with y(0) = i0.

Proof. We must show that the equation

}'(t) = e'". o + 1e(tD(s)y(s)dst (11.22)
0

is solvable for 0 S t 5 T. The local existence of solutions follows as in
Theorem 11.12. To obtain the existence on 0 5 t 5 T. we again need an
a-priori estimate. But this is easy; in fact, if

M > sup( IIe`"II + I1D(t)11:05 r 5 T),

then from (11.22) we get

tII Y(t) jI 5 M Ij }'o Ij + ,u2
J

11 ids) I' ds.
0

and so by Gronwall's inequality. 11 y(r) < M J Y(0) 11 eN=' O

Now if u(t) is a solution of (11.14). 0 5 t 5 T, and u(0) a N. we define the
linearized solution operator SL: X -+ X by

SL(t)yo = y(t). 0 5 t 5 T. (11.23)

where y(t) is the solution of (11.21) with y(0) = yo. We can now prove that
S(r) is Frzchet differentiable.

Theorem 11.17. Let N be as in Theorem 11.15. and let u e C.([0, T] ; X) be a
solution of (11.14). Then S(t). 0 < t < T. is Frechet differentiable. and if
di0 a N. d S(t)o, = SL(t).
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Proof. We must show that

1, S(t)(4 0 + h) - S(r)40 - S,,(t)h II = o(h) as h o.

To this end, let y(t) = S,.(t)h, 0(t) = SOW. fi(t) = S(r)(Oo + h). J(t) = (r)
- O(r). Then as in the proof of Theorem 11.15.

d(t) = eAh + 0 f(4(s))] ds.
0

Using (11.15). we can write

a(t) = e'Ali + f ` e(C s)ALdfaal' d(s) + p(s)] ds.
0

where (1 p(s) II < c, II d(s) II 2, 0::5; r :s; T, and c, is independent of it if II h II <_ 1
From (11.17),

0

eU - x1A (s) ds < c11b(O)112 = cIIhjj2.

for some constant c. If a(t) = d(t) - y(t). then

u - stA d ds + °(II h II 2)a(t) = jo e

Thus Gronwall's inequality gives II a(t) II < c II h II 2 = o(II h 1I). If we unravel
this inequality, we find that it is precisely what we wanted to show. C]

We shall end this chain of ideas with the following theorem.

Theorem 11.18. S(t) is continuously Frichet differentiable on N (see Theorem
11.15).

Proof. We must show that if u,(0) and u2(0) are in N. and are sufficiently
close, and if S; and Si are the associated linearized solution operators, then
IISIt)h - S2(t)hII is small, uniformly for IIhII - 1.

Set y,(t) = S',#)k i = 1, 2, and h = y, - 72 ; then

8(t) = f ` ds. (11.24)
0
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Using (11.17) and the smoothness of f, we can find q > 0 such that if
u1(0) - u2(0) II < q. then u2(0) E N (= N(u,(0))), and

Il dlfs) - 4f112ts) II < C l; u l (0) - 112(0) II ,

We also have

0<s5T.

4f.,ts)I1(5) - dfu2ls)1'2(s) = df,:(s)(. + (dfy1(s) - dfU2(,))y1(s),

so that

Il d(t) II 1I'Xs1 II + ('z I «, (0) - 112(0)11,

where c, and c2 depend only on 1 if I' u1(0) - u2(0) II < q and II h II s 1.
Again using Gronwall's inequality, we find

I1 (t)II se31lu1(0)-u2(0)0:5 T.

This estimate gives the desired result. 0

We have enough machinery now to take up the problem of linearized
stability.

Definition 11.19. Let u e X be an equilibrium solution of (11.14); i.e., a is a
solution independent of t, so that Au + f (u) = 0. Then a is said to be linearly
stable if there are numbers i > 0 and a > 0, such that . S,,(t)II S e-°` if t z t,
where S, is the linearized operator at u.

We shall give some equivalent formulations.

Theorem 11.20. Let u and SL be as in the previous definition. Then thefollowing
are equivalent:

(i) a is linearly stable.
(u) II SL(t) II -> 0 as t - + cc:.

(iii) For some t > 0, the spectrum of SL(t) lies in I z I < 1 }.

If in addition, SL(t) is a compact operator for t >- to > 0, then these conditions
are equivalent to

(iv) There exists an x < 0 such that the spectrum of A + df; lies in the
half-space Re z <- x.

Proof. It is clear that (i) implies (ii) and that (ii) implies (iii). To see that (iii)
implies (i), we use the spectral radius formula (see [Wil),

"lim SL(nt) II "" = spect. radius (SL(t)) < 1.
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Thus we can find a e R such that 1 > a > [spect. radius (SL(t))]. Then

SL(nt) II < a" if n is large ; say n Z no.

Since SL(t) = SLY - [t/n0Ino)SL([tf no]no), where denotes the greatest
integer symbol, we have

II SL(t) sup II SL(s)
o<_ssno

and this implies linear stability of u; since a < 1. Thus (i), (ii)-and (iii) are
equivalent.

Suppose now that S,.(t) is compact for t >- to. Since

SL(t) = exp t(A + df;)

we may invoke the spectral mapping theorem (see [Ru 3]) to conclude

a(SL(t)) = {e`=: z E a(A + d.F)}, t Z to.

Thus (iii) and (iv) are equivalent. This completes the proof of the theorem. Q

We rcmark that if we consider equilibria of parabolic systems; e.g.,
A = DA, where D is a diagonal matrix with positive entries, then SL(t) is
compact for all t > 0, since it is "smoothing" (see, e.g., [Fn 3]).

We arc now ready to prove the main result of this section; namely, that
linearized stability implies stability. We first must define precisely what we
mean by stability.

Definition 11.21. Let u be an equilibrium solution of (11.14). Then u is stable
if there is a neighborhood N of u and positive numbers c, x such that if u is a
solution of (11.14) with u(O) e N, then u exists for all t > 0 and

11 U(1) - rill < ce-'`"t,(0) - (III, t > 0.

Theorem 11.22. If u is a linearly stable solution of (11.14), then u is stable.

Proof. Let SL(t) denote the Frechet derivative of S(t) at ii. Choose T > 0 so
large that 11 SL(t) II 5 e if t z T. Let 0 < /3 < x. We can find an open set
N = j u e X : 11 u - ii j! < r}, with the property that if u(t) solves (11.14) and
u(0) a N, then (by Theorem 11.15), it e C([0, T], X), and moreover, 11 SL(T) II
5 e-F, where 9L(T) is the Frechet derivative of S(r) at u(0). The latter assertion
follows from Theorem 11.18.

Now using the mean-value theorem [Di], we can write, for it, v e N.

11 S(T)u - S(r)v 11 s e-` 11 U - V 11 . (11.25)
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Moreover, since S(T)u = u, (11.25) shows that S(T) maps N into itself. Thus,
if 4) E N, Theorem 11.14 shows that S(t)4) exists for all t > 0.

Now if k is any positive integer,

II S(kflu(0) - it II = I S(kt)u(0) - S(kr)u II

= s(T)ku(0) - S(f ku II
= S(1rl``(u(0) - 0:1.

Therefore, from (11.25) we find

II S(kt)u(0) - u II S e
k6r II u(0) - u II . (11.26)

I f now t > 0 is given, let k = [t/T], and to = t - kT. Then 0 5 to 5 T, and
since u(t) = S(to)u(0), (11.17) implies that

I' u(t) - u II = II S(t)u(0) - fi'n

II S(to)S(kr)u(0) - S(to)w II
< c II S(kt)u(0) - u `l,

where the constant is independent of u(0) e N, and t E R, . This, together
with (11.26) implies that

II u(t) - it ij 5 ce-ka` II u(0) - u II S ce-de II u(0) - u II,

for some 6 > 0. This proves stability, and completes the proof of the
theorem.

§C. Appendix: The Krein-Rutman Theorem

The Krein-Rutman theorem gives conditions under which a not necessarily
self-adjoint operator possesses a principal eigenvalue with corresponding
eigenfunction of one sign. These things are of use in constructing comparison
functions for nonlinear equations; cf. Chapter 10, §C. The proof of the main
result is done via a degree-theoretic argument (see Chapter 12. §A and §B);
however the statement of the main result is close in spirit to the material in
§A and we thus include it here.

Let E be a Banach space. A subset K E is called a cone if K is closed
under addition and multiplication by nonnegative scalars. If K is a closed
cone in E, with int K 0, and L is a linear map, L: K\10} - in( K, then L
is called strongly positive with respect to K. A map T : E - E is called com-
pact if T maps bounded sets into precompact sets; i.e., into sets with compact
closure. Here is the main result.
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Theorem Al (Krein-Rutman). Let K he a closed cone in E with int K # c,
and suppose that ij'u a K%{O}, then - it t K. Let L be a compact linear operator
on E which is strongly positive with respect to K. Then L has a unique eigen-
vector v e int K with II a II = 1, and the corresponding eigenvalue p is positive.
,Moreover, v is the unique eigenvector of L in K. and r S supflAJ: i. is in the
spectrum of L}.

In the applications, E is usually a space of functions, and K consists of
the nonnegative functions in E. Thus the theorem asserts the existence of a
"positive" cigenfunction associated to the "principal" eigenvalue.

Before giving the proof, we need a few preliminary results.

Let T: R x E E be compact, and consider the equation

it = T(A,u). (Al)

A solution is a pair (A, u) satisfying (Al). Suppose that T(0. u) = 0 for all u
in E. Then (0.0) is a solution of (Al), and it is the unique solution when
i. = 0. If T is smooth near (0, 0), then the Banach space version of the implicit
function theorem (Theorem 13.3) implies that (Al) has a curve of solutions
(A, u(J.)) for A near 0 with u(0) = 0. If, for example, T(A, u) - AK(u) with K
compact, then the Schauder fixed point theorem (Theorem 12.15) gives a
solution (A, u(A)) for each small A. However, as we shall presently show, a
much stronger result is true.

Theorem A2. If T is compact on R x E, and T(A,0) = 0 for all ue E, then
(Al) possesses a component (i.e.. a maximal connected set) of solutions
C = C' v C- where C r e R f x E, C' are both unbounded, and C' n C-

{(0, 0)}.

Proof. Define S = {(A, u) e R x E: b(u) = u - T(A, u) = O} . and let C be
the component of S which contains (0, 0). Let C = C n (R f x E); then
C" n C- = f(0,0)). It remains to show that C' are unbounded sets.

Suppose that C' is bounded. We claim that there exists a bounded open
set U in R. x E such that C' e U and S n 8U = 4). To see this, let Ct be
a uniform e-neighborhood of C' in R., x E. Then S n cl(C,) is a compact
metric space with the topology induced by R.. x E, via the compactness of
T. Set K, = C' and K 2 = S n eC1 (d in R, x E). By the usual standard
separation lemma, there exist disjoint compact sets K;, i = 1. 2, with
K 1 e K 1, K2 a K2 and K 1 V 'Z2 = S n cl(Q. Let 6 = min(dist(K K2),
dist(K1, 3C6)), and let U be a uniform 613 neighborhood of K, ; then U has
the desired properties.

For i, > 0, set Ux = {u a E: (A, u) a U}, and consider the degree d(m(A, ),
0x, 0). Using the homotopy invariance,

d((D(A, ), 0;,, 0) = d(D(0, ), 00, 0) = d(Id., 00, 0) = 1.
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But also, if 7. is large, 0,, = 0 so that d((D(7., ), 0;,, 0) = 0, again using the
homotopy invariance. This contradiction shows C' is unbounded ; similarly
C - is unbounded. The proof is complete.

We remark that in the applications it is sometimes the case that T(A, 0)
= 0 for all A in R in which case we trivially get the unbounded sets C. In
bifurcation problems, one can often get other interesting solutions in addi-
tion to these trivial ones ; see Chapter 13.

Corollary A3. Let K be a cone in E, and let T : R x K -+ K be compact with
T(0, u) = 0 for all u E K. Then the equation T(1 u) = it has a component of
solutions C = C+ v C - with C ' c R' x K, C * both unbounded and
C+ n C = {(0, 0)}.

Proof. Extend the function T(0, ) to all of E by defining T(0. x) = 0 if
x e EI,K, and then extend T to R x E with values in K by the Dugundji
extension theorem ([Sw, p. 119]). If we now use our theorem, and note that
the range of T lies in K, so that the zeros of m(i., u) =- u - T(i.,u) lie in
R x K, we see that the result follows.

We can now prove the Krcin-Rutman theorem. We shall only show that
there is a v e int K and u > 0 such that Lv = rev. (For the other statements
we refer the reader to the original paper [KR].)

If it e K we will write u Z 0, and u >- v means (u - v) a K. Let iv E K\{0}.
Then there is an M > 0 such that MLw > w. Indeed, if not, then
L w - M - 1 w 4 K for all M > 0 and so Lw d int K, contrary to the hypothesis.

Let e > 0 be given and define a compact map T : R x E - E by T(A, u)
_ AL(u + ew). By the above corollary, there is an unbounded component
C, of solutions of the equation it = T(2, u) in R x K, which contains (0, 0).
We claim C. e [0, M] x K. To see this, suppose (A. u) E C, ; then it = ALu
+ ir.Lw >- ArLw >- ;xwf M. Thus Lie Z (del M)Lw Z ().el M2)w. But u Z ALu,
so that u z (,l;'A1)2ew. By induction we find it z (A, .k )"ew for every n e z+ .
If A > M, we conclude w S 0 and so -w a K, a contradiction. Thus A < M.
Since C, is unbounded, there is a u, in K such that O.,, u,) E C, and I1u,ll = 1.
Let a -+ 0; we may assume that for some subsequence (c t), 2,k -+ A e [0, M].
From the equation u, = i.,Lu, + i.,ELw, we see u,k -+ v e K, Ilvil = 1, and
v = ).Lv. Moreover, flvII = 1 implies A > 0 and thus v E int K. It follows
that v is a positive eigenvector with corresponding eigenvalue u = A'. 0

As an example of an E, K, and L where the above conditions hold. con-
sider the following situation. Let D be a bounded domain in R" having
smooth boundary, and define

Yu = -E aij(x)us,x., 4- C bi(x)ux, + c(x)u,
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where a,1, b,, c are all in C'(6), 2 is uniformly elliptic on D, and c Z 0 in D.
For aE C'(D), a > 0, set E = C1'°(D) and v = Lit, where u E E and v
satisfies

2v = (Ax)v, x e D. v = 0 on 6D.

Then L is compact and linear. Let K be defined by

K =cl{uEE:u> OinQandau <Oon00
V11 I.

where n is the outward-pointing unit normal vector on OD. Then K is a
closed cone in E, u e K\,{0} implies that - u 0 K, and int K * 0. Moreover,
it c- K'\{0} implies that Lu is in int K, via the strong maximum principle
(Theorem 8.1). Thus L is strongly positive with respect to K. It follows from
the Krcin-Rutman theorem that the smallest characteristic value of L is
positive, and has a unique eigenvector in K.

NOTES

The results in §A arc classical, and our proofs are adapted from Courant and
Hilbert [CH 1]. The proof of Theorem 11.11 is taken from Conway Hoff
and Smoller [CHS]. The material in §B is taken from Rauch [R]; more
general results can be found in Henry [He] and Mora [Mx]. The proof of
the Krein-Rutman Theorem, [KR], given here was shown to me by Paul
Rabinowitz.



Chapter 12

Topological Methods

The invention of modern topology goes back to Poincare, who was led to
it in his study of the differential equations of celestial mechanics. Its develop-
ment was taken over, for quite a while, by people who interestingly enough.
seemed to have completely forgotten its origins. Perhaps this really was
necessary in order that the subject develop rapidly. In any case, already in
the twenties and thirties, people like Morse, Leray, Schauder, and others,
were applying topological methods to differential equations1It is our purpose
here to explain the relevance of some of these techniques to nonlinear
differential equations.

We begin with a study of the (Brouwer) degree of a mapping in finite-
dimensional spaces. This remarkable integer-valued function shows that
the values of a continuous mapping from a bounded domain U c R". into
R", are, in some sense, determined by its values on the boundary of U. We
obtain the standard properties of the degree, and we use these to prove the
Brouwer fixed-point theorem. This is then applied to two problems in
ordinary differential equations. We then consider the extension of the degree
to an infinite-dimensional setting. This is the celebrated Leray-Schauder
degree for mappings of the form I - K. where K is a compact operator.
We show how it is used to obtain solutions of partial differential equatibns.
In §C we introduce the reader to Morse theory, and we describe some of
the important basic results. This is in preparation for Chapters 22 and 23, in
which we shall consider Conley's important and far-reaching generalization
of Morse theory. In the final section, we give a very brief description of
some standard results in algebraic topology that are needed in this chapter
as well as in Chapters 22 and 23.

§A. Degree Theory in R"

Loosely speaking, the degree of a mapping' f from an open subset U c R"
into R" is an integer determined solely by its values on 3U, which when
nontrivial, implies that f has a zero in U. We shall require of the degree

' In §§A, B, and C. all functions are assumed to be (at least) continuous. We will not always
bother to state this.
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that it be "stable under pertubations." By this we mean that if g is" close"
to f, then to g is assigned the same integer as is assigned to f. Indeed, we
shall do better, in that the degree will turn out to also be a homotopy invariant.
This notion will be discussed in the subsequent development.

Let U be a bounded open connected subset of R", let yo E R". and let f map
U into R". We are interested in finding solutions of the equation f (x) = yo.
We shall define an integer which tells when this equation has solutions.
This integer is easily defined on a dense set of functions in C°(U). and on
a dense set of points y in the range R(f) of f. Then the definition will be
extended to all continuous functions and all yo in R(f) where y°4 f(i?U).
The dense set of functions will be C'(U, R"), and the dense set of points
will be the "regular values" of fE C'(U. R") in the sense of the following
definition. (Recall that f e C1 (0, R") if f is a C'k mapping from U into R".
and f, Df...., D' f are all continuous on U ; see Chapter 13, §A.)

Definition 12.1. (i) xo e U is a regular point of f if df(xo) is nonsingular;
otherwise x° is called a critical point off.

(ii) yo e R" is called a regular value off if f -'(y°) contains no critical
points off; otherwise yo is called a critical value.

The denseness of the set of regular values comes from the celebrated
theorem of A. Sard :

Theorem 12.2. If f e C'(C. R"), then the set of critical values off has measure
zero.

I Ck where each C. is a hypercube, we may assumeProof. Since U = Uk
10

that U itself is a hypercube CA = C of side i.. We then divide each "edge"
of C into N equal parts; this gives a partition of C into N" congruent hyper-
cubes, the face of each one having (n - 1)-dimensional volume ,i/N. Let Q
denote any one of these smaller hypercubes. If x and x° arc in Q, then by
the mean value theorem we can write

f(x) = f(xo) + df,(x - xo) + (x - xo)o()./N).

since f has uniformly continuous derivative in Q. Now given e > 0, we choose
N so large that the o(A,,-'N) term equals y" E, where -i is independent of N. Thus

If(x) - f(xo) - df.,,(x - xo)I S CAIN, (12.1)

where C' doesn't depend on N. Assume now that xo is a critical point; then
det(df 0) = 0 so (12.1) shows that Q gets mapped by f into a "cylinder"
whose "base" lies in an (n - 1)-dimensional plane whose "height" is at
most ec)./N. Since I f(x) - f(y)I 5 M Ix - y1 < MA/N, where M is an upper
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bound for I df I in C, we see that the base of the cylinder has (n - I }
dimensional volume at most M"''A' '/N"-' It follows that the image of Q
has volume not exceeding M"-'Ce)."JN". If we sum over all such Q, we find
that the image of the critical point set has volume not exceeding

N"

Since e > 0 was arbitrary, this shows that the set of critical values in each Ck
has measure zero. The same then holds for U. Q

In what follows, we shall frequently use the following condition :

f(x) * yo if x E GIU. (12.2)

Suppose that f e C'(U ; R"). Let yo be a regular value off. Then the set

f-'(Y'o) = {xeU:f(x) = yo}

is finite. This follows from the inverse function theorem; namely, f-'(yo)
must be discrete, and thus cannot have a limit point in U. We define the
degree off at v0 as

d(yo) = E sgn[detdf.]. (12.3)
xcf-,tro)

Note that d(yo) is an integer, positive, negative, or zero.
We want to extend this definition in two directions; namely

(i) to functions f e C'(U, R") at points yo satisfying (12.2), where d.00 is
singular; and

(ii) to continuous functions; i.e., to f e C(G, R").

The idea for (i) is to use Sard's theorem to approximate yo by a sequence
yk yo, where the yk are regular values off , and then to define d(f, yo, U)
= limk... d(J; yk, U). This requires that we show that the limit exists. is
finite, and is independent of the approximating sequences. To show (ii).
we can approximate f by fk e C'(U, R") and define d(f, yo, U) =
limk.., d(.fk, S'o, U): again we must show that this limit exists, is finite,
and doesn't depend on the approximating sequence. This program can be
carried out (see [BB]), but it involves a good deal of work. Instead of doing
this, we prefer to give an alternate, much quicker approach to degree theory.
which is based on differential forms. For the reader who is not familiar
with this notion, we have included a short appendix at the end of this section
which gives the basic ideas and results.
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Thus as above, let f e C'(U. R"), where U is an open set with compact
closure. Let yo c- R" satisfy (12.2). Here is the basic definition:

Definition 123. Let yo a R"\ f(aU), and let2 p = g(y) dy be a CO n-form on
R" having compact support K c R"'-., f (OU), such that yo a K. and III = 1.
We define the degree off at yo to be

d(J. U, yo) = f p ".f. (12.4)

Differential forms it, which satisfy these conditions, arc called admissible for
yo and f.

We must show that d(f, U, yo) is well defined; i.e.. that it is independent
of it. This is a consequence of the following lemma.

Lemma 12.4. Let p = q(y) dy be a C°` n -form on R" having compact support
K, satisfying fit = 0. Then there exists an (n - 1) form w with it = da and
spt co (-- K.

To see now that the degree is well defined, suppose that p and 1 arc
admissible for o and f. Then it - t1 satisfies the conditions of the lemma.
so there is an (n - 1)-form co having compact support in K with p - r1 = dw.
Then from the divergence theorem

it; it Of - IV )I =it (it -'1)`'f=itdwJ.

=ft; d(w:'.f)= f

lt'.f = f t1 f.L G'

and d(f, U. yo) is well defined.
We now prove Lemma 12.4. We may assume that spt p is contained in a

cube C in R". We must show that we can write 0 as

41(y) = 01P' .
Fl- elyi

2 We use the notation dy = d)-, A dye A A dy" throughout this section.
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where spt ¢; c C for each i. The proof proceeds by induction on the dimen-
sion n. The case n = I is easy; namely, put tyt(y) = fs . 4(t) dt, and note
that t,, has compact support (J q = 0), and that dtyt = u. Thus, we assume
that the lemma is true in n-dimensions, and we prove it for (n + 1)-dimensions.

Let (y. t) = (y,, ..., y", t), y"., = t. and set

0(y) =
1111Iw

4'(y. t)dt.

Now fOdy = 0. so by our induction hypothesis,

H(y) = x ```

where spt i c C", the projection of C on y-space 1 S i <_ n. Let p(t) be a
Co° function with support in the projection of C on the t-axis, and f p(t) dt =
1. Consider the function 0(y, t) - p(t)O(y). We have

f [0(y t) - p(t)O(y)] dt = f0(y. t) dt - 0(y) fp(t) dt

=6(y)-O(y)=0,

so that if we put

MY. t) =
J `

[O(y. s) - p(s)0(y)] ds.

we see that 41101 = 0(y. t) - p(t)O(y), and that tfr(y, t) has support in C.
Finally,

40'. y"+ 1) _ /y, t_ -
r

+ p(t)0(y)

a e(My"+ 04'.40

ay., t e)'t

as desired. This completes the proof of Lemma 12.4. 0

We shall now obtain some basic properties of the degree.

Property 1. If Iy, - yoI is small. d(f. U. y,) = d(f. U. yo).

Proof. If p is admissible for yo. then it is admissible for y,, if Iyo - yt I is
sufficiently small. 0
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Property 2. If Yo is a regular value for f, then d(f, U, yo) = d(o). In particular.
d(f. U. yo) = 0 if yo f (C).

Proof. Lctf - '(yo) = {x1, x2.... , x}. By the inverse function theorem, each
xr has a neighborhood Nr on which f is a homeomorphism. We may choose
these so small that Ni n N) = (k if i j. Set N = n f (Nr) ; then yo E N.
Let u have support in N and let it be admissible for yo and f. Then

M

1 o .fd(f, U. Yo) = i it Of = Y_ IN
1

u r=1

Y sgn[detdf,,Ip (see (12.11) in the appendix)
i=1 f(NI)

sgn[det "Jj
J

11 (I!t!i,YN u = 0)
i=l N

M

_ sgn[det djx,]

d(yo)

Finally, the last statement is immediate. since if yo 40 f (U). then yo is a regular
value and d(yo) = 0.

Corollary 12.5. If y lies in the same component of yo (in R"\ f(aU)), then
d(f, U, y) = d(f, U, yo).I In particular, the degree is an integer-valued function.

For, we may connect y to yo by an arc F' in the component. Property 1
and the compactness of r give the desired result. The second statement fol-
lows by Sard's theorem and Property 2. 0
Property 3 (Homotopy Invariance). Let If,(-)), be a continuous (from [0, 1]
to L,,,(U)) one-parameter family of mappings taking U x [0, 1] into R", which
is C' on U, for each fixed tin [0, 1]. Assume that yo 0 f (M), 0 S t 5 1. Then
d(f, U, yo) is independent of t.

Proof. Let Y = { f,(x): x e aU, 0 5 t 5 1}; then yo tl Y, and Y is compact.
Let p be admissible for yo and each f where (spt u) n Y = 0. Then

d(.f.U.)'o)=IU u"fr,

and this function is easily seen to be continuous in t. Since the degree is
integer valued, it must be constant in t.

Property 4 (Dependence Only on Boundary Values). If f Ii1U = gand
Yo 0 f(3U) = g(c?U), then d(f. U. yo) = d(g. U, yo).



132 12. Topological Methods

Proof. Apply Property 3 to the family rf + (1 - t)g. 0 < t < 1. Since f and
y agree on 8U, the hypotheses of Property 3 are satisfied.

Property 5. Let { L',} he a countable family of disjoint open sets contained in
U. Let yo 0 f (1i\UU;). Then d(f. U. vo) is zero for all but a finite number
of i, and

d(f. U. yo) = Y d(f, U;, yo).

Proof. C'-,,UU, is closed and thus compact; hence f(U'',,UU;) is compact.
Let N be a connected neighborhood of yo disjoint from this latter compact
set, and let y be a regular value in N (Sard's theorem). Then by Corollary
12.5, d(f, U, yo) = d(f, U, y), and for each i, d(f, U1, yo) = d(f, U1, y). Since
f-'(y) is finite, it must be contained in a finite number of the U1's, say
U1,..., Uk. Then if f -'(y) = {x 1, ... , xk }, where xi a U1,

d(f, U. Yo) = d(f, U, y) = d(y)
k

_ E sgn[det dfx_]
1

k

_ Y d(f. U,. y)
I

_ d(f. U1, yo).

Property 6 (Excision). Let Q be a closed set in 0, and suppose yo f f(Q);
then

d(f U, yo) = d(f. U\Q Yo)

Proof. If we set U1 = U\Q, then the result follows immediately from Property
5. O
Property 7. Let U and U be bounded open subsets of R" and R", respectively,
and suppose f e C'(clU, R"), and f e C'(clU, RI). Then if yo a R"\f(dU), and
1'o a R"\f(oU),

d(.f x f U x U. (yo. Yo)) = d(f. U. yo) d(f, 0, 'o). (12.5)

Proof. (yo, yo) E RR +"\(f x f)(ia(U x &)). so that the left-hand side of (12.5)
is defined. Let p and µ be admissible for (yo, f) and Go, 1), respectively.
Then p n µ is an admissible (n + m)-form for f x f at (yo, yo). Thus

fU x G
(PnA)°(fxJ)=

fU
i'f

fG
A,f

from which the result follows.
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Property 8. If the vectors f(x) and g(x) never point in opposite directions for
x E G U (i.e., f (x) + ,lg(x) O for all;. Z 0, x E OU). then d(f, U, 0) = d(g, U, 0),
provided that the right-hand side is defined ; i.e., 0 0 g(i U).

Proof. This is an immediate consequence of the homotopy invariance, using
the homotopy t[ f (x)] + (1 - t) [g(x)].

In particular, if U is a ball in R" centered at the origin, and f(x) never
points opposite to x for x e OU. then the equation f(x) = 0 has a solution
inside U. This holds since

d(f. U.0)=d(1.U,0)= 1.

where I is the identity in R.
We need one more property which will be used later.

Property 9 (Composition). Let f e C1(U, V), g e C1 (V R"), where U and V are
bounded open subsets of R", and let { V } be the set of open connected subsets of
V\f(c'U), (whose closures are disjoint compact subsets contained in V). Then
ifzoeR"ti\(go.f)(dU),

d(g o f, U. zo) d(f, U, VJ) d(g, V,, zo),

and the sum on the right is finite.
(Here d(f, U, v) is constant for all v e V;, by Corollary 12.5; thus,

d(f, U, V) is defined to be d(f, U, vi), of e Vj.)

Proof. We may suppose that zo is a regular value of both g and g o f Then

d(gof,U,zo)= sgn det d(g of),,
uEU

IA J1(u1= so

sgn det dgf("1 sgn dct df,
YCU

E sgn dct dgr Y sgn det df
rcV ucU9(") =.O

J(ul - r

Y sgn det dgrd(f, U, v).
[ACV

9(r)-=o
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If v is in a component of V'\ f(3U), then this component is disjoint from f(U)
so that d(f, U, v) = 0 (by Property 2 and Corollary 12.5). Thus by Property
5, d(f, U, v) = Lj d(f, U, V j), and

d(g ° 1, U, zo) _ d(f. U. VJ) I sgn det dy
i ,-CV,

al e,,=zo

_ d(f, U, V;) d(g, V;, zo)

We have proved many of the important properties of degree theory.
with one notable exception ; namely, we have not shown that the degree
is a topological notion. In other words, we have not extended the concept
of degree to continuous mappings. We now turn our attention to this problem.

Let f e C(U, R"), and let { f"} be a sequence of functions in C'(U, R")
such that f;, converges uniformly to f on U. If yoo f (O U). then for n sufficiently
large, y,) V f"(3U) so that d(f", U, yo) is defined. We set

d(f. U, yo) = lim d(f", U, ye). (12.6)

Lemma 12.6. The above limit exists and is independent of { f"}.

Proof. Let S = dist(yo. f(oU)); then 0 < 6 < :x; since f(3U) is compact.
Let {g"} be another sequence of functions in C'(U, R") with g" converging
uniformly to fin U. We choose an integer N so large that n z N implies
that 11 f" - .f I + 11 g" - .f 11 < 6/2 where

Suppose that

yo = t f,(x) + (1 - 09"(x) for some x e 0U, n z N, 0 S t S 1.

Then

)'o -1(x) = yo - tf(x) - (1 - t)f(x)

= t[f"(x) - .f (A + (1 - 1)[g"(x)

so Iyo - f(x)I < S/2. This is impossible. Hence, if n > N we can apply the
homotopy invariance property to the family tf" + (I - t)g", 0 5 t 5 1, and
conclude that

d(f", U, yo) = d(g., U. YO). (12.7)

Thus, if the limit exists, it is independent of (f.). To see that the limit indeed
exists, we merely apply the same argument to f" and J. with n. m z N. Then,
as in (12.7), we conclude that d(f", U. y0) = d(J, U. )'0). so the sequence
{d(f", U. )-o)} stabilizes (i.e., is constant), for n z N. This completes the
proof. C1
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Remark. With the aid of this lemma, we note that if yo Of((! U), then there
is a neighborhood N of f (Lm-topology) such that all C' functions in N have
the same degree.

Theorem 12.7. The Properties 1-9 are valid for continuous functions. More-
over. if yo and y, are in the same component of R"I,f(c')U), then d(f. U. yo)
= d(f, U, y,).

Proof. We shall prove these in a convenient order. Property 1 is immediate
from our above remark. Property 3 then follows from Property 1 since
d(f;. U. yo) is continuous in t and has discrete range (the integers). Property 4
follows as before from Property 3. Property 2 must be stated as follows:
if y04 f(U) then d(f, U, yo) = 0; this is obvious since it holds for each of
the approximating C'-mappings. All of the remaining properties. as well
as the statement in the last sentence, arc similarly obtainable from the C'
approximations. The proof is considered complete. p

We conclude this development with two important topological results.
Suppose that ¢ is a continuous mapping ¢: aU - R"\,{yo}. If f is any con-
tinuous extension of ¢ to U, then d(f, U, ye) is, of course, defined. We claim
however, that this degree is independent of the particular extension. Indeed,
if g is any other extension, then if f, _- rf + (1 - t)g. 0 < t < 1, the homotopy
property shows that d(f,, U, yo) is independent of t. We can thus give an
unambiguous meaning to d(4), U. yo). This yields the following important
properties.

Property 10. Let f, g e C(U, R") and suppose f and g can be continuously
extended to U, and f I,,v = 91ov if yo 0 f(aU), then d(f, U, yo) = d(g, U, yo);
thus the degree depends only on f Gov.

Property 11. If 0 e C(aU. R"), and yo 4 4(3U). then d(¢. U. yo) depends only
on the homotopy class of 4,.

Proof. Let 4 0 5 t 5 1, be a homotopy deformation of ¢, with 4o such
that yo 0 QS,(cU), if 0 5 t 5 1. If fo and f, are, respectively, continuous exten-
sions of Wo and ¢, to all of U, then since yo 0 ¢,(8U), so we again see that
d(ot, U, yo) is independent of t. This proves the result. El

We shall now give a few of the standard applications of the theory which
we have developed. Here is one easy result. Suppose f e C(R. R") and for
some k>0,keZ.

lim U(4 x> _ + ao.
IxI - QD x

Then for each yo e R", there is an x0 in R" with f (xo) = yo ; i.e.. f is onto.
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To see this, note that we may assume yo = 0 since otherwise. we can
replace 1(x) by f (x) - yo and the hypotheses still hold. Now there is an
r > 0 such that

< f(x), x) > 0 if lxl = r.

If f(x) # 0 for lxi = r, then <f(x), x> > 0 implies that f(x) never points
opposite to x if I x I = r. Thus f (x) = 0 has a solution x with 1x 1 < r, by
Property 8.

As a next application, we have the following so-called "no retraction
theorem."

Theorem 12.8. Let D be the open unit hall in R". Then there is no continuous
mapping f : D OD such that f I cD is the identity.

Proof. Were there such a mapping, then since 0 e R"% f (OD), Property 4
shows that

d(f. D. 0) = d(l. D. 0).

But d(1, D. 0) = 1. by Property 2 and (12.3). Thus d(f. D. 0) = 1. so again
by Property 2, 0 e f (D). This is impossible since f (D) c 8D. p

Theorem 12.9 (Brouwer Fixed Point Theorem). Let D be any set homeo-
morphic to an open ball in R". and let ¢: b - D be continuous. Then 0 has a
fixed point in D ; i.e., there is an x e B with O (fl = R.

Proof. First note that if D' is homeomorphic to D and if the theorem holds
for D', then it holds for D. In fact, let map D' homcomorphically onto D.
Then `O>Ji maps D' continuously into itself; hence it has a fixed point p
by hypothesis; so 0-14,y(p) = p. But then ¢(0(p)) = ty(p) so iji(p) is a fixed
point of tb. We may therefore assume that D is the unit ball centered at the
origin.

if 4 had no fixed points, then for each x E D, the points x and t¢(x) define
a line: i.x + (1 - A)4,(x). A e R. Let f (x) be the unique point on this line
having norm 1, where i. > 1. Then f maps 13 into OD continuously, and
f I OD = 1. This contradicts the last result and thus the theorem is proved. Q

We turn now to a few applications of Brouwer's theorem to differential
equations. Recall that a closed trajectory (periodic orbit) of a plane auto-
nomous system of ordinary differential equations must contain "within it"
a rest point. We shall generalize this result to n-dimensional autonomous
systems. Thus consider the system of ordinary differential equations

= .f(x). (12.8)

where x e R" and f is an n-vector which is locally Lipschitzian.
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Theorem 12.10. Suppose that D is homeomorphic to an n-ball and that every
trajectory of (12.8) starting in D at t = 0 stays inside D for all t > 0. Then D
contains at least one rest point of the system.

Proof. Let {tk} be a sequence of positive real numbers which converges to
zero, and consider the "time-tk" mappings, which carry any xo e D into
xo tk, the point on the trajectory through xo at "time" tk. This is a continu-
ous mapping of D into D, so by Brouwer's theorem, there is a point xk with
xk tk = xk. Using the compactness of D, and passing to a subsequence,
we may assume that the sequence {xk} converges to xE D.

We shall show that x is a rest point of (12.8). To this end, note that for
each k, and each t

t
xk ITJt

k=xk (12.9)

where [ ] denotes the greatest integer. Since the left-hand side of (12.9)
tends to x t as k oo. we see that t for all t. Thus r is a rest point.
as asserted. Q

We shall next prove a theorem on periodic orbits.

Theorem 12.11. Let (12.8) be a three-dimensional system. and let T be a
(solid) 3-torus such that each trajectory of (12.8) starting in T at t = 0 stays
inside T for all t > 0. Suppose too that every trajectory in T doesn't3 "turn
around." Then T contains a periodic orbit.

Proof. Referring to Figure 12.1, let the disk D be a cross-section of T. If
x E D, then the trajectory through x meets D again at some positive time.

I That is, every point x moving along a trajectory in T has positive angular velocity about
the axis of T. If the x,-axis is chosen as the axis of T, this means that x112 - x2il = x1 f2(x)
-x2f,(x) > 0.

Figure 12.1
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Thus the flow induces a continuous mapping x - ¢(x) of D into D. Brouwer's
theorem implies the existence of a fixed point i of this mapping: i.e., Y = ¢(x).
But then the trajectory through i is clearly a periodic orbit.

Note. 0 is often called the "first-return map," or the "Poincare map."

We close this section with a short appendix on differential forms. For
more details, the interested reader should consult [Fl].

Appendix: Differential Forms

Let P be a point in R". A one form at P is an expression of the form

ai dx,. a; constant.

These form an n-dimensional vector space. The q forms at P are expressions
of the form

I a, dx,, n n dx;a, a, constants.

If U is a domain in R", a q-form w on U is defined by choosing a q-form at
each point p in U, and doing it smoothly. Thus

n... A dxq.

where each a, is smooth. These form a vector space over R which we denote
as Ft91(U). q is called the degree of w.

There is an operator d, called exterior differentiation, d: I" (U)
p(q+ "(U), which is characterized by the following axioms:

(i) d(w+A)=dw+d...
(ii) d(w n i.) = do) n ). + (-1)d,s w(u n d),.

(iii) d(dw) = 0 forever), w.
(iv) If f is a smooth real-valued fiinction

df=Ej dx,.

Thus, if w is a smooth (n - 1)-form, so that

"
w = E (- 1)I-t f1(')dyt A ... A dyi-t A dy1+t A ... A dy,".

1=J
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then

day dy, A A dv

139

We shall denote dy, n A dy" by dy. If it is a smooth n-form. u = .f(y)dy.
then its pull back with respect to a mapping 0 e C'(U. R") is defined by

(u o 0)(x) = f(i(x)) det do, dx.

We may integrate n-forms; in particular. we have the divergence theorem:
if cu is an (n - 1)-form

Therefore, if w has compact support in U. then

f dco=0.
V

Finally, we recall the "change of variables" formula from advanced
calculus : If y = O (x) is a smooth bijective transformation with dQ nowhere
singular. then

L f(y)dy J
"f((x))IdetdoIdx. (12.10)

R

so that for an n-form u = f (y) d y,

f u=sgndetdoJ uo0. (12.11)
R. R.

Here the term "sgn" is needed because of orientation considerations.
Finally, 0 "commutes" with exterior differentiation ; namely, d(o) - O)
= (dw) 4.

§B. The Leray-Schauder Degree

We want to extend the concept of degree to infinite-dimensional spaces so
as to make it applicable to partial differential and integral equations. This
is indeed possible, and not very difficult, once one isolates the "correct"
class of mappings. That is, we must find a class of mappings to which the
notion of degree makes sense. That continuity is not enough can be seen
by the following example.
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ExAMel.F.12.12. Let 12 denote the space of infinite sequences x = (x t, x2 , ...)
with II X 11 2 = YJx; 2 < c,. Let D be the closed unit ball in 12 and let T be
the transformation on 12 defined by Tx = (s! 1 II x! 2, x,. X,.... ). T is
clearly continuous, and if II x iI s 1, II Tx I! 2 = (1 - II x li 2) + II X II 2 = 1.
Thus T maps D into OD. This implies that T cannot have any fixed points.
For, if x were a fixed point, then Ilx i = IlTxll = I so Tx = x gives

(0. x1,x2....) = (x1.x2....).

But then x = 0, and this is impossible.

This example shows that the Brouwer fixed point theorem is not valid
in Banach spaces with merely a continuity hypothesis. The correct class of
mappings in the infinite-dimensional framework, is the so-called compact
operators; see Chapter 11. We reformulate the definition of compact opera-
tors in Banach spaces, for mappings which are not necessarily linear.

Definition 12.13. A continuous mapping T of a subset U of a Banach space
B into B is called compact if T(K) _- cl(T(K)) is compact for every closed
and bounded subset K c U.

The property of compact mappings which enables us to extend Brouwer's
theorem to infinite dimensions is given in the following lemma.

Lemma 12.14. Let K be a closed and bounded subset of a Banach space B,
and suppose that T : K -* B is compact. Then T is a uniform limit (i.e., limit
in the norm-topology on operators) of finite-dimensional mappings (i.e.. mappings
whose ranges are finite dimensional).

Proof. Let c > 0 be given. Since T(K) is compact, it can be covered by open
balls N1..... Nnt, each of radius s, with centers x1..... x;,,,, respectively.
Let 1 5 i 5 j(c)} be a partition of unity on T subordinate to the
cover N1..... N;t,,: i.e.. for each i. t/; ? 0, spt 41, a Ni. and if x e T(-K).
YO,{x) = I (see the appendix to Chapter 7). Set

At)
T,(x) _ >(r,(T(x))x;, x e K. (12.12)

Then clearly T(x) has finite range, and

;(t
II T(x) - T -W II = Il E i/,,{T(x))[x; - T(x)]

If iP;(T(x)) t 0. then 4,,{T(x)) > 0 so T(x) a N, and II x; - T(x) , < s. There-
fore jj T(x) - T,(x) 11 < c, uniformly in x. This completes the proof. 0
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We shall call T, as defined in (12.12), an r.-approximation to T.
This last result enables us to prove the analogue of Brouwer's theorem

for Banach spaces; in this context it is called the Schauder fixed point theorem.

Theorem 12.15. Let D be a closed convex bounded subset of a Banach space B,
and let T : D - D be compact. Then T has a fixed point.

Proof'. Let T, be an c-approximation to T. and notice that T,(x) lies in the
convex hull of the x;'s. If V, is the linear space spanned by x,, x2, ..., x,,,),
then T(x) lies in the convex hull of V, and by convexity, this set lies in D.
It follows that the range of T, lies in D n V'. Thus, T, maps the set D n V,.
into itself. By the Brouwer fixed point theorem, there is a point x, in D n i
such that T(xe) = x,

Since T is compact, { T(x,)} has a convergent subsequence. which we again
call { T(x,)}. We claim that { x,} is a Cauchy sequence. To see this, note that
for any c,, E2 > 0,

II x., - x,.., - T(x,,) II + T(x,,) - T(x,.:) II + II T(xr:) - x"

= II I(xt,) - T(x,,)II

+ II T(x")

E, + e2 + II T(x,.,) - T(x,2)II.

and the claim follows. Thus {x,} has a limit; i.e.. xr - x, and x e D since D
is closed. Therefore by continuity, 7'(x,) - T(x). But as

II T(x,) - I!, < II T(x,) - T ,(x,,) II + 11 x, - X II

<E+Ilx,-YII.

we see that 7'(x,) -- x. Thus T(z) = R, and the proof is complete.

We are now going to extend the concept of degree to mappings of the
form 7' = I - K, where I is the identity and K is compact. Thus, let U be a
bounded open subset of a Banach space B and let T map U into B. Let
yo e B\,T(eU). We claim that T(?, U) is a closed set. Indeed, if F is any closed
bounded set, then T(F) is closed. To see this. let x e F, and suppose x,, -

y. By compactness of K. we may assume (passing to a subse-
quence, if necessary). that k. Thus, x k + y = x, and x e F since
F is closed. But since K is continuous, K(x) = k; hence y = x - K(x) and
our assertion follows.

Since T(c?U) is closed, and yo 4 T(oU), we let dist(yo. T(c?U)) = a > 0.
Let e < 5/2, and let Kr. be an e-approximation of K which has range in
the finite-dimensional space VV containing yo. Set T = I - K. Then, T(x) #
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yo if x E OU (otherwise 3x0 e oU with T(xo) = yo and 11 yo - T(xo)II S
I I Yo - T (xo) I( + 11 T (xo) - T(xo) II < e < 6/2). Thus, for the mapping

T. IV,,u:Vr U - V,

the degree d(T, V, n U, yo) is defined.
We now set

d(T. U, '0) = d(7.. Ve. n U. Yo); (12.13)

this is called the Leray-Schauder degree. We must show that it is well
defined. To do this, we need a lemma.

Lemma 12.16. Let U be a bounded open subset of R" = R ® R"=, n, + n2 = n.
Let f be a trapping from U into R" of the form I + 0. where q5: U - R"' x 0;.
Let (yo, 0) E R"' x {0}1J(aaU); then d(f, U, yo) = d(f l u,, U1, yo), where U, is
the projection of U on R

Proof. It suffices to prove the lemma for f e C'(U. R") and then extend it to
continuous f by the usual approximation arguments. Also, we can assume
that yo = 0 (otherwise we translate coordinates).

We shall write x e R" uniquely as x = x, + x2 where x; a R", i = 1, 2.
We choose functions f (x,) in CI(R',) having small support about 0 E R"',
f,(0) > 0, f z 0, and such that JR", f,(x,) dx, = 1. By (12.4),

.11 2) f .d(f, U, 0) =
Su

(

Thus from (12.10), since x + 4(x) = [x, + (11(x, + x2)] + x2,

d(f, U, 0) =
f-,
f A(X) + (x, + x2))f2(x2)Idct(1 + d¢x,)I dx, dx2,

RR^:

so that iff2 -+ d. the "delta function," we have

d(f, U, 0) = f-1 f1(x1 + O(x,))Idet(1 + do.,)I dx,
R

f, o f = d(f1,,,, U,, O).
R^,

This proves the lemma. C1

We can now show that the degree, as given by (12.13). doesn't depend
on V,. Note first that if V = V, a N, where N is finite dimensional, then it
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follows from Lemma 12.16 that d(T,, V n U. yo) = d(T, V, n U. yo). Thus.
if K,, is another approximation of K such that K,,: U V,,. q < 6%2. and
V = VV Q V,,, then again by Lemma 12.16,

d(T V, n U, yo) = d(T,, V n U, yo), and

d(T,I. V,, n U, yo) = d(T,,, V n U. yo).

If T, = tT, + (1 - r)T,. then yo 0 T,(r?U) from the definition of d. and by
the homotopy invariance,

d(' F,. V n U. yo) = d(T,,. V n U. yo).

so that

d(T, V, n U. yo) = d(T,,. V,, n U, yo).

This shows that (12.13) doesn't depend on how we approximate K.
Now just as we have done before, we can extend all of the properties of

degree that hold in R", to Banach spaces B, where the mappings T that we
consider are of the form I - K, where K is compact. In addition. the mapping
T need only be defined on uU, with range in B',.{yo}, where K : OU -+ B
is compact. Then as before, d(T, U. yo) depends only on the homotopy
class of mappings T: aU - B\{ yo), where the homotopy consists of mappings
of the form I - K,, 0 5 t 5 1, with compact, which send aU x [0, 1]
into B\{yo}.

Finally, if T = I - K : U -+ B and d(T, U. yo) 0, then T(x) = yo, for
some x e U. Indeed, if yo 0 T(U), then since T(U) is closed, dist(T(C), ),o) > 0.
Thus we can find an s-approximation T of T (actually, there is an s-approxi-
mation K, of K, and T, - 1 - K,), such that Tr.: V, n U -' V, and yo 0 T
(V, n U). It follows that d(T,. V, n U, yo) = 0 so that d(T, U. yo) = 0 in view
of (12.13).

We conclude the theoretical development of the Leray-Schauder degree
with the notion of the "index" of an isolated solution.

Thus, let B be a Banach space. U an open subset of B, and let f c- C'(U, B).
We assume that f is nonzero on aU and that K = I - f is a compact mapping.

Now suppose that uo is a zero of f, and that I - dK,. is an isomor-
phism. Let S,(uo) be a small ball of radius c about uo, containing no other
solutions off = 0. Since f = I - K, we can compute d(f, S,(uo), 0), and for
small s, this is independent of a (Property 5); it is called the index off at uo,
and written if(uo).

From Theorem 13.2, A = dK,,, is compact and consider the set of real
eigenvalues of A greater than 1. If A is any such eigenvalue, let q;, denote its
multiplicity, i.e.,

't
la = dim U N[(i.l - A)k],

1=I
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where N[T] denotes the null-space of T. The standard theory of linear
compact operators shows that tl,. < x:. (In fact if S = N((AI -- A)'), and
sk = dim Sk, then we shall show that st < eo for all k, and sk = sk., for large
k. If {.<j} is a sequence of unit vectors in Sk, then x; = Kx, where K is com-
pact. Thus a subsequence converges, so we have shown that the unit ball in
Sk is compact; thus sk < oo. Next, if the Sk are strictly increasing, we can
choose xk a Sk such that IlxkII = 1 and dist(xk, Sk_,) z'. Then if j > k,

II Axj - Axk II = II (A - AI)x, + Ax; - Axk II

= IA1I L; (Al - A)xk + AAx)Jxk -

>
I1.I

- 2

Thus ; Ax,, has no convergent subsequence. and this violates the compactness
of.4.)

The following theorem shows that we can explicitly compute the index
off at u0 in terms of the 1x.

Theorem 12.17. if (uD) = (- I)°, where or = Sx . t qa .

Proo/'. Consider first the finite-dimensional case. If P is a nonsingular
n x n matrix, and Q = I - P, then clearly ip(0) = d(P, S, 0) = sgn dct P,
where S is a small ball about 0. We claim that the theorem holds in this case;
i.e., that

sgn det P = (-- 1 r,

To see this, note that since P is real, if i.,, ... , Ak are the real eigenvalues of
P, having multiplicities m,, ... , ntk, respectively, then

k

sgndctP=sgnf sgn n
1 d,<0

odd

where a = F, odd On the other hand, if i = ;odd qa(Q);, then (- 1)°
_ (- l)°. But if A is a real cigenvaluc of Q, i. = I - J.; for some i, I < i < k
and A > I if J.; < 0. Hence

(- 1)° = (- 1)' = (- 1)' - sgn del P.

This proves our claim.
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To continue the proof, we first see that we may assume that uo = 0.
Using the homotopy t-'K(tx), 0 < t S 1 of K into A, we find that
d(I - K, S,, 0) = d(I - A, S, 0), where Sr = S,(0). Now write B = B, ® B,
where 8, is spanned by U, N(i.l - A)k : A > 1, k = 0, 1.2.... s and AB2
e B2. Using Property 7,

d(1 - A, Se., 0) = d((1 - A) ! R,, S, n B 0) - d((1 - A) I,,, S, n 82, 0).

Now if u, a B. and (1 - tA)u, = 0 for some t, 0 < r < 1, then u2 = 0. Thus
we may deform I - A to the identity in S, n B2; this gives

d(1 - A. 0) = d((I - A ) _ (- 1

since B, is a finite-dimensional space. The proof is complete. Q

Remark. Let A be a compact linear operator, let (I - A) be invertible, and let
AO be an eigcnvalue of A having multiplicity m, with corresponding cigcnvec-
tor u0. Then d(AI - A, S`(uo), 0) changes by a factor (-1)' as A crosses ).o. To
show this we observe that (as before) it suffices to consider the case where A
is an n x n matrix. In this case, we note that det(AI - A) = II(A - Aj)M' where
the A; are the eigenvalues of A with their respective multiplicities mP Then
if r > 0 is small,

sgn det(i.,, + r - A) (-1)' sgn det(A() - c - A),

and the result follows.

We shall now briefly show how the Leray-Schauder degree is applied
to specific problems. (In the next chapter, we shall show how it is used to
obtain a global bifurcation theorem.)

The idea is to show that all solutions must be in some ball U in an appro-
priate function space; i.e.. to obtain an a-priori estimate. Then one proves
that the degree d(T. U, yo) # 0, by using the homotopy invariance. In other
words, by a suitable homotopy one "connects" the original problem to
a problem in which the degree is easily seen to be nonzero. Let us now
illustrate this technique in somewhat more detail.

Consider the problem

J
Au+f(x,u,Du)=0, xeQ.
u-0 oni ,

(12.14)

where f is a C'° function. As in Chapter 10, §C (see (10.29)), we can recast this
problem in the form u - KF(u) = 0, K = A', where F(u) = f(x, u, Du), and
since K is smoothing, it is a compact operator in an appropriate function
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space. That is, if IIuII,.x,n) 5 1, then II KuII, S C where C is independent of u
and II - II , denotes the norm in C'(0). We then can apply degree theory in the
Banach space B = {u e 0 (0): u = 0 on aQ}. This requires that we obtain an
a-priori estimate. For f not growing too fast at infinity in all of its arguments,
we can show that for any solution of u - KF(u) = 0 (see, e.g., [Ni 2, p. 49])

11x11, s C. (12.15)

Having this estimate enables us to prove the existence of a solution.
Thus, let U be the ball 1I u ! I + C, contained in B, and let T : U - B
be defined by

T(u) = u - KF(u). (12.16)

We seek a solution to the equation T(u) = 0. In view of412.15), if u e aU,
then T(u) 0. Thus, d(7; U, 0) is defined. In order to compute this degree,
we consider the mappings

7;(u) = u - IKF(u), 0<t<1.
By the homotopy property, d(T. U, 0) = d(1, U, 0) = 1. Thus (12.16) has a
solution u in B. It is not too hard to show, for any solution of Tu = 0, that
under reasonable growth conditions on f, a is smooth.

§C. An Introduction to Morse Theory

Morse theory studies the topological and analytical properties of gradient
vector fields; that is. of functions which can be written as df, for some
f e C2(fl, R), where Q is an open set in R. It is a rich and varied discipline,
which makes connections with many diverse areas of mathematics and its
applications. For our purposes, it is the concept of the "Morse index"
which we shall find most useful. Briefly, this is a nonnegativc integer, assigned
to each nondegenerate critical point off, which measures the "degree of
stability" of this point when considered as a rest point of the associated
gradient dynamical system. Our development in this section will be rather
brief, and perhaps even sketchy in places, since in Chapters 22 and 23 we
shall consider a far-reaching extension of these ideas due to C. Conley.

Let f e C2(S2, R); then x is called a critical point of f if df (x) = 0; here
df denotes the gradient off with respect to the usual Euclidean metric. We
are interested in the structure off near the critical points. If x = 0(y) is a
smooth bijective transformation, and F (y) = f(e(y)), then dF(y)
= df = df (Y) dO(Y) = 0. Thus critical points are preserved under
nonsingular smooth maps; i.e., they have an invariant character. (This, in
fact, allows the whole theory to actually be developed on any smooth mani-
fold, but we will not pursue this generality.)
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One of our goals is to investigate the existence of critical points off.
Simple examples show that there need not be any in general. This is due
to a lack of compactness; in fact, if f were defined on a compact manifold
M without boundary, then maxf and min f arc obviously critical values.
One way to remedy the lack of compactness is to require f to be suitably
restricted at infinity. For example, suppose that the following condition
holds:

There is an R > 0, and a b > 0, such that

Jul > R implies idf(u)I > d. (:)

Using (*), we see that the set S = {u: I df(u)l 5 d; is compact. and lies in
the ball of radius R centered at 0. But then the maximum and minimum
values of f on S arc critical values.

It is not too hard to show that, (in R'), (*) implies the following condition:

I f(u) I asI uI ,cr;. (12.17)

(In fact, by Taylor's theorem, if itol > R, lf(u) - f(0)1 >- ($lu .) Now if we
strengthen (12.17) to

f(u) + f, as uI - cc,

then inf f is attained, and at this point, df = 0. We remark that this condition
implies much more; for example, if f has two distinct relative minima, it
must have a third critical point. We shall give a very simple proof of this in
Chapter 22, §C.

In order to be able to give a reasonable classification of the critical points
of f, it is necessary that they be "isolated" Analytically, we require that
at each critical point Y, the hessian matrix d2f is nonsingular. Such critical
points are called nondegenerate. If all the critical points of fare nondegenerate
we call f a Morse,function.

That nondegenerate critical points are isolated follows immediately from
the inverse function theorem. Moreover, if as above, F(y) = f(¢(y)) where
4 is bijective, then if dJ'(Y) = 0, and d2f is nonsingular at V. we have for any
n-vector ,

d2F(y)(c, ) = c) + df(r6(y)) d20())(c, c), (12.18)

and since df(x) = 0, we see that d2F(y)(c,;) = d2f(Y)U, S) # 0.
Thus the property of a critical point being nondegenerate is also preserved
under smooth bijectivc changes of coordinates.

We shall now prove two important lemmas; the first shows that Morse
functions are dense in the C2-topology on compacta, and the second shows
that each such f has a canonical form near each nondegenerate critical
point.
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Lemma 12.18. For any bounded open set Q c R", the Morse functions are
generic in C2(U. R): i.e., they.form an open and dense set.

Proof. Lctf e C2(Q, R), a e R", and consider the function a(j) = f(x) + <a, x>.
We wll show that for almost all a, fa is a Morse function. Thus, consider the
mapping g: C1-, R", given by g: x - df(x). The derivative of fa at any x is
given by

(df)(x) = g(x) + a.

Therefore x is a critical point offa if g(x) = -a. Also, since f. and f have the
same hessians, d2f (x) = dg(x). If - a is a regular value for g, then ifg(x) = - a,
dg() is nonsingular. Thus .R is a nondcgencrate critical point off, whenever
- a is a regular value of g. By Sard's theorem (Theorem 12.2), - a is a regular
value of g for almost all a e R". This shows that the Morse functions are
dense.

Next if f is a Morse function and g is C2-close to f. then obviously g is
also a Morse function. Thus the Morse functions are also open. 0

Lemma 12.19 (Morse Lemma). Let f e C2(12. R), and let x be a nondegenerate
critical point off. Then there is a local coordinate system near x such that

n

f(x) =.f(x) + Y- r,xj
I

where c; = ± 1.

(12.19)

Before giving the proof, we need a lemma which gives a parametric form
of the diagonalization of symmetric matrices. Let A` denote the transpose
of the matrix A, and let Y" denote the real symmetric n x n matrices.

Lemma. Let D = diag(dt, ... , d") be a diagonal n x n matrix, where d, = ± 1.
Then there is a neighborhood U c Y. of D, and an analytic map a from U
into the real nonsingular n x n-matrices such that a(D) = 1, and if a(R) = S,
then SRS = D.

Proof. Let R E .V,, be so close to D that rt t 0 and sgn ri t = sgn dt. Let
T be the linear transformation on R", x = Ty, where

rte rt"X1 yI

xk = Y,/ -,/l rl 1 1, k > 1.
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Then

d, 0 0
0

T'RT = 0 R,

0
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where R, c -,V.-, If R is close to D, then R, is close to D, = diag(d,,... , d");
in particular, it will be invertible. Note that T and R, arc analytic functions
of R. By induction on it. we assume that there is an (n - 1) x (n - 1) non-
singular matrix S, = a(R,), depending analytically on R, such that S, R, S,
= D. Now we define a(R) = S where S = TK, and

1 0 0 ...

0

K = 0 S,

0

then S'RS = D. This proves the lemma. M

We can now prove the Morse lemma. We may assume that 0 is a convex
open set in R", x = 0, and f(x) = 0. Furthermore, by a linear coordinate
change, we may assume that the Hessian matrix D = (f (0)) is diagonal,
with the first k diagonal entries equal to + 1, and the remaining equal to - 1.

Now there is a smooth function x -+ Rx from S2 to Y. such that if x c- S2
and R., = (r,,(x)), then

f (x) _ r;,{x)x; x;,

and Ro = D. To see this note that

fo ' df(tx) f(tx)
f(x) dt xt dt

dt r=t o axt

Now since df(0) = 0, we have

af(tx) d (af(stx)1 ds - x ' 02f(Stx)
ds,

c7xi ds ax, J ,_, l o Cx;ax;

so that

J

af(stx)
ds dt r,,(x)xix1

'

2

f(x) - " x'x,= E ax axi.j-1 0 0 1 J i.j-t
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If a(R) is the matrix-valued function in the lemma, set a(R,) = S,,; S,, is
an n x n nonsingular matrix. Define a map 0: U -+ R", by O(x) = SX'x,
where U = 0 is a small neighborhood of 0. Since d4(0) = 1, the inverse
function theorem implies that 0 is a smooth homeomorphism on U, if U
is small. Set y = 0(x); then

"
f(x) = xtRsx = y((S'SRxs:)y = y'Dy = Y d.y2,

!=t

as desired.

For a given bilinear functional H on R", we define the index of H to be
the maximal dimension of a (vector) subspace of R" on which H is positive
definite. We may therefore speak of the Morse index of the critical point
off, and by this we mean the index of d2f(.). Now let k he the number of
e; > 0 in (12.19). We shall show that k is the Morse index of the critical
point Y.

Lemma 12.20. If k is the number of positive ei in (12.19). then k is the index
of d2f(.). Hence k is independent of the transformations used to obtain the
representation (12.19).

Proof. Let y(x) = (yt(x), , }'"(x)) be any coordinate system, and let in be
the index of R. If in this coordinate system.,f had the form

k

f(x) _ .l (x) + y,(x)` - y,(x)2,
i=1 1=kj

then

-2. ifi=j>k.
f'' (x) +2, ifi=j<k.

0, otherwise.

Thus, the matrix representing d2f with respect to the basis determined by
these new coordinates is

diag(2,2,...,2, -2, -2,..., -2).

It follows that there is a subspace V of dimension n - k on which d2f is
negative definite, and one of dimension k on which d2f is positive definite.
Hence k < m. If there were a subspace of dimension greater than k on which
d2f was positive definite, this subspace would meet V, which clearly is
impossible. Thus k = in, and we are done.
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These last two results show that f has a unique canonical representation
near each nondegenerate critical point, and hentx such critical points can
be classified according to their Morse indices k, I < k < n. But we can go
even further with this index.

Suppose that x is a nondegenerate critical point of f. If we consider the
"gradient" system defined by

Y = V.1(x), (12.20)

then clearly r is a rest point. If H(r) denotes the hessian matrix off at x,
then the Morse lemma shows that H() is nonsingular. In this case we say
that x is a nondegenerate rest point of (12.20).

Now let's consider the flow for the "linearized equations"

y = H(x)y. (12.21)

Clearly y = 0 is a rest point for the system (12.21). From the last two lemmas,
we sec that if the index of x is k, then H(x) has k positive cigenvalucs and
(n - k) negative eigenvalucs. Let A, >- ... > ;t > 0 > i,k+, > ... > A. de-
note the eigenvalues of H(R). with r,, r2.... , r,, their corresponding eigen-
vectors. Then the following theorem is well known. (We use the notation
yo t to denote the point on the trajectory of (12.21) through yo, after t units
of time.)

Linear Stable Manifold Theorem. There are manifolds Mk and of
dimensions k and (n - k), respectively, with the following properties:

(i) ifyoEMk,then yo-t-+0ast- -oo;
(ii) if yo eM"_k,yo t 0as t-- + .-x,: and

(iii) near y = 0, Mk is spanned by and M"_k is spanned by
rk,t,..rN

Thus, R"-,,;0} = Mk ED M"_k, where Al,, n M"_k = 0. We call and
Mk the stable (resp. unstable) manifold at the rest point 0 of (12.21). Now
for our purposes, we are interested in the (nonlinear) "stable manifold "
theorem. This states that in a small neighborhood N of the nondegenerate
rest point x of (12.20), the conclusions (i)-(iii) above, are valid ; thus the
flow 01(12.20) near 3, is topologically equivalent to the flow near 0 of (12.21).
(For a proof, see [CL].) We again refer to '%f"_k and Mk as the stable (resp.
unstable) manifold at x of (12.20). Thus the Morse index is a measure of
the "instability" of the critical point, now considered as a rest point of
(12.20).

Now we shall show how this theorem enables us to give an invariant
topological sense to the Morse index; i.e., to the equation (12.20). (The
reader can consult §D for unfamiliar topological notions.) For this purpose,
we consider Figure 12.2. The stable manifold theorem implies that we can
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M"-k

uk
i

Figure 12.2

find an open set B containing x in which Mx meets B in a k-ball Bk having as
boundary a (k - 1) sphere S", and meets B in an (n - k) ball B"-k.

(In Figure 12.2, P and Q denote Sk - t, while RP v xQ denotes Bk, and xR v RS
denotes B-k.) If we denote the entrance and exit points of the flow on
OB by

b- _ (xeOB:3c>

and

V _ (xe8B:3e > 0,=j:x-(0,e)nB = 0),

respectively. then B can be represented as BI x B"-k, while b- and b- can
be represented as OBk x B"-k and Bk x B"-k, respectively. Thus we have
the homotopy equivalence of the pairs (B, b') - (Bk, aBk) - (Bk, Sk - 1), and,
on collapsing the boundary (i.e., going over to the quotient space), Blb+ is
a (pointed) k-sphere, Bjh' = Ek. Similarly, Alb- = E"-k. We may thus say
that the topological Morse index of . is a (pointed) k-sphere. Note that this
shows that the Morse index off at Y depends only the values off on B.

Now suppose that we consider a function g which is Cz close to f near
z ; say 11 f - g 11 : r:, where the norm is the C2-norm in a small neighborhood
of R. We claim that for P. sufficiently small, g has a nondegenerate critical
point near .. That g has a critical point near Y if s is small, follows from
degree theory. Namely, since x is a nondegenerate critical point off, there
is a neighborhood U of i in which x is the only zero of %7f. Then if g is suffi-
ciently close to f, the remark following the proof of Lemma 12.6, shows that
d(Vg, U, 0) 0. Thus Vg is zero in U. The fact that this critical point is
nondegenerate follows from Lemma 12.18.

Now if g is close enough to f, let y be the unique critical point of g in B,
where B is as above, a small neighborhood of Y. Then we see that the Morse
index of y is again a pointed k-sphere. It follows that the Morse index is
"invariant under continuation"; i.e., invariant under small perturbations.
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Figure 12.3

In Chapter 22, we shall give Conley's extension of the Morse index to
more general invariant sets than nondegenerate rest points. In this more
general context, the analogue of (12.19) is not available, and the index is
stated in terms of the homotopy class of the space Bib'. To get an indication
of the more general situation, consider a flow (12.20) in R2 with three rest
points, as depicted in Figure 12.3. The set B contains the rest points as
depicted. If h' has the same meaning as before, we see that b + = aB, and hence
B;b' is homotopically equivalent to E2, the pointed 2-sphere; cf. Figure 12.4.
On the other hand, if x is a nondegenerate critical point off of index 2, (in R2),
then x is a relative maximum off, and thus it is a "repellor" for the gradient
flow (12.20). Thus the topological Morse index of .R is, as above, easily com-
puted to be V. Therefore the invariant set in B (Figure 12.3) has the index of a
.1 repellor." Clearly this is consistent with Figure 12.3, since B is a "repelling"
region.

Figure 12.4

We shall now consider the question as to whether critical points of a
given index exist. We may as well suppose that we are on an n-manifold M;
i.e., f E C2(M. R). We define

Ma={xeM:f(x)<a};

then we can state the first important theorem.'

`The reader not familiar with the terminology should consult §D.
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Theorem 12.21. Let fe C2(M, R) and let a < b. If the set f -'([a, b])
= i x E M : a <- J '(x) < b} is compact and contains no critical points off, then
.41° is diffeomorphic to M°.

The idea of the proof is to "push " M' down to M° along the trajectories
of the gradient flow it = df(x); see Figure 12.5. See [Mr I] for a proof.

Figure 12.5

The second theorem describes the situation near a nondcgcnerate critical
point.

Theorem 12.22. Let f e CZ(M, R), and let x be a nondegenerate critical point
of Morse index k. With c = f (Y), suppose that ,for some z > 0,
f -'([c - E, c + E]) is compact and cattails no other critical point off. If E
is sufficiently small, the set M`i` has the homotopy type of M`-` with an
(n - k)-cell attached.

Thus we see that the index of the critical point Y is intimately related to
the topology of the manifold in the vicinity of it. Again see [Mr 1] for a
proof of Theorem 12.22.

As an application of these theorems, we can prove the following interesting
result.

Theorem 12.23. If M is a compact manifold, and there exists amt fE C'(M, R)
having only two critical points, both of which are nondegenerate, then M is
homeomorphic to a sphere.

Proof. The critical points must be at max f and min f. Let f (xo) = 0 be the
minimum and f (x,) = I the maximum values. For small E, the sets M`
= f - '([0, E]) and f -'([ 1 - E,1]) are closed n-cells; this follows from Lemma
12.19. By Theorem 12.21, M' and M' -` are homeomorphic. Thus M is the
union of two n-cells Xf '_` and f''([1 - E, I]) "glued" together at this
common boundary. Hence M is homeomorphic to an n-sphere. 0
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We remark that, in his celebrated paper [Mr 1], Milnor uses this theorem
to find a 7-sphere with a nonstandard differentiable structure, which is
homeomorphic to the usual 7-sphere; namely, he finds a function on it with
exactly two nondegcneratc critical points.

We shall conclude this section by showing how one can use Morse theory
to describe the relationship between the topology of M and the critical
points of a real-valued function on M. This will be done by giving a collection
of inequalities, called the Morse inequalities. (Again, we refer the reader to
the §D for the terminology and results.)

Suppose that k is an integer, and that we have a function Sk defined on
pairs of spaces (X, A), A c X, satisfying the following properties:

(i) Subadditivity: If X Y Z, then Sk(X. Z) 5 Sk(X. Y) + Sk(Y. Z).
(ii) Dimension: If E, is an r-cell, with boundary BE,, then Sk(E,, E,) = Sk

the Kronecker delta.
(iii) Homotopy Invariance: If (X, A) and (Y, B) have the same homotopy

type, then Sk(X, A) = Sk(Y, B).
(iv) Excision. If U is an open subset in the interior of A, then Sk(X %U, A\U)

= Sk(X, A).

As a consequence of (i), if X c X, c e Xm, then Sk(X,,, X0)
S Ei Sk(X,, X;_,); this follows by induction. Therefore, writing Sk(X)
= Sk(X, 4,), we have if X o = 4,,

Sk(xm) 5 Sk(Xi Xi-
i-1

(12.22)

Now let M be an n-manifold, and let f be a Morse function on M. Let
a, < a. < < am be such that W' contains exactly i critical points of
f, and let M = M',-. Then if ao < a,, 4 = ,b1°0 c M°j c calf = :14,
and (12.22) gives the following theorem.

Theorem 12.24. Let CA denote the number of critical points of f having index
n - , on M. Then RA(M) 5 CA, where RA(M) is the Ath Betti number of M.

Proof. Using (12.22),

SA(M) 5 SA(M°'> Me'-
.=t

S,,(M"''' V EA,, M°' 1)
i-t

_ SA(EA,, OEA),-t
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by Theorem 12.22, and the excision property above. We apply these in-
equalities to the Betti numbers R,1(X, A). That these satisfy the above pro-
perties (ii)-(iv) is a consequence of their definition as being the ranks of the
homology groups H,1(X, A), and that they satisfy (i) follows from the exact
sequence: ... -+ Hi1(Y, Z) - H,1(X, Z) -+ HA(X, Y) -. ... ; sec Axiom 4 in §D.
Thus the above inequalities give

M

R,1(M) S RA(E;,,, aEA1) = CA,

and the proof is complete.

There are in fact more general relations between the Betti numbers R,1
of a compact differentiable manifold and the number of critical points of a
Morse function Jon M. These are the Morse inequalities:

Ro < Co.

R1-Ro<C1-Co,

R,-R1+Ro<CZ-C1+Co,

R"-1 -R"-z+...±RoSC"-t -C"-2+...±Co,

R" - R" - i
+ ...+Ro=C"-C"-1+...+Co.

The proof is not very difficult, but we shall not give it here, since a more
general statement will be given in Chapter 23, §B.

§D. A Rapid Course in Topology

1. Manifolds

An n-dimensional manifold Al is a 1-lausdorff space M together with a count-
able open covering , U,' of M, and mappings y f,} such that f; is a homeo-
morphism of U; onto an open subset of R", and if U1 n U) f 0, the mapping
f, f;-' is differentiable and has a nonsingular Jacobian; see Figure 12.6.
Some examples of manifolds are n-spheres S", it-balls B", and n-tori T".

A dfeomorphisnt between two manifolds Al and N in R" is a homeo-
morphismf : M N such that f and f -' are differentiable.
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M

R" 0
2. Homology Theory

fr o f; I

Figure 126

0
We first state the axioms of homology theory.

Let le be a collection of pairs of topological spaces (X, A), where A c X.
A homology theory on K is a set of three functions H, *, and a, on , defined
as follows.

(i) For each pair (X, A) in "e and each integer k z 0. H assigns an abelian
group Hk(X. A), called the k-dimensional homology group of the
pair (X, A).

(ii) For each continuous mapping .f : (X. A) - (Y, B) on '' onto W with
f(X) c Y, f (A) c B,* assigns a group homomorphism J;: Hk(X, A)
-, Hk(Y, B), for each integer k Z 0. f* is called the homomorphism
induced by f.

(iii) For each (X, A) a %B and each q >_ 1, a is a group homomorphism
P,: Hq(X, A) -+ Hq _ I(A, 0) - Hq _ I(A).

The functions and groups are required to satisfy the following seven
axioms: (all spaces are assumed to be in W, and all functions are assumed
to be continuous).

Axiom 1. If i is the identity mapping i : (X, A) (X, A), then i : Hq(X, A)
-- H4(X, A) is the identity homomorphism.

Axiom 2.Iff g:(Y,B)-+(Z,C.),then (gof)s =g* - j..

Axiom 3.0 of* = f.-?.

Axiom 4. If is A - X, and j: X (X, A) denote inclusion maps, then the
following sequence is exact (the image of each map is the kernel of the next
map) :

-+ Hq(A) Hq(X) f ' Hq(X A) Hq- r(A) - .. .
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Axiom 5. If f : (X, A) -. (Y, B), and g : (X. A) - (Y, B) are homotopic,s then

.1 =gs.

Axiom 6. If U is an open subset of X and C e int A, the inclusion i : (X\,U, A'tU)
- (X, A) induces an isomorphism i,, : HQ(X'%U, A\U) - HQ(X, A), _for each
integer q >_ 0.

Axiom 7. If q 0, Hq(H) = 0, where 0 is any point.

If (p, p) is a fixed point in 44, and Ho(p) = G, G is called the coefficient
group of the homology theory. If G = Z, the integers, then if

S" = {x a R":JxJ = 1 } and B" = {x E R":,xJ < 1},

it is easy to show the following results:

If n > 0,
(Z, ifq=Oorq=n,

H9(S) =
0, otherwise,

Hq(S°) =
Z + Z, if q = 0,

0, otherwis

HQ(B", Si') =

e,

I

Z. ifq = n,

0, otherwise.

Now suppose that M is an n-dimensional compact manifold. Then
M can be thought of as an n-complex, i.e., a finite number of simplicics
with the following two properties: (a) if A is a simplex of M, then every face
of A is also in M, and (b) any two simplices of M have either empty inter-
section, or they intersect along a common face. [We recall the notion
of a simplex in R". First, we say that a system of points a°, at, ... , a, in
R", r S n is independent, if the set of vectors (a, - ao), ... , (a, - ao) is
linearly independent; this is equivalent to: if A, E R satisfy, A,a, = 0, and
Zo A, = 0, then AO = A, = ... = 0. Now let ao, a,, ... , a, be a set of inde-
pendent points in R". Then an r-simplex is the set A' of points of the form
E70 ;.jai, where the A, a R, satisfy Eo A, = 1. The points a0..... a, are called
the vertices of A'. An n-simplex is sometimes called an n-cell or an n-face.]

If A', ... , AQt,, is the set of all r-simplices of the complex M, an element
of the form I, ,q, A, where g, c- G. is called an r-chain. The set of all r-chains

s See the discussion in the next section on homotopy.
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forms an abelian group C'(M), under componcntwise addition. If A' is an
r-simplex of M, the boundary, CA', of A' is defined by

aA°=0.

where the B;-', 0 5 i 5 r, denote the set of all (r - 1)-faces of A'. It is fairly
straightforward to show that HA' = 0. An r-chain is called a cycle if OA' = 0.
The set of all r-cycles also forms an abclian group, which we denote by
7, = 7,(M, G). We say that an r-cycle of M is homologous to zero if it is the
boundary of an (r - 1)-chain. These cycles form a group B,; clearly B, a 7,.
We can thus form the factor group Hr(M) = 7,/B,: this group is called the
r-dimensional homology group of M over G.

Now if we consider pairs (X, A) with A c X e M and A closed in X, then
we can consider the chain spaces C,(X) and C,(A) and the groups C,(X)jC,(A),
as the chains on the pair (X, A). As above, this leads to the groups H,(X, A).
If (Y, B) is another such pair, and f : (X, A) (Y, B) is continuous with
f(X) c Y, and f(A) c B, then f induces a mapping f, : H,(X, A) - H,(Y, B)
defined by f : [x] [f (x)] (where [ ] denotes the equivalence class). It is
not hard to showthat,ff is a homomorphism. It remains to define the bound-
ary homomorphisms on the homology groups: i.e., the operators
o: A) -+ For this, we need a little "diagram chasing." Thus
consider the diagram of maps and spaces where are the boundary operators
on the chain complexes :

C,,+I(A)`-. C..,(X)/C..,(A)

lA 1 lB

c * Cn(X) Cn(X, A) = QX)'Cn(A)

To define a on H,,. ,(X, A), we take an element 2 = z + C.. (A) c- A)
where o(z) = QA) (i.e., 2 e 7_,, ,(X, A)). Then since the map j is surjective
there is an element z e C.. ,(X) withj(z) = 2. We then set a(2) = Gl(z) e
This defines the boundary operator a. We can then show that the collection
of all such pairs of spaces (X, A), together with the groups H,(X. A) and the
maps j and a, satisfy the above axioms and therefore give a homology theory.

Next, we note that the groups H,(X, A) are all finitely generated. In
general, if G is a finitely generated abelian group, then G is a direct sum of
cyclic groups A,.... , A,, B,, ..., Bq, where the A,'s are free abelian groups
(and thus are isomorphic to the integers Z), and the B,'s have finite order.
The number p is called the rank of G. In our case, we call the rank of H,(M)

H,(M, 0), the r-th Betti number of M, and denote it by (3,. The number

X(M) = E(-1)'If.
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is a topological invariant of M, called the "Euler-Poincare characteristic" of
M. We could more generally also consider the numbers

R(X, A) = rank H,,(XJA), A E Z, i. z 0;

these are called the Betti numbers of the pair (X, A).
We can now describe an alternate definition of degree of a continuous

mapping (in finite-dimensional spaces). This description has the advantage
that we do not have to first consider smooth mappings, and thus avoids all
the approximation arguments which went through §A.

Thus, let U be a bounded open set in R" whose boundary, we assume for
simplicity, is homeomorphic to S". If f E C(U, R"), and J'(cU) 0, the
function

f(x) = f(x)
f(x)!

maps OU into S-'. Hence f induces a homomorphism f,,: H,(3U)-.H,(S"-')
(integer coefficients are assumed). Since ZIU and S" ' are homeomorphic,
and H" _ , (S"- 1) = Z, we have H. _ 1(e. U) = Z. But since every group homo-
morphism of Z into Z is of the form z kz, for some k E Z (easy exercise),
we see that J,(:) = k:. The integer k is called the degree off, with respect
to the origin, and is denoted by d(f, U, 0).

The degree d(f, U, yo) can he defined similarly, provided that f (1?U)
e R"1,{yn1. We merely consider the mapping (f - v0)/If - yoI : ilU -' S"

It can be shown that this definition of degree agrees with the one which
we gave in §A [Hu]. This is done by proving that continuous mappings f,
as we have considered above, can be classified up to homotopy equivalence
(see §3), by this integer k, i.e., the degree of a mapping is the only homotopy
invariant associated with continuous mappings of eU into S"-'. Since we
have shown that the definition of degree given in §A is also a homotopy
invariant, the result follows.

3. Homotopy Theory

A topological pair is an ordered pair (X, A) where X is a topological space,
and A is a closed subspace of X. The product of pairs (X, A) and (Y, B) is
the pair (X x Y, X x B v Y x A). If A = 0, then we write (X, A) as X.

A map from (X, A) into (Y, B) is a continuous function f: X Y such
that f(A) a B. Suppose that f and g are maps from (X, A) into (Y, B). We
say that f is homotopic to g, and write f - g, if there is a map gyp: (X, A)
x [0, 1] -, (Y, B) such that 46(x, 0) = ft x), and O(x, 1) = g(x) for all x E X.
It is easy to show that - is an equivalence relation on the set of maps from
(X, A) into (Y, B). We denote by C f ], the equivalence class of f; i.e., [f ] is
the set of all maps g: (X, A) -, (Y, B) such that g f.
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This notion allows us to define a homotopy between pairs of spaces;
namely, we say that the pair (X, A) is homotopically equizcdent to. or of the
same homoropy type as the pair (Y, B) (in symbols, (X, A) (Y, B)), if
there are maps f: (X, A) -+ (Y, B) and g: (Y, B) . (X, A), such that
g = f - 1(X, A), and f g 1(Y, B) (where, for any set S. 1(S) is the
identity function from S to S). The maps are called homotopy equivalences,
and each is the homotopy inverse of the other. Thus, pairs of spaces which are
"homotopic" are continuously "deformable" to each other. Again, the
notion of homotopic pairs of spaces is an equivalence relation, and [X, A]
denotes the homotopy class of (X, A); i.e., the set of pairs (Y, B) such that
(Y, B) - (X, A).

We pause to consider some examples. First consider the solid torus in R3,
T2 = S' x D2, where D2 is the unit disk in R2, centered at (1, 0). We claim
that T2 - S'. Thus consider the maps.f: T2 -. S', and g: S' T2. defined
by f(0, x) = 0, and g(0) = (0, 0), where 0 E S'. x e D2, and 0 is the origin
in R2. Clearly (J c- g)(0) = 0, so f - g - I(S' ). To show that g ,: f - 1(T2),
note that (g f)(0, x) = (0, 0); thus if we define a map 0: T2 x [0, 1] T2,
by 4)(0, x, t) _ (0, (x), we see that 1) = 1(T2), and 0) = g 4-
This proves our claim.

Next observe that S' can be continuously deformed to a point; namely,
just shrink the circle radially to its center. But S' is not of the same homotopy
type as a point. To see this, note that the maps f : S' (0, }, and g: (0,) --* S',
0, a S', given by f(0) = 0,, and g(0,) = 0, satisfy (f g)(0,) = 01, (so
f g - 1(0, )), and (y f)(0) = 0. But one can show that there is no map
0: S' x [0. 1] S' which is the identity for t = 1, and is a constant map
for t = 0. (This statement follows easily from the results in 4.c. below.)

If X is a compact Hausdorlr space, and A is compact, we call (X, A) a
compact Hausdorff pair.

It is easy to show that compositions of homotopic maps are homotopic,
i.e., if.T g: (X, A) -+ (Y, B), f, g : (Y. B) -+ (L, C), and if I -- g and f -r g, then

A more subtle result is the following:

Proposition 12.25. Suppose that we are given pairs and maps

(X3,A3)f-

(X4.A4),
(X,,A,)--*(X2,A2)f-':2

such that f32 °f21 andf43 of32 are honotopy equivalences. Then each of the
maps f2 ,f32, andJ43 are homotopy equivalences.

Proof. Let fl3: (X3, A3) -+ (X,, A,) and f24: (X4, A4) -+ (X2, A2) be homo-
topy inverses for f32 ° f2t and f43 132, respectively. Then

f13 " (f32 '.f21) U13432):421 -I (X I, A,).
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Thus ft3 :43 2 is a "left //homoto/py inverse" for f21. Now

f2t ° (./13" J32) ' (.f24 °f43 `f32) °(f21 "f13 °f12)
-. (./24 ".f43)° (f32 °.f21 °f13)"f32

- (f2-1-f13)-f32 - 1(X2, A,).

The other cases are proved similarly. O

We now shall next turn to the notion of a "pointed space." This will be
used in Chapters 22 and 23.

We first recall what is meant by the "quotient" topology. Given a pair
(X, A), the space X/A is called the quotient space and it is defined as follows.
Let X be those points x c- X\A, together with the set A. We put a topology
on X by calling a set open in X provided that the union of its members is

open in X. Then X is called the quotient space X/A. Geometrically, this
corresponds to "collapsing" the space A to a point.

We regard X/A as the pair (X, A). There is a natural map X -+ X defined
by x -+ [x], where [x] denotes the (smallest) set containing x. We call this
map the quotient nap. It is continuous, and surjective except when A
in which case it misses the point A.

One can show fairly easily the following properties:

(i) If (X, A) is a compact Hausdorif pair, then so is X/A.
(ii) If (X, A) and (Y, B) are compact Hausdorff pairs, and f : (X, A)

-+ (Y, B) is continuous, then the induced mapj: X/A -+ Y/B defined
hyj([x]) = [J(x)] is well defined and continuous.

Now let (X, A) be a topological pair; if A consists of one point, we call
the pair a pointed space. Thus, we may regard X/A as the pointed space
(X, A).

Definition 12.26. If (X, x0) and (Y, y(,) are pointed spaces their suns (or wedge)
(X, .xo) v (Y, yyo) is defined by

(X, xo) v (Y, Yo) _ (X Q Y)/{xo, Yo},

and their product (X, x0) A (Y, Yo) is

(X X Y)/[(X X {Yo}) v ((xo} x Y)]

The reader should draw pictures to illustrate these constructions; in
particular, the sum can be regarded as "glueing" together the spaces (X, x0)
and (Y, yo) at their distinguished points.

It can be shown, [Sp], that both the sum and product are well defined
on homotopy equivalence classes, and as operations on homotopy classes,
they satisfy the associative, commutative and distributive laws.
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The additive identity, 0, is the pointed one-point space; the multiplicative
identity, 1 is the pointed two-point space. We denote by I", the homotopy
type of the pointed n-sphere.

Proposition 12.27. (i) if [(X. xo)] v [(Y, yo)] then ([X, xo]) ([Y, yo])
=(5.

(ii) Xn A Tm =

We omit the proof of (ii); see Lemma 22.27 for the proof of (i).

4. Cohomology Theory

In Chapters 22 and 23, we shall be interested in ascertaining whether or not
two spaces are homotopic; for example, whether a pointed n-sphere is
homotopic to a pointed m-sphere. One way to do this is to find algebraic
invariants for homotopy classes, which can be computed reasonably easy.
The definitions which we give below constitute a step in this direction. Most
of the proofs are straightforward ; see [Sp] for the details.

4.a. Let X be a compact metric space, and X" = X x x X. Define
An+' X = {x = (xo,... , x") E X"'' : xo = x1 = ... = xn} ; A` X X is called
the diagonal in V. Let R be a given commutative ring; e.g., the integers, the
reals, or Z.

We let C"(X) = C"(X, R) be the set of functions 4': X"' - R, and q(x)
the subset of C"(X) consisting of those 0 which arc zero in a neighborhood of
An+1x.

We define "co-boundary" maps 6": C"(X) - C"+ I(X), by

b"(6(X0 .... , xn) = Z (- I)r4)(XO, ... , .c, .... Xn+ 1),
r=o

where the "hat" means that the corresponding x, is omitted.
Let A be a compact subset of X, and define C(X, A) = C(X, A, R) to be

the set of 0 in C"(X) such that 0 ". , belongs to C,(A).
For a given f : X -+ Y, define f $: C"(Y) - C"(X) by

f j4(xo, ... , xn) = 4(J (XO)......! (xn))

Finally, for ¢1, 02 in C"(X), and r1, r2 in R, define 0 = r14)1 + r2Qi2
E C(X), by 4)(x) = r14b1(x) + r24)2(x)

One can verify at once the following statements.

(i) If R is the reals or Z2, C"(X, R) is a vector space over R and both
C'(X) and C"(X, A) are subspaces. (If R is not a field, the words
"vector space" should be replaced by "R-module.")
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(ii) b" is a homomorphism from CI(X) to C"+'(X), taking Co(X) into
Co+'(X), and C"(X, A) into C"+ '(X, A).

(iii) d"-' ° 6" is the zero homomorphism.
(iv) If (X, A) and (Y, B) are compact pairs, and f : (X, A) -. (Y, B), then

f': C'(Y) -+ C"(X) is a homomorphism.
(v) If f is continuous, and f : (X, A) -' (Y, B), then f'[C"(Y, B)] c

C"(X, A), and .f'[Co(Y)] c C"o(X)
(vi) If f : (X, A) (Y, B) and g: (Y, B) (Z, C) are continuous, then

(vii) f' b" = 6' - f'.

The reader should compare these statements with the axioms of homology
given in Part 2, above.

4.b. Let C(X, AX -C(X, A, R)) be the group C"(X, A)/Ca(X), and let
d'": C"(X, A) C"+'(X, A) be the homomorphism induced by 6" (4.a.(ii)).
Similarly, if f: (X, A) (Y, B), is continuous, let j': C"(Y, B) - C"(X, A) be
the map induced by f' (4.a.(iv)). Then the following statements hold :

(1) = 0.
(ii) (g ' f)°.

(iii) - T.
(iv) If B c A c X and i and j denote the inclusions, i : (A, B) c (X, B)

and j: (X, B) a (X, A), then the sequence

0-+C"(X,A)!.

is exact ; i.e., the image of each homomorphism is the kernel of the
next one.

(v) For any X, let is X -+ X4 (where X/# is the disjoint union of X
and a point) denote the inclusion map. Then i': C"(X/Qi) C"(X) is
an isomorphism.

4.c. Let (X, A) be a compact pair, let Z" = ker d". and let B" = im d"-'
(where B° = 0). We define H"(X, A) (- H"(X, A, R)) to be the quotient group

H"(X, A) = Z"/B".

H"(X, A) is called the nth (Alexander) module of the pair (X, A).
These are the algebraic invariants of homotopy classes.

If f : (X, A) -+ (Y, B) is continuous, then we write

f': H'(Y, B) -+ H'(X, A) as the map induced by.]''.
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Here are some more properties in this set-up:

(i) If X is a single point, then H°(X) = R, and H'(X) = 0 if r > 0. If
X = 0 (the pointed one-point space: see Section 3, above), then
H'(X) = 0 for all r. If X = I (see Section 3), H'(X) = R if r = 0, and
ll'(X)=0ifr>0.

(ii) For any compact triple (i.e., B c A c X), there is a "canonically
defined" map b': H'(A, B) Hr, '(X, A) such that if .f : (X. A, B)

(X', A', B') is continuous, then the rows of the following diagram
are exact and the diagram commutes ; i.e., f * = b' = b' f *, for all r :

0 - H°(X', A') -. H°(X', B') - 11°(A', B') H'(X', Al
Ifo lfo !fo lf'

0 - H°(X, A) -, H°(X, B) H°(A, B) H'(X, A) .. .

(iii) If C c A c X, with C open and A closed in X, then the inclusion
i : (X\C, A-,C) (X, A) induces isomorphisms i': H'(X'.,C, A\,C)
H'(X, A), for every r >_ 0.

(iv) If f° is homotopic to fi, then fo =.f, for all r. In particular, if f is a
homotopy equivalence from (X, A) to (Y, B) then the maps f are
all isomorphisms.

(v) R, ifn=r,
0, if n T r.

In particular In is not homotopic to F'", if n f in.
(vi) If A and B are disjoint spaces and A .i. B denotes their disjoint

union, then for every n E Z+

H"(A B) = H"(A) e H"(B).

For a discussion of tech cohomology, see [Sp].

Noes

In §A and §B, I have followed [BB, Ni 2, Sw], with a few minor modifications.
Sard's theorem, Theorem 12.2, is valid in a more general context; see [Sw].
Theorems 12.10 and 12.11 are (by now) standard applications of Brouwer's
fixed point theorem. The development of degree theory via differential forms
stems from a paper of E. Heinz [Hn]. Theorem 12.15 is due to Schauder
[Sc] ; the extension of the notion of degree to Banach spaces is due to Leray
and Schauder, see [Sc]. The basic ideas of Morse theory are, of course, due
to M. Morse; see Milnor's book [Mr], for the original references. I have
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followed the approach in [BB], with certain modifications. The proofs of
Theorems 12.21 and 12.22 can be found in [Mr] ; Thcorcm 12.23 is also
taken from there. The material in §D is rather standard, see, e.g., [Sp]. In
the sections on homotopy and cohomology, I have followed Conley's
approach fairly closely; see [Cy 2]. For an interesting survey of recent work
in partial differential equations related to the material in this chapter, see
Nirenberg's paper, [Ni 3].



Chapter 13

Bifurcation Theory

Many problems in mathematics, and its applications to theoretical physics.
chemistry, and biology, lead to a problem of the form

f(7 x) = 0, (13.1)

where f is an operator on R x B, into B2, with B,, B2 Banach spaces. For
example, (13.1) could represent a system of differential or integral equations.
depending on a parameter A. We are interested in the structure of the solution
set ; namely, the set

f -'(0) _ ((d, x) E R x B, : f (.c, x) = 0}. (13.2)

In particular, we seek conditions on fin order that we can determine when a
solution (%, x) of (13.1) lies on a "curve" of solutions (A, x(A)), at least locally;
i.e., for i. - I < s. We may also inquire as to when (X, x) lies on several
solution curves, (A, x,(A)), (A, x2(A)), ....

This last question leads naturally to the concept of a bifurcation point.
Thus suppose that r: (A, x(A)), is a curve of solutions of (13.1). Let (A0, x0)

(;.0, x().o)) be an interior point on this curve, with the property that every
neighborhood of (A0, x0) in R x B, contains solutions of (13.1) which are
not on r (Figure 13.1). Then (A0, x0) is called a bifurcation point with respect
to r. Solutions of (13.1) near (lo, x0) and not on t, are often loosely referred
to as "bifurcating solutions," or the ""bifurcation set." Note that the defini-
tion does not guarantee the existence of a continuous branch of "bifurcating
solutions " emanating from (A0, x0).

Several questions are of interest to us :

(i) Given a curve r of solutions of (13.1), what conditions guarantee
that it contains a bifurcation point? Obviously, if the implicit func-
tion theorem is applicable at a point, bifurcation cannot occur there.

(ii) What is the structure of f '(0) near a bifurcation point? How is
this related to the spectrum of the linearized equations?

(iii) If the bifurcation set is, say, a curve F", can it be continued in the
large? Does "secondary bifurcation" occur; i.e., does r' contain
bifurcation points? (see Figure 13.1).
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Figure 13.1
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(iv) For problems in which solutions of (13.1) are equilibria of a given
evolution equation, can one infer any information concerning the
stability properties of the bifurcating solution?

We shall attack these problems in this chapter, and somewhat more
generally in Chapters 22 and 23. Our results here, for the most part, will
come from a rather systematic use of the implicit function theorem. Since
our approach will take place in an abstract framework, we shall give a general
version of the implicit function theorem. In §A and §B we shall prove some of
the standard results in bifurcation theory which stem from the implicit
function theorem. In §C we shall prove two general bifurcation theorems
using degree theory, while §D is devoted to a description of some different
aspects of bifurcation. This is done by giving a fairly complete picture of a
special, but interesting, example.

§A. The Implicit Function Theorem

We shall begin by reviewing the definition of the derivative of mappings in
finite-dimensional spaces.

Let Q be an open subset of R"', and suppose that f e C'(a R"). If a e S2,
then the derivative off at a, written f'(a) or dfa, is the n x m matrix

Cal,(a)1dfa =
dx

where f = (ft, ... , f"). Now dfa being a matrix, is thus a bounded linear map
from R' to R"; dfa: x - dfa x. Hence dfa a B(R'", R"), where we are using the
notation B(X, Y) to denote the set of bounded linear maps X -. Y.

Sincedf,, exists for all x e S1,wecanconsiderthefunction df :Q - B(RM, R'),
defined by x - dfX. Observe that f e C'(Q, R") implies df e C(Q, B(R", R")).

If , a e R"', and ¢ e C'(), R). the differential of 0 at a, acting on . is

d¢a c = V4(a)
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where V denotes the usual gradient operator. Applying this last equation to
the components off, we obtain (from Taylor's theorem), the estimate

=a(I{) (13.3)

It is this equation which we shall use to extend the concept of derivative to
mappings on Banach spaces.

Thus, let X and Y be Banach spaces, and let f e C(Q, Y), where 0 is open
in X.

Definition 13.1. f is differentiable at a E Q if there exists T E B(X. Y)
such that

Il .f(a + ) - .f (a) - T 11 = o(II r II) as i, 411 - 0.

T is called the (Frechet) derivative of f at a, and we write T = dfa.

It is not too hard to show that if T exists, then it is unique; see, e.g., [LuS].
If f is Frechet differentiable at each a e S2, we write f e C'(Q, Y).

Now we want to consider higher derivatives of mappings on Banach
spaces. We define the second derivative d21a off e C(Q. Y), at a point a e f2,
to be the bilinear form d2fa: X x X -+ Y which satisfies

II f(a + S) - f(a) - tiffs - id?fa( , 11 = o(ll 112)
asy,

Continuing in this way, the kth order derivative off at a is the k-linear
mapping dkfa: Xk -+ Y satisfying

f(a+4)-.f(a)-dfa3d2fj,5)-... -ki5)
as 11-'0.

If,j'has a kth order derivative at each a E a we write f c- C"(Q, Y). It is not
very hard to show that C" (S24 Y) is closed under composition ; for a proof,
see [BP].

It is often useful to have the following theorem ; it implies that if T = I -- K
where K is compact, then dT has the same structure.

Theorem 13.2. Let f e C' (S2, Y) be compact near a E 0. Then dfa is compact.

Proof. Suppose the theorem is false. Then there is a cS > 0 and a sequence
with 11 g;11 < 1. such that 11 Ts, - T5;11 d > 0 for all i # j. (We arc

denoting dfa by T.) We can find ' > 0 so small that whenever 115 II < Y,

f(a) - T51I <3It II.
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Now !I II S y. so if i j,

II f(a + ye,) - f(a + y lit Ti,, - Ts) I' - II f(a + ye,) - f(a) -

II f(a + f (a) - yT l II

ay

Thus, although the sequence {a + y;;} is bounded, the sequence { f(a +
obviously has no convergent subsequence. This violates the compactness
of f. 0

Now in preparation for the implicit function theorem, we consider
functions defined on product spaces. Thus, let B,, B. and B. be Banach
spaces and let U be open in B, x B2. If f: U - B3. and u = (u,, u2) a U. we
let U, be the cross section, U, = {x, E B,: (x,. u2)e U}. We say that f is
differentiable with respect to the x, variable at (u,, u2) if the function g(x,)
= AX,, u2) is differentiable at u,. When this holds, we write dg = D, f (u,, u2) ;
dg is a linear mapping from U, into B3. f is said to be differentiable with
respect to x, on U, if it is differentiable with respect to x, at each u e U. Of
course. the usual properties for partial derivatives hold in this general con-
text. In particular, if f is differentiable at u = (u,. u2) a U. then f is differen-
tiable with respect to both x, and x2 at u, and for all e B, x B2,

dfjS,, 2) = Dtf(u). t + D2f(u)-;2

Furthermore, the mapping (x,, x2) -> (D, f (x x2), D2 P X1, x2)) is in
C(U, B(U1, B3) x B(U2, B3)). Finally, if f e C(U, B3), and f is continuously
differentiable with respect to both variables (i.e., D, f : U - B(U1, B3) and
D2 f : U -+ B(U2, B3), are continuous), then f e C`(U, B3). The proofs of
these statements are easy; see, e.g., [BP].

We can now state the implicit function theorem in the Banach space
context; we omit the proof (see, e.g., [Cr 2]).

Theorem 13.3 (Implicit Function Theorem). Let f e C(U, B) where U is open
in A x B,, and A, B, and B are Banach spaces. Assume that :

(i) f (Ao, uo) = O for some (Ao, uo) E U,
(ii) D2 f: (A, u) -+ D2 f(A, u) is continuous in a neighborhood of (.lo, uo).

and
(iii) D2 A; 0, uo) is nonsingular (i.e., has a bounded inverse); equivalently,

D2 f (A0, uo) is a continuous bijective (linear) mapping.

Then there exists a continuous "curve" u = u(A) defined in a neighborhood N
of ;.0, such that u(ao) = uo, and f(2, u(2)) 0 in N. These are the only solu-
tions of f(A., u) = 0 in N. Finally, if f e C*(U, B), then u e Ck(N, B).
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Thus, according to the implicit function theorem, we can only expect
bifurcation at (A0. uo) if D2 N-0

-
rUO) is singular. On the other hand, even if

D2 f (i.o, is singular, (AO, uO) need not be a bifurcation point. This of course,
is all quite well known. However, let us observe that if F(A, x) = A - x', then
F(0, 0) = 0 = FY(0, 0); yet the equation F(A, x) = 0 uniquely determines x as
a function of A. On the other hand, if G(A. x) = n - x2. then G(0, 0) = 0
= G.,(0, 0) and (0, 0) is a bifurcation point. The difference comes from a con-
sideration of the derivatives, Fx = - 3x2 and Gs 2x; namely, the latter
changes sign at x = 0, while the former does not.

In order to get a better feeling about what is happening here, let's consider
the case where f is a mapping on a finite-dimensional space, where for sim-
plicity, we assume that f (i., 0) = 0 for all A G R. Using Taylor's theorem, we
can write

f (A, u) = Lo u + (A - ;.,)L , u + r(A, u), (13.4)

where Lo = D2 0) and L, = D, DZ f Q0, 0) are n x n matrices, and
r c C2 satisfies

r(A, 0) - 0, D2r(1,o, 0) = DID2r(AO, 0) = 0. (13.5)

Now one can show, using degree theory. that if det(LO + (1. - AO)L 1) changes
sign at A0, then (A0, 0) is a bifurcation point; (see [Kr, p. 196)). We shall not
prove this here since we are going to prove a more general theorem in §C.
What we will prove is the so called "bifurcation from a simple eigenvalue"
theorem. Here is a preliminary, finite-dimensional statement.

Theorem 13.4. Let U be an open subset of R x R" and let f e C '(U, R") be
given by (13.4), where r satisfies (13.5). Assume that the null space of Lo is
spanned by uo. and that L1uo is not in the range of Lo. Denote {uO}1 by Z.
Then there is a 6 > 0 and a C'-curve (A, (p): (- 6, 6) --+ R x Z such that
(i) A(0) = ;.o, (ii) 0(0) = 0, and (iii) f (i,(s), s(uo + 0(s))) = O for i s I < 6. Further-
more, there is a neighborhood of (AO.0) such that any zero off either lies on
this curve or is of the form (A, 0).

Thus (Ao, 0) is a bifurcation point for f. This situation is depicted in
Figure 13.2. Note that we get some information about the "direction " of
bifurcation; i.e., dulds = uo at s = 0. Furthermore, if we use the notation
N(T) and R(T) to denote, respectively, the null space and range of an operator
T. then the conditions N(LO) = span{uo}, and L,u0q R(LO) are equivalent
to the fact that y = 0 is a simple root of det(LO + pL,); hence, in particular,
det(LO + (i. - ).0)L1) changes sign at ). = A0.
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A = A(s) ,/,

u = S(uo + W(S))

Figure 13.2

Proof of Theorem 13.4. The idea is to introduce a new parameters which
enables us to immediately apply the implicit function theorem on the
"quotient" space Z. Thus, we define a new function F(s, A, z) by

s -'f(;, s(uo + z)), if a # 0,
F(s,A,z)=

D2f(A,0)(u0+z), ifs=0-

Using (13.4) we can easily check that F e C'(U x Z, R"). Now since F(0, Ao, 0)
= 0, and' D2D3F(0, Ao, 0) (X, ) = Lob + XL,uo is nonsingular, we can
apply the implicit function theorem, and solve F(s, A, z) = 0, thereby obtain-
ing functions A = ).(s), z = O(s) defined for Is I < d, near the point (0, ).o, 0).
For the uniqueness, we observe that since D2 D3 F(0, Ao, 0) is an isomorphism,
it follows by a continuity argument, that for every e. 0 < e < 1, there is a
neighborhood N of (Ao, 0) with the property that every solution (), u)
(A, suo + w) of f = 0 (with weZ) in N satisfies the estimate II w II < 21sIe, if
I s I + I A - A01 is small. Indeed, if (), u) a U, we Z, then since the mapping
(A, w) - Lo w + (A - A0)LI uo is nonsingular, there is a k > 0 such that

Low + (A - A0)L,uo = v implies IIwil + IA - ).oi < kitvll. (13.6)

Now given any e > 0, the hypotheses (13.5) on r together with the fact that
r(A, suo + w) - r(A, 0) = r(A, suo + w), imply that there exists a S > 0 such
that

vi, 11 + I s I + IA - i.ol < (S implies 11r(A.suo + w)II < e(IsI + I1wII)

(13.7)

But noting that f (A, suo + w) = 0 can be written in the form

Low + s(;. - A0)L, uo = - (A - A o)L, w + r(A, suo + w),

' Namely, F(0, A. :) - D2 f (A, 0)(uo + .). $o D3F(O. t. 0);I,_0 = D2f(0.0)S = L0S. and
D2 F(0, 0, 0)R - 1D,D2 f(0, 0)u0 = IL,u0. Thus Lo; + oL,u".
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we find that (13.6) and (13.7) yield

0 + Isl IA - A0I s k(I A -- AEI L,1 11w11) + &(IsI + 11w lj).

Thus, if 0 < s < 1,

i11 "'11 < (1 - kI A - Aol II L1 - c)11 "'11 slsj, if IA - AoI is small.
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From this estimate it follows that if u # 0, then s -* 0 (othcrwisc suo + w
= 0), and so F(s, i s-'w) = 0. Thus, by the uniqueness part of the implicit
function theorem, if r is sufficiently small, (s, ). s - 'w) = (s, A(s), 0(s)). Hence
A = A(s). and u = suo + w = suo + s4 (s). This completes the proof.

Now let us consider the analogue of this theorem in the infinite-dimensional
context. We will often assume the condition

f(7,0)=0. AeS=R, (13.8)

where S will vary according to the specific context. Here is the infinite-
dimensional version of Theorem 13.4.

Theorem 13.5 (Bifurcation from a Simple Eigenvalue). Let U = S x V be
an open subset of R x X and let f E C2(U, Y), where X and Y are Banach spaces.
Suppose that (13.8) holds, and let Lo = D2 f(i0, 0) and L, = DID2.f(A,,, 0).
Assume that the following conditions hold:

(i) N(L0) is one-dimensional, spanned by uo.
(ii) R(L0) has co-dimension 1; i.e.. dim[Y,/R(L0)] = 1.

(iii) L,uo4 R(Lo).

Let Z he any closed subspace of X such that X = [Span uo] m Z (i.e., any
x e X can be uniquely written as x = xuo + z, x E R, z e Z). Then the con-
clusions of Theorem 13.4 hold.

The proof of this theorem is virtually identical to that of Theorem 13.4.
We remark that in the finite-dimensional case, dim N(LO) = l is equivalent
to codim R(L0) = 1; this is not necessarily true in infinite dimensions.

We now give two examples to illustrate this theorem.

EXAMPLE 1. Let [0, 1] be the unit interval in R, and let Ck, k = 0 or 2 be the
Banach space C([0, 1], R), with its usual norm. Denote by Ca "', the sub-
space {u e C2": u'(0) = u'(1) = 0). Let f : R x Co" -+ C' be defined by

f(;, u) = u" + A[u + u2h(u)].



174 13. Bifurcation Theory

where h is smooth. Then f (A. 0) = 0 for all A E R.

D2 f(A, 0)v = v" - Ar and D,D2 f(A.O)v = v. V e C.

Thus D2.f(A,0) is nonsingular if and only if i. n2n2, n = 1.2,... ; other-
wise

,ti(D2 f(n2n2, 0)) = span of {cos nnx}, and

R(D2 f (n=n2. 0)) = j u e C°: jo u(x) cos mrx dx = 0
J

It follows that cos nnx 0 R(D2 A' 2 n 2, 0)). Now if we define Z as

L = {ueC:
10

u(x) cos nnx dx = 0
))

then all the hypotheses of the preceding theorem are satisfied. Therefore
bifurcation occurs at all points (n2n2, 0) c R X Co. n = 1, 2, ... .

EXAMPLE 2. Let !Q be a bounded region in R. and consider the problem

Au - 0 in Q. au + b n = 0 on aft,

where a2 + b2 0, and du?dn is the normal derivative of to on M. Here ¢ is
smooth, ¢(0) = 0, and 0'(0) # 0. We let f(a. u) = Au - A¢(u), with the
domain and range off being the obvious analogues of those in Example 1.
The linearized operator at u = 0 is

dv
= 0 on Of).D2 f () 0)r = Av - AO'(0)v, av + b

an

If A0 is an cigcnvaluc with onc-dimensional null space spanned by u0 (so, for
example. if A0 is the principal eigenfunction of the linearized operator; see
footnote 3, below), then since the linearized operator is self-adjoint, it follows
that R(D2 f (1.0, 0)) is, as in the previous example, the set of v satisfying

J
vu0 dx = 0.

R

Since D,D2 f (n.0, 0)v = - 4'(0)v. and 0'(0) # 0. we see that D,D2 f (A0, 0)
4 R(D2 _f (4, 0)). Thus the hypotheses of Theorem 13.5 hold, and (A0.0) is a
bifurcation point.
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In the remainder of this section. we shall describe the very useful "method
of Lyapunov-Schmidt." It is a procedure which provides a systematic way
to reduce the dimension of the space in which one tries to solve an equation
of the form f (4 u) = 0 near a singular point. In fact, it often reduces infinite-
dimensional problems to finite-dimensional ones.

The idea is to attempt to split the space into two sets and to "project " the
equation into each one of them. Of the two equations that are obtained, one
is solvable by the implicit function theorem. and the other is often one in a
finite-dimensional space, and thus can be attacked by topological techniques,
such as degree theory or Morse theory.

Let A. B,. and B2 be Banach spaces, and suppose f e C"(U, B2) where U
is a neighborhood of the origin in A x B,. We assume that f (0.0) = 0, and
we are interested in solutions off Q. x) = 0 near (0.0). We make the im-
portant assumption that D2 f (0, 0) is a Fredholm operator (see Chapter 11,
§A) ; i.e_

(i) N(D2 f(0, 0)) X, is finite dimensional, and
(ii) R(D2 P0, 0))

sion.
X2 is a closed subspace of B2 having finite codimen-

In view of (ii), we may write B2 as a direct sum B2 = Z® ® X2, where Z2
is a finite-dimensional space. Let Q be the projection operator onto X2
(i.e., Q(z, x) = x). We can also write B, = Z, ® X,. Then if we apply the
operators Q and I - Q to the equation f(;- x) = 0, we see that

fO x) = 0 iffQf(),x) = 0 and (I - Q)f(l.,x) = 0.

Now the composition Q f maps A x 7_, x X, into X 2. If we let k =A x X,
and apply the implicit function theorem to g(.. z,) = f'(A. z, + x,) = 0. we
sec that since D2 00, z,) = D2 f(0. z,) is an isomorphism, there is a unique
solution z, _ ,(), x,) near (0, 0), of Q f = 0; i.e.,

Qf(a, x, + 04 xe)) = 0.

Thus. x, + O(A, x,) solves f (i x) = 0 if

(I - Q)f(%, x, + 0(2, x1)) = 0. (13.9)

Now R(1 - Q) being finite dimensional, means that (13.9) is a finite number
of equations; it is called the bifurcation equation. If A is also a finite-dimen-
sional parameter space, then (13.9) becomes a finite-dimensional system of
equations.

EXAMPLE 3. Let B, = R x B, where B is a Banach space. and let S be a
compact operator taking B into itself. Suppose further that r: B, - B
satisfies (13.5). Let

f(4 u) = u - ;.S(u) + r(A, u).
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and recall by Theorem 13.2. T = dS is a compact linear operator. Now the
null space of

D, f(4, 0) (A, S) _ (I - A0 T)S

is the set e N(I - Ao T) and thus has dimension

it = 1 + dim N(I - 20 T).

The standard Riesz-Schauder theory (see [Sr]) implies that I - iw T is a
Fredholm operator of index zero; thus the codimension of R(I - ioT) is
also it. The Lyapunov-Schmidt procedure then leads to a system of n equa-
tions in (n + 1) unknowns.

§B. Stability of Bifurcating Solutions

In many contexts, a solution x of an equation f(.x) = 0 corresponds to a
"steady-state" solution of a dynamical system; i.e.. of a time-dependent
problem

x'=f(x), d

dt-

A very important problem is to decide whether or not the steady-state
solution is stable. Let us recall what is meant by this (cf. Chapter 11, §B).
Thus, suppose that x is perturbed (slightly!) to the state z + and we
consider the initial-value problem

x'=f(x), x(0)=Y+l;.

We want to determine whether this solution tends to x as t - + oo, or even
if it stays close to x for all t > 0. If we consider the "linearized" problem

' = dff
then if the spectrum of dff, lies in the left-half plane. the solution decays
exponentially to zero as t -. + oo. In this case, it is natural to say that x is
(linearly) staple. On the other hand, if the spectrum contains points in the
right-half plane, we say that z is (linearly) unstable. We are interested here
in the stability properties of bifurcating solutions.'

To be a little more specific, let us consider the equations

ti = f(-, u), where f ()_ 0) - 0, 1 e R, (13.10)

2 In Chapters 22 and 23 this problem is considered from a generalized "Morse theoretic"
point of view.
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and suppose that we have the following situation. For A < i, the spectrum
a(D 2 f (A, 0)), lies in the left-half plane, Re z < 0, while for d > X, a,(D2 f(4 0))
intersects Re z > 0. Then at A = A at least one point of the spectrum crosses
the imaginary axis; i.e., a point ir, with r real, is in o(D2 f(R 0)). Now if
r = 0, then, generally speaking, the trivial solution bifurcates into new
equilibrium solutions, while if r * 0 it bifurcates into periodic solutions.
This latter circumstance occurs with a so-called "Hopf bifurcation" (see.
e.g.. [HKW]). In this section we shall be concerned only with bifurcation
into equilibria.

We shall consider now two examples which illustrate the theorem we are
going to state.

EXAMPLE 1. Let 0 be a bounded domain in R" with 00 smooth and consider
the Dirichlet problem

Au-pu-u2=0 inc), a=0 on M. (13.11)

We recall from Chapter 11 §A, that if 4 is the principal cigenvaluc of A, with
homogeneous Dirichlet boundary conditions, then 2 < 0, and An has an
associated eigenfunction uo which we may assume to be positive on the in-
terior of 0. Furthermore, it is not too hard to show, using the nodal proper-
ties of eigenfunctions, that Ao is a simple eigenvalue in the sense that the
associated eigenspace is one-dimensional.'

Now from Example 2 in the last section Qo, 0) is a bifurcation point, and
the set of solutions near (.lo, 0) consists only of the trivial branch (u, 0) and
the smooth curve

(µ(s), u(s)) = (p(s), Silo + s¢(s)). II < 8, (13.12)

where (µ(0), u(0)) = (Ao, 0). Moreover, for each s with Isi < S, (s) is in the
L2-orthogonal complement of tto.

We want to calculate the sign of µ'(0). To this end, substitute (13.12) into
(13.11), divide by s, differentiate with respect to s, and set s = 0; this gives

AO'(0) - ;1 0'(0) - Ft (0)uo - uo = 0.

Now multiply by uo and integrate over Q to get

uoAO'(0) - Al f U0010) - (0) f ua -
J

uo = 0.

In fact, the nodes of the nth eigenfunction divide 12 into at most n subdomains; see [CH 1].
If u2 were an eigenfunction of A corresponding to A. and u2 J. ut, (hen u2 must change sign in
S2. Thus, (u2 - ut) would be an eigenfunction corresponding to A. having at least two nodes.
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If we integrate the first term by parts, we find

! (0) f uo = -
J

uo

and thus p'(0) < 0. If we write A(s) = p(s) - A o, then this curve is as depicted
in Figure 13.3(a); it corresponds to solution branches.

.s

Figure 13.3

EXAMPLE 2. Consider the Dirichlet problem

Au-Flu-u3=0 in Q, a=0 on 011,

s

where S2 is as in Example 1. Here again (Ao, 0) is a bifurcation point, and we
have the bifurcating solutions as in (13.11). Computations similar to those
in Example 1 show ),'(0) = 0 and A"(0) < 0; this yields Figure 13.3(b).

Definition 13.6. Let X and Y be Banach spaces and let Lo and K e B(X, Y).
We say that U E C is a K-simple eigenvalue of Lo (with cigenfunction u(,) if the
following three conditions hold:

(i) dim N(Lo - pK) = codim R(LO - pK) = 1,
(ii) uo spans N(L0 - pK),

(iii) Kuo 0 R(L0 - pK).

The terminology comes from the case where X = Y. K = 1. and Lo is a
compact operator. Under these circumstances. p 0 is an 1-simple eigen-
value of L. if and only if p is a simple eigenvalue of Lo. Note too that we
could weaken the definition by not requiring Lo to be a bounded operator.
In this case if X = Y. K = 1, and p is an isolated point in the spectrum of
Lo, then p is an 1-simple eigenvaluc for Lo if and only if p is a simple eigen-
value of Lo.

Let us observe that in this terminology, the hypotheses (i)-(iii) of Theorem
(13.5) can be stated as: Lo =- D2 f(,1o,0) has 0 as an L1 = D1D2 f(iu,0)
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simple eigenvalue. The importance of this notion comes from the next
lemma, which implies that K-simple eigenvalues "continue" along the
bifurcating branches; i.e., for s near zero. D2 f(A(s), u(s)) has a unique (small)
K-simple eigenvalue p(s). We shall also see that sign µ(s) = sign sl'(s), and
this equation will determine whether the bifurcating solutions are stable or
unstable.

Lemma 13.7. Let it, be a K-simple eigenvalue of Lo, with eigenfunction u0.
Then there exists p > 0 such that if II L - La 11 < p, L has a unique K-simple
eigenvalue q(L), with eigenfunction n(L) = uo + z(L); here X = span{uo}

Z, and z(L) e Z. Also q(L0) = Po, w(Lo) = uo, and the mapping L (q(L),
w(L)) is smooth.

Now let the hypotheses of Theorem 13.5 hold, i.e., as we have seen above,
D2 f(,1o,0) has 0 as a D1D2 f(i.(,.O) simple eigenvalue. Let A(s) and u(s)

s(uo + ¢(s)) be the bifurcating curve as provided by this theorem. We
shall use the notation provided by this theorem. We shall also use the nota-
tion .1"(s) = D2 f (A(s), u(s)). Now suppose that X c Y, the inclusion
is X -+ Y is continuous, and 0 is an i-simple eigenvalue of D2 f (do, 0). Then
by Lemma 13.7, there exist functions

(i'() ), vV)), s - (n(s). w(s))

defined on neighborhoods of io and 0. respectively, into R x X, such that
(Y(A o) t,i o)) = (0. t4) _ (n(0), n{0)), r().) - uo e Z, w(s) - uo e Z. and on these
neighborhoods.

D 2 X_ 0h%()) = (13.13)

.f'(s)w(s) = ti(s)tt'(s) (13.14)

Namely, set q(s) = q(f'(s)), w(s) = w(f'(s)), where n and w are the functions
provided by Lemma 13.7, which is now considered along the curve (,1(s), u(s));
this gives (13.14). Equation (13.13) comes from the same lemma, now
considered along the curve (A. 0); i.e.. q(D2 P AI 0)) = y(A). and w(D2 f(;, 0))
= t,(A). Note that these functions. being compositions of smooth functions,
are themselves smooth.

Observe that in the case where (A. u) = 0 is the equilibrium equation of
(13.10) then the natural choice of K is the identity I. and equations (13.13)
and (13.14) are the linearized equations. Namely, (13.13) is the linearization
about 0. 0), and one would study its spectrum as i. crosses ;.0. while (13.14)
is the lincarization about the bifurcating solution; it would be studied ncar
s=0.

Now the following theorem is used to determine the stability of the bifur-
cating solution.
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Theorem 13.8. Let the hypotheses of Theorem 13.5 hold, and let y and n be
defined as above. Then y().o) 4- 0. and if )(s) * O for s near 0.

lim s (s)Y (Ao) _ - 1.
:-o I(s)

(13.15)

We omit the proof of both Lemma 13.7 and Theorem 13.8; see [CRa 1].
We shall show how (13.15) is used to discuss the stability of the bifurcating

solutions by returning to Examples 1 and 2 above. First, consider Example 1.
Let (u(s), u(s)) be the bifurcating branch of solutions and as before, let A(s)
= µ(s) - )o. The equation in Example I along the bifurcating curve becomes

.f(a u) (A-)-)o)u-u2=0.

Hence D2()-0)uo = (A - ) - )o)u0 = -)uo. Thus using (13.13), we get
- )uo = y().)uo, so that y(A) = -;- Now we have seen that X(0) = l'(0) < 0.
Thus, from (13.15) for s near zero.

sgn n(s) = - sgn s.

Hence, (s) > 0 ifs < 0, and the solution is unstable. For s > 0, i(s) < 0 and
the solution is stable. Note too. 0 so that y < 0 if u > 2o, i.e., ). > 0
and A. 0) is stable, while for A < )o, this trivial branch is unstable. These are
depicted in Figure 13.4(a). Similarly, for Example 2, we get the situation
depicted in Figure 13.4(b). (Of course we are considering the principal eigen-
values in these examples.)

(a) (b)

Figure 13.4
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§C. Some General Bifurcation Theorems
In the last two sections we studied what may be called "local" bifurcation
theory. Our results stemmed from the implicit function theorem, and the
bifurcating solutions were only shown to exist near certain distinguished
solutions. We shall now give some bifurcation results of a more global
nature; the proofs rely on degree theory.

Let B be a Banach space, and let f e C(U, B) where U is an open subset of
R x B. We assume that f is of the form

f(A, u) = u - ALu + h(A, u), (13.16)
where

(i) 1/µ is an cigcnvalue of L of odd multiplicity,
(ii) L : B - B is compact and linear,
(iii) h : U B is compact,
(iv) h(A, u) = o(Ilull) at u = 0, uniformly on bounded A-intervals.

Our first theorem gives conditions for (µ, 0) to be a bifurcation point. An
obvious necessary condition is that I - µL is not invertible; hence a neces-
sary condition for (µ, 0) to be a bifurcation point is that 1Jµ is an cigcnvaluc
of L.

Theorem 13.9. Suppose that (i)-(iv) hold. Then (µ, 0) is a bifurcation point of
f(A, x) = 0.

Proof. If the result were false, then for 1i. - µl sufficiently small, if e > 0 is
sufficiently small, d(f(i., -), S, 0) is defined and is independent of J.; here S, is
the ball of radius a centered at 0. It follows from Theorem 12.17 that

d(f(A, - ), S, 0) = (-1)a',

where a = {multiplicity of eigenvalues of L greater than 1/i.}. If At > p,
and A2 < µ then fl,,, - ft_, being the multiplicity of 1Jµ (see the remark after
the proof of Theorem 12.17), is odd, by hypothesis. This violates the fact that
d(f(A, -), S1, 0) is independent of i., and proves the theorem. O

The second theorem is of a more global nature, in that it is a statement in
the large about the bifurcation curve which branches out of (io, 0).

Theorem 13.10. Suppose that the above hypotheses (i)-(iv) hold with µ replaced
by i.o. Let S denote the closure of the set of nontrivial zeros of f. Then S
contains a component C (i.e., a maximal connected subset) which meets (A0, 0)
and either

(i) C is noncompact in U (if U = R x B, this means that C is unbounded),
or

(ii) C meets u = 0 in a point (A, 0) where d # Ao and 1/.l is an eigenvalue
of L.

Proof. Suppose that the theorem is false. Since L is compact, the only possible
limit point of the eigenvalues of L is zero (Lemma 11.2). Thus in any finite
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7.-interval, there are only a finite number of characteristic values (i.e., recip-
rocals of eigenvalucs) of L. Take S > 0 so small that L has no characteristic
values in I = (Ao - S, AO + S) other than An. Let C be the maximal connected
subset of S. {(Ao, 0)) containing (AD, 0); our assumption implies that C is
compact (at this point it may be that C = ((A0, 0)) !). The proof now proceeds
in two steps. First we shall find a bounded open subset Or c U such that:

(a) (;.a, 0) a 0;
(b) 2 ? n S = 0 (c taken in U); and
(c) C. contains no nontrivial solutions other than ((A, 0): AO - S < i. <

Ao + 6). Then we shall apply the homotopy invariance of degree in
order to get a contradiction.

For step 1, let UL be an E-neighborhood of C in U, where 0 < e << 1. Since
(ii) holds, and (2, 0) is an isolated solution if A is not a characteristic value, we
may assume that UU contains no solution (A, 0) if IA - A01 > E. Now let K =
U,, n S; then K is compact, and by construction, dU4 n C = 0. Set A =
OU, n S, and B = C; then A and B are closed, nonvoid subsets of K, and
A n B = 0. At this point we may apply the following lemma [Wh, p. 15]. Let
K be a compact metric space, and let A and B be disjoint, closed, nonvoid
subsets of K. Then either there exists a subcontinuum of K which meets both A
and B, or there are disjoint closed subsets K,r, K8 containing A and B, respec-
tively, with K = KA v K8. Since CnvU,, = 0, and C is maximal, the first
alternative is excluded, and we conclude that there arc disjoint closed subsets
K,, and K. of K with tU n S e KA, C e K8, and K = KA v K8. Now let Cr
be an c-neighborhood of K8 where c < dist(KA. K8); then & satisfies condi-
tions (a), (b), and (c) above.

(a)

Figure 13.5
(b)

Let 0 = {u e B : (A, u) e 0). For each A -* i,,), choose r(A) > 0 such that
(A 0) is the only solution off = 0 on {A) x B,)x), where B,(A) is the ball in B
of radius r(A) about u = 0 (Figure 13.5(b)).

If A 0 Ao, f' = 0 has no solution in (A) x and thus d(A) -
d(f(A, -), O;,\B,(,), 0) is well defined. Using the homotopy invariance of dc-
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grec, d(.) is constant for .. > 7.0, I A - A01 < b. Since C is compactly con-
tained in 0, there is a > ;.o such that Ot and OO\B,(A) contains no
solution of f = 0. Thus for A > Ao

d(f (). I. OA\B,tx,, 0) = 0. (13.17)

By a similar argument, this equation holds for 2 < 4, again for IA - 101 < 6.
Then again using the homotopy invariance, we obtain

d(f (A, - ). 0;,. 0) = const.. if I A - A0 < d. (13.18)

Now let X and 2 be such that no - h < A < Ao < A < Ao + S. Then
Ox = B,(x, u (Ox\B,tz)), so by the additive property of degree (Chapter 12,
§A, Property 5), which is also true in the general Banach space context; see
Chapter 12, §B, we have

d(f (7, ), Oz, 0) = d(f (X, ). 04 1\B,,x), 0) + d(f (i, ). Box). 0)

= d(f(Z ). B,cxi. 0).

where we have used (13.17). Hence, from (13.18),

d(f(i.. ). B,jat, 0) = d(f(Z'). B,(z,.0). (13.19)

Next, define the homotopy F. taking f to V. - L by

F(J.,u.9)=u-ALu+0h(J u), 0505 1.

If r(i) is sufficiently small, we see that F(X. u. 0) * 0 for every (u, 0) e c3B,4x,
x [0, 1], since (d) holds. Thus we obtain

0 # d(f(7, .), B,(1), 0) = d(1 - L, 0),

and similarly

d(f(e,, ) B,ta . 0) = d(I - AL. B,(a). 0).

These two equations, in conjunction with (13.19), give

d(I - XL. B,(A). 0) = d(1 - 6L, B,ia), 0). (13.20)

But A0 is a characteristic value of L of odd multiplicity; hence by the remark
after the proof of Theorem 12.17,

d(I - J.L, B,(x), 0) _ -d(1 - ) L, B,®, 0) # 0.

This contradicts (13.20), and the proof is complete.

We now discuss an application of this theorem.
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EXAMPLE. Consider the boundary-value problem

f(a,u)=-u"+i.f(u)=0, 0<x<1, (13.21)

with homogeneous Neumann boundary conditions.

t!(0)=«(1)=0.
Here we assume ty(u) _ -u(u - a)(u - b), where a < 0 < b. We have seen,
in Example I of §A, that the points (i u) = (n2n2, 0), n = 1, 2, ... , are all
bifurcation points for f(A, u) = 0. We wish to consider the global behavior
of these bifurcation branches. (Note that we can write our problem in the
equivalent form u + AKt/i(u) = 0, (cf. (12.16)), where K is compact, and this
equation is easily seen to be of the form (13.16).

To this end. we first recall some standard properties of linear ordinary
differential operators (see [CH 1]). Thus, let L be defined on 0 < x < I by
Lv = ty" + a(x)v, where II a < oc, with homogeneous Neumann boundary
conditions at x = 0 and x = 1. Then L has a decreasing sequence of simple
eigenvalues ) > A t > > i.A > . , where A. - - oo, and if v is the cigen-
function corresponding to £ ,, n >- 1, then v has precisely n zeros on (0, 1),
where at each zero, v # 0 (i.e., each is a nodal zero).

Now let it be a solution of (13.21) which bifurcates out of (n2n2, 0); then

from Theorem 13.5, we can write it = u(s) where u(s) = sv. + s4(s), for s
near zero. Thus for Isi small, we see that u has exactly n-nodal zeros on
(0, 1). Since ) is a simple eigenvalue of the linearization of (13.21) (so i.,, has
odd multiplicity equal to 1), we may apply Theorem 13.10. Now a nonzero
solution it of (13.21) cannot have u(Y) = tt(.) = 0 for some . [0. 1], since
this would violate the uniqueness theorem for the initial-value problem of
the first-order system u' = w, w' = - f (tt). We conclude that u(s) has exactly
n nodal zeros for all s for which it is defined. It follows that the branch of
bifurcating solutions containing (,1., 0) cannot come back to the set u = 0,
and must therefore be unbounded.

In fact, more is true; namely. there cannot be any secondary bifurcation
off of this curve; for a proof, see [SW]. The bifurcation diagram takes the
form as in Figure 13.6.

Figure 13.6
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§D. Spontaneous Bifurcation; An Example

Up to now, we have considered bifurcation from a particular solution of the
equation f(i u) = 0; the distinguished solution usually being one of the
form Q.0). This is what we might term "local" bifurcation. But there is
another type of bifurcation which can occur; one of a distinctly global
nature. It is what we could call "spontaneous" bifurcation, whereby the
solution suddenly "appears." when A crosses a certain critical value. We
shall illustrate this phenomenon by means of a nontrivial important example.

We consider the ordinary differential equation

u" + f(u) = 0, IxI < L, (13.22)

with homogcncous Dirichlet boundary conditions

u(+L) = 0. (13.23)

Here .f (u) is the cubic polynomial

f(u) -u(u-a)(u- 1), 0<a<2. (13.24)

Notice that u - 0 is always a solution, we are interested in nonconstant
solutions.

In studying this problem, we shall consider the interval length L as the
bifurcation parameter. However, note that if we make the change of variables
y = L`x, then (13.22) and (13.23) become

L2u).v + f (u) = 0. I vi < 1, u(± 1) = 0.

so if i. = ilL2, we obtain a problem of the familiar type. We prefer, however,
to consider the equation (13.22) because as we shall see presently, its solutions
can be given a nice geometric interpretation.

We rewrite (13.22) as a first-order system

tl' = v, i, = - f (u), l x I < L. (13.22)'

and consider the phase plane for (13.22), as depicted in Figure 13.7. We let
F'(u) = f (u), F(0) = 0, and observe that the function H(u, v) = v2/2 + F(u),
(the "total energy"), is constant along orbits of (13.22). We define A by
A2/2 = F(1); sec Figure 13.7. It is clear that solutions of (13.22)', (13.23)
correspond to those orbits of (13.22r which "begin" on the interval (0, A) on
the v-axis (i.e., the line u = 0), and "end" on the v-axis, and take "time"
(parameter length) 2L to make the voyage. We have depicted one such an
orbit as the curve joining p to q in Figure 13.7.
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Figure 13.7

Now let T(p) denote the "time" that an orbit starting at p takes to arrive
at x(p), as depicted in the figure; here H(a(p), 0) = H(0, p) so that

p2 = 2F(x(p)). (13.25)

Using the first equation in (13.22)'. together with the invariance of H along
orbits. we find that

ca du
f T(p) = Jo F(x(p)) - F(u). (13.26)

Notice that solutions of (13.22)', (13.23) correspond to curves for which
T(p) = L. This leads us to investigate the shape of the graph of T.

To this end, we recall that the domain of T is the open interval (0, A).
Furthermore, if p is near 0 or A. then the orbit through p comes near the
respective rest points (0, 0) or (1, 0), of (13.22)', and hence T(p) must be very
large. Since T is a smooth function, we see that T must achieve its minimum
on (0, A); say at po. Obviously T(po) > 0; see Figure 13.8.

Figure 13.8
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Now if L < T(po), then it is clear that there are no nonconstant solutions
of our problem. But precisely when L = T(po). a nonzero solution suddenly
appears! Viewed from the opposite side, we see that for L > T(po), there are
nonconstant solutions, but as soon as L gets below T(po), these solutions
disappear; i.e., they "cancel" each other.' This cancellation phenomenon
will be studied in Chapter 22 in a generalized Morse-theoretic framework;
see Theorem 22.33. For now. our interest in this phenomenon is that it is an
example of a distinctly different type of bifurcation phenomenon than the
one we have hitherto studied.

Actually, we can go much further with this example, and give a precise
(qualitative) description of the graph of T(p). By this we mean that we can
count the exact number of critical points of 7'. This will be used in Chapter 24.

Theorem 13.11. Let f be given by (13.24) and let T(p) he defined by (13.26).
Then T has exactly one critical point.

Before giving the proof of this result. let us pause to interpret its signi-
ficance. Thus, the theorem says that the graph of T is not as depicted in
Figure 13.8, but rather, it is as in Figure 13.9. What this means, is that for

T(p)

Lo = T(Po)

Po A P

Figure 13.9

L < LO, it = 0 is the only solution; when L = Lo. a global bifurcation occurs
and we obtain a nonconstant solution, while for every L > Lo. there are
precisely two nonconstant solutions. (We have already remarked earlier that
u = 0 is a solution for every L > 0.)

if we now view (13.22) as the steady-state equation of the full time-
dependent problem

«a=tuFx+f(u). IxI<L. t>0. u(±L.t)=0, t > 0. (13.27)

We may say (not tongue in check. cf. Chapter 22), that the nonconstant solutions continue
to the empty set, while as L increases to T(po), a solution appears out of the empty set.



188 13. Bifurcation Theory

then we have an exact count of the number of "rest points" (- steady-state
solutions) as a function of L. Using the Conley index we can give a global
description of all solutions of (13.27); this will be carried out in Chapter 24.
§D.

Proof of Theorem 13.11. It suffices to prove that T has at most one critical
point (since we already know that T has at least one critical point). To achieve
this, we define S(a) by

S(a) = a
du

(13.28)
Jo V F(a) - F(u)

From (13.25) we see that a'(p) > 0; thus the equation f T'(p) = S'(a)a'(p),
shows that T'(p) = 0 if and only if S'(a) = 0. Therefore it suffices to prove
that S has at most one critical point. For this we will show

S"(a) > 0 if S'(a) = 0. (13.29)

To this end we change variables in the integral in (13.28) by writing
u = a sin 4r; then

e!2

S(a) =
J

(F(a) - F(a sin tt2a cos r d+'.
0

This allows us to compute the derivatives; namely,

e!2

2S'(a) = S G -312 (2G - aG') cos,, d4i, (13.30)
0

and

rerg
2S"(a) =

fo
- aG" - G') + (2G - aG')(-3/2)G-s12G')

0
J

x cosgrdvi, (13.31)

where G((x) = F(a) - F(a sin vr).
Now if S'(a) = 0, then for this a.

2S"(a) = kS'(a) + 2S"(a), (13.32)

where k is a constant, to be chosen in a moment. We have from (13.30),
(13.31), and (13.32),

j2 l[G5/2{TG' + kG } (2 G - aG') + G - 3l2(G' - aG")] cos 0 dpi.2S" =
o )JJ



§D. Spontaneous Bifurcation; An Example 189

Now put k = 3/a in this equation to get

1:1z
2S" = G-512

3
( -1(2G - aG')2 + G-3j2(G' - aG") cos 0 dt/r

o J

X/2

>-
10

G -312 (G' - aG°) cos ty dtfi.
o

(13.33)

But

G'

and

G'

Thus, from (13.33)

(a) = f (a) - f

(a) = f'(a) - f

(a sin ty) sin ty,

'(a sin 0) sin2 0.

(13.34)

Rf 2

2S"(a) z f G - 312[ f (a) - f (a sin t')
0

x sin ty - of '(a) + of '(a sin t') sin2 t,] cos ty dty

1
= a2 jo (F(a) - F(u))-312[af(a) - uf(u) - a2f'(a) + u2f'(u)] du.

(13.35)

Writing

6(x) = 2F(x) - xf (x),

gives

8'(x) = f(x) - xf'(x). xO'(x) = xf(x) - x2f'(x).

and from (13.35),

2S'(a) z 12 , (F(a) - F(u)) - 312(ae'(a) - uO'(u)) du. (13.36)
o

Now for the cubic (13.24), we have

a+1
x9'(x) - 2x3 x - 2
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the graph of this function is depicted in Figure 13.10(a). Thus if a >- (a + 1)12,
then (13.36) shows S"(x) > 0; that is, x z (a + 1)/2 implies that (13.29) holds.
On the other hand from (13.30),

a

2S'(a) =
I (a) -

(u)3rz du, (13.37)
a Jo (F(a) - F(u))

and since

0(x) = 2 [x - J(a + 1)],

we see that 0(x) has the graph as in Figure 13.10(b). Thus S'(x) *- 0 if
x < (a + 1)/2.

We have therefore proved (13.29). From this it follows that S, and thus T
has at most one critical point. The proof is complete.

a+1 x

2

(a) y = x0'(x) (b) y = 0(x)

Figure 13.10

NoTEs

The proof Theorem 13.3 can be found in Crandall [Cr 2]; sec also [Di] and
[Ni 2]. Theorem 13.5 is due to C-R [CR 1], following earlier work of
Sattinger [Sa 1]. The method of Lyapunov-Schmidt has recently been used
by Golubitsky and Schaeffer [GoS] to give a theory of "imperfect bifurca-
tion" via singularity theory. The notion of a K-simple eigenvalue is also due
to C-R, as is Lemma 13.7 and Theorem 13.8; see also Sattinger [Sa 1].
Theorem 13.9 due to Krasnoselski [Kr], was the first general bifurcation
theorem, and Theorem 13.10 is Rabinowitz' celebrated global bifurcation
theorem [Ra]. If one considers positive operators, Dancer [Da] and Turner
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[Tu] have shown that one may drop the hypothesis of odd multiplicity in
Rabinowitz' theorem. Theorem 13.11 is due to Smoller and Wasserman
[SW].

It should here be mentioned again that there is a corresponding theory of
bifurcation to periodic solutions, the so-called "Hopf Bifurcation." For a
description of this, sec the monographs [HKW] and [MM].



Chapter 14

Systems of Reaction -Diffusion Equations

In recent years, systems of reaction-diffusion equations have received a
great deal of attention, motivated by both their widespread occurrence in
models of chemical and biological phenomena, and by the richness of the
structure of their solution sets. In the simplest models, the equations take
the form

au
car

_DAu+f(u), xEfcRk. t > 0, (14.1)

where u e R", D is an n x n matrix, and f (u) is a smooth function. The com-
bination of diffusion terms together with the nonlinear interaction terms,
produces mathematical features that are not predictable from the vantage
point of either mechanism alone. Thus, the term DAu acts in such a way as
to "dampen" it. while the nonlinear function f(u) tends to produce large
solutions, steep gradients, etc. This leads to the possibility of threshold
phenomena, and indeed this is one of the interesting features of this class of
equations.

It is possible to consider the system (14.1) as an ordinary differential
equation, it = A(u) defined on a Banach space B. Thus, for each t > 0.

t) is a point in B, and the equation (14.1) determines a curve in B which
describes the evolution of it. With this viewpoint, the associated steady-state
equation

DAu + f (u) = 0,

determines the "rest points" of the equation. Indeed, if there is sufficient
compactness available, this description is quite useful.

The compactness requirement can be fulfilled in a very straightforward
and natural way ; namely, by requiring that the system (14.1) admit bounded
invariant regions, i.e., bounded regions E in phase space (i.e., u-space), with
the property that if the "data" lies in E, then the solution u(x, t) lies in E for
all x e f and all t > 0. Thus Y. provides an a-priori sup-norm bound on u,
and it follows that if the datum lies in E, then the solution exists for all t > 0.
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The region E can likewise be thought of as an "attracting" region for the
equation Zr = A(u), and it is from this that the compactness is obtained.

In §A we shall show that (14.1) has a (local) solution which exists on an
interval 0 5 t 5 r, where r depends only on the sup-norm of the data. From
this it follows easily that if we obtain an a-priori sup-norm bound, then (14.1)
has solutions which are globally defined in time. This is done in §B where we
find necessary and sufficient conditions for our equations to admit invariant
regions. We show that these conditions hold for the standard systems; e.g.,
the Hodgkin-Huxley equations. and the ecology equations with diffusion.

In §C we use invariant regions to prove a comparison theorem for solu-
tions of (14.1) on bounded domains f2, where u satisfies homogenous Neu-
mann boundary conditions. We construct vector fields related to f, and show
that solutions of (14.1) can be estimated componentwise, by solutions of the
ordinary differential equations associated with these vector fields. The
theorem is illustrated by some examples from mathematical ecology. In §D
we introduce the notion of a contracting rectangle, and we construct a (local)
Lyapunov function for such sets. We point out how these are used to obtain
qualitative information for solutions. The large time behavior of solutions
satisfying homogeneous Neumann boundary conditions, is studied in §E. If
there is an invariant region E, we isolate a parameter a. depending on X. the
spatial region I. and the diffusion matrix, which when positive implies that
all solutions decay as t - cc to spatially homogeneous functions; i.e.. to
solutions of the associated "kinetic" equations, is = f (u). The condition a > 0
is valid, for example, when the diffusion is, in a certain prccisc sense, large
with respect to the other parameters in the problem. It implies too that there
cannot be any bifurcation of constant solutions into nonhomogeneous
steady-state ones. In the final section we show how the general Kolmogorov
form of the equations for two species population dynamics, with diffusion
and spatial effects taken into account, fits into our theoretical framework in
a very natural and satisfactory way. That is, the ecologically reasonable
assumption, that every community must by its very nature be constained
by resource limitations, implies that the equations admit arbitrarily large
bounded invariant regions.

§A. Local Existence of Solutions

The development which we give here is closely related to the results in
Chapter 11, §B. The difference is that we consider here a more narrow class

of equations. and we are thus able to obtain more exact results. Namely, we
obtain quantitative information on the time of existence of the local solution.

We consider, for simplicity, the system (14.1) in a single space variable.

where D is diagonal :

u, = Du.,., + f (u), x e R, t > 0. (14.2)
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(For the more general boundary-value problems in R', see [Fn 3].) Here
it = (ut.... , u"), D = diag(dt,... , d"), with d, Z 0 for all i. Together with this
equation we consider the initial data

u(x, 0) = uo(x), x e R. (14.3)

We shall obtain solutions which are continuous functions of time having
values in certain Banach spaces. We proceed to describe these spaces.

Assume that B is a Banach space of functions on R with values in R" (i.e.,
B consists of vector-valued functions); II IIB denotes the B-norm, and II
the L,,-norm.

Definition 14.1. B is admissible if the following four conditions hold :

(1) B is a subset of the bounded continuous functions on R, and if w e B,
IIwIIB z IIwII..

(2) B is translation-invariant ; i.e, w o r c B for every w e B and every
translate r : R -+ R. Also II w o T II B = Ii "'IIB

(3) If f : R" - R" is smooth, and f (O) = 0, then f (w) e B for every w e B,
and for any M > 0, there is a constant k(M) such that

IIf(w) -f(W)JIB <k(M)IIw - w IIB, (14.4)

for all w, w' in B with IIN'llm, II"'II - s M.
(4) If r,,: R - R denotes translation by h (i.e., r,,(x) = x + h, then for each

w e B,

IIworb-wlIB-0

It is easy to check that the following Banach spaces are admissible:

(A) BC = {bounded, uniformly continuous functions on R}.
(B) BCnLp,pz 1.
(C) BCo = (w e BC: I w(x) I - 0 as I x I -. oo }.

Next, let j e 9 (sec Chapter 7, §A), j z 0, I j = 1, and define j,(x) _
c-'j(c-'x). Then consider the condition

(5) For each weB, 11j, * w - w II B - 0 as c - 0. (Here * denotes con-
volution; see Chapter 7. §A.)

Then it is casy to see that conditions (4) and (5) are equivalent; for example,
since

j. * w =
J

j,(h) (TA w) dh - w,
a

as c 0 (see Chapter 7, Appendix), it follows that condition (4) implies
condition (5); we do not prove the other implication as it will not be used.
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Now let's consider the example of the scalar heat equation

ut = auxs, u(x, 0) = uo(x). a > 0.
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in t > 0. We assume that u0 e B, where B is admissible. The solution to this
problem is (see Chapter 9, Theorem 9.5)

exp[-(x - y)2/4at]u(x,t) _ 110(y) - dy.
IR / 4aat

If we definej(x) = exp[ - x2!4a]/v 4-naa, and

j(x/.It) - exp[ _X2 14at)
ki(x)

_ `%tt 4irat '

then we may write

u(x, t) = j,. j * UO.

Hence condition (5) implies that u is a continuous function of t (it is only
necessary to check this at t = 0), with values in B, for 0 < t < oc.

We define C([0, T] ; B) to be the Banach space of continuous functions
on [0, T] with values in B. normed by

IIWII = sup I:w(t)
05tsT

Then as in Chapter 11, the function u e C([0, T]; B) satisfies (14.2), and

u(x.0) = uo(x), (14.5)

if and only if u satisfies

G(x - y, t - s)f(u(y, s)) d y ds14(X. t) G(x - y, t)uo(') dy +
10

=
JR

} r

IR

= G(t) * uo + j G(t - s) * f(u(s)) ds, (14.6)
0

where

G(t) = diag(gt(t), g2(t), .... gR(t)), and

2

9t(t) = (4ndit)-tr2 eXp f = 1, 2,..., n. (14.7)
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Concerning this representation, we make the following remarks:

(A) If u e C([0, t], B), then the integrand in (14.6) is a continuous func-
tion of s with values in B, so the integral is really a Riemann integral.

(B) If p is a finite Borel measure, and w e B, then p * w e B. and Il B * w II B

lµ111 w II B, where lug denotes the total variation of p. (This is true
because the Riemann integral is a limit of approximate sums.) Thus,
the function G defined by (14.7) can serve as a p. and since the total
variation of this measure is 1(see Chapter 9. Theorem 9.5), we obtain
the useful inequality

II G(t) * u I a <- Ilulla. ueB. t >- 0. (14.8)

With these preliminaries out of the way, we shall show how to solve (14.2),
(14.3) for a short time interval. We assume f(0) = 0.

Theorem 14.2. Let uo e B; then there exists to > 0, where to depends only on
f and IIuosuch that (14.6) has a unique solution in C([0, to]; B), and
lull - 2IIuoIIB.

Proof: For to > 0, let

r = (u e C([0, to]; B): IIu(t) - G(t) * uoll

s 11U0 I; B, and 11u(t) - G(t) * uo lI ,, s II uo II., 0 s t s to }.

Then r ¢ (since 0 e fl, and r is closed.
If u e I. then (14.8) shows that it u(t) 11 ,9 <_ 2 iI uo I B. Therefore, since B is

admissible, (14.3) shows that there is a constant k, depending only on ;i uo II
(and not on t), such that if u and v arc in 17, and 0 S t S to,

II f(u(t)) - f(v(t))B s k II u(t) - tit) II B < k II u - u II ; (14.9)
thus

f(u) - f(v)II S kllu - vII. (14.10)

Let to = 1/2k; then to depends only on.f and II u,) Define a mapping 4)
on C([0, to] ; B) into itself by

cDu(t) = G(t) * uo + G(t - s) * f (u(s)) ds.t
0

Observe that a fixed point of D is a solution of (14.6).
We claim that (b maps r into itself. To see this, let u e r. Since g,(t), r z 0,

is a positive measure having total mass 1, we have, for 0 S t 5 to

I10u(t)-G(t)*u0IIB<J IIG(t-s)*f(u(s))Ilads.
0
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Now from (14.9) with v = 0, together with (14.8),

II f(u(t)) .B 5 kllu(t)11B 5 2k11 tb1.B, 0:!-, t 5 to.

Therefore

II 1(u(t)) - G(t) * uo II B < 2k J II uo II B dt
0

52ktoIuo11e

= Iluolle,
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Similarly
11cP(u(t)) - G(t)*Uo11.x 5 Iuol1.

This proves our claim. Next, we show that b is a contraction on r. Thus, if
u, v e r,

II "UM) - (D(40) I' B <-
jU

II G(t - s) * [f(u(s)) - f(v(s))] II B ds

5 fo II f(u(s)) - f(its)) II B ds (Remark B)

25k fo :

Skto!'u - vll

- 2..U-rll.
Therefore

Ilmu - mall ' 11 it - vp,

and so (D is a contraction on r. We may apply Banach's fixed point theorem
to conclude that (D has a unique fixed point in r. Q

We must show that there cannot be a solution outside of r. This will
follow from the next lemma.

Lemma 14.3. Let it, v e C([0, T] ; B) he solutions of (14.1) on 0 5 t 5 T, where
u v II S M. Then there is a constant k = k(M) such that

Ilu(t)-'(t)IIBSe*'llu(0)-tjO)II 0<t5T. (14.11)

Proof If t e [0, T],

u(t) - v(r) = G(t) * (u(0) - v(0)) + G(t - s) [1(u(s)) - f (v(s))] ds.
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Now since B is admissible, there is a k = k(M), such that

I! Pu(s)) - f (V(s)) .B < k I I u(s) - v(s) V

Thus

Ilu(t) - v(t)IIB 5 IIu(0) - v(0)IIB + k f RU(S) - v(s)IIB ds,
0

so that Gronwall's inequality (Chapter 4) gives the desired result. This proves
the lemma and completes the proof of Theorem 14.2. p

Remark. If f is linear, i.e.. f(u) = Au where A is an n x n matrix, then the
solution exists for all t > 0. This follows from (14.10) where k can be taken
to depend only on A.

Suppose now that we can prove an a-priori bound for solutions of (14.2).
(14.3). of the following form; namely, there is a constant c > 0, depending
only on II do II,,,

such that if u is any solution of (14.2). (14.3) in 0 5 t 5 T.
then II u(-, t) II 5 c. Then we claim that the solution of this problem exists
for all time t, 0 5 t S T. To see this, we use Theorem 14.2 to obtain a
solution in 0 S r 5 r. r > 0. Then taking T) as the data on t = r, we use
Theorem 14.2 to get a solution on r 5 t 5 r + v. where a = v(! r) II"').

We repeat this process to find a solution on r + a 5 t 5 r + 20, and
eventually after a finite number of steps we obtain a solution on 0 < t <- T.
We state this formally as the following theorem.

't'heorem 14.4. Let B he an admissible Banach space. and let uo a B. If the
solution is a-priori bounded in the L,,-norm on 0 5 t 5 T:5 xi, then the solution
of(14.2), (14.3) exists for all t, 0 S t 5 T, and t) e B, 0 < t 5 T.

§B. Invariant Regions

The notion of an invariant region is the most important idea in this chapter.
It allows us to prove global existence theorems, and thereby provides a
suitable theoretical foundation and framework for studying the large time
behavior of solutions. In the subsequent sections of this chapter. we shall
use it to obtain some general theorems which can then be applied to specific
systems of equations.
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We consider the systems

cv
= r.Dv + Mv + J '(v. I). (x. ()e Q x R , (14.12)xx s

at

together with the initial data

+

v(x, 0) = ve(x), x E 0. (14.13)

Here t > 0, f2 is an open interval in R, D = D(v, x), and M = M(v, x), are
matrix-valued functions defined on an open subset U x V c R" x f2,
D > 0, v = (vt, v2 , ... , v") and f is a smooth mapping from U x R,. into R.
If i2 is not all of R, we will assume that v satisfies specific boundary conditions ;

c.g., Dirichlet and Neumann boundary conditions. We assume that this
problem has a local (in time) solution on some set X of smooth functions
from 11 to R"; i.e., given a function vo E X, there is a 6 > 0 and a smooth
solution tjx, t) of (14.12), (14.13) defined for x e f2 and t E [0, 6), such that

t) E X, 0 5 t < b. The topology on X should be at least as strong as the
compact-open topology (uniform convergence on compact subsets of f2).

Definition 14.5. A closed subset E e R" is called a (positively) invariant region
for the local solution defined by (14.12), (14.13), if any solution v(x, t) having
all of its boundary and initial values in E, satisfies v(x, t) e E for all x e f2 and
for all t e [0, d).

We always assume that if u e X, there is a compact set K e n such that
if x 0 K, then u(x) E E'". We call this condition K.

For example, let us consider the simple heat equation u, = uxx, where X
is the space of C2 functions which tend to zero as I x I - co. Then if

E=(u:-15u51),

the maximum principle (see Theorem 9.1) shows that E is invariant, and
condition K is certainly satisfied. Observe that condition K is always valid
if we consider (14.12) on a bounded domain, with the standard boundary
conditions lying in Eu ; the condition is needed only to recover some mea-
sure of compactness when we are on unbounded domains.

The ideas which we shall present in this chapter can be carried over, without any difficulty,
to more general systems in several space variables, and also to equations on bounded domains
in m Z I space variables, satisfying general boundary conditions (see (CCS)). We consider
(14.12) merely for simplicity in presentation.
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The invariant regions E will be made up of the intersection of "half
space"; i.e., we consider regions E of the form

2:=
n (14.14)

where Gi are smooth real-valued functions defined on open subsets of U, and
for each i, the gradient dG, never vanishes.

Now if there is a solution v of (14.12), (14.13), with boundary data and
initial data v(x, 0) in E for all x E S2, which is not in E for all t > 0, then there
is a function G, a time to such that for t 5 to and x e R, G, o v(x, t) 5 0 and
for any e>0,3t'andx'eRwith to <t'<to +esuch that G,ov(x',t')>0.

Thus, if the assumptions

G, o v(xo, t) < 0 for 0 < t < to and G, o v(xo, to) = 0, (14.15)

together imply that
01(G, o v)

et
< 0 at (x0, t0),

then E must be invariant.' (Since

(14.16)

(Giov)(xo,t)-(G,oy)(xo,to)>0 if t <t,0t - to

it follows that 8(G, o v)/Or z 0 at (xo, to); this contradiction means that
(G, o v)(xo, to) < 0.)

Before proving the first theorem, we shall need the following definition.

Definition 14.6. The smooth function G : R" - R is called quasi-convex at v if
whenever d 2G,(q, tl) z 0.

Theorem 14.7. Let E be defined by (14.14), and suppose that for all t e R+ and
for every vo a 01 (so G,(vo) = 0 for some i), the following conditions hold:

(1) dG, at vo is a left eigenvector of D(vo, x), and M(vo, x), for all x E fl.
(2) If dG,D(vo, x) = u dG with p # 0, then G, is quasi-convex at vo.
(3) dG,(f) < 0 at vo, for all t E R.

Then I is invariant for (14.12), for every e > 0.

Proof. For simplicity in notation, let G = G,. To show that E is invariant, we
assume that (14.15) holds for xo e U and we shall show (14.16). Thus, at
(x0. to),

G(Gov)
dG(v,) = dG(EDvxx + Mvx + f).

2 It is here whcrc condition K is used.
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Now since dG is a left eigenvector of D and M, we have at vo = t:(xo, to).

dGD = p dG and dGM = A dG.

This implies that
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e(G o v)
sp dG(vxx) + A dG(vx) + dG(.f ). (14.17)

Now we claim that at (xo, to),

dG(vx) = 0. (14.18)

To see this, define h(x) = G , v(x, to); then h(xo) = 0, and h '(x) = dG(vx(x. to)).
If h'(xo) > 0, then h(x) > 0 for x > xo, if Ix - xoI is small (see Figure 14.1).

Y a h(x)

Figure 14.1

Thus G , v(x, to) > O for x close to xo, and so G o v(x, t) > 0 for It - to I < s,
for some s > 0; in particular G, v(x, t) > 0 for some x and some t < to.
This violates (14.15). Similarly, h'(xo) < 0 is impossible. Thus dG(v.'(xo, t(,))
= h'(xo) = 0, and this proves the claim.

Observe too that with h(x) as defined above, h°(xo) < 0; otherwise we
would arrive at a contradiction similar to the one above. It follows that

0 >- h"(xo) = d2G(vx. vx) + dG(vxx). (14.19)

Now suppose that u * 0; then p > 0. so from the second hypothesis,
together with our claim, we find d2G(vx, vx) >- 0 at (xo, to). Therefore from
(14.19), dG(vxx) S 0 at (xo, to). Thus (14.17) gives

O(G-L') <dG(f) < 0,
(It

in view of the third hypothesis. This completes the proof. 0
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Remarks. (i) We could have replaced hypotheses (2) and (3) by (2') and (3'),
where D is positive definite, and
(2') If dG,D(vo, x) = a dG,, with y # 0, then G is strongly convex at

vo; i.e., if dG;o(q) = 0, 1 # 0, then d2G,,,o(q, l) > 0, and
(3') dG,(f) 5 0 at vo.

(ii) If D and M are diagonal matrices, and G, = u; - c, for some con-
stant ci, then G; is everywhere quasi-convex, and dG, is a left cigen-
vector of both D and M. Therefore, the half space

{u: u, - c, s 0},

is invariant for (14.12), for every E > 0, provided that f(u,, u2, ....
u,_ ,, c,, u,+,, ..., 0. where f, is the ith component of f. This
gives the following useful corollary.

Corollary 14.8. (a) Suppose that D and M are diagonal matrices. Then any
region of the form

{u:a,<ur<bt7
r=t

(*)

is invariant for (14.12), for all s > 0, provided that f points strictly into
E on 0E; i.e.. provided that hypothesis (3) of the theorem is valid.

(b) If D = I, the identity matrix, then any convex region E, in which f
points into E on i3E, is invariant for (14.12), if M = 0.

We shall refer to such an invariant region (*) as an invariant rectangle.

Corollary 14.9. Consider the system (14.2), with data uo a BCo. If the system
admits a bounded invariant region E, and uo(x) e E for all x e R, then the solution
exists for all t > 0.

Proof. This is immediate from Theorem 14.4. 0

In many applications, the vector field f satisfies the above weaker condition
(3); i.e., f is tangent to 8E at certain places. This is especially true for equations
involving positive quantities, like population densities, or chemical con-
centrations. In these cases, one finds that the positive "orthant" is invariant
for the vector field f, sincef is of the form

BU) = (u, M 1(u), u 2 M 2(u), ... , u

However, in this case, f is tangent to the coordinate hyperplanes. It is there-
fore desirable to have an extension of Theorem 14.7 which covers this
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case. In order to obtain such a result, we must assume that solutions of
(14.12) depend "continuously" on f. Accordingly, we make the following
definition.

Definition 14.10. The system (14.12) is called f-stable if, whenever.Iis the limit
of functions in f the C'-topology on compacts, for all t > 0, then any solu-
tion of (14.12), (14.13) is the limit in the compact-open topology, of solutions
of (14.12), (14.13), where f is replaced by f,,.

In these terms, we can extend Theorem 14.7 as follows.

Theorem 14.11. If the system (14.12) is f-stable then we may replace condition
(3) by

(3') dGi(f) <0at vofbrall tER
and the same conclusion holds as in Theorem 14.7.

Proof. We let h(v) be a smooth vector field which is bounded on t?E, and
which points into E on 0E; i.e., dGG(h) < 0 on 0E, for each i = 1, 2, ... , M.
If a > 0 is a small constant, we consider the system

Gv

ai
= eDvx,, + Mv,t + f + dh, (x,t)eQxR., (14.20)

together with the initial data (14.13). Now we may apply Theorem (14.7) to
this system, thereby obtaining solutions {v,}. 0 < S < dt which satisfy
Gi o vb(x, t) S 0 for all i, for all x e R, and, in view of Corollary 14.9, for all
t > 0. Since (14.12) is f-stable, it follows that v(x, t) e E for all (x, t) a 0
xR+. 0

We shall now derive some necessary conditions which must hold if E is
an invariant set. In order to exclude extraneous trivial cases, we assume
that for each Gi, there is an (n - 1)-dimensional subset of Gi = 0 which
meets E; in other words, we want to rule out the situation as is depicted in
Figure 14.2, where E n {0 <_ 0} = E, but 0 = 0 is obviously unecessary for
defining E.

Figure 14.2
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Theorem 14.12. Let E be defined by (14.14), and suppose that E is an invariant
region for (14.12), for fixed e > 0, where f = f(v, t) and D is a positive definite
matrix. Then the following conditions hold at each point vo on aE (say,
Gi(vo) = 0):

(1) dG, is a left eigenvector of D at vo for all x e 12.
(2) G, is quasi-convex at vo,
(3) dG,(f) < 0 jor all t >- 0.

Proof. Let's again write G, = G. If dG is not a left eigenvector of D, we can
find C e R", I e R", and A e R, such that, at vo (cf. Figure 14.3):

(a) dG(s) < 0, dG(DC) > 0.
(b) 0.

(c) A e dG(D{) + dG(M7) + dG(f) > 0.
(d) is dG(S) + d 0.

We consider two cases. First suppose that vo is not a "corner" point of
E; i.e., there is an (n - 1)-dimensional neighborhood of vo which lies in
(G,=0)nE.Let

U(x) = vo + xg +
iAx2C,

G o U(x) = h(x);
then

z

G o U(x) = h(x) = h(0) + xh'(0) + 2 h"(0) + 0(x2)

= G o U(0) + x dG(U'(0)) +
x2 [d 2 G(U'(0), U'(0)) + dG(U"(0))]

2
+ o(x2)

= G(vo) + x x2[d2G(n,

2

+ dG(A{)] + 0(x2)

= 2
2

A dG(t)] + o(x2).

It follows that for some S > 0, G o U(x) S 0 for IxI 5 b, and thus since we
arc in Case 1, U(x) e E, if IxI < 6. (Notice that this is not necessarily true if
GG(vo) = 0 for some j # i. since vo could be a "corner" point; see Figure
14.4.)
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G; = 0

U(x)
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Figure 14.4

Now let uo(x) be a smooth function with values in E such that uo(x) _
U(x), if Ixi < b, and let v(x, t) be the corresponding solution of (14.12) with
this data. Then

dG(v,) = e dG(f),
so that at x = t = 0,

dG(v,) = [eel dGM(p + A4) + dG(f )] Ix , 0
t=o

= e) dG(Dt) + dG(Mrl) + dG(f)

> 0,

in view of (c). This contradicts the invariance of E.
We now consider the case where G(vo) = G;(vo) = 0, and GJ(vo) = 0, for

some j # i. In this case, we choose a sequence {v"} such that G(v") = 0,
GG(v") # 0 for j = 1, ... , m and v" -+ vo. By what we have just proved, we have
dGv"D(v") = A(v") and passing to the limit as n - oo, we obtain the
desired result (1).

Next, suppose that G is not quasi-convex at vo. Then there exists an rl e R"
with

dG(p) = 0 and d2G(q, rl) < 0 at vo.

Now from (1), dGD = 0 dG at vo, where 0 > 0. We choose C e R" such that at
vo,

dG(C) > 0 and dG(C) + d2G(rl,,j) < 0,

and then we choose A e R so that at vo

&.20 dG(i;) + A dG(Mtl) + dG(f) > 0.
Let

2x2C;U(x) = vo +/ ).x7 + 2
then

G o U(x)
= A2x2[dG(Z) + d2G(i1, 7)] + o(x2),

2

so that for small x, say lxi < 5, G o U(x) e E.3

7 We are assuming that vo is not a "corner" point; as before, corner points are treated by a
limiting argument.
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Now as above, define uo(x) to be a smooth function with values in E such

that uo(x) = U(x) if lxi < 6. Let v be the corresponding solution of (14.12)

with this data. Then

dG(v,)I x=o = e1)2 dG(C) + A dG(Mq) + dG(f) > 0,
,mo

so that E is not invariant.
Finally, let v(t) be a solution of the problem

dv

Tt = M, t), v(0) = vo.

Then visa solution of (14.12), so by the invariance of E, we know that v(t) E E

fort 0. It follows that dG(f) 5 0 at vo. This completes the proof of the
theorem.

Our next result combines our previous results, and gives conditions, both
necessary and sufficient in order that Y. be invariant for systems of reaction-
diffusion equations; it is an immediate consequence of Theorems 14.11 and
14.12.

Theorem 14.13. Let Z defined by (14.14), and consider the system (14.12) with
M = 0, D positive definite and f = f (v, t). Suppose that this system is f-stable.
Then E is a positively invariant region for (14.12) for fixed e > 0 if and only if
the following hold at each boundary point vo of E (so Gi(vo) = 0):

(a) dG, is a left eigenvector of D.
(b) G; is a quasi-convex at vo.
(c) dG,(f)S0.

We next give necessary and sufficient conditions in order that Z be
invariant for all e > 0. This will be useful in obtaining a-priori estimates
independent of e > 0. Thus, consider the system

v, = eDvXX + Mvx + f(v, t). (14.21)

Theorem 14.14. Let T. be defined as in (14.14), and let D be a positive definite
matrix. Suppose that (14.21) is f-stable. Then E is invariant for (14.21) for
every e > 0 if and only if the following conditions hold at each vo e dE (so
Gt(vo) = 0):

(i) dG, is a left eigenvector of D and M.
(ii) G, is quasi-convex at vo.

(iii) dG,(f) S 0.

Proof. If conditions (i)-(iii) hold, then Theorem 14.11 shows that E is in-
variant. Conversely, if Y. is invariant, then in view of Theorem 14.12, we need
only show that dG, is a left cigcnvector of M.

If G = G,, and dG is not a left eigenvector of M at vo, then we can find
q e R" such that at vo,

dG(q) = 0 and dG(Mq) > 0.
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Since G is quasi-convex at vo, d 2G(q, q) 0. Now we choose C e R" and A E R
so that at vo,

dG(C) + d2G(q, q) < 0 and dG(DC) + A dG(Mq) + dG(f) > 0.

Let e = A`, and set
A2 2

U(x)=vo+)xq+
2
;

then

GoU(x)= %.2x2[d2G(q, q) + dG(t)] + v(x2),
2

so that' U(x) is in T. for Ixl < S. Let uo be a smooth function with values in
E, such that uo(x) = U(x), if Ixl < 6, and let v(x, t) be the corresponding
solution of (14.21) with this data. Then

dG(v,)Ix=o = (e dG[M(A.q) + A2xC] + dG(f)}Ix-o
two t-o

= dG(DC) + A dG(Mq) + dG(f)

> 0,

and so E is not invariant. This completes the proof of the theorem. C1

(We remark that the condition "for every e > 0," cannot be omitted in the
statement of Theorem 14.14. Indeed, consider the example

ut = ux3, + Mux - Cu,

where u is an n-vector, M is a constant matrix, and c is a positive constant.
The claim is that if IM12 5 4c, then any region of the form {u: Jul 5 R} is
invariant for this system. Indeed, if we multiply the equation by u' (the trans-
pose of u), we obtain

(2)
= utuxx + u'Mux - cIuI2

_ (utux)x - luxl2 + u'Mux - CIuI2

5 (-;--)2xx - luxl2 +
1u12

+ gel M I2Iuxi2 - cIuI2

5 (I 22)xx + (_-_.I 412 - C) (u12

5 (1 22)xx'

where we have set s = I M I2/2. Thus l u(x, t)12 5 ll uo ll 2, for any matrixM,

having small norm; i.e., u need not be an eigenvector of Mt.)

`As in the proof of Theorem 14. this holds if vo is not a "corner" point; otherwise we
use a limiting procedure as before.
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We pause now to give some examples which illustrate our results.

EXAMPLE 1 (Hodgkin-Huxley equations). The equations take the form

Cu, = R -' uXX + 9(u, v, w, z),

v, = e1vxx + 91(u)(h1(u) - v).

n't = e2 N'xx + 92(u)(h2(u) - t').

Z, = C3zxx + 93(u)(h3(u) - -). (14.22)

where c and R are positive constants, the e, arc nonnegative constants, and
g is defined by

y(u, v, w, z) = kiv3w(ct - u) + k2z°(c2 - u)

+ k3(C3 - U), C1 > C3 > 0 > C2,

where the k, are positive constants. Furthermore, gt > 0, 1 > ht > 0, i = 1, 2,
3. In this model, the variables v, w, and z represent chemical concentrations,
and are thus nonnegative, while u denotes electric potential. The equations
are a mathematical model for the physiological phenomenon of signal trans-
mission across axons.

If we set U = (u, v, w, z), F(U) = [c-'g, gl(h, - v), g2(h2 - w), g3(h3 - z)],
and D = diag((Rc) -', el, e21 e3), then we can write the system as

U, = DU,,, + F(U). (14.23)

Furthermore, since D is a diagonal matrix, we may apply Corollary 14.8(a)
and seek invariant "rectangles" for our system. Thus let

J(U,

v a )v,w,z):OSw5c25uScl},
z y

where E1 >- c1, e2 5 c2, and a, /3, y z 1. The claim is that E is invariant for
(14.23). To see this, we first note that (0, -1, 0, 0) is a left cigenvector of D;
thus if we set G(u, v, w, z) = - v, then

dG(F)l,,=o = 91(u)(v - -9(u)hl(u) < 0.

It follows that - v = G(u, v, w, z) 5 0; i.e., v z 0. Similarly, we can show that
w,zZ0.Next, we set G=v-a, and compute

dG(F)I,, = 91(u)(h1(u) - a) < 91(u)(1 - a) 5 0.
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Therefore v 5 a, and similarly w 5 0, z 5 y. Also if we set G = u - c,, then

dG(F)L = 1 [kl v3(cl - ci) + k2z`(c2 - e1) + k3(c3 - cr )] < 0,c

so that u 5 el. Finally, put G = c2 - u; then

1 [klv3(c2 - cr) + k2z°(c2 - c2) + k3(c2 - c3)A < 0,c

and thus it >- c2. These calculations show that Z is an invariant region.
Consequently, we have shown that (14.22) admits arbitrarily large invariant
regions. It follows then, from Theorem 14.4 that if uo e BCo (§A). then the
Hodgkin-Huxley equations, with this initial data, are (uniquely) solvable
for all t > 0.

EXAMPLE 2 (Fitz-Hugh-Nagumo equations). These equations are considered
to be models for the Hodgkin--Huxley equations. They are given by

v,=u +f(v)-U, U, = et,, + ac - yu.

Here a, y. and a are constants, with a, y > 0 and a >- 0. The function f(v)
has the qualitative form of a cubic polynomial; for definiteness, we may take
f (v) v(v - ff) (v - 1), where 0 < f < i. We shall give a geometric con-
struction of the existence of arbitrarily large invariant rectangles (cf. Corollary
14.8(a)). For this we refer to Figure 14.5, where we have drawn the zero sets
of the components of the vector field F = (f(v) - u, av - yu); the + and -
signs refer to the signs of the respective functions, on each side of their zero
sets. The region E is constructed as follows: The lines u = const. are chosen
so that the top one is above the zero set of av - yu, and the bottom one is
below it. The lines v = const. are taken to be on both sides of the zero set of
,f(v) - u. It is obvious (from the picture!) that F points into E on 8E. Since
we can construct arbitrarily large invariant rectangles of this form, we sec
that these equations also admit global solutions for any data in BCo.

f(v)-u=0
Figure 14.5
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EXAMPI.F. 3. These equations arise in the study of superconductivity of
liquids (see [CCS] ). Let u = (u,...., and D = diag(a l.... , a.), a, >- 0.
where not all al = 0. The system is given by

u,=Dtu+(1-1 uI2)u.

We consider two cases. First, suppose that a, # a; for some i * j. Then it is
obvious that any rectangle containing the unit disc I u = I is invariant. Now
let's consider the case where a, = a2 = . = a,,. Take E to be any convex
region which contains the unit disc Jul = 1 in its interior. Then Corollary
14.8(b) implies that E is invariant. In particular. if

E6 ={u:Iu12s 1+a}, a>0.

then E6 is invariant. We want to show that the unit disc, Eo, is invariant. We
cannot apply Corollary 14.8(b) directly since the vector field (1 - 1u 2)u
vanishes identically on 0E0. However, if u(x, 0) = uo(x) a E0. for all x, then
uo(x) a Ea for every 6 > 0. Thus the solution u(x, t) a Ea, for each 8 > 0, for
all x, and all t > 0; whence u(x, t) a Eo for all x and all t > 0.

Note that this example illustrates an interesting (rather obvious) theorem ;
namely. that the intersection of invariant regions is an invariant region.

EXAMPLE 4 (Field-Noyes equations). These equations serve as models for
the Belousov-Zhabotinsky reactions in chemical kinetics; see, e.g., ([HM]
and [HK]) for a discussion of this very interesting chemical reaction. The
equations take the form

u, =e,iu+a(v- uv+ u - flu2).

v, = e20r + a-'(yw - v - uv),

W,=e3tW+(5(u-W).

Here u, v, and w denote chemical concentrations, e, z 0, and at, /i, y, 6 > 0
are constants, and f -_ 10-8. Let

a > f-', c > a, b > yc, and

{(u,v,w):0<u<a.0<v<b,0<w<c}.

We claim that E is invariant. To sec this, we set

V = [a(v - uv - flue). a-%'W - v - uv), a(u - W)] ;
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then successively, if

G= -u, -av-<0 in E, souZO;

G = - v, VG V11,..0= -x-'yw50 in E, so v>0;

G = - w, VG Vlw=o = -du 5 0 in E. so w > 0:

G=w-c, VG V1,c=b(u-c)<6(u-a)S0, sow5c;

G=v-b, VG Vb=a-'(yw-b-ub)<x-'(yc-h-ub)
<a-'(yc-b)<0, so v5b:

211

finally if G = It - a, then

,=a(v-av+a-#a2)=a[v(1-a)+a(I-afi)]<0,

so u < a. This proves that E is invariant.

EXAMPLE 5. The "p-system," with viscosity (cf. [Lx 2], [K 1]).

v, -- Ux = Evxx, Ur + P(v)x = EUxx, s > 0. (14.24)

We assume that p' < 0, p° > 0. and p > 0 in v > 0. The system can be written
in the form

U, = M(U)U. + FUxx

where U = (v, u), and

M(U) =
L

p, 01. (14.25)

If

- III
r = It r s = u + J" r -p(f)d .

denote the Riemann invariants (see Chapter 17, §B). then since Vr and Vs
are left eigenvectors of M, the region

E={(v,u);r:ro,s - so}

is invariant. If p(v) = v-'', y z 1, then E can be depicted as in Figure 14.6.
This shows that if we denote the solution of (14.24) by (v,, u1), then we have
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= ro

Figure 14.6

vjx, t) >- <5 > 0, for all x and t > 0. where 6 doesn't depend on E. If y > 1, then
one can show (see Chapter 17, §A) that the curves r = const. and s = const.
are asymptotic to straight lines. Thus, in this case, (y > 1), we have an addi-
tional estimate of the form

Iujx. t)I < c. (x, t)e R x R+,

where c is independent oft..

We can use this last example to illustrate the fact that the notion of being
an invariant region is not an "open" condition. Thus, consider the system

v, - u = Ev,x, U, + p(v). = 114,rs, e, u > 0. (14.26)

Ifs = u. then we have seen that E, as defined above, is invariant for this system.
However, if a it, then E is not an invariant region. In fact, ifs * u, (14.26)
admits no invariant regions. This is true because the diffusion matrix for
(14.26). D = diag(e, u), admits only (1, 0) and (0. 1) as left eigenvectors, and
these are not left eigenvectors of (14.25); cf. Theorem 14.12.

§C. A Comparison Theorem

With this section we begin the study of the asymptotic behavior of solutions,
as t -+ + m. Our main result is a comparison theorem which estimates the
solution of a system of reaction-diffusion equations in terms of solutions of
an associated systems of ordinary differential equations. Comparison
theorems usually are obtained as a consequence of a "maximum principle";
e.g., see Chapter 10. However, in the case of systems of equations, there are
usually no general maximum principles available. The theorem which we
obtain here by-passes any maximum principles; i.e., we shall give a direct
proof of the comparison theorem. As the examples at the end of this section
demonstrate, our result is general enough to catch the "gross" asymptotic
behavior in that it locates the attracting regions in phase space.
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We consider the system

it, = DV2u + f(u,t(x,t)eS2 x R.,., (14.27)

where fl is a bounded domain in Rm, Of) is smooth, u E R", and f is a smooth
mapping from an open set U c R" into R" for each t z 0. Here we take D to
be a constant diagonal matrix with nonnegative entries. Finally, we assume
that (14.27) admits a bounded invariant region

n

E = fl [a1. b,],
1

where - oo < a, < b, < i = 1.2..... n.
Together with (14.27). we have the initial conditions

(14.28)

(14.29)u(x, 0) = uo(x) = (11°, u2, ..., U.0)(4

where uo(x) lies in E for all x e 0. In addition, we assume that u satisfies
homogeneous Neumann boundary conditions:

du
= 0 on r3Q x R+, (14.30)

where du/dn denotes differentiation in the outward normal direction on (M.
We partition the set Z,, _ { 1, 2, .... n} into two disjoint sets am and

and for each such partition, we define functions f,+ and f -, i = 1, 2, ... , n, by

f'(u,t)=Sup{f,{St,.... r-t, t):

aj < yj < uj, if j r= am. j i.

uj:'j5bj,if jEam,j#i},
J,-(u, r) = inf {same set as above}.

Note that J,` is nondecreasing (resp. nonincreasing) in the jth argument if
j # i, j e am (resp. j E a,,,). while f - is nonincreasing (resp. nondecreasing) in
the jth argument if j # i, j E au (resp. j E am).

Now we set

f'(v,t), ifieaM,
h,(v, t) =

f-(v,t), lfiEam,

and

H,M(v, t) = (h 1 `v. t), ... , h"(v, t)).
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Observe that the number of (vector) functions H,M that we have constructed
is equal to 2". the number of subsets of Z.

We pause here to give an example. Thus take n = 2, and let

l = (uM(u, v). vN(u, v)), (14.31)

where

u,=u, u2=v, a,SuSbl, a25v<b2.

The set Z2 = { 1.2} has four subsets ; namely.

(a) ad = { 11. (b) am = { 2}, (c) am = { 1. 2 }. (d) am =

We shall construct H,M for each of these cases.

(a) am ={1}, a",={2}.

f,+(u, v) = sup f,(u, u sup M(u. ),
15 b: v545b:

f2+(u, v) = sup f2(5, v) = v sup vN+(u, v),
ajsEsu al s4sto

f i (u, v) = inf f, (u. ) = u inf ,bf(u, 5) = uM - (u, v),
cSESb: c-:E!b=

f2 (u, v) = inf .f2(. v) = v inf N(1, v).
at5(Sr 41s4st.

HaM = H,1, = (f1+,f2 ).

(h) am = {21; here one calculates as above,

H(21 = (ft-, f2+).

(e) { 1.2} : here

HI1.2) = (ft' l2 ). where j,+ = it sup M(u, ) = wtif +(u, v),

and so t't1,2j = (uM, vN').

(d) am = t ; here

Hm = (.f,-,f2) = (MI-, vN-), where N-(u, v) = inf N(c, v).
v5S5 bI

We shall refer to the vector fields

(uM t vN +) and (uM vN ') (14.32)

as the maximal and minimal vector fields. respectively, associated to the
vector field (14.31), relative to E.
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The functions H,M will be considered as vector fields, and the orbits of
the associated flows will define the "comparison" functions. In order that
they determine well-defined flows, we need the following basic lemma.

Lemma 14.15. Let E be defined by (14.28) and let p = p(u, t) be Lipschitz
continuous in E, for each t >- 0. Let

p+ is Lipschitz continuous in E. with the same Lipschitz constant as p.

Proof. We may assume that aj = Q i = 1, 2, .... n. For u e E, set

<ut,j> 1.u1

then p+(u, t) = sup{p(S, t): e Let u, v e E. Since p is continuous and
A. is compact, there exists ' in A. such that

p+(u. t) = p('. t).

Let o = max(0, S' + v - u); i.e., (46), = max(0, 4' + of - uf), j = 1, 2, ....
n. Now it is clear that i;o a A, (see Figure 14.7), and that

(4o-41 S - vI . (14.33)

To see this, note that

I 0-

Figure 14.7
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and if j+vj - uj -0, whilc if S;+vj
- uj < 0, then Sj - max(0, 5! + vj - uj) < uj - vj. Thus (14.33) is valid,
and so suppressing the is we have

P+(tt) - p+(v) = suP p(5) - sup p(S)
{`c A ,tA,.

The proof is completed by interchanging the roles of u and v. p

Now let v(t) be the solution of the problem

II,M(v. t). 1,(0) = v° (14.34)

where

1f t E am.
°

(Sup U? (x), x Ev -
info°(x), xea ifi#aM.

In view of Lemma 14.15. the problem (14.34) has a unique solution. Observe
that v(r) is the unique solution of the problem

v, = DV2v + H,k(v, t), v(x, 0) = v°, d = 0 on M x R+. (14.35)

We can now state the principal result of this section, i.e., the following
comparison theorem holds.

Theorem 14.16. Under the above hypotheses, the following inequalities are
valid.for all (x, t) E S2 x R . :

vi(t) ? uj(x, r), if i E am,

v,(t) 5 ut(x, t). if i ¢ am. (14.36)

Before giving the proof we point out that (14.36) shows that every com-
ponent u, of u is bounded by solutions of ordinary differential equations
for all t > 0, uniformly in x e Q. As we have mentioned in the introduction,
such generality cannot catch anything more than the "rough" asymptotic
properties of solutions.

Proof. We first note that E is an invariant region for (14.34). Indeed, if e.g.,
v = (1, 0, ... , 0), then H,,, v = ht, and on, say u = b1, we have (suppressing t)

h1(h1,u21 ...IU)=f1+01,U2,...,U,),
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if 1 E a,y. But f1 (h,, u2..... u") S 0, since E is invariant for (14.27). Similarly.
14a,,,.Thus v(t)EEfor all tz0.

Now let w = (w,, w2, .. , w,J, where

wt =
tli - vi, if i E 9,t,

Vi - Ill, if i 4 am,

and put G(w. t) = (g,(w, t).... , g"(w, t)), where

f (u, t) - hi(v, t) if i E 0M'
gt(w, t) ==

hj(v, t) - JJ(u, t), if i t am.

Observe that g, is actually a function of w and t since tit = w, + v; if i E aM,
while tli = vi - w; if i 0 am, and v, = vt(t). Also w satisfies the equation

w, = DV 2w + G(w, t), (x. t) e Q x R,,

the homogeneous Neumann boundary conditions, 0 on r3Q x R.. ,

and by construction. the (componentwise) inequality w(x, 0) < 0. x e fl.
We shall prove that w(x, t) < 0 in Q x R+ ; this is equivalent to (14.36).

To do this, we shall show that G doesn't point out of the " negative " orthant
in R" (i.e., the set wt < 0, i = 1, 2, ... , n), and then apply Theorem 14.11.
Thus, we must show that

g,(w. t) < 0, whenever w, = 0 and w; < 0, j i.

We assume that i c- a,,,; if i 0 am. the proof is similar. Now since w, = 0.
we have u, = ut, and

t) = t) - 11,(v, t) = .f(u, t) - A, (V, t)
5 j+ (u,, .. , tit, .. , u", () - f,+(v,, .. , ut- 1, ut, v,+ 1 ... , V", t).

Suppose that 1 E aM and 1 * i ; then by definition off, `.

1'*(111 , u2, ... t) 5 f +(c i, u2, ... , u t), (14.37)

since u, S v, and f,+ is nondecreasing in its first argument (1 a aM). If now
10 am, then w1 = v, - u, 5 0 and f + is again nonincreasing in its first
argument, so (14.37) holds as before. Continuing in this way for every j 0 i,
we find

jt+(tl,.... uj- 1 uj... . ut.... , a", t)

- f «(u1 ... , G)- 1, v j.... , t/,, ... , U", t).

It follows easily from this that ,g,{w, t) < 0. The proof is complete. 0
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We shall now apply this theorem to some systems which arise in the
mathematical theory of population dynamics. or, as it is often called, mathe-
matical ecology. These equations will actually be studied in §E from a more
general point of view. Our goal here is merely to illustrate the comparison
theorem.

EXAMPLE I (Predator-Prey Equations). We investigate the two species
predator-prey interaction, where we assume that both species are con-
tinuously distributed throughout a region a and are undergoing diffusion.
The equations we consider are of the form

u, = aAu + uM(u. v).

v, = fAv + vN(u, v). (14.38)

where (x, t) e 11 x R+ . Here u and v denote the population densities of the
prey and predator, respectively, and the functions M and N are their corres-
ponding growth rates. The predator-prey interaction is defined by the
following conditions :

M1, < 0, N. > 0,

which merely state that the prey growth rate M decreases as the predator
population increases, and that an increase in prey is favorable for the growth
rate N of the predator. As a specific example, we may take

M(u,v)= -(u-d)(u- 1)-cv and N(u,v)= -u - av+ cu.

where 0 < d < 1, and c, a, and p are positive constants with d < u/c < 1.
We depict the zero sets of M and N in Figure 14.8. Note that (14.38) admits
arbitrarily large bounded invariant rectangles in the positive quadrant
UZ0,vZ0.

M=O

Figure 14.8
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Together with initial conditions

u(x. 0) = uo(x), v(x. 0) = z'o(x), x e Q (14.39)

we assume that the system satisfies homogeneous Neumann boundary
conditions

du dv

do do =
0 on c52 x R+, (14.40)

where d/dn denotes differentiation in the outward normal direction to Q.
This no flux" condition is quite reasonable from an ecological point of
view; namely, one imagines that the species are, say, on an island, or in a
valley surrounded by mountains, from which they cannot escape.

Now the results of §A can be easily extended to initial-boundary-value
problems [CCS]. Thus if uo ? 0 and vo >_ 0, in 52, then the problem (14.38)-
(14.40) has a (unique), globally defined solution (u. v) which satisfies u(x, t) 0
and v(x, t) z 0 for (x, t) E 52 x R+ .

We let E = {(u, v): 0 _< u < a, 0 <_ v < h} be an invariant rectangle, as
depicted in Figure 14.8, and we compute the maximal vector field (uM+,

vN +) relative to T. (see (14.32)). Rather than write these functions out explicitly,
we shall merely sketch the phase plane; see Figure 14.9. If we denote by

(u+, v+) the solution of

u = uM+(u, v), c = vN+(u, v), (u(0), v(0)) = (U. V), (14.41)

where

(U, V) = I sup uo(x). sup (14.42)
\ A f'J

M' =0 M' =0 4=0

Figure 14.9
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then from Theorem 14.16, we have the estimates

0 S u(x, t) <_ u'(t), 0 < tjx, t) < v+(t), (x, t) e lZ x R+ . (14.43)

These enable us to conclude qualitative information as regards the solution
(u, v). For example, if uo(x) < d for all x e 0, then we see from Figure 14.9,
that (u+(t), v+(r)) tends to (0, 0) as t - + -o, whence, the same is true of (u, v),
uniformly in x.s Furthermore, it is easy to see that the shaded rectangle R,
in Figure 14.9, is a global attractor for all solutions of (14.38)-(14.40) in the
sense that given any neighborhood of R, there is a T > 0 such that if t > T,
(u(x, t), v(x, t)) lies in this neighborhood for all x e ft

EXAMPLE. 2 (Competing-Species Equations). We consider the problem
(14.38)-(14.40) as representing two interacting species in competition with
each other. In this case, we assume the conditions

,M < 0 and N<0.

Moreover, rather than give explicit forms for M and N, we shall only draw
the phase plane of a vector field (uM, vN); sec Figure 14.10(a); we have

N=0

(a)

Figure 14.10

M` = 0 M` = 0

P N' _0

q
+N'=0

r s U

(b)

also sketched the maximal vector field (uM+, vN+) in Figure 14.10(b). As
before we consider the equations (14.41), (14.42), whose solutions we denote
by (u+(t), v+(t)). Then from Theorem 14.16. the estimates (14.43) are valid.
Thus, we see that the shaded region R is a global attractor for all solutions of
(14.38)-(14.40), and that if uo(x) 5 r and vo(x) 5 q for all x e a then (u, v)
-. (0, 0) as t -+ x., uniformly in x. Moreover, if uo(x) 5 r for all x c- 0, then
u(x, t) -+ 0 as r - oo, uniformly in x; this holds since (u+(t), v+(t)) tends to

'This has an interesting ecological interpretation. namely if the initial prey density is too
low, the prey, and thus the predator. must become extinct.
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(0, 0) or (0, q), as t -- oo. Similarly, if vo(x) 5 q for all x E a then v(x, t) 0
as t -+ oo. These last two statements can be interpreted as a weak form of the
"competitive exclusion principle" in mathematical ecology.

EXAMPLE 3 (Symbiosis). This is the last of the classical ecological interactions.
In this case we have the inequalities

M,,>O and

and we can take, as an example, the vector field whose phase plane is depicted
in Figure 14.11. Here the zero sets of M, M+, and M - are all the same, as are
those of N, N+, and N-. Thus if (u+(t), v'(t)) is as above, and (u-(t), v-(t))
is the solution of

u = uM-(u, v), b = vN-(u, v), (u(0), v(0)) = I inf uo(x), inf vo(x)
r r. )I

and uo(x) > 0, vo(x) > 0 for all x e i2, then from Theorem 14.16, we have the
estimates

u-(t) <u(x,1)<-u+(t),

v-(t) 5 v(x. () 5 v}(t),

uniformly in x for t z 0. It follows that (see Figure 14.11)

p Z F IM- t) Z rim u(x, t) >_ p,
r- co r_m

so that u(x, r) -+ p, uniformly in x as t -+ oo. Similarly, r) - gjjL (n) - 0 as
r -+ oo. Thus, this two-species symbiotic interaction eventually settles down
to a uniform state, and the ratio of the two population densities becomes
constant.

Figure 14.11
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§D. Decay to Spatially Homogeneous Solutions

For a given system of reaction-diffusion equations. say (14.1). there is
associated with it the system of ordinary differential equations

du
dt = f M. (14.44)

all of whose solutions are, of course, spatially homogeneous solutions of
(14.1). If (14.1) is defined on a bounded domain 0, and if solutions are re-
quired to satisfy homogeneous Neumann boundary conditions (du/dn

V u n = 0, where o denotes the outer normal on 00), then solutions of
(14.44) even satisfy the boundary conditions. Under suitable circumstances,
it might be reasonable to assume that it does not vary too much from point
to point in space, and that transport processes can be ignored. In this case
one might hope that the full set of equations could be replaced by (14.44).
This is often referred to in the biological and chemical literature as the
"lumped parameter assumption." Of course, this assumption cannot always
be valid; for example. if (14.1) admits nonconstant steady-state solutions
then (14.44) would certainly not be a good approximation to the full system.
Our goal in this section is to give a clear understanding of when, and in what
sense the lumped parameter assumption is valid. We shall be concerned with
the questions: When do solutions of (14.1) decay as t x to spatially
homogeneous (independent of x) solutions? and, how are these solutions
related to solutions of (14.44)? That we are able to give precise mathematical
answers to these questions depends on the existence of a bounded invariant
region.

Thus for simplicity, we consider the system (14.1), where we assume that
D is a constant, positive definite matrix, together with homogeneous Neumann
boundary conditions

du

dll
= 0 on i3Q x R+. (14.45)

We assume that (14.1) admits a bounded invariant region E, and we define
a parameter a by

a=ad - M. (14.46)

Here d > 0, is the first nonzero eigenvalue of -A on 0 with homogeneous
Neumann boundary conditions (see Chapter 11, §A), d > 0 is the smallest
eigenvalue of D. and

M =

Thus M < co, since E is compact.
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Our main hypothesis is to assume that a is positive. This will allow us to
study the validity of the lumped parameter assumption. at least for large
values of t. Before we get into the details, we would like to discuss the sig-
nificance of the assumption a > 0. For this, note that we can consider it in
two ways; namely

M M
> or d>

d
A.

In the first case, we can view it as saying that i. is "large." and since :s is in-
vcrsely proportional to the squared diameter of Q (see [CH 1]), we may
interpret a > 0 as saying that the spatial region fl is "small." In the second
case, a > 0 can be looked upon as saying that the diffusion is "strong"
relative to the reaction terms f. In both of these cases, small Q, and big
diffusion, it is reasonable to expect that spatial inhomogeneities are insigni-
ficant and become quickly damped out. The following theorem shows this
indeed to be the case.

Theorem 14.17. Consider the problem (14.1), (14.3) in S2, with boundary data
(14.45). Assume that (14.1) admits a bounded invariant region E. and that
{ uo(x) : x c-01 a E. if a is positive, then there exist constants c; > 0, 1 < i < 4.
such that the following hold for t > 0:

(1j V u(', t) cle o,

(2) ) I u ( ' , t) - u(t)IIi2(n) S c2e where

u(t) = ` Ju(x.z)dt (I0 = measure of Q), (14.47)
n

and a satisfies

dt = f (u) + g(t), a(0) = ICI uo(x) dx. (14.48)

with

(3) I9(t)I < C3e-o,

If D is a diagonal matrix, then (2) may be strengthened to

II u(', t) - u(t)11 i.mcul <_ c4e-°,. (14.49)

Before giving the details of the proof we shall make a few remarks. First,
note that if a > 0, the theorem shows that solutions u of (14.1) decay expo-
nentially fast to their spatial average u. Furthermore, u satisfies an equation,
(14.48). which becomes a better and better approximation to (14.44) as t - oc..



224 14. Systems of Reaction-Diffusion Equations

Thus, if a > 0, we can say that the lumped parameter assumption is valid.
Next, we point out that the proof will show that c; = OQ Vua II L:tnt), 1 < i

< 3. and that c4 = 0(II ouo II Lm(n)), where V (always) denotes the spatial
gradient.

Proof. Let II 'J denote the L2(fl) norm, and define

4(t) = 1 II Vu(-. t) II
2

= Z f <Vu. Vu> dx.
n

Then integrating by parts. and using (14.45). we have

4 = 1 <Vu, Vu,> = f <vu. VDeu> + $ <Vu, Vf>
n n n

= -1 <eu. DAu> + $<Vu. dff(Vu)>: tt

5 -d 1 IDu12 + M f IQu12
n n

S -Ad
J

I Vu 12 + M JVu 2 (by Theorem 11.11)
n

= 2(M -)4)4,(t) _ -2a¢(t).

It follows easily from this that

4(t) < 4'(0)e-tar

and thus (1) is proved. Now let u be the spatial average of it. defined by (14.47).
Then from Theorem 11.11, we have

II !f(, t) - t!(f) II 2 S I` Vu(. t) Ii 2,

and this, in conjunction with (1) gives (2). Next, if v = it, then from (14.45)

Ini
f u, = QJf(u)

f (f(u) -

f (t ) + 9(11
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Now since f is smooth, and E is compact, there is an M, > 0 independent of
t, such that

Ig(t)I < A1,

I

f0') - f (v)1 < A1.11( - VI

S ,w, Ic I-112I1u(',
t) - V(t)IIL,tn),

where we have used the Schwarz inequality. Thus u satisfies (14.48) and (3) is
valid. Finally, if D is a diagonal matrix, D = diag(d,...., d,J, then (14.2) can
be written as

t?u; d 214 + f(u), i = 1, 2, .... n.
Of ` ex '

Since E is a bounded invariant region, each f,(u) is bounded. From a theorem
of Nash this implies that u e C' (x independent of t), and thus by a result of
Schauder. u e C2 +a, so that Ioul is bounded independent oft (see [CHS] for
details). Now take p > max(3, n); then Sobolev's inequality gives for (x, t) e
QxR.,

Iu(x, t) - u(t)IP < u(, t) - it(t)IP + i IV[[,(-. I) - u(t)]I
n

< c
J

it(.. t) - u(t)12 + k $IVu(.. t)I2.
a sl

and this implies (14.49). The proof of the theorem is complete. O

There are several implications we can draw from this theorem. We have
already noted that if a > 0, the solution of the partial differential equations
gets exponentially close to its average, as t -# + c. Furthermore, from a
result of Markus [Ms], it follows that if a > 0, the a)-limit sets6 of solutions
of the partial differential equations coincide with the w-limit sets of the
ordinary differential equation (14.44). Finally, if a > 0. then the theorem
shows that there cannot exist any nonconstant solutions of the (elliptic)
system

Deu + f(u) = 0, xei, (14.50)

with homogeneous Neumann boundary conditions du/dn = 0 on t Q. This
follows since solutions of (14.50) depend only on x, and the theorem implies
that they must tend to solutions independent of x.

6 The &j-limit set of a solution u(x, t) is the intersection over t z 0 of the closure of this
orbit " starting at the point (x, (), with x c a for each x e fl.
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This last remark is in agreement with the examples we have considered
in Chapter 13, §A. Thus, we can consider a scalar equation of the form

duxx+f(u)=0. lxl<L, d>0, (14.51)

with homogeneous Neumann boundary data. If we make the change of
variable Y = d- t x, (14.51) goes over into

Lu+f(u)=0, lYl<
Vd

(14.52)

with the same type of boundary conditions. Now (14.52) is the type of equa-
tion which we have considered in Chapter 13. We have seen there that if the
length of the interval is small, then there are no nonconstant solutions. In
other words, if d is large, or if L is small, there can be only constant solutions
of (14.51), with the given boundary conditions. We now can see that this
particular result is a consequence of our general theorem.

Remark. We close this section by pointing out that the technique which we
used in the proof of (14.49) can be used to obtain derivative estimates for
solutions of (14.2) in the case where D is diagonal, D = (d,, ... , d.), which
satisfy either homogeneous Neumann boundary conditions (14.2), or
homogeneous Dirichlet boundary conditions

u=0 oncQxR,.,

or more general boundary conditions. These estimates will hold provided
we have an a-priori bound on solutions; in particular, they are valid if (14.2)
admits a bounded invariant region.

Thus we consider the single equation, for simplicity in one space variable

w, = dwx + g(u).

Here w = u,, d = d,, g = ff, 1 < i < n. We set v'` = (d/arf w; then v' satisfies
the equation

v, = dvxx + Vg - v.

Since u is bounded, we have as in the proof of the theorem. u e C2+a, with
respect to x, where a and the constant arc independent of t. Thus w, = v' is
in C' so the last equation shows, as before. that if g e C', then v' a C2''a' with
respect to x. where a, and the constant are independent of t. Repeating this
argument, we find that if f e C'-', then vk is bounded and is in C. Going
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back to the equation for w, we see that since v' = w, is bounded, then dwxx is
bounded, so by the usual elliptic estimates, w t= C2' with respect to x, where
oc (not necessarily the same a as above) and the constant are independent of t.
Now differentiating the w equation with respect to t. we find

w = d2wxxxx + dg(w)x.,, + Vg v.

If f E C', then v2 = w is bounded, and we sec that M'xxxx is bounded so
wxx E C2a and so on. Thus, if f e Ck, then (c?Jdt)'w is in Ca'. I < i'5 k, and
U E C2k ". All of the Holder exponents as well as the constants are indepen-
dent of t. In fact, they only depend on the equation, and on E, the bounded
invariant region.

§E. A Lyapunov Function for Contracting Rectangles

In many theorems concerning global existence and stability of solutions, as
well as their asymptotic behavior as t -+ ao, a central role is played by regions
which are contracting for the vector field f (u) in the following sense.

Definition 14.18. A bounded rectangle R (= R" is contracting for the vector
field f (u), if for every point u e R. f (u) n(u) < 0. where n(u) is the outward
pointing normal at u.

Thus R is contracting for f, if and only if the orbits of u' = f(u) cross OR
transversally and enter R in positive time, i.e., R is an "attractor" for the
vector field f. For example, for the Fitz-Hugh-Nagumo equations (Example
2 in §B), Figure 14.5 clearly shows that E is a contracting rectangle.

The importance of contracting rectangles is that they allow us to define
functionals which decrease in time along solutions of the equations (14.2);
i.e., the "flow" defined by (14.2) is "gradient-like" near the boundary of E.

We consider the system (14.2), where D is a diagonal matrix D = diag(dt,
r12, ... , d"), with each d; >_ 0. In view of Corollary 14.8, we may assume that
(14.2) admits contracting rectangles. Thus, let R be a rectangle in R" contain-
ing the origin in its interior, and let be the usual norm on R" defined by
R ; namely,

JuI R = inf{t >_ 0:14 e tR}. (14.53)

Thus, I u I R is the smallest multiple of R which contains the vector u. Next,
we define a continuous functional FR on the bounded continuous functions
by

FR(w) = sup { I w(x)I R : x 6 R}. (14.54)
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The basic result in this section is a quantitative version of the invariant region
theorem, Theorem 14.7. It is given by the following. (Recall that for a function
g : R -+ R, the tipper Dini derivative of g at t is defined by

1)g(t) = g(t + h) - g(t)
lim

lh-0 3

Theorem 14.19. Let f (u) be a vector field on R, and let R be a rectangle with
0 E int(R). Suppose that t) E BCo is a smooth solution of (14.2), for I t - T I
< J. If R is a contracting rectangle.for f(u), then there is an q > 0 such that

DFR(u(-, T)) <
21?

L
(14.55)

where L is the length of the shortest side of R.
Thus (14.55) shows that u(-, t) must lie in a smaller rectangle for T < t < T

+ 8,, for some 8, > 0.

Proof. Let it = (u,, .... un, f = (, f,...... "), and let R be defined by the in-
equalities 1, 5 u; 5 r 1, < 0 < r, i = 1. 2, ... , n. Multiplying R by a scalar
if necessary.' we may assume that T)) = 1. Thus a, S u,(x, T) 5 b,,
for all x. We say that u(x, t) is in the jth right-hand face of R if u,(x. t) = r,.
with a similar definition for the jth left-hand face.

If now u(x, T) E OR, then there is a subset J e 11. 2, ... , n} such that
u(x, T) is in one of the jth faces if and only if j e J. Since R is contracting for f,
there is an q > 0 such that for all it e PR,

.f (u) 11(u) < - q,

where n is the outward-pointing normal at u. If e.g., u(z, T) is in the jth right-
hand face. then u,{x, T) S rt for all x, with equality at x = A. Thus d; c?2u1( ,

T)Jax2 5 0, since T)) = 1. Consequently.

auj = aj t 2uj
t dx2

+ fj(u) < - q,

so that u/,. T + h) < rj - qh for small h. By continuity, this holds for all x
in a neighborhood of z.

If K = {x: u(x, T) E 8R}, then K is compact, and by what we have just
shown, there is an open set U K such that if x E U, and h is small.

u(x, T + h) a (ii - qh] min (rj, l j) -'R.
1Sj5n

' If R is multiplied by the scalar s , then T)) gets multiplied by s ', so the same is
true of DF T)). and L too gets multiplied by s.
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If x 0 U, then u(x, T) is interior to R. so there is a compact set Q c int R,
and an ho > 0 such that u(x. T + h) e Q if I h I < ho for all x. Thus, for suffi-
ciently small h. u(x. T + h) is in (1 - h>)IL)R for all x. and so

FR(u(x. T + h)) S 1 - 2L

Therefore, for all x

FR(u-(x, T + h))_ FR(u(x. T))

It

and this gives (14.55). 0

The result just obtained allows us to prove via Lyapunov's method that
certain solutions tend to constant states, and that under fairly general condi-
tions all solutions tend to "attracting regions" in u-space. Theorem 14.19
can sometimes be used instead of the comparison theorem of §C. It is often
easier to use, and one can conclude qualitative information merely from the
phase portrait of u' = f(u) (which one presumably already knows from the
existence of the invariant regions). It is not necessary to calculate, say, the
"maximal" and "minimal" vector fields. For example, consider the Fitz-
Hugh-Nagumo equations, Example 2 in §B. Referring to Figure 14.5, we sec
that there are arbitrarily large contracting rectangles containing (0, 0). Thus,
we may conclude, from Theorem 14.19, that all solutions, tend, as t - o0, to
the invariant region E as depicted in the figure. In fact, all solutions must
enter the interior of E in finite time. So, in particular, we can conclude at once
that E contains all steady-state solutions; i.e., all solutions of the (elliptic)
system

v + PO - u = 0, 6uxx + tie - yu = 0.

As a second application, we again consider the Fitz-Hugh-Nagumo
equations. and we assume that

- f'(O) >
0

.

Y

Then it is not too hard to construct a family of contracting rectangles about
(0. 0) of the form rR, where R is a rectangle containing (0. 0). and z is small.
If the data curve, (vo(x), uo(x)), lies in the union of these sets, then our theorem
implies that the corresponding solution (v(x. r), u(x, c)) tends to (0, 0) uni-
formly in x as t - x.
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§F. Applications to the Equations of Mathematical Ecology

We shall apply some of our results to a particularly interesting class of
reaction-diffusion equations; namely, the Kolomogorov form of the
equations which describe the classical two-species interaction, where now
diffusion and spatial dependence are taken into account. Thus we consider
the equations

u, = a(u + uM(u, v).

v, = l&v + vN(u. v), (x. t) c- 0 x R+, (14.56)

where 0 is a bounded region in R'", and a >_ 0, Ji >_ 0 are constants. Here u
and v are scalar functions of (x, t). and represent population densities; M
and N are their respective growth rates. We assume M and N to be smooth.

Together with (14.56), we have the initial conditions

(u(x. 0). v(x. 0)) = (uo(x) vo(x)), x E Q. (14.57)

and the homogeneous Neumann boundary conditions

du dv once xR,. (14.58)

It is assumed that both ua and vo are bounded nonnegative smooth
functions.

The boundary conditions (14.58) are to be interpreted as "no flux" con-
ditions; i.e., there is no migration of either species across M. Q is here
considered as the habitat of u and v.

We have had occasion to consider these equations before. in §C. but now
our goal is to study them from a general point of view, and to show how
nicely they fit into theoretical framework which we have developed.

Under minimal hypotheses, we are already able to prove the following
(basic!) result.

Lemma 14.20. For all (x. t) E 0 x R. both u(x, t) >_ 0. and v(x. t) >_ 0.

Proof. Let

E0={(u,v):uz0,vz0);

then 3E0 = (u = 0) u {v = 0). It is clear that the vector field (uM, vN) does
not point out of F0, so our result follows from Theorem 14.11, provided that
uo(x) > 0 and vo(x) > 0 for all x e (1. If either function is allowed to be zero,
then we approximate it by positive functions, and use (14.10) on 0 S t 5 T,
for any preassigned T > 0. Q
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We now consider the three classical ecological interactions; they arc
determined by the signs of the partial derivatives M,, and N. In the predator-
prey interaction, the derivatives are of opposite sign :

foru>O,v>0. (P)

where it denotes the prey density. and v the predator density.
Competition refers to the case when both derivatives are negative:

Apt,, < 0, N,, < 0. foru > O. v > 0. (C)

In symbiosis, both derivatives are positive:

M,>0, for it >0.v > 0. (S)

These are the minimal assumptions which are imposed in virtually all
discussions. However, even in the context of the ordinary differential equa-
tions. (it. b) = (uM, vN), many studies have shown the importance of im-
posing further conditions which reflect an ultimate growth limit of each
species. In other words, there are always present, in any environment,
specific resource limitations which place a definite upper bound on the growth
rates. We shall show that such limits to growth are intimately connected
with pointwise bounds on u and v; i.e- they imply the existence of bounded
invariant regions. Our specific assumptions are as follows. First, we require
that both M and N change sign in u > 0, v > 0. Next, for each of the specific
interactions, we require the following:

Predator-Prey
PL 1. There is a ko > 0 such that M(u, 0) < 0 for all u > ko.
PL 2. There is a function I such that N(u, v) < 0 for all it > 0 and v > l(u).

Competition
CL 1. There is a ko > 0 such that M(u, 0) < 0 for all u > ko.
CL 2. There is a to > 0 such that N(0. v) < 0 for all v > to.

Symbiosis
SL 1. There is a function k such that M(u. v) < 0 for v > 0 and u > k(v).
SL 2. There is a function t such that N(u, v) < 0 for u > 0 and v > l(u).
SL 3. k(v) = o(v) and l(u) = o(u) for large values of their arguments.

These conditions need a little explanation. In the case of PL 1 we are
saying that even when there are no predators (v = 0); i.e., under the most
favorable conditions for u, the environment does not allow growth once the
density exceeds a critical value, ko. Conditions CL 1 and CL 2 are to be
interpreted similarly. In the case of PL 2 we notice that because of condition
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(P) an increase of it represents an enrichment of the environment for v. But
PL 2 insures that no matter what the value of u the growth rate for v becomes
negative once v becomes large enough. Conditions SL 1 and SL 2 are to be
interpreted similarly. Note that all of these assumptions hold for the examples

we have considered in §C.
Now because of the smoothness of N. we see that in all of these cases, there

is a function v = 1(u) such that N(u,1(u)) = 0 for all u > 0,1(u) > 0; hence, for
P and S

Nr(u, 1(u)) + Nju,1(u))l'(u) = 0.

Since N. > 0 in conditions (P) and (S), and since N1,(u,1(u)) < 0 because of
PL 2 and SL 2, it follows that 1'(u) > 0. In a similar way, we see that k'(v) ;?: 0.
This is merely a statement of the fact that in P and S. an increase of it is
advantageous for the growth of v. Similarly, in symbiosis, an increase of v
is advantageous for it. Condition SL 3 requires that this enhancement
diminish for very large values of the densities.

We see then that in each interaction, the following condition is satisfied ;

(L) Limitation to Growth : There are nondecreasing nonnegative func-
tions k = k(v) and 1 = 1(u). such that

(i) if it > k(v), then M(u, v) < 0. and
(ii) if v > 1(u), then N(u, v) < 0.

For example, in the predator-prey case, k(v) = ko and if v > 0, then M(u. v)
< M(u, 0) < 0 if to > ko. In the case of competition. again M(u. v) < M(u, 0)
< 0 if it > k0; similarly, N(u. v) < 0 if v > 1n. Of course (L) is obvious for
symbiosis.

We assume that k and I arc the smallest functions satisfying (L). Now it is
easy to see that in each case, we have either k(v) = o(v) as v . x or 1(u) = o(u)
as u - r*. We make the additional assumption that in every case one or the
other of the following hold for all sufficiently large values of their arguments:

k(v) = 0(v) and 1(u) = o(u). or

k(v) = o(v) and 1(u) = 0(u). (14.59)

Note again that these assumptions hold for the examples we have considered
in §C.

Now we define the set B by

B = f (u. v) : u k(v) and v >_ 1(u)} .

Our assumptions imply that B is an unbounded subset of the positive quad-
rant, having nonvoid interior. The set B need not be connected since the
curves to = k(v) and v = 1(u) can intersect more than once. However, in view
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of (14.59), the set of intersection points. {(u,, v,)}, of these curves must lie in
a bounded. therefore compact set. Let K = max it, and L = max v,. Since
k and I are nondecreasing functions. (K. L) is an intersection point. Let

B. = Bn {(u,v);u > K.c >_ L}.

Then B., is the unique unbounded component of B. In Figures 14.12(a) and
(b) we have sketched examples of for the predator-prey and symbiosis
interactions, respectively.

Bm=B
u = k(v)

(K, L)

ko U

(a)

Figure 14.12

(b)

Now for a > 0 and h > 0. let

E(a.b)={(u,v):05u5a.0<_v<_b}.

Theorem 14.21. If condition (L) holds, and (a. b) e int(B) then E(a, b) is invariant
for (14.56). (14.58).

Proof. If (a, b) e int(B), then a > k(b), so since k' z 0, b z v implies k(b) >_ k(v)
and thus a > k(v). Therefore, by (L), M(a, v) < 0. Thus aM(a, v) < 0 if
0 S v:9 b. Similarly, bN(u, b) < 0 if 0:5 u:5 a. Then Lemma 14.20, together
with Theorem 14.11 imply that L(a, b) is invariant.

Now since uo and vo are bounded and B is unbounded. we can find
(a. b) e int B such that 0 5 uo(x) < a. and 0 < vo(x) < b for all x e Q. Thus
the last theorem implies that 0 < u(x. 1) < a. and 0 S v(x. t) <_ b for all
(x, t) e !Q x R+ . But we can make a much stronger statement (Theorem
14.25). Before doing this. however, we need a few lemmas. Recall that M'
and N+ are defined in equation (14.32), (and preceding).
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Lemma 14.22. If condition (L) holds. then thefunctions M+ and N+ are negative
in the interior of B.

Proof. Let (u, v) E int B ; then u > k(v), and since k is nondecreasing. u > k(O)
if 0 < 0 < v. Hence M(u. 0) < 0 if 0 < 0 < v. so M+(u, v) _ {sup M(u. 0):
0 5 0 5 v} < 0. Similarly, N+(u, v) < 0. D

Lemma 14.23. B is an invariant set ,for the maximal vector field (uM'(u. v).
vN(u. v)).

Proof. Note that 8B is made up of scgments of one of the following types :

(i) a-0,
(ii) v 0.

(iii) v = 1(u), t' > 0.
(iv) u=k(v.k'z0.

Now trajectories of the maximal vector field clearly cannot cross segments
of the type (i) or (ii). Also, in the interior of B, v > 1(u) and N + < 0 (by Lemma
14.22). Thus since N+(u, l(u)) = 0 (by the minimality of I). trajectories of
(uM', vN') starting in B, cannot cross segments of the type (iii). Similarly.
they cannot cross segments of the type (iv). Thus B is invariant for the maximal
vector field. 0

As an immediate corollary of the last two lemmas, we have

Lemma 14.24. Every solution curve of the maximal vector field, which for
t = 0 is in BW, converges to the rest point (K, L).

Now consider any solution of (u, v) of (14.56H14.58). As we have noted
above, we can find a point (a, b) in B. such that

0<uo(x)<a, 05vo(x)<b, xe0.

Now let (u+(t), v'(t)) be the solution of

ii = uM+(u, v), o = vN+(u, v), (u(0), v(0)) = (a. b).

From Lemma 14.24 it follows that

lim(u+(t). v+(t)) = (K, L),

and from Theorem 14.16, as applied to the maximal vector field, we have

u(x. t) < u+(t) and v(x, t) s v+(t).
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Therefore we can conclude that

lim u(x, t) 5 K and lim v(x, t) 5 L. (14.60)

uniformly for x c -Q We have thus proved the following theorem.

Theorem 14.25. Let Q be a bounded domain with smooth boundary, and let M
and N satisfy (L) and one of the conditions (14.59). Then every solution of
(14.56} (14.58) which is initially nonnegative remains so for all t > 0 and
satisfies (14.60).

Thus, in particular, we see that for every s > 0, there is a T > 0 such that
(u(x, t). v(x. t)) lies in E(K + F. L + e) for all x e i2 and all t > T. For the
examples in §C, the E(K, L) arc the shaded regions in Figures 14.9, 14.10, and
14.11. We emphasize that K and L are determined only by the functions M
and N. Thus our result shows clearly the limitation to growth, and in fact
more. Namely, it implies the existence of a global attracting rectangle in
phase space for all positive solutions of the partial differential equations.

Nom
The local existence theorems are classical; see, e.g., [Fn]. We have followed
the rather different approach given by Rauch and Smoller in [RS]. The
notion of invariant region is due to Chueh, Conley and Smoller [CCS], and
independently to Weinberger [Wi], (for scalar diffusion matrices). The neces-
sary conditions for the existence of invariant regions is found in [CCS].

The theorems given here can be easily generalized to equations in several
space variables of a more general form ; e.g.,

u,=Dtu+ A,- +f
axj

with general boundary conditions. Here it is necessary to also require that
dG; be a left eigenvector of each matrix A. The proofs are virtually the same
as those which we have given here; see [CCS]. There are related papers on
invariant regions due, e.g., to Alikakos, [A] 1. 2], Amann [Am 2], Bcbcrnes,
Chueh, and Fulks [BCF], and Kuiper [Kp]. Estimates on derivatives are
obtained in these papers, as well as in [CCS].

The examples in §B are taken from [CCS]. For more detailed studies of
Examples 2. 3, and 4, see [BDG], [RS]. and [Ty], respectively. The observa-
tion concerning equation (14.26) was first made in [CCS].

Theorem 14.16 in §C is due to Gardner [Gd 3] ; it extends earlier work
of Conway and Smoller [CS 3]. See also [FT]. Lemma 14.15 is also found
in [CS 31; the elegant proof given here is due to D. Wagner. The theorem in
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§D is due to Conway, Hoff, and Smoller [CHS] ; see also Othmer [0t) for
earlier, less general, less precise results. The Lyapunov function construction
in §E is due to Rauch and Smollcr [RS]. The material in §F is taken from
Conway and Smoller [CS 5] ; sec also [CS 4]. Related work has been done
by Alikakos in [A] 1, 2]. These papers also contain references to the spatially
homogeneous ecology equations; i.e., the Kolmogoroff form, [Ko], of the
ordinary differential equations is = u?t'!, b = vN. See also [SZ] for the
important early work.

There are many papers devoted to a single reaction-diffusion equation ;
see, e.g., [AW], [FM], and the references therein. For systems of ordinary
differential equations related to the equations studied here, see e.g.. [HM],
[Kop], [H K], [Ty]. For a discussion of the ecology equations from a
biological viewpoint, sec [My], and [Sm]. See also the books [Fi], [Mu], as
well as the paper [AN].

There is a vast literature on pattern formation, stability, and bifurcation
theory, as applied to chemical, biological, and ecological equations; see.
e.g., [Mils;], [MNY], [Mg 1-4], and [Mo].

The notion of an invariant region can be applied to finite difference
approximations. D. Hoff, in [Hof 2], has shown that under the same condi-
tions as we have imposed for differential equations; i.e., the conditions which
imply the existence of invariant regions, the finite-difference approximations
converge to the solution.

For reaction-diffusion equations with nonlinear boundary conditions,
see the papers of Hernandez [Hz 1, 2]. Related work can be found in [CW],
[Gb 4], and [Sk].
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The Theory of Shock Waves





Chapter 15

Discontinuous Solutions of
Conservation Laws

In this chapter we shall begin the study of quasi-linear systems of the form

u, + f W. = 0. (15.1)

where u = (u,,,. . , u.) E R", n z 1, and (x, t) e R x R + . We assume that the
vector-valued function f is C2 in some open subset 12 a R". These equations
are commonly called conservation laws in analogy to the examples of such
systems which arise in physics; see the examples below.

Systems of the form (15.1) arise in the study of nonlinear wave phenomena,
when dissipation effects, such as viscosity, are neglected. It is typical of such
systems that they admit discontinuous solutions; i.e., shock waves, so that
the equation must be understood in some generalized sense. It is our goal
here to develop a rigorous mathematical theory for problems involving these
equations. In this chapter we shall consider some examples and describe
certain phenomena. In the next chapter we will consider the case of a scalar
equation (n = 1), and in the succeeding chapters we will be concerned with
the more interesting, and difficult, case of systems; i.e.. n > 1.

We start by giving some examples of systems of the form (15.1).

EXAMPLE 1. The equations of gas dynamics for an inviscid, non-heat con-
ducting gas in Lagrangian coordinates can be written in the form ([LL])

v, - uX = 0 (conservation of mass),

u, + pX = 0 (conservation of momentum), (15.2)

E, + (up), = 0 (conservation of energy),

where v is the specific volume; v = 1/p and p is the density, u is the velocity,
and E is the specific energy; E = e + u2/2, with e the internal energy. The
pressure p is a given function of e and v, which depends on the particular
gas under consideration; this relation is often called the equation of state.
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EXAMPLF. 2. In Eulerian coordinates, the above equations take the form

p, + (pee),, = 0 (conservation of mass),

(pu), + (put + p) = 0 (conservation of momentum), (15.3)

e)]e)] + [pu(Iu2 + i)]., = 0 (conservation of energy).
r

Here i = e + p/p is the specific enthalpy, and the equation of state is a given
function e = e(v, s), where s is the specific entropy. The pressure p is obtained
from the formula p = e,,. The change of coordinates is given by (h, r) -4 (x, t),
where t = T and h = .fxt I.1) p(s, T) ds; this change takes (15.3) into (15.2) if we
set x = h, t = r in (15.2). Choosing p, u, and s as dependent variables, we can
easily reduce (15.3) to the form (15.1).

EXAMPLE 3 (The p-system). The equations written in Lagrangian coordinates
are

1), - ux = 0, u, + p(V)x = 0. (15.4)

When p(v) =
kv-I (; 1 and k > 0 are constants), the equations (15.4) are

a model for isentropic (= constant entropy) gas dynamics. These equations
arc related to certain second-order equations. Thus, differentiating the first
equation with respect to t and the second with respect to x gives

t',,+r4l,)Xr=0.

On the other hand, in simply connected regions, the first equation in (15.4)
implies the existence of a function 0 such that v = 4x and u = 4,, . The second
equation then becomes

Y'u + p(&)s = 0 + p'(cs)4 = 0.

If p' < 0, this is a nonlinear wave equation where the speed of propagation,
depends on ¢,,. This type of equation has been extensively studied

numerically, beginning with the classical paper of Fermi, Pasta, and Ulam
[FPU].

It is natural to consider the initial-value problem for (15.1); i.e., to find
a solution of (15.1) defined in r > 0, which assumes the given data

u(x, 0) = uo(x), x E R, (15.5)

at time t = 0. If the function uo is smooth, then it is easy to construct a
unique local solution; i.e., a solution defined only for 0 < t < T This
limitation is real, and not due to the techniques used to construct the solu-
tion. Rather, it is a consequence of the nonlinearity of the equations; i.e.,
the dependence off upon u. We shall study this problem in the next section.
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§A. Discontinuous Solutions

We begin with perhaps the simplest example which leads to discontinuous
solutions. Consider the single equation. called the Burgers equation,'

+ 0,
x(u2\

which we can write in the form

(15.6)

u,+uux=0. (15.7)

This equation has the rather remarkable property that the only C:' functions
which satisfy it in t > 0, are those which are monotonically nondecreasing in
x, for each fixed t > 0. To see this, suppose that u is a C' solution in t > 0.
For any point (xo, to), to > 0, we consider the unique solution curve x(t)
which solves

dx

=
u(x, t), x(to) = xn

dt
(15.8)

Along this curve, which is a characteristic curve of (15.7) (cf. Chapter 2),

d dddtx u,=0.

Thus u is constant along characteristics, and from (15.8), we can conclude
that the characteristics have constant slope. In other words, the charac-
teristics are straight lines having speed (i.e., reciprocal of slope) equal to the
value of u along these lines. This shows at once that for each t >- 0, u(x,, t)
< u(x2, t) if x, < x2; otherwise the characteristic lines would meet at some
point in t > 0. But this cannot happen since u is supposedly C' in t > 0.

Thus, if u(x, 0) = uo(x) and u;(.) < 0 for some x, then (15.6) cannot have
a solution defined in all oft > 0. To understand better the obstruction
which prevents the solution from being "globally" defined; i.e., defined in
all of t > 0. let's consider the C'° function uo whose graph is depicted in
Figure 15.1. Here uo(x) = I if x < 0, uo(x) = 0 for x >_ 1 and ua 5 0. We
can sketch the characteristics, (15.8), in Figure 15.2. (For definiteness, sup-
pose that uo(x) = I - x if x e (0, 1].)

I This is really what one might more properly call the "Burgers equation without viscosity":
we use the term "Burgers equation" only for brevity.
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graph of uo

0 1 x

Figure 15.1

Figure 15.2

Consider the region 0 5 t 5 1. In region A, the characteristics have
slope 1 and the solution has the constant value 1; in region C the charac-
teristics have infinite slope, and the solution has the constant value 0. But
in region B, we see that the decrease of u from 1 to 0 takes place over an
x-interval whose length tends to zero as t increases. At the point (1, 1), a
continuous solution is overdetermined, since different characteristics meet
there, and they each carry different values of u. If 0 < to < t1 < t2 < 1,
then the graphs of u(., t) are as depicted in Figure 15.3; the graph of t)
steepens as t increases to 1, max use, t) becomes unbounded, and the curve
"breaks" at t = 1.

More generally, consider the initial-value problem for the scalar u,

u, + f (u), = 0. t > 0; u(x, 0) = uo(x), x e R. (15.9)

We can rewrite the equation as u, + f'(u)u = 0, and consider the charac-
teristics

dt dx_ 1, _ f,(u)
ds ds

r0) (t) (2) u(., 1)

Figure 15.3
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Along such a curve,

= U, + f'(u)U. = 0.
ds =

U' T + U"
Ts

243

Thus, again u is constant along the characteristics. Since the slope of the
characteristic is 1/f'(u), the characteristics are straight lines, having slope
determined by their values at t = 0; i.e., by uo(x). So, if there arc points
XI < x2 with

1 1 _
0 < m1 =

I'(UO(xt)) I'(uo(x:)) - m2,

then the characteristics starting at (x1,0) and (x2,0) will cross in t > 0; cf.
Figure 15.4. Along l;, u(x, t) = uo(x,), i = 1, 2. Thus at P the solution must be
discontinuous. Note that this conclusion is independent of the smoothness
properties off and uo; they can each be analytic, and still we cannot obtain
a globally defined solution. The phenomenon is a purely nonlinear one.

Figure 15.4

We can be a bit more explicit and see analytically that discontinuities
must form if u'0 is negative at some point. Thus, consider (15.9), and assume
that f" > 0. Since the characteristics are straight lines, if (x, t) is any point
with t > 0, we let ).Ix, t) denote the unique point on the x-axis which lies
on the characteristic through (x, t). Since u is constant along characteristics,
and tf'(u) = x - y, we sec that u must implicitly be given by

U(x, t) = uo(x - tf'(u(x, t))).

Now if uo is a differentiable function, then we can invoke the implicit func-
tion theorem and solve this last equation for u, provided that t is sufficiently
small. We find

u f'(u)uo and ux
uo

1 + uof"(u)t x I + uof"(u)t
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Now if uo(x) >_ 0 for all x, then these formulas show that grad u stays bounded
for all t > 0, and the solution u exists for all time. On the other hand, if
uo < 0 at some point, both u., and it, become unbounded when I + uof"(u)t
tends to zero.

Thus, the lesson is clear: if we adhere to the notion that a solution must
be smooth, then we must content ourselves with solutions which exist for
only a finite time. But in several instances in physics, equations of the above
type arise naturally, and "discontinuous" solutions have been considered
(with striking success!). We shall show how to overcome this problem in
§B. But first, one more example.

EXAM1'Le 4 (The Shock Tube and Ricmann's Problem in Gas Dynamics).
Consider a long, thin, cylindrical tube containing a gas separated by a thin
membrane. We assume that the gas is at rest on both sides of the membrane,
but that it is of different constant pressures and densities on each side. At
time t = 0, the membrane is broken, and the problem is to determine the
ensuing motion of the gas. This problem was studied by Riemann in his basic
paper [Ri], and is now known by his name.

Let (u,, p,, p,) and (u p,, p) denote the velocity, density and pressure on
both sides of the membrane. We consider the case where u, = u, = 0,
p, > Pr, pi > p,, and all of these quantities are constant ; see Figure 15.5.

membrane
I

u=0,PPI.PPt U20,P'P.,PPr
Figure 15.5

We are really looking therefore, at the initial-value problem for (15.2), with
initial data

(u, P, P) (X, 0)
(0, Pr, P!), x < 0.

(0, P. , P,), x > 0.

(Note that we take u, p, and p as dependent variables; e and i are functions
of p and p.) We shall consider this problem in detail in Chapters 17 and 18.

The solution can be depicted graphically as in Figure 15.6. We see that
the initial discontinuity breaks up into two discontinuities, the shock wave
and the contact discontinuity; these depend on the data. This is in sharp
distinction from the case of linear equations in which discontinuities
propagate along the characteristics. If we plot, e.g., p as a function of x, for a
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rarefaction wave
solution is a monotone
continuous function
of x;t

u=u,
1

uuI
P=P PP2

contact discontinuity
moving at speed 172

1

rarefied gas r compressed gas
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r r. at speed a,gas in original
state (high pressure) gas in original

u = 0 u r, 0 state (low pressure)
P=Pi P=Pr StP=Pr J P=Pr

x

Figure 15.6

fixed r > 0, we find that p has the form given in Figure 15.7. Notice that in
the "rarefaction-wave" region, the density decreases continuously from p, to
p,. The contact discontinuity is due to the original discontinuity in the data;
it is present in the linear approximations to the equations. The shock wave is
the discontinuity due to the nonlinearities in the equations; it is analogous to
the example which we have discussed for the scalar equations.

The reader will note that we have not yet said in what sense the above
solution satisfies the original equations. This is a nontrivial problem since
a discontinuous function cannot be differentiable. Fortunately, the equations
are in "divergence" form; i.e., of the form (15.1), which can be written as
div[u, j(u)] = 0. This allows us to extend the notion of "weak" solution
(cf. Chapter 7, §A) to these nonlinear equations. This will be discussed in
the next section.

P=PA P=P2

P = P

r--PPr
0 1721

Figure 15.7
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§B. Weak Solutions of Conservation Laws

We shall generalize the notion of solution for equations of the form (15.1).
Thus, consider the initial-value problem for (15.1) in t > 0:

u, + f (u)x = 0, u(x, 0) = u0(x). (15.9)

Let us suppose for the moment, that u is a classical solution of (15.9). Let Ca
be the class of C' functions 0 which vanish outside of a compact subset in
t >- 0, i.e., (spt 0) r (t >- 0) s D, where D is the rectangle 0 5 t < T, a <- x S b,
so chosen that 0 = 0 outside of D, and on the lines t = T, x = a, and x = b;
see Figure 15.8. We multiply (15.9) by ¢ and integrate overt > 0, to get

if (u, + JF)d dx dt =
JJ

(u, + fx)4' dx dt =
J

6J T (u, + fx)o dx dr = 0.
0 0

Figure 15.8

Now integrating by parts gives

T b

J
u,4 udi dx -

J J
utb, dx dt

J0 a t=0 a 0

rb
b T

=
J

- UO(x)(b(x, 0) dx - j j u4, dx dt,
a a 0

and

f0
fa fxOdx dt = f

0
f4)

Thus we finally obtain

x-b T b

dt - f , fcx dx dt.
x=a 0 a

ff(u4, + f (u%) dx do + u0o dx = 0. (15.10)
r 0tao
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We have shown that if u is a classical solution of (15.9), then (15.10) holds
for all 0 e Co. But (15.10) makes perfectly good sense if u and uo are merely
bounded and measurable. We are thus led to the following definition of a
solution of (15.9).

Definition 15.1. A bounded measurable function u(x, t) is called a weak
solution of the initial-value problem (15.9) with bounded and measurable
initial data uo, provided that (15.10) holds for all 0 e C.

Henceforth, we shall drop the word "weak" when speaking of solutions,
but we shall always mean solutions in the sense of Definition 15.1.

Note that if (15.10) holds for all 0 e CO, then if a happens to be C', u is a
classical solution of (15.9). This is easy to see, since if 0 has support in t > 0,
then we may integrate (15.10) by parts and get for all such 0,

if (11, + fx)4, = 0.
r>0

so that u, + f (u), = 0. If now 0 e C. we can multiply this last equation by
4, and integrate by parts over D to obtain

if (u4, + f (u)¢x) dx dt +
J

u(x, 0)4,(x, 0) dx = 0.
+

>o

Comparing this with (15.10) gives

j(u(x.0) - uo(x))4,(x, 0) dx = 0.

d since uo is continuous, the arbitrariness of 0 gives u(x, 0) = uo(x).an
Thus, we have shown that the concept of solution given by Definition 15.1
is a true generalization of the classical notion of solution.

We shall now show that not every discontinuity is permissible; in fact,
the condition (15.10) places severe restrictions on the curves of discontinuity.
To this end, let 1 be a smooth curve across which u has a jump discontinuity;
i.e., u has well-defined limits on both sides of r, and u is smooth away from
r. Let P be any point on r, and let D be a small ball centered at P. We assume
that in D, r is given by x = x(t). Let D1 and D2 be the components of D
which are determined by r; see Figure 15.9. Let ¢ e CI(D); then from
(15.10),

0=JJ(u + f4, )dxdt=Jj'(ua + f) dx di + JJ(ui + f4, )dxdt.
D D, D2
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14

x

Figure 15.9

Now using the fact that u is C` in D., the divergence theorem gives

if (u.0, + fc:) dx dt = if (uO), + (f4)." = IeD. 4)( - u dx + f dt).

Since 0 = 0 on t3D, these line integrals are nonzero only along r. Thus, if
ut = u(x(t) - 0, t), and it, = u(x(t)) + 0, r), then we have

Q

J
0(-u dx + f dt) =

J
4)(-ut dx + f(ut) dt),

rc'D, rQ :

Therefore,

02

J
¢(-u dx + f dt) f ¢(-u, dx + f(u,) dt).

('D. Q,

0 = 1 ¢(- [u] dx + [f(u)] dt),
r

where [u] = u, - u,, the jump across r, and similarly, [f(u)) = f(u,) - f (u,).
Since 4) was arbitrary, we conclude that

s[u] = [f (u)] (15.11)

at each point on r, where s = dxfdt. We call s the speed of the discontinuity,
it is the reciprocal of the slope. We have thus shown that (15.10) implies the
relation (15.11), an equation which ties together the values of u on both sides
of the curve of discontinuity with f and the speed of the discontinuity. Rela-
tion (15.11) is called the jump condition; in gas dynamics it is known as the
Rankine-Hugoniot condition.
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EXAMPLE 5. If we consider the Burgers equation (15.6), we obtain from
(15.11)

slut - u,) = i(ui - u:); (15.12)

whence, since ut « s = (ut + u,)/2. Thus the speed of the discontinuity
is the average of the limiting values on both sides of the discontinuity. We
can use this relation to solve explicitly initial-value problems which are not
classically solvable.

Thus consider the Burgers equation with data

1, x < 0,

u(x, 0) = 1 - x, 0 < x S

0, x> 1.

Using the method of characteristics, we obtain the formula for u given by

1, x<t,
u(x, t) = (1 - x)/(1 - t), t < x 5 1,

0, x> 1,

and we see that this is defined only for t < 1. For t z 1, we use (15.12) with
u,= 1,u,=0, and gets=2; thus if t - 1, we maydefineuby

1, x<I+2(t-1),
0, x> I+2(t-1).

We depict this solution in Figure 15.10.

Figure 15.10
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For a second example, consider the p-system given by equations (15.4).
In this case (15.11) gives

s[v] = - [u], s[uJ = [p(v)J. (15.13)

Since not both [u] = 0 and [v] = 0, we can eliminate s from these equations
to obtain

(ut - 1102 = (VI - v) (P(V,) - p(vl )). (15.14)

This shows that for fixed (v,, u), the possible values (v,, u,) must lie along
the curve given by (15.14). We shall study this curve in Chapter 17, §A.

In our effort to solve initial-value problems which were not solvable
classically, we were led to extend the class of solutions. In doing this, we run
the risk of admitting several solutions and thus of losing uniqueness. That
this anxiety is well-founded follows from the next example.

EXAMPLE 6. Again consider the Burgers equation (15.6) with data

{0, x < 0,
uo(x)

= l
x>0.

The method of characteristics determines the solution everywhere in t > 0
except in the sector 0 < x < t. The following two functions differ precisely
in this sector.

u1(x, t) =
0, x < 0,

u2(x, f) = x/t, 0 < x < t,
1, x>t.

(0, x < t/2,

i1, x > t/2,

It is easy to check that these are both solutions of our problem. It is interesting
to note that u2 is a continuous function. The fact that a continuous solution
can have discontinuous initial values is again a distinct feature of nonlinear
equations; it is the "converse" of the appearance of discontinuities in solu-
tions which were initially continuous.

A rather spectacular example of the loss of uniqueness is given by the
following example.

EXAMPLE 7. Again consider the Burgers equation (15.6), but now with data

uo(x) =
1, x<0,

-1, x>0.1
(15.15)
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For each a >- 1, this problem has a solution u, defined by (cf. Figure 15.11)

uQ(x, t) =

+ 1, 2x < (1 - aft,

-a, (1-a)t<2x<0,
a, 0<2x<(a-1)t,

-1, (a - 1)t < 2x.

(15.16)

Thus the problem (15.6), (15.15) has a continuum of solutions!

Figure 15.11

Now equations of the above form (or more generally, systems of con-
servation laws), arise in the physical sciences and so we must have some
mechanism to pick out the "physically relevant" solution. Thus, we arc
led to impose an a-priori condition on solutions which distinguishes the
"correct " one from the others. In the case of a single equation u, + f(u)x = 0
(n = 1), where f" > 0, we shall show below (in Chapter 16) that there is a
unique solution which satisfies the "entropy" condition

u(x+a, t)-u(x,t) E--- a S a>0, t>0, (15.17)

where E is independent of x, t, and a. This condition implies that if we fix
t > 0, and we let x go from - oo to + :r,, then we can only jump down ; i.e.,
in one direction across a discontinuity-hence the reason for the word
"entropy." If we return to Example 7, then we see that (15.17) is satisfied
only when a = 1; i.e., u, is the distinguished solution; see (15.16).

The condition (15.17) is a bit strange when it is encountered for the first
time. One may ask why should any solution satisfy that. A partial answer to
this question can be given by the following argument, which, in a certain
sense, shows that (15.17) is really quite natural. (A completely rigorous
derivation of (15.17) will be given in the next chapter.)
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Thus, consider the scalar equation u, + f (u).,, = 0. In order to obtain
(15.17), we note that we have already shown that for smooth solutions,
ua > 0, and

u0
ux = 1 +

uof"t.

Thus, if uo = 0, then u,, = 0, and if uo > 0, then

uo _ 1 E
ux <

uo f"t
f"t 5

t

where E = 1/p and µ = inff"; this is (15.17).
This loss of uniqueness has long been recognized in the context of gas

dynamics. Thus, the Rankine-Hugoniot conditions admit "rarefaction"
shocks ; i.e., discontinuities across which the entropy decreases, and of course
these solutions are physically unacceptable.

It is worth noting that as the above examples show, the loss of uniqueness
occurs in the class of piecewise smooth functions. Uniqueness was lost not
because we admitted as solutions functions which were unnecessarily "wild "
from a regularity point of view; it is deeper than that. The "good" and
"bad" shocks are indistinguishable from the point of view of regularity.
Some condition of a qualitative or structural nature is needed to rule out
the undesirable solutions.

If we consider (15.17) again, where f" > 0, then as we have observed, the
jump must always be downward as we increase in x ; i.e., u, > u,. If we write
the jump condition in the form

s
f(ur) - .f(u,,) = f"(),

u, - ur

where u, > 4 > u then we obtain the entropy inequality

f'(ur) > s > f'(ur). (15.18)

It states that the shock speed is intermediate to the characteristic speeds on
both sides of the shock. It is this condition which we will later generalize to
systems.

As we have just seen, our notion of solution forced us to radically alter
our approach to the uniqueness question. We must expect other difficulties
as well. This will be illustrated in the next two examples.
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EXAMPLE 8. Observe that a smooth solution of u, + uu = 0 also satisfies
both of the following equations:

2 U3
u,

+ \t2 /: = 0 and
1

/, + \ 3 l x
0.

But this is not true for discontinuous solutions. To see this, note that the first
one satisfies the jump relation s(u, - u,) = (uJ - u,)/2, or s = (u, + u,)(2.
The second satisfies the equation s = 2(u; + u,u, + u,)/3(u, + u,). Since
these are obviously different, the same is true of the class of discontinuous
solutions.

Thus, one and the same differential equation can be written in two different
divergence forms, each of which has a different set of (weak) solutions. The
only possible reaction to this is to give up the idea of the differential equation
being something basic, and to relegate it to a subsidiary role. The starting
point of discussion must be a particular divergence expression; this choice
will be decided upon by extraneous conditions. In the applications to physics,
the choice will be unambiguous, since the particular set of equations will
follow from integral conservation laws ; e.g., the conservation of mass, energy,
etc.

The next example shows that (weak) solutions are not preserved under
smooth nonlinear transformations of the equations.

EXAMPLE: 9. We consider the single equation u, + f (u) = 0, where f" > 0.
The nonlinear transformation u - v = f'(u) maps smooth solutions of this
equation into smooth solutions of the Burgers equation, v, + vvx = 0. But
it does not map discontinuous solutions into themselves. This again follows
from the jump condition. The original equation implies

f(u,) - f(u,)S =

while the transformed equation yields

v, + v, f'(u,) + f'(u.)s=
2

= 2

Since these two values are generally unequal, we sec that if u satisfies the
original equation, v = f(u) is generally not a solution of the Burgers equation.

Again this phenomenon has long been recognized in the context of gas
dynamics. By elementary calculations, one can derive a new set of equations
which has the same smooth solutions as does (15.2); see, e.g., equation (18.3)'.
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However, one of these equations is S, = 0, where S is the entropy. The jump
relations would thus yield S, - S. = 0; i.e., the entropy would be preserved
across a shock. However, it is well known that the entropy must increase
across a shock, as follows from the original equations. This precise point was
the flaw in Riemann's discussion of the shock-tube problem. It was not
clarified until several years later.

§C. Evolutionary Systems

In studying time-dependent processes, we frequently consider the initial-
value problem. We shall call a system of differential equations an evolutionary
system if the initial-value problem is well-posed; i.e., if the solution in any
compact subset oft > 0 depends continuously on its initial values in the
L,,,-norm.

We begin by considering two classes of linear systems with constant
coefficients

it, = Aug, (15.19)

and

U, = Au, + Bu, (15.20)

where u = u(x, t) a R", x e R and t >t 0. Here A and B are constant n x n
matrices. We arc interested in studying the evolutionary character of these
systems. To this end, we shall check the correctness of the initial-value prob-
lem in the class of plane wave solutions; i.e., solutions of the form

u(x, t) = Se'(At '"x1, (15.21)

where S is a constant n-vector. We shall assume that the initial values u(x, 0)
= 5e'" are bounded ; this forces p to be real.

We shall first consider the system (15.19). Substituting (15.21) in (15.19)
gives the equation pA4 = so that Alp is an eigenvalue of A; say A/p
= a + ib. Then

u(x. t) = t;e'"t'

and so I u(x, t) = Iu(x, 0)1e-"bt. Thus if b 0, we could choose N
and It = (-2N log N)f b, to get

max I u(x, 0) = N, while max 1 ul x, l \



§C. Evolutionary Systems 255

Thus in order that the solution depend continuously on the data, we must
take b = 0; this forces A to have real eigenvalues. In this case, we call the
system (15.19) weakly hyperbolic. If in addition the eigenvalues of A are
distinct, we say that (15.19) is a hyperbolic system.

Now let's turn our attention to (15.20). If we substitute (15.21) into (15.20),
we find that

i2 = i/A - p2Bt,

so that it/p2 is an cigenvalue of (if p) A - B. Since the eigenvalues of a matrix
depend continuously upon the coefficients, we see that

z=c+id+r(p)+is(p),

where c + id is an cigenvalue of B, and r2 + s2 -p 0 as Ip I - oc. This gives

lu(x,t)I =

Hence, if c < 0, we will again get magnification for large u and the system
will not be evolutionary. We thus assume that the eigenvalues of B have
nonnegativc real parts; if c = 0 then the correctness will be determined by
the properties of A too, and not just those of B.

If we now consider the quasi-linear systems

u, + J'(u)s = 0 and u, + f (u). = (B(u)ux)s,

then we shall require that the matrix df(u) has real and distinct eigenvalues
for every u in the domain in question, and we shall call the first equation a
hyperbolic system. Similarly, we shall require that B(u) have eigenvalues with
nonncgative real parts. In this case we shall call the second equation a
parabolic system.

EXAMPLE 10. We consider the gas dynamics equations in Eulerian coordi-
nates (15.3). The first two equations can easily be shown to be equivalent to

pr + ups + pux = 0,

u,+uux+PPx=0.

Using these equations in the third equation of (15.3) we obtain

S,+us,, =0.
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(To do this, we use the thermodynamic relation p = -e,., where e = e(v, s)
is the equation of state, and p = t:-'.) Then using px = e,.,,v2px - e,,3sx, we

can finally write our equations in the form U, + A(U)UX = 0, where U =
(p, u, s) and

u p 0

A(U) = e,., p-`

0 0 u

The characteristic polynomial for A is

O(A) = (u - A)[(u - J.)2 - p-'ert,].

Now it is a thermodynamical requirement that p,. < 0. Accordingly, since
e,t, = - p, > 0, we see that 0 has real and distinct roots, and thus the system
is hyperbolic.

EXAMPLE 11. We consider the equations of gas dynamics for a viscous, heat
conducting fluid in Eulerian coordinates. They take the form

Pr + (ptu)x = 0,

(pu), + (put + P)x = (15.22)

r 2

+ = /Oux)x + KT...I p(t2 + e)]i + [p,,(u'
L \

where T is the temperature. We are assuming that the viscosity coefficient p,
and the thermal conductivity coefia'icient K are both positive constants. If we
take as dependent variables p, u, and T, and note that both e and i arc
functions of p and T, then the matrix multiplying (p, u, T).., is

0 0 0

B= 0 p 0

0 /I u h

which has 0, p and K as eigenvalues. Thus the system (15.22) is parabolic
according to our definition.

With these notions established in our minds, we shall now consider a
different approach to the study of conservation laws; this approach being
motivated by physical considerations. Thus, hyperbolic conservation laws
often arise in models of physical processes which ignore the effects of various
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dissipative (and dispersive) mechanisms. In models at the next level of exact-
ness, these mechanisms make their appearance felt by the presence of higher-
order derivatives in the equations multiplied by small coefficients called
viscosity coefficients, in analogy with gas dynamics. The consistency of the
models would then demand that solutions of the two sets of equations be
"close" in some sense, and in the limit, as the viscosity coefficients tend to
zero, the solutions of the higher-order equations should converge to the
solution of the system of first-order conservation laws. The protypical
example is of course gas dynamics, where equations (15.3) are the hyperbolic
system, and (15.22) is the higher-order parabolic system.

These ideas can be carried one step further ; namely, we can try and obtain
the existence of solutions for the hyperbolic equations as limits of solutions of
"some" system of parabolic equations as the viscosity coefficients tend to
zero. This technique is usually called the viscosity method. Presumably the
parabolic system has smooth solutions2 so that these should be easier to
construct, but the more difficult problem is to obtain estimates independent
of the viscosity coefficients, so as to allow the passage to the limit. There are
some results on the existence of solutions of the parabolic system,' but the
viscosity method has been shown to work only in the case of a single equa-
tion [0 1]; no such theorem has been proved for general systems at the date
of this writing (Spring, 1982).4

But we can consider the viscosity method at a simple lower level, in what
we may call a "first approximation." Thus, consider the nonlinear systems

u, + f (u) = 0, (15.23)

and

it, + f M. = eBuxx, e > 0, (15.24)

where in both cases, it = u(x, t) E R", and both systems are assumed to be
evolutionary. Thus df(u) has only real and distinct eigenvalucs, and the
constant matrix B has eigenvalues with positive real parts. We shall refer to
B as a "viscosity" matrix. We want solutions of (15.23) to be obtainable as
limits of solutions of (15.24) as c 0. We shall find necessary conditions for
this to be true.

Consider a small neighborhood N of a point p on a discontinuity x = x(t)
of (15.23). Let s = x'(tr,), and note that if N is small, we can assume that as a
first approximation, the solution of (15.23) is constant on rays of the form
x - st = const. It is thus natural to expect that solutions of (15.24) also

2 However, if the initial data is not smooth, the solution may not be smooth; see [HS], where
it is shown that for the equations of gas dynamics, initial discontinuities in the density persist for

all positive time.
'See [NS 3].
4 Sec however the interesting paper of DiPerna [6].
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depend only on x - st in N. Such solutions are called travelling wove solu-
tions. Thus, if = x - st and u = u(g) is to be a solution of (15.24), we
substitute this in (15.24) to get the ordinary differential equation

-sit' + f (u), = sBti' (15.25)

where the solutions of this equation depend on a and B. Now we fix B and
make the dependence on a explicit by writing u = u(5 ; e). If we change
variables in (15.25) by writing we get

d
(15.26)

dCl'

and so u( ; e) = u(/e; 1) = u(1; 1). Thus as a changes, the solution curve
remains invariant, and only the parametrization changes. Now we can
integrate (15.26) once to obtain the equation

- sit + J '(u) + c = Bit', (15.27)

where c is a constant. But if we assume that solutions of this equation tend
to the given discontinuity (ti,, u,) (at p), we must have

lim u(;; 1) = u, and lim it(;; 1) = u (15.28)
4--'0 C_ +,X.

since . I -- cc is equivalent to e - 0, and 5 < 0 ifI x - st < 0, while C > 0
if x - st > 0. Thus, from (15.27), we see that u, and u, must both be rest
points 5 of (15.27). Since it, is a rest point, c = sit, - f (u,) and (15.27) becomes

Bu' = - s(u - u) + f (u) - flu,). (15.29)

In view of the jump conditions (15.11). we see that the right-hand side of
(15.29) also vanishes at u, !

Thus we have both (15.28) and (15.29); our object is to see what this implies
about the limiting solution. The interesting thing which we shall show is that
not all solutions of (15.23) can be obtained this way ; in other words, the
"viscosity method" imposes an extra condition on solutions of (15.23). It is
presumably a way of finding the "physically relevant" or unique solution.
We shall examine this now in the context of a single equation ; in Chapter 24,
we shall study the general case of systems.

I If x(t) is a solution of :k = 4'(x), and lime.,,, x(t) = xo a R". then if #(xo) 16 0, the flow takes
small neighborhoods U of xo into a neighborhood disjoint from U. If x(t) ever got into U, then
it must leave U in later time. Thus 4(xo) - 0.
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Thus suppose u(5) E R is a solution of

u' = - s(u - u,) + .f (u) - .f (ur)

259

subject to the boundary conditions (15.28). We assume first that it, > u,.
Since 0(u,) = cp(u,) = 0. the uniqueness theorem for ordinary differential
equations shows that the graph of u(C) cannot cross the lines u = u, and
u = It,. Thus it, > It, for all Uniqueness considerations again rule
out 0(u) = 0 for any u between u, and u for in such a case, the line u = u
would prevent u() from decreasing to u,. Thus ¢,(u) < 0 if It, > u > u,. It
follows easily from this that 0'(u,) > 0 >- 4'(u,), and thus f'(u,) - s ? 0
Z f'(u,) - s. Hence, discontinuities which are limits of parabolic equations
satisfy

f'(u,) > s > f'(u,). (15.30)

(If u, > u,, the same conclusion would follow.) Notice that this is like the
previously mentioned entropy inequality (15.18). Observe that (15.30) is
slightly weaker than (15.18), but on the other hand we did not assume
f~z0.

EXAMPLE 6 (revisited). We examine the solution ut, and compute f'(u,)
f'(0) < I = s < I = f'(1) - f'(u,). Thus (15.30) doesn't hold, and we con-
clude that it, is not the limit of travelling wave solutions of u, + (u2j2),, =
Euxx as a - 0.

The situation hinted at by the above arguments is indeed valid, at least in
the case of a single equation. Indeed, O. A. Oleinik [0 1] showed that for
every bounded and measurable initial function, there is a unique smooth
solution of the parabolic equation defined for all t > 0, and as r. -+ 0, the
solution converges to a solution of the scalar conservation law obeying the
entropy condition (15.17). This program has not yet been carried out for
systems.

§D. The Shock Inequalities

The purpose of this section is to derive an analogue of (15.18) for systems of
conservation laws. In order to see how to do this, we begin with a scalar
linear equation in a quarter plane

u,+aux=0, x>0, t>0,

where a is a constant. We suppose that we are given the initial conditions
u(x, 0) in x >_ 0, and the boundary conditions u(0. r) in t >- 0. We ask to what
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extent do these values determine it in the full quarter plane? It is clear that it
must be constant along the lines x - at = const. Now if a < 0, it is determined

along x = 0 by its initial values (see Figure 15.12(a)). Thus in this case, no
boundary conditions can be given. On the other hand, if a > 0, we see from
Figure 15.12(b), that the boundary conditions along x = 0 must be given in
order to determine u in the entire quarter plane.

(a) (b)

Figure 15.12

Next, suppose that we have a hyperbolic system in the quarter plane
x>0,t>0:

u,+Aux=0, UER",

where A is a constant n x n matrix with eigenvalues J, t < . . . < ik < 0
< k+, < < 2". Let P be a nonsingular matrix such that P-'AP = diag
(). 1, ... , A") = A. If v = P - 'u, then v, + Aux = 0. so that the system de-
couples into n scalar equations vi + i,vX = 0, i = 1, 2, ... , n. Thus if i < k,
A, < 0, and v`(0, t) is determined by the initial data. If i > k, A, > 0 and we
must specify v1(0, t), i = k + 1,... , n. Now each v' is a linear combination of
the u,'s, so we see that we must specify (it - k) conditions on the components
of it on the boundary x = 0.

More generally, if we don't have a quarter plane problem, but instead we
have a boundary which moves with speed s (s = 0 for the quarter plane prob-
lem) and if A, < < Ak < s < Ak+ t < . < A", then we must give (n - k)
boundary conditions, in order to specify the solution in the region x - sr > 0,
t>0.

Now if instead of a boundary, we have a discontinuity of the hyperbolic
system of conservation laws (15.1), these remarks can easily be extended.
Thus let i,(u) < ... < 7.,,(u) be the eigenvalucs of dT and let u, and u re-
spectively, be the values of u on the left and right sides of the discontinuity
which moves with speed s. Suppose that

/.k(!!r) < $ < t(ur)
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Then from the above reasoning, we should specify (n - k) conditions on the
right boundary of the discontinuity. Similarly, looking at the left boundary, if

AAIl,) < s < )j., 1(u,),

we must specify j conditions on the left boundary of the discontinuity. Now
the jump conditions slur - u,) = f(u) - f(u,), (see (15.1 1)), are n equations
connecting the values on both sides of the discontinuity with s. But since
u, - it, * 0, we can eliminates from these equations, to get (n - 1) equations
(or (n - 1) conditions) between u, and u,. Thus we should require

(n-k)+j=n-1 or j=k-1.
In view of these considerations, we should admit a discontinuity (u,, u,: s)
provided that for some index k, 1 5 k 5 n, the following inequalities hold:

A (ur) < S < A ., 1(ur),

k- 1(u,) < S < Ak(u,)
(15.31)

We shall call such a discontinuity a k-shock wave, or simply, a k-shock. The
inequalities (15.31) will be called the entropy inequalities, or the (Lax) shock
conditions.

Notice that if n = 1, then i.(u) = f'(u) and the conditions (15.31) reduce
to f'(u1) > s > f'(u,), our previously obtained condition (15.18).

We can go one step further by rewriting (15.31) in the form

k(ur) < s < ik(u,),

k- 1(u) < s < Ak+ I(ur)

This shows that for one and only one index k is the shock speed s intermediate
to the characteristic speeds 2k on both sides of the shock. Actually (15.31) is
a type of stability condition since it persists under small perturbations. In
Chapter 17, we shall see that (15.31), when applied to the gas dynamics
equations (15.2), is equivalent to the fact that the entropy S increases across
the shock wave. The conditions (15.31) will also be useful in constructing a
general theory of shock waves, as well as in obtaining shock waves as limits
of travelling waves for systems. These will be discussed in later chapters.

§E. Irreversibility

Physical processes described by smooth solutions of hyperbolic equations
are generally reversible in time: if we know the solution at one time, we can
obtain the solution in the past as well as in the future. However, if the process
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is described by discontinuous solutions, then there is a high degree of irrever-

sibility. This is not surprising if we believe that solutions of hyperbolic
equations are obtainable as limits of solutions of parabolic equations, since
it is known that for these latter equations, the "backwards" problem is not
well-posed. Namely, the transformation t -+ - t does not leave theequations

invariant.
Physically speaking, in the context of gas dynamics, this irreversibility

has long been recognized ; entropy increases across a shock, and hence in-
formation, the reciprocal of entropy, is lost. We cannot tell what initiated an
explosion just from watching the particles blow up.

We shall illustrate this mathematically by means of a simple example.
For 0 5 e S 1, we define u5(x, t) to be a solution of the equation

uzu,+
2

=0;
x

namely for t < E, we set

u,(x, t) _

while for t > E we define

1 , x <r -c12,

x - s/2
t - E/2 < x < F/2,

f - E

0, x > s/2,

u5(x, r) =
(1, x < t/2,

0, x > t/2-

The u6 are depicted in Figure 15.13. It is easy to check that they arc all
solutions; moreover, each it, satisfies the entropy condition (15.18). Thus

E=0

x E

E I

Figure 15.13
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they are all "correct" solutions. The point that we wish to emphasize here
is that all of these solutions coincide at t = 1 :

u6(x. 1) =
(1, x<2.

0, x>1.

At t = 1, we know that a shock has formed. We don't know when it was
formed, nor can we even say how it was formed.

We emphasize again that all of these solutions are the "right" ones, in
that they belong to the class of solutions, which, as we shall prove in the next
chapter, are uniquely determined by their initial values. But this uniqueness
is only in the direction of increasing t. Two solutions in this class which
agree at t = to must be equal for all t > to, but need not be equal fort < to.
It is in this strong sense that solutions of conservation laws are irreversible.

In the next chapter we shall give a more precise mathematical statement
of irreversibility. There we will show that the operator

T,: L -' L';, t > 0,

defined by u is the unique solution having data uo, is a
compact operator. Thus T-' is not continuous: small changes in the solution
at to > 0 can produce large changes fort < to. In other words, the backwards
problem is not well-posed.

NOTES

The rigorous mathematical theory of conservation laws dates from the 1950
paper of E. Hopf [Hf 2]. This was followed by a series of papers by 0. Oleinik
(culminating in [0 1]), together with the paper of P. Lax [Lx 2]. The theory
of discontinuous solutions had to wait until the notions of weak solutions
and distributions became familiar. Of course, much important work had
been done prior to this by the fluid dynamicists beginning in the nineteenth
century. An excellent survey of the field up to 1948 is the classical book of
Courant and Friedrichs [CF]; see also [Nn 1].

During the Second World War, the invention of planes capable of exceed-
ing the speed of sound created a need for a better theoretical understanding
of shock phenomena and the gas dynamics equations. Many "pure" mathe-
maticians become attracted to this field, among whom we mention, J. von
Neumann [Nn 1] and H. Weyl [Wy]. In the 1950s, nonlinear wave phenom-
ena caught the attention of theoretical physicists; see, e.g., the classical paper
of Fermi, Pasta, and Ulam [FPU].

The problem of turbulence has always held an attraction for mathemati-
cians. The equation (15.6) studied by Burgers in [Bu], was considered to be
a model for turbulence and was the one studied by Hopf in [Hf 2]. He con-
sidered the equation with viscosity, u, + uu = OuX=, and showed that the
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transformation u = takes this into the linear heat equation v, =
see also Cole, [Co]. This remarkable fact enabled Hopf to completely

analyze the equation.
The shock tube problem was considered in the pioneering paper of

Riemann [Ri]. The ideas in that paper laid the foundation for the theoretical
work in gas dynamics. Riemann's solution of the problem contains a flaw,
namely, he used the equation S, = 0, where S denotes the entropy. As we
have noted, this equation is formally derivable from the equations for the
conservation of mass, momentum, and energy, but is not valid in the presence
of shock waves. The notion of entropy was not fully understood in Riemann's
time. The Rankine-Hugoniot conditions are classical, as is the concept of a
rarefaction shock, i.e.. a discontinuous solution across which the entropy
decreases.

The viscosity method goes back to the earliest mathematical studies
[Hf 2], [L]. A nice discussion is given in the important paper of Gelfand
[Ge]. The equations of gas dynamics, e.g., (15.3), were considered by physi-
cists as being models for the full equations (15.22) (with the dissipation mecha-
nisms present), the reason being that almost nothing could be done (mathe-
matically) with (15.22). There is reason to believe, however, that perhaps the
equations (15.22) are really the "better" equations to consider, in view of
the fact that one can (often) avoid discontinuous solutions.' The equations
(15.22) have recently been considered with great success by the Japanese
school, e.g., Itaya [It], Matsumura and Nishida [MN], following earlier
work of Kanel' [K]; see also the recent paper of Nishida and Smoller [NS 3].

The problem (15.29), (15.28) has long been known to physicists [CF], and
was brought to the attention of the mathematical community by Gelfand in
[Ge]. For the gas dynamics equations, it was considered first by H. Weyl
[Wy], and an elegant solution was given by Gilbarg in [Gi]. More general
results were obtained by Conley-Smoller in [CS 1-5]. The analogous prob-
lem for the equations of magnetohydrodynamics; i.e., the equations for an
ionized gas in a magnetic field, was studied by Germain [Gr], and Conley-
Smoller in [CS 6,8]; see Chapter 24, §B.

The shock inequalities (15.31) are due to Lax [L x 2] ; the corresponding
statements for gas dynamics are classical [CF]. The notion of irreversibility
was known for some time in the setting of gas dynamics; again see [CF].

A nice survey paper, which contains much of the mathematical results up
to about 1962 is [Rz]; see also the book [RY].



Chapter 16

The Single Conservation Law

In this chapter we shall obtain precise mathematical results on the existence
and uniqueness of solutions for a single conservation law. In addition we shall
also study the asymptotic behavior of our constructed solution. The existence
problem will be attacked via a finite-difference method. Thus we shall replace
the given differential equation by a finite-difference approximation depending
on mesh parameters Ax and At. For every such pair (Ax, At) we shall construct
a solution U,x.,, of the finite-difference equation, and we shall then obtain
estimates which enable us to pass to the limit as the mesh parameters tend to
zero in a certain definite way. The estimates which we obtain will be in the
sup-norm and in the total variation-norm of the approximants, both sets of
estimates being independent of the mesh parameters. It is worth noting that
we are forced into obtaining bounds on the variation of the approximants,
rather than (the usually encountered) bounds on derivatives, since the latter
bounds would imply via the standard compactness criteria, that the limit
would be continuous; we know that this is not generally true.

There are at least four other mathematically different approaches to the
existence problem for a scalar conservation law. They are via : (i) calculus of
variations and Hamilton-Jacobi theory; (ii) the viscosity method; (iii) non-
linear semigroup theory;' and (iv) the method of characteristics. All of these
methods are very interesting, and in particular, (iii) is quite elegant. We have
decided to give a proof via finite differences for several reasons. Namely, first
of all, the other methods require rather more sophisticated background than
we have thus far presented. But more importantly, it seems to us that the
finite difference methods are more capable of being generalized to the case of
systems of conservation laws. Indeed, as of this writing (Spring, 1982). the
only way of obtaining existence theorems for systems is via a finite-difference
approach (albeit, a very nonstandard one; sec Chapter 19). Finally, we
believe that more mathematicians should familiarize themselves with finite-
difference techniques, since it forms a powerful and elegant tool in nonlinear
mathematics. in addition to being well-suited for computational purposes.

In [Te 2], Temple has shown that this method cannot work for a broad class of systems in
two dependent variables.
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We shall show that our solution satisfies the entropy inequality (15.17),
and furthermore, that it is the only solution with this property. Thus, the
constructed solution is the "correct" one. The uniqueness proof is really a
nonlinear version of Holmgren's technique (Chapter 5), which in principle is
capable of generalization to systems (see §E, Chapter 20). The entropy
inequality will also be used to study the asymptotic behavior of the solutions
as t tends to infinity. It turns out that if the initial data has compact support,
the solution decays in L1(R), at a specific rate, to a particular type of solution
called an N-wave. We shall also study the decay of solutions having periodic
data.

§A. Existence of an Entropy Solution

We consider the scalar conservation law in a single space variable

u1+f(u)., =0, r>0, xeR, (16.1)

with initial data

u(x, 0) = uo(x), x e R. (16.2)

We shall assume that uo E L.,,(R), and that f" > 0 on the (convex hull of the)
range of uo. We recall from the last chapter that by a solution of (16.1), (16.2)
we mean a locally bounded, and measurable function u(x, (), which satisfies

If (ub, + f (u)Ox) dx dt + 51,0UO0 dx = 0, (16.3)

i>0

for every test function 0 e C. Here is the main theorem of this section.

Theorem 16.1. Let uo e LW(R), and let f e CZ(R) with f" > 0 on {u: Iul
S Iluo 11,J. Then there exists a solution u of (16.1), (16.2) with the following
properties:

(a) I u(x, t)15 II tto II m = M, (x, t) E R x R
(b) There is a constant E > 0, depending only on M, p = min {f"(u):

I u I < 1 1 uo y l . } and A = max { I f'(u) : I u I < 11 uo 1 1 }, such that for
every a>0,t>0,and xER,

u(x + a, t) - u(x, t) E

a I
(16.4)

(c) u is stable and depends continuously on uo in the following sense: If uo,
vo a L,,,,(R) n L1(R) with I{voII s IluoII,,, and v is the corresponding
constructed solution of (16.1) with initial data vo, then for every x1 and
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X2 E R, with x1 <x2,andevery t>0,

267

ss+At
u(x, t) - t'(x, r)I dx <f Iuo(x) - vo(x)I dx. (16.5)

x, - At

Before beginning the proof of this theorem, a few remarks arc in order.
First, note that (16.5) shows that our constructed solution is stable and unique,
but leaves open the possibility of the existence of another solution not
satisfying (16.5). However, as we have remarked earlier, the entropy condition
(16.4) implies uniqueness, as we shall show in the next section. Next, we wish
to point out that property (a) is not valid for systems; indeed, a major
difficulty in the existence of solutions for systems is in obtaining sup-norm
estimates. Next, we call attention to the fact that (16.4) can be viewed as a
regularly theorem, in the sense that it implies that for any t > 0, the solution

t) is of locally bounded total variation. To see this, let c, be a constant
such that c, > E/t, and let v(x, t) = u(x, t) - c 1 x. Then, if a > 0, (16.4) implies
that

v(x+a,t)-v(x,t)=u(x+a,t)-u(x,t)-c,asa1 c1)<0,

so that v is a decreasing function, and thus v has locally bounded total varia-
tion. Since the same holds true for the function c,x, we see that our claim is
valid. Thus, even though the data is merely in Lx, on t = 0, the solution
immediately becomes fairly regular in t > 0. So, for example, we can conclude
that u(-. t) has most a countable number of jump discontinuities, and that it
is differentiable almost everywhere, etc. This striking regularity property of
the solution is, of course, a purely nonlinear phenomenon. On the other
hand, if one accepts that solutions can be constructed via the viscosity
method, then it is not too surprising that the solution is fairly regular since
one knows that solutions of parabolic equations display a high degree of
regularity.

Finally, we observe that (16.5) shows that the solution has a finite speed of
propagation; this follows by setting vo = v - 0 in (16.5).

The proof of our theorem is not easy, and will follow from a series of
lemmas. We begin by defining the difference scheme. Thus, let the upper-half
planet - 0 be covered by agrid r=kh,x=tit, it =0, ±1,±2,...,k=0,1,
2,...,where h=At>0,1=Ax>0.

We consider the following difference approximation to (16.1):

'
+ 1 -1)/2 + j( -1) f(tl:-t) = 0, (16.6)

(uk,

jl 21

defined on our grid, where we are using the notation ue = u(/il, ah). We take a



268 16. The Single Conservation Law

fixed representative of uo, and define

u
(n+1)1!2

j uo(x) dx.
to -1)r!2

Let M = IIuoIIL0,

A = max If'(11)1, (16.7)

and

II'IsM

p = min f"(u). (16.8)
Iul!r.M

Note that both A > 0 and p > 0. We choose the mesh parameters h and I so
that the following stability condition2 holds:

The following lemma is the difference scheme analogue of (a).

Lemma 16.2. For every n e 'L, k e Z. I uk, I < M.

Proof. We write the difference equation (16.6) in the form

(!' 1 2I Milk.. 1) - Put- 01 + Yu.+ + u!-

+ 1 - - 1) + i{un+ 1 + un- 1),
h

2I
./ un

(16.9)

(16.10)

where ©'. is between and ut.. . Then

=(2+2If(O"))

ZIJ( un+l

If we inductively assume I u* M for all n e Z, k e Z+, then (16.9) shows that

2
± 2I f'(B'.) >- 0.

2 This is a classical condition; it implies that the domain of dependence of the difference
equations contains the domain of dependence of the differential equation-the difference
approximants "have all the information."
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Thus

fuk+ 1 ( 5 M(
2 + iIf'(et)) + ,bfG - M.

This proves the lemma. Q
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The next lemma is perhaps the most important one in this chapter. It is
the discrete version of the entropy condition (16.4).

Lemma 16.3 (Entropy Condition). If c = min(p/2, A14M), then for n E Z,
keZ*,

R _ kt!-
.

E

21 le - 2 5 kit,
where E =

1

Proof. Let

R k

Z" 21

then from the difference scheme (16.6),

zn+t = (zl,1 +z,R,-t)+2f(un-1)
h2 _f(u-+1 -3)h

41 41

(16.11)

=z(zA+1+zn-1)- 121Bu--3)-flue-1)J-4I2U(u-+1)-f(u--1)]

3(4.1 + z--1) - 4I2 Lf'(ue-11(ue-3 - U.-1)

+ 2f"(el)(un-1 - un-3)2] - u--0

+ 2f"(92)(ue+1 - u-_1)2],

where B1 is between u,'_ 3 and u,R, _ 1, and 92 is between u.1_ 1 and un+1. We thus
have

1 h l1 1 It

z,R,+1 = 12 + 2jf'(un-1)Jz.1-t +
12

- 21f'(ua-1) z,R,+1

_ 2C(Zk-1)2f"(O)+(Z-+1)2f"(02)]

Define
2. = max{z,R,_1, 0};
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then if Z.1 = 0 for all n, the estimate (16.11) surely holds since z.* < i.*-1 = 0 S
E/kh. We can thus assume that some i.' # 0. Suppose that 2 = z.+1; the case
where zA = Z k_ 1 is treated similarly. Using (16.9), we have

r1 h / {Z^+1<C2+2J+f,(u"-1) z"-1+ 2
2JJ,(u"+1) Z.k-,

- ch[(z,+1)2 + (z,k,-1)2]

ch(z.+1)2,5
[I

+ 2Jf,(u"-`)]z"
+[I

so that

,A+` (16.12)

Now since M (by Lemma 16.4 we have from (16.9). and the fact
that c S A;'4M,

M
zk, S I z"

M
S- Ah < h )(z 4ch'

thus

Let

Mk = max

(16.13)

and notice that Mk z 0. Let 46(y) = y - chy2. Since I - 2chy, 0 is an
increasing function if y 5 l/(2ch). But from (16.13),

zn < Mk
< 4ch 2ch'

so that 0(2!) < O(.Mk), and this gives

- ch(ik,)2 < Mk - ch(Mk)2.

Thus from (16.12), z*'' S Mk - ch(Mk)2 for all n e Z. It follows that

MA+ 1 :5 M - ch(Mk)2.

(16.14)

(16.15)
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We shall show that this implies

Mk 5
ckh ,

Assuming this, we have

k k
1 1_ E

Z. S M 5 ckh + 1/M S
ckh A'
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(16.16)

and this is (16.11). In order to prove (16.16), we proceed by induction. The
case k = 0 is trivial. Thus assume that (16.16) holds; we shall show that it
holds when k is replaced by k + 1. Now from (16.16),

jqk

_ ckh+Mo

so 1 - chMk z 1 - ckhMk >- 1/M° >- 0, and thus 1 - (chMk)2 >- 0. Now from
(16.15),

Mk+t Mk(1 - chMk) so that

Mk+t

1 - chMk
5 Mk 5

1 - (chMk)2'

and thus

Mk+t Mk-
1 + chMk

1

ch + 1/Mk

1

S ch + ckh + 1/M

1

c(k + I)h + 1/M

1

Mk

Thus (16.16) holds for all k, and the proof is complete. 0
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Y4

Figure 16.1

The next lemma shows that the variation of the difference approximants
is locally bounded whenever kh > 0; i.c., in t > 0.

Lemma 16.4 (Space Estimate). For any X > 0 and kh >- a > 0, there is a
constant c depending on M, X and a, but independent of h and 1, such that

Ill., 2 - un l 5 C.
Inlsx,u

(16.17)

(Here, and in what follows, the summation is over all n E Z for which
InI 5 Xfl.)

Proof. Set 1v = u', - c1nl. where c1 is chosen so large that E;a < c,. Then
using (16.11),

k - , kv t2 L = u F2 -tan - 2C,1

<
21h

- 2c11

5211-c1/ <0.

Thus

L I
+2 - 5 I)u'2 - 0.1 + E 2c11

ICIsx;r J11:5xrr Inlsxrt
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(^ / (2X+1
A s X/1

< 2 max Ivkvl + c2X
;X1:5 X3

52M+2c,X +C2X.

This completes the proof.
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In order to show that the difference approximants converge to a solution
of (16.1), (16.2) in the upper-half plane t > 0 (and not merely on each line
t = const. > 0), it is necessary to estimate the differences of each approxi-
mating solution on different time levels in some suitable norm. The following
estimate does just this; namely it shows that the difference approximants are
L, (locally) Lipschitz continuous in t. Before stating the result, note that
from (16.6) the values of u where n - k is even are computed independently
from those where n - k is odd.

Lemma 163 (Time Estimate). If h/1 >- 6 > 0, and 1, h::5 1, then there exists an
L > 0. independent of h and 1 such that if k > p, where k - p is even and
phza>0,

I lie.-uoi15L(k-p)h. (16.18)
lnlsX11

A similar estimate holds ijk - p is odd.

Proof. We shall express un in terms of u,^,. k - p even. To do this we consider
the difference scheme (I 6.6), which gives (cf. (16.10)),

11k= - It -ilt_1 + 1 -t +uk -I
21. n n n 1) 2(11k. +1 n-1)

-,2+J/(On-1) )
un-1 +(f,(Bn-L)un4 Is

or

k k 1 k-1 k-1 R-1
uA - ,n - l 1f n - 1 + n,n+ 11tn + 1

wherean,'n -1 + +-L = 1+ and akn'.n -- lI, an,,kkn - +1l Z 0.
1 1

Applying this to uk,-, and ut+, gives a formula of the form

(16.19)

1+1 = Au-1 + But-1 + Cu^1n-2 a n+2+
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where A+B+C= 1, and A, B, C 0. Hence
Iuk.+,

If we multiply this by Ax and sum we get

E l tt" i , - uk- Ilex < c Ax.
Inl sx;t

where c is the constant in (16.17). Now if k - p is even, the triangle inequality
gives

k-2

E Iu*. - E E Iun+2-u,ex
l,I5X!t t - D lnI5Xit

(k - p)c Ax

b (k - p) At.

This proves the result, with L = c/b. E]

We remark that the condition h/i >- b > 0 means that the solutions of
the difference equations have a finite speed of propagation, i.e., u*. is deter-
mined by the values of u° for a bounded set of n's. Such a condition is not true
for difference approximations to parabolic equations.

We next prove the discrete analogue of (16.5).

Lemma 16.6 (Stability). Let {u.*} and {v.*} be solutions of the finite-difference
scheme (16.6), corresponding to the initial values and {v°}, respectively,
where sup.I u° I < M and sup.I v° l < M. Then if k > 0,

E lu., -G11 l< E Iu°-v°1 1.

InISN InISN+k

Proof. Let nA. = u, - t?, then from (16.6), we have

Irk+1 = 1tk-1 - C,k+I
n n A

(16.20)

n+, + h UK,2 2l + 1) -
ff
J (u.- 1)J

}un-_I h

u.`+1 - yn+1 h

"

+ n-1 2 A-I +
2l[f(u11 -1) -f(Un-1)J

LL
h {,

Nn+1 2f14n+ J ( + +1Lw-1

h
+

21
Nn 1 J '(ve- 1)

2 21

uk - yk h
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where f1,",',, is between u'.1 and Thus

l h 1 h
s%V = 12 - 2!f'(f1 1 + 2 + 21f0t- 1)]wn- 1-
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Since (16.9) holds, the coefficients of w ,.1 and w are both nonnegative;
using this we have

t h / k7-21fw.+l) Iwn+II
IRl s + ICI s Y

1 h

+ 2+
21f,(0;;..1)

Iwn-11
InISN

1+``A t h ``1 N- 1
1 ! 11'(f1.)] Iltdl + +

It
h ('(1?)1IWnk

,-t-N 2 2l' m--1-,y 2 21

< C'- - It
no, )] I,>..I + Y '+ h

f'(OJ)]11

ImIar+1 2 21
m

ImIsN-1 2 2!

I1/nil'

It follows from this by induction, that the lemma holds. 0

We are now prepared to investigate the convergence of the difference
approximations. Rather than consider the difference approximations to be
defined only on the mesh points, we wish to consider them as functions
defined in the upper-half plane, t >t 0. To accomplish this, we construct a
family of functions (U,.,) from the {u' } by defining

U,,,(x, t) = u.k. if of 5 x < (n + 1)1. kh < t < (k + 1)h. (16.21)

Thus the value of in the rectangle ni < x < (n + 1)1, kh 5 t < (k + 1)h,
is the value of the difference approximation at the point (nl, kh); see Figure
16.2.

(nl, (k + 1)h)

1

((n + 1)1,(k + 1)h)

an + 1)1, (k + 1)h)

Figure 16.2
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We now show that the set of functions { U,,.,} is compact in the topology of
L, convergence on compacta.

Lemma 16.7. There exists a sequence {U,} c { U,,., } which converges to a
measurable function u(x t) in the sense that for any X > 0. t > 0. and T > 0.
both

J 1.1 s x

and

I U,,,,,,(x. t) - u(x. t) ( dx -' 0. (16.22)

fr 11.1sx I U,,,.,,(x. t) - u(x, t)l dx dt - 0, (16.23)

as i - oo (i.e.. (hi, 1) -. (0, 0)). Furthermore, the limit function satisfies
sup,,,, I ufx, t) 1 5 M. and the stability inequality (16.5).

r>o

Proof. From Lemmas 16.2 and 16.4, the set of functions {U,,,,}, considered as
functions of x, are uniformly bounded, and have uniformly bounded total
variation on each bounded interval on any line t = const. > 0 (the uni-
formity being of course, with respect to h and 1). By Helley's theorem
([Nt]). we can find a subsequence {U;,,,}. which converges at each point on
any bounded interval of this line, and by a standard diagonal process, we can
construct a subsequence (U;.,) from { U', ,} which converges at every point of
this line t = const. > 0, as It and I tend to zero.

Let {tm} be a countable and dense subset of the interval (0. T). By a further
diagonal process, we can select a subsequence (U6,,,,) from { Ub,,}, which
converges at every point on each line t = t m = 1, 2,... as i - oo; i.e.,
as h, and I, tend to zero.

We set U; = U,,,.,,; we shall show that this sequence of functions converges
at each t e (0, T], so that in the limit we indeed obtain a function u(x, t) which
is defined in the strip 0 < t s T. To do this, we first show that for every
te(0,T].

X

lijt) f I U,(x, t) - U/x, t)l dx 0 (16.24)
J x

as i, j -+ oo ; i.e.. that { U,( , t)} is a Cauchy sequence in L, (I x 5 X).
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For t e (0, T], we find a subsequence {t,,,,} c {tm} such that t,,, -> t as
s - oo ; let T, = t... Then

l,t(t) 5
x

I U,(x, t) - U,(x. t) I dx + Ix I U;(x. T,) - U,{x. T,) I dx
x x

X

+ J_ IU,{x,r,)-Ui(x,t)I dx=1,+12+ 13. (16.25)
X

In view of the choice of {tn,}, and the Lebesgue bounded convergence
theorem we see that 12 - 0 as i, j -, co. Next, if we use the notation [a] to
denote the greatest integer in a, then by definition of U U,(x, t) = U,(x.
[t/h,]h,). Thus

I, =
J X

I U. .I h;]h) - Ut( X, []h1) l dx

< Int,x ,+i
Jntr

+t)t,
IU,I x,Lht]h,J - Ut(x,[j]h1)Idx

ut11ti1 - u[Llhol
n n i

In)sX1t,+t

<Ll[']-[!-]1i.

where we have used Lemma 16.6. Thus 1, S L[It - r,I + h,], and similarly,
13 5 L[It -T,I +h1],sothat

11 + 13 S 2L[It - T,I + hi]. (16.26)

If now r. > 0 is given, we choose T, so that 4L I t - r, I < E. For this fixed
s. we choose i and j so large that 212 < s. Then for these i and j, we have
from (16.25) and (16.26), that 1 (t) < e; this proves (16.24).

It follows that the sequence { U,{x, t)} has a limit u(x, t). for each fixed
t, 0 < t S T. We now show that 1,P) -+ 0 as i, j - oo, uniformly in t.

0 < t 5 t < T. To see this, let e > 0 be given, and choose a finite subset
9 c {t,,,} with the property that if 0 S t < T, there is a t,n in ffl7 such that
2L I t - t, < e/2. If we choose i and j so large that 212 < c for all t. a .F,
then for these i, j, we have 1, j.(t) < s ; this gives us the desired uniformity in t.

Using the uniform convergence, we have that for any T, 0 < t < T,

t 1;,{t) dt -4 0 (16.27)
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as i, j - x'. Now write

16_ The Single Conservation Law

IU,{x, t)- U,lx,t)Idxdt = f L f x U,(x.t)- U,{x. 1)1dxdt
o -x o -x

+ z
x

U,4x. t) - U,{x, r)I dx dt.
J- J-x

(16.28)

If we choose r. 0 < r < T, so small that 8MXT < c, then for this fixed z. we
take i, j so large that the second integral on the right side of (16.28) is at most
e,i2 (this can be done in view of (16.27)). Then for these i and j. we have

f,.

It follows that u(x, t) is measurable, and that (16.23) holds. Moreover, since
local convergence in L, implies pointwise convergence almost everywhere of
a subsequence. we see that since each I U. 1 < M. the limit function satisfies
the same inequality, where, if necessary, we redefine u on a set of measure
zero. Finally (16.5) holds in view of Lemma 16.6. This completes the proof. C3

We shall next show that the limit function u(x, t) satisfies the entropy
inequality (16.4); this, of course, will follow from Lemma 16.3, which is the
"discrete" version of (16.4).

Lemma 16.8. The function u(x, t) constructed in Lemma 16.7 satisfies an
entropy inequality of the form (16.4).

Proof. It suffices to show that if (x1 - x2) > 21i and t > h;. that

U,{x,, t) - U1(x2, t) < 2E
X, - x2 t - /ti' (16.29)

where the U; s are defined as in the proof of Lemma 16.7, and the constant E
is defined in Lemma 16.3. This is so because if (16.29) holds, we get our desired
result by passing to the limit as i - o.

Thus, let x, > x2. and note that

[]h1)UAJ, t) = U, xt - ryt' , j = 1, 2,

for some t1j, where 0:5 qt < 1,. Thus

U,(x1, t) - U,(x2, r) _ 1 k

x1 - x2 (x, - x2)_(un` - it-2)-



§A. Existence of an Entropy Solution 279

where k = [t/hi] and we sum over all integers n lying in the interval [x2 - 172
x1 - ql]. Using Lemma 16.3, we have

U,(x,, t) - U,(x2, t)
<

E(x, - q, - x2 + 12)
X, - x2 [t/h,]hi(xl - x2)

< E(x' -'7 - x2 + g2)
(t - hi)(xl - x2)

_ E (g2 - gl)E
t-ht+(t-h,)(x, - x2)

2E

t - hi'

since g2 - q, < I. < 1, for i large. This completes the proof.

An alternate proof can be given based on the fact that in the proof of
Lemma 16.4 we showed that o* = uk - c, nl is decreasing in n for each fixed
k; the same is true of the limit; namely u(x, t) - c,x.

We shall now show that our function u is indeed a solution of (16.1).
(16.2). The proof is via an interesting "summation by parts" technique.

Lemma 16.9. Let li -+ 0 as i -+ oc, and suppose that for ¢ e Co

[ U,(x, 0) - uo(x)]4 (x, 0) dx = 0. (16.30)l im J-"'Cot-
Then it satisfies (16.3); i.e., u is a solution of (16.1), (16.2).

Remark. Since 0 is bounded, (16.30) holds if for every X > 0,

rx
lim

J
I U,(x, 0) - uo(x)I dx = 0. (16.31)

I-oo x

However, since ito is bounded and measurable, there exist step functions
U,(x. 0), constant on intervals nl < x < (n + 1)1. n c- Z, which converge
locally in L1 to uo; i.e.. which satisfy (16.31). We take these functions to define
the initial values of our difference scheme (16.6).

Now the solutions u'.of our difference equation (16.6) can be written in the
form

tl.+' -u.' +1 -2u* +uq_, l2 Put . 1) - Pul., - 1)

h 212 -.h+ 21
= 0. (16.32)

as one can easily verify.
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We multiply (16.32) by ¢,k, = ¢(nl. kh), and get

kA

n
+IUk+1 RI". k+1

12 2. 0.' - 0 1.
k

7" - n A 1tk+ 1 n -. YEA + + 1 - 7"
1r,A-

U.
It " h 2h 12

A

0n 1Un - 'Vn1"n 1 On- IUn - CnUn+1
2h 2h

+'P +1)' O. 1.01k. l) _ 0*
21 21

/' is'
k

21"-' = 0. (16.33)

Since 0 has compact support. we may assume that 0n = 0. if k > [T;'h]. Then
we multiply (16.33) by hl and sum over all n c- Z. k E Z.. Since the first, fourth.
fifth, and sixth terms are "telescoping," they cancel, except for the first term
with k = 0. Thus we get

k+ 1 /, k 2 R - 2 k k
1 0A+1 On

+ 0.UR- I U0O0 + III 11

I

n n h 2h 12n k,A

- n - f(Uk
0.

k,n 21 k,n
J n -

21
-----

Since Uk, is piecewise constant. 0 is smooth, and the integrals are limits of
step functions, we can write

JjU4I4I+ d - + 62 -
7h Ifuh.10..

r 0
rz!o rz0

+63- ffiuk.M.+64=0,
rz0

where the 6, 0 uniformly, as I1, I - 0. We replace Uk., by U, to get

12

if UA +.f(Lr!)ox + 2jir ff
rz0

r
r?o

+J- U;4=b(I,,h,), (16.34)
r-o

where 6(1,, h;) -+ 0 as i Now let i -> x ; since U; - it locally in L,
(Lemma 16.8), and l; - 0, 1?; h; - 0 (since I; jh; is bounded), we see that

z

if UA + 2h

11
Ui pxx y fJ U(f)r. (16.35)

rao r`o r:o
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Next, by choice of the initial values.

Also.

f U,O- ` uo0 asi
I I =o

f f [J (Ui) - ! (u)]0x 1:! I ms II1.,,
JJ

I f(U,) - f (U)I
I e o spt 0

s 0s11JJ If(,)IIU;-ul.
spt b

(16.36)

where c is some intermediate point. Thus there is a constant C independent
of i such that

f f [fW,) - f(u)](PsI < C 1 f I U; - II.
Ia0

and this implies that

spt 0

if f(udo. -, if f(100"- (16.37)

Iao Ia0

Then using (16.35), (16.36). and (16.37), and passing to the limit as i - 00
in (16.34) completes the proof of the lemma. 0

We can now complete the proof of the theorem. First, from our remark
before the proof of this last lemma, we see that (16.31) holds, and thus. so
does (16.30). But since Ca is dense in Co (in the topology of uniform con-
vergence of the functions together with their first derivatives on compacta),
we see that (16.3) holds for all q5 e Co. Thus it is a solution of our problem,
and we have observed earlier that it satisfies (16.4) and (16.5), and I u l
Il tuo lll... O

§B. Uniqueness of the Entropy Solution

We shall show that solutions of (16.1). (16.2) which satisfy the entropy
condition (16.4) are unique. It then follows from Theorem 16.1 that the
solution which we constructed via the finite-difference scheme (16.6). is the
unique solution of our problem. We call the solution which satisfies (16.4).
the entropy solution.
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The method of proof which we shall give is really a nonlinear version of
the Holmgren method (see Chapter 5). Recall that for linear operators A on
a Hilbert space, since 17A c (-PA.)' (where t1A and MA. are the null space and
range of A and A*, respectively), in order to show that qA = 0, it suffices to
show that AA. is everywhere dense. Thus if u and v are solutions of (16.1) and
(16.2), in order to show u = v almost everywhere in t > 0, it suffices to show

if (u-v)O=0
ra0

for every 0 e Co. Now if 0 e Co, we have both

o1P = 0if ufr + f(u)ips + L0u
ra0

and

P = 0.f LO u0 J
rZ0

If we subtract these two equations we get

if (u - v)wr + [f(u) - f(v)]lP: = 0.
r- 0

or

(16.38)

JJ L

f( u) - f(v)
0. (16.39)

U

1(u - v) + - p
r20

Next. if we define F by

F(z t) = f(u) _f(v)
u - v

then (16.39) can be written as

f `(u - Fiyx] = 0. (16.40)

rao
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Now if we could solve the linear (adjoint!) equation

'f',+FY1x=0,

283

(16.41)

for arbitrary q E Co(t > 0) with 0 e Co. then (16.40) would imply (16.38) and
we could conclude that u = v. almost everywhere. There is however an
obstruction to this approach; namely. F is not smooth (or even continuous)
in general, and so it is not clear that (16.41) has a solution ty E Co. The way
around this difficulty is to approximate it and v (and hence F), by smooth
functions um. um and solve the corresponding linear equations

with smooth coefficients, for 0' e e C. where

Fm(X t) = f(um) - .((vm)
Gm - um

Then

if (te - v)i = If (u - j](u - u)Fmgix

ifl (f(u) - f(v»t/x + if (u - v)Fmt//,

tz0 0

so that

if (u - v)4 = fl (u - v)(Fm - F)ox
1z0 CaO

(16.42)

Then if F. F, locally in Lt, and if 0x is bounded, independently of m. we
could pass to the limit on the right-hand side of this last equation and con-
clude that (16.38) holds. This procedure will be carried out below, whereby
the entropy condition (16.4) will be used to obtain control of tyz.

Theorem 16.10. Let f e C2, f" > 0, and let u and v be two solutions satisfying
the entropy condition (16.4). Then u = v almost everywhere in t > 0.

Proof. For every positive integer m, let

and vm=v+mm,
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where w,, is the usual averaging kernel of radius 1/m, and * denotes convolu-
tion product.' We define

1Fm(x, t) = f f'(0um + (1 - 9)v.) dO
0

1

rU_

f(s) ds = f(um) - f(Vm)
um - vm V_ um - V.

(16.43)

and solve (16.42) for tym(x. t), subject to the boundary condition tfr"(x, T) = 0.
where T > 0 is chosen so large that 0 = 0 if t >- T. It is not too hard to verify
that the solution of this problem is given by

/m(x, t) =
J

4(xm(s; x, t), s) ds, (16.44)
T

where xm(s; x, t) is the unique solution of the characteristic ordinary dif-
ferential equation

dxm
-ds = F,(xm, s), with xm(t) = x. (16.45)

Now

I um(x, t) 15 j'Iu(x - y) I co.(),) dy 5 M I .(y) dy = M.
a R

and similarly, I um(x. t) 15 M. Thus since f c- C2, we see that there is a constant
M3 > 0, independent of in, such that

I F,(x, t) I < M 1. (16.46)

This estimate enables us to show that e e C1 (t z 0). First, it is clear that
,r,m is in C1; to show that ,/,m a Co (t Z 0), we proceed as follows. Let'S

a {t > 0} denote the support of 0; S being compact. Now consider
Figure 16.3. R denotes a region in t >- 0 which is bounded by the two lines of
slope ± 1/M1, and the lines t = 0, t = T, and R contains Sin its interior. The
claim is that spt ,) ,m a R. for every in. To see this, note that if t Z T. 0 = 0 so
thatO' = 0, in view of (16.44). Furthermore, (16.46) shows that every solution
of (16.45) which starts at a point P outside of R in the region t < T must
meet the line t = Tat a point not in R. It follows that all along this trajectory,
c¢ = 0. Thus tym satisfies the homogeneous equation 'T + Fmt = 0, so

D See the appendix to Chapter 7.
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t=T
slope

(JMt S P

R slope)
-1jM,

J.
x

Figure 16.3
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i,fr is constant along trajectories of (16.45). Since the trajectory meets r = T,
0' is zero at t = T, and hence tfr" is zero on the entire trajectory, and in
particular at P. This shows that +y' e e Co, and moreover, that the frm have
supports lying in the set R, independently of in.

It follows, as above, that

if (u - 00 = if (u - v)(Fm - F)tjx. (16.47)
tZO tZ0

We shall next show that F. -+ F , locally in L,. Let c = max{ f"(u) : I u l S M);
c > 0. Then

F(x, t) - Fr(x. t) = 1, [ f'(Bu + (1 - O)v) - f'(0um + (1 - O)vm)] dO
0

_ t f"()[9(u - um) + (1 - 0)(v - Um)] de,
0

where S is between Ou + (I - O)v and Ou,,, + (1 - O)vm, so that I < M. Thus

F(x, t) - Fm(x, t) I < c
J

1 {O u - um + (1 - O)iv - um } dO

=2{lu-U.,l+lv-vml},

Accordingly, if K is any compact set in t >_ 0,

55IF(x ) - Fm(x,l)I <cJJlum - uI+ Ivm - V

A K

and this latter integral tends to zero as in - oc (see Lemma B1 in Chapter 7).
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It remains to show that we can control O'. It is here where we shall use
the entropy condition (16.4).

Thus, let x > 0 be arbitrary. Then for each fixed t a, the function
u(x, t) - Ex/a is nonincreasing in x. This follows from the entropy condition
(16.4), since if a > 0,

u(x + a, t) -
E(x +a )

- u(x, t) +
Ex = Ea -1 - 11

5 0.- -
a a t of

From this we find that

(1)m : u - JExl = u, - F((l)m' )

x a

is also nonincreasing in x. as one can easily check. Since this latter function is
smooth and

c? Ex)] a um E
cx \ a J ax a

we see that the following are true :

Next, from (16.43).

eum
S

E
and

v,,,
<

E
ox a Ox a

c?Fm ` 4911 nu.

ex
= fof"(Or,,,+(I -O)t'm) O_x +(1 -0)rx]de.

and since f " > 0, we get from (16.48).

(?F,,,
10'

EJ (©um + (I - 0)v,,,) - (0 + I - 0) dO
a

F. `

f f"(Oum + (1 - 0)t:m)dO.=
a o

Therefore.

(16.48)

G Fm

ex
S K,2. (16.49)
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where

K, = max f "(u),
OC 1ujSM

so that K. is independent of m.
Now let

xm
am(s)

= OY
(s'

287

where (x. 1) is a fixed point in the upper-half plane. Note that xm(F; z.1) = z,
so that

= 1.am(fl _ Ym (r;JC.1)

Thus,

Dam L Ox,,, 0 Gxm a- F (x , s)

Fm(xm(s . X. r), s) = ?F-' O- -

- am.
O ex

Then from (16.50). we obtain the formula

am(S) = eXp
(s -F. (xm(r). r) dT

i ex

Since a < t < s < T. we have from (16.49),

( a.(s) [ = aM(s) <_
exa(r - a)

But from (16.44)

a/,m t

f
ax fr oX ds - Jr x am

ds.

Thus

(16.50)

I a`ml < K, lft x. (16.51)
Ux

where K. is independent of m.
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We now must investigate the behavior of 0"' in the region 0 < t 5 a. To
this end, we define

V,W)
= JT. I

e I dx.

the total variation of q,m as a function of x. for each fixed t > 0. From (16.51).
and the fact that the ql- are in Co with their supports being contained in a
region independent of m, we have

V(V1") < C. if t > Of, (16.52)

where C,,, does not depend on in.
The last estimate we need is

1

Ht. 0<t< 1< . (16.53)

To prove this, note that since 0 has compact support in t > 0. there is an
N e Z, such that 4(x. t) = 0 if t < 1;/N. Thus from (16.42).

m m

+F. ift< I
i'll N*

(16.54)

Now let n > N. and let a,: R - R be the bijection defined fort < 1; n by the
solution of the characteristic equation. (16.45); i.e.. a,(x) = xm(1/n; x. t); see
Figure 16.4.

(at(x), I %n)

'characteristic

Figure 16.4

t=1;n.n>N

t=0

Now let t be any number, 0 < t 5 1,,'n < 1 ?N. Then for any finite sequence
x1<x2<...<xp,wehave

kY-
t

I NJ(,k, I. t) - Y' (xk t) I kL,1 I 1at(xk 1)`
!1} - w ' (at Xk) /l/ t
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This holds since 0'°° is constant along characteristics, in view of (16.54). Thus
using (16.52),

P-1 ) / .I' 'I
Y- I W m(Xk+1' t) - t)1 S Vtln(Y/") s C1iw,

k --^ 1

and this proves (16.53).
We can now complete the proof of the theorem. Let c > 0 be arbitrary.

With N defined as in (16.53), choose a > 0 so small that

a < S N and 4MM1Cl1..a < 2. (16.55)
11

JJIu-vIIF-FIIt<. ifm>M. (16.56)

r, a

This can be done since I u - v 2M. F, -+ F locally in L 1, iPm Co (t z 0)
and (16.51) holds. Then from (16.47)

$f(u_v)4 JJ1u_d11_F!11+JJlu-vllFm-FIl4xl
Sao I ra: r<a

(16.57)

Now since x < 1/n < 1;/N,

ffiu - vIIFm - 5
JJ

lyxI =4MM1, a J Iqxlo -
<a r<a

4MM1 J a V(,1 ")dt
0

(by(16.53)),

so that

ffu-vIIF,"-FII4/zl<2. (16.58)

1<a
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Thus using (16.56) and (16.58) in (16.57). we get

iao

if (u - V)OI < r

and from the arbitrariness of s.

if (u-v)O=0,
rao

for all 0 e Co (t > 0). Thus u = v almost everywhere in t > 0. This completes
the uniqueness proof.

As a corollary. we can easily show that the "entropy" solution, which we
now know to be unique, is an "irreversible" solution (cf. §E in Chapter 15).
Thus for t > 0. define the mapping

T,: L.(R) -+ L1(jxj S X), X > 0,

given by

T,(uo) = u(- , (),

where a is the unique solution of (16.1), with initial data uo. Here is the
"irreversibility" theorem; it implies the noncontinuity of T.

Theorem 16.11. T, is a compact operator.

Proof. Let {uo} be a sequence in Lq,(R), with

II uo II L,. S A M independent of i.

For each i, we use the difference scheme (16.6) to construct the unique
solution u; of (16.1) having initial data uo. From Lemmas 16.2 and 16.4

M,

and

Tot. Var (u.( , t)) < ,'I',
lxl 5 X

where M and M' are independent of i. By Helley's theorem, there is a sub-
sequence of (u,(., t)} which converges in L1(I x 1 S X). Thus T iscompact. Q
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§C. Asymptotic Behavior of the Entropy Solution

In this section we shall study the asymptotic form of the solution for large
time. There are two distinctly different cases which we shall consider; namely,
the case where the initial data uo is periodic and the case where uo has compact
support. In the periodic case we shall show that u tends to the mean value of
uo (over one period), at a rate r - t. uniformly in x. If ua has compact support,
then it tends uniformly to zero at a rate tand tends in the L,-norm, to a
particular function called an N-wave, again at a rate 1-1,'2.

At the heart of these decay results is the fact that u satisfies the entropy
condition (16.4). It is not difficult to get a feeling as to why this should be true.
Thus, suppose that u is differentiable in a region R contained in 0 S t 5 T,
and let x, and x2 he two characteristics in R. Since u is constant along the
characteristics, we see that the variation of u(-. T) on the interval [x,(T).
x2(T)] equals the variation of it(-, 0) on the interval [x,(0), x2(0)]. Assume
now that there is a shock 7 present in u between the two characteristics x,
and x, (see Figure 16.5). Since u satisfies the entropy condition (16.4), we know

t = T

x, (0) Y1(0) Y2(0) X2(0)

Figure 16.5

x

that there are characteristics y, and Y2 which impinge on the shock from both
sides at time t = T(see (15.18)). It follows that

Tot. Var u( . T) = Tot. Var u( - . 0) + Tot. Var it( . 0)
(x,(T).x2(T)1 lx1(0).y,(0)) lY2(0).x2(0))

< Tot. Var (16.59)

Thus, in the presence of shocks, the total variation of u between two character-
istics decreases with time. Our goal is to give a quantitative statement of this

decrease.
We begin by considering the case where uo has compact support ; say

uo(x) = 0 if x 4 Cs-, s. ]. We assume again that jis convex; i.e., j" > 0. For
simplicity, we assume

f (0) =
j-(0) = 0. (16.60)
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since in (16.1), we may replace f(u) by f(u) + a. and u by is + h. Also, we let k
and it be defined by

k = f°(0) and is = inf f"(u) > 0,
iut s u

where 11tto11L = M. Finally, we define the two important quantities

q = max f uo(x)dx and -p=min j' uo(x) dx. (16.61)
Y J, Y

_CO

Both q and p are finite since the function

Q(y) = J uo(x) dx
Y

is bounded and continuous.
Now let u(x, t) be the unique solution of (16.1), with initial data uo(x). We

assume that is is piecewise smooth.' Since uo has compact support, the same
is true for u(-, t), for each fixed t > 0; this follows easily from (16.5) with
t'o - u - 0. Now set

s+(r) = inf{y: u(x, t) = 0, Vx > y}, s+(0) = s+.

We define

u+(t) = tt(s+(t) - 0, t),

and note that u(s+(t) + 0. t) = 0. It follows from the entropy condition that
tt+(t) >- 0 for every t > 0 (see the discussion after (15.17)). Moreover, if
u+(t) = 0, then (s' (t), t) is a point of continuity for tt, and conversely.

Now since u+(t) > 0, the slope of the characteristic emanating from the
point (s+(r) - 0, t) in backwards time is positive, since f'(0) = 0. This shows
that

ds' (t) > 0.
dt

(16.62)

We need the following proposition.

Proposition 16.12. If q = 0 (see (16.61)), then u+(t) a 0, t > 0.

Proof. Suppose tt' (1') > 0, for some T > 0. Let R be the region depicted in
Figure 16.6, defined by the two characteristics I',, I"3

This is always true if.f" > 0, as follows, for example from (Dp 3).
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t=i

Figure 16.6

Y r2 s'(E)

on both sides of the curve x = s(t), and the region they cut off on the x-axis.
Note that the entropy inequality (15.18) shows that these characteristics
can be extended down to i = 0, as depicted.

Now since u is piecewise smooth, we have5

L udx-f(u)dt=0.

A lso

J
u dx - f (u) dt = fo (u dt

- f) dt = fo (uf'(u) - f)
r,

dt.

and since u - u'(t) along rt, we have

f u dx - f(u) dt = i[uf'(ii) - .f(ig)].
r,

where we are using the notation u = u'(1). Next,

Jr,

and

udx - f(u) dt = - f uo(x) dx = -I uo(x) dx,
Jy r

u dx - f(u) dt = 0,

(16.63)

In the considered class of functions, this follows easily from the divergence theorem, using
(16.3).
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since u = 0 on F'3. and f (O) = 0. Using these in (16.63) gives

t[uf'(u) - f (u)] =
J

uo(x) dx. (16.64)

But

0 = f(0) = f(u) + f'(,7)(0 - u) + if"O(0 - u)2.

whcrc ; is intermediate to 0 and it. Using this in (16.64) gives

0 <
i
f"(S)u2f =

J
uc(x)dx < q. (16.65)

This shows that q > 0 and the proof of the proposition is complete.

From (16.65), it follows that if u+(t) > 0, then Btu+(t)2t 2 S q, so that

t,2
u+(t) 5 - t-t''2. (16.66)

Since s+(t)(u+(t) - 0) = f (ut(t)) - f ft we have, in view of (16.60),

+(t)
=.f(u ' (t)) = f"(A)tu+(t)

u (t) 2

where 0 < 0 < u+(t). Thus from (16.66),

(16.67)

+(t) 5 2 µ t-1j2. (t6.68)

where c = maxi l M f"(u). It follows that

s+(t) < s4 + CJ2q t(16.69)
Et

If now we define

s-(t) = sup{ y: u(x, t) = 0, Vx < y}, s-(0) = s_,

then a similar argument gives

s-(t) Z s_ - c`/TP-
1 1.2. (16.70)
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Next, let (x z, t) - (x ± 0, t) ; then since u is constant along characteristics.

u(x f, 1) = uo(y * (x, t)),

where

x = y # + tf'(u(x _, M.

However, since s - (t) 5 x 5 s+(t), and s_ 5 y. 5 s+, we have for large t,

I f'(u(x =, t)) I <

<- 1 max(s+(t) - s_, s+ - s-(t))
t

< const. t - 1' 2,

because of (16.69) and (16.70). Now (16.60) implies that I f '(u) I N I u I, and

thus

I u(x. t) I < const. t -1'2. (16.71)

We have therefore proved the following decay theorem.

Theorem 16.13. Assume that f" > 0, f(0) = f'(0) = 0, and that uo(x) is a
bounded, measurable function having compact support. Then if u is the unique
(entropy) solution of (16.1), (16.2), u decays to zero as t -+ cri, uniformly in x,
at a rate t-112.

We can now obtain the asymptotic shape of the solution as t -+ M. To
this end, we observe that from (16.67) and (16.65), we have

+(t) = f"(9)u+(t)
2

< f -(O)

2 ,if"(o VVV I
.

But as t oc., it follows from (16.71), that both 0 and S tend to zero. Thus,

since k = f"(0),

f"(0) = k + 0(10 1) and k + 0(1 1).
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Now we have 0 = O(1 u1) = O(t-''2), and 0(t-'-"). in view of (16.71).

Thus

f"(0) _ 1 + O(t-''2)

f"W
'

., 1 + O(

It follows that

and thus

vik(l + 0((- '' 2)).

si(t) < I ,y t-1'2 + O(t-'),

s'(t) < s+ + ,/2kgf1.2 + O(In t) = s_ + [V/2kq + O(t l12 in t)]11:2.

(16.72)

Similarly

s-(t) z s - O(t-112 In t)]t172. (16.73)

Now define the functions w(x, t) and t"v(x, t) by

_ x/kt, if s_ - , f" kp 11.2 < x < s+ + f ,Eq t' 2
t)

0, otherwise,

and

xjkt, ifs_ - [,r'2kp + O(tInt)]t':2 < x
< s. + [.12kq +0((-1.,2 In t)]t1r2,

0. otherwise.

(16.74)

Then since u(x, t) = uo()y(x. t)), where s._ < y(x, t) < s+, and tf'(u(x, t)
= x - y(x, t), we get

f' (0)u(x, t) +
O(lin2)

=
x -

t
y(x, t)

so that since k = f"(0),

Ax. () + O(JuJ2) _ +0(1-1), (16.75)u(x, t) =
ktx -

kt kt
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again using (16.71). Hence for large t,

J - I u(x, t) - w(x, t) I dx =
J 1

u(x, t) - x dx
cc, Is -I( pr,+=+O(ing) 1

kt

< const. t '[1 + t1i2 + In t] (by (16.75))

5 const.t

This shows that

U(-. t) - i%,(-. 0II L,ut) = O(t- t;z) as t r.
Similarly,

297

11 "'1 .t) - 0(t-1'2) ast - cc:.

We can thus conclude that

Il u( , t) - w( , t) II L,tR) =
O(t- 112) as t x. (16.76)

The function w(x, t), defined by (16.74) is called an" N-wave," because of its
profile at each fixed t > 0; see Figure 16.7. We have thus shown that the
entropy solution decays to an N-wave in L1(R) as t - x, provided that the
hypotheses of Theorem 16.13 hold.

We turn our attention now to the case where ua is a periodic function, say
of period p. We assume, for simplicity. that uo is also piecewise monotonic.
We then have the following theorem.

Figure 16.7
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Theorem 16.14. Let f" > 0, and let uo a L,,(R) be a piecewise monotonic
periodic function of period p. Let is be the solution of (16.1), (16.2) which
satisfies the entropy condition (16.4). Then

ju(x, t) - uol 5 hp, (16.77)

where uo = (1/p) Jouo(x) dx, and h = min{ f"(u): lul S IluoIIL,,}.

Thus, u decays to the mean value of uo at a rate t- `; this is actually at a
faster rate than the case when uo has compact support; (see (16.71)).

Proof. Let x1(t) and x2(t) be any two characteristics of (16.1). Then the x,
satisfy the ordinary differential equation

dx
dt

- f'(u(x, t1).

Define the "width" D(t) of the strip 0 5 t 5 T bounded by these two
characteristics, as

D(t) = x,(t) - x2(t).

Then

V(t) = X11 (1) - X2 (t) = f'(u2) - f'(u1)

where u, = u(x,(t), t) are constants, i = 1, 2. Since f" z It > 0, u2 > u1
implies f'(u2) - f'(ul) > h(u2 - u1), so that

D'(t) z h(u2 - u1).

If we integrate this with respect to t, we find

D(T) > D(0) + h(u2 - u,)T, u2 > u1. (16.78)

Let I be any interval on the x-axis. Since uo is piecewise monotone, we can
divide I into subintervals by points yo < Y2 < ... < y such that uo is alter-
nately increasing and decreasing on the subintervals [y, y,]. Let y,(t) be the
characteristic through y,; i.e.,

dy' dt= f'(u(Yr, t)), Y;(0) = Y1.

We make the convention that if yt(t) meets a shock, y, is continued as that
shock. Now it is easy to see that for each t > 0, u(x, t) is alternately increasing
and decreasing on the intervals (y,_ 1(t), y,(t)).
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Let 1(t) be the interval [yo(t), v (t)], and let L(t) be its length. We define

V, (t) = total increasing variation of u( - . t) on 1(t).

(Here by increasing variation on an interval, we mean the total variation of
the function over the intervals on which the function is increasing.) We make
the convention that t) is increasing on (yj _, (t), yi(t)), if and only if i is odd.

Now for i odd let (cf. Figure 16.8),

ut _ t (t) = value of u on the right edge of yt _ 1(t),

uj(t) = value of u on the left edge of yj(t).

u increases here u,

- t (t) /yd0

Figure 16.8

I

Since the entropy condition (16.4) implies that u decreases across shock, we
have

V+(t) = E [u1(t) - u,-t(t)] (16.79)
Todd

If yt(t) = yj_ I(t), then the characteristics come together at the point
(yi(t), t), so that this point lies on a shock, and the contribution of the ith term
in (16.79) is zero. On the other hand, if yi_,(t) < y,(r), then there exist
characteristics Xt_, and Xt starting at t = 0 inside [yj_,, yj which, at time t,
run into y,-,(t) and y,(t), respectively (of course, X,(t) will equal y,{t) if the
y,{t) is not continued as a shock). If we let

D,{t) =rift) - X,- (t),

we have from (16.78),

D1(t) z D,{0) + h(ut - uj _ I )t

if i is odd, so that

Y D,,{t) z F Dt(0) + ht Y (u, - ut_,)
lodd jodd Todd

_ Dj(0) + ht V+(t).
Todd
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Since the intervals [X,_ t(t), X,4t)] are disjoint and lie in 1((), their total length
is at most L(t). Thus

L(t) >- ht V+(t),

and

V. (r) <
L(t)
hr

At this point we need a lemma.

(16.80)

Lemma 16.15. Let uo satisfy the hypotheses of Theorem 16.14, and let u be the
unique (entropy) solution of (16.1), (16.2). Then for each t > 0, u( , t) is periodic
of period p.

We postpone the proof of the lemma, and continue the above argument.

Since u(-. t) is periodic, of period p, we let L(O) = p; then L(t) = p, since
yo(t) = y.(t) So from (16.80), we obtain

V,. (t) :
ht

Since the increasing variation of a periodic function per period equals
half its total variation. we have

V(t) 5 hp, t > 0. (16.81)

where V(t) denotes the variation of u over one period.
Now let 1" be the contour pictured in Figure 16.9. Then from (16.63), we

have

0 =
J

p

uo(x) dx -
J

f(u(p, r)) dT +
J

o ou(x, r) dx -
J

f (u(0, r)) dr.
0 0 p t

I

0

t

Figure 16.9
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Since u is periodic of period p, the second and fourth terms cancel, and we
obtain

J

r
u(x, 1) dx = uo(x) dx.

0 0

Thus the mean value of u is independent of t. It follows that

1
P

u(x, t) - u0 = u(x, t) -
P

10 u(z, t) dz

1

P
fo [u(x, t) - u(z, t)] dz I

<
1n I Iu(x,r)-u(z,r)Idz

< - V(t) dz
P o

= V(r).

Hence from (16.81) we obtain the desired conclusion (16.77).
It remains to prove Lemma 16.15. To this end, define v(x, t) = u(x

Then for ¢ e Co (t > 0), if (x, t) = O(x - p, t),
+ p, t).

JJ
u(x + P, t)tbr + f(u(x + P, t))Oxv4r + f(v)GS + 1=0 U00j'j'

r>0 >0

ff u(x, t)Y'i + J (u(x, t))J
t>0

=0.

Thus v is a solution of (16.1), (16.2). Since v obviously satisfies the entropy
condition (16.4), we have v(x, t) = u(x, t) by the uniqueness theorem,
(Theorem 16.10). This completes the proof of the theorem. C]

§D. The Riemann Problem for a Scalar Conservation Law

We recall from Chapter 15, §A, that the Riemann problem for (16.1) is the
initial-value problem with initial data of the form

u =
ut, x < 0,
u x>0 (16.82)
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where u, and u, are constants. Our goal in this section is to explicitly solve
this problem, when f" > 0.

If u(x, t) is a solution of (16.1), (16.82), then for every constant A > 0, the
function u, given by

t) = u(/X. At).

is also a solution. Since we are seeking the unique solution, it is natural to
consider only solutions which depend on the ratio alt.

The solutions u = u(), = x/t will be made up of three types of ele-
mentary waves (solutions) in the region t > 0. Namely they will be one of the
following types of functions:

(a) Constant states; i.e u() = const. Obviously, these will be genuine
(classical) solutions.

(b) Shock waves; i.e., solutions of the form

u(x,
G0, x < St.

t) _ u,, x > St,

where, of course, s(uo - u,) = f(uo) - f(u,). In addition, we require
that the entropy inequalities hold; i.e., f'(uo) > s > f'(u,).

(c) Rarefaction waves; these are continuous solutions u = u(g), 5 = x/t,
of (16.1). Hence they must satisfy the ordinary differential equation

- S144 + f(u){ = 0.

or

(f'(u()) - f)u, = 0.

Thus, if u, f 0. f'(uO) _ ;. (On the other hand, if f'(u(4)) = 4. then
if we differentiate this with respect to , we find 1, so
that 0.) We observe that the equation defines a
unique function since f" > 0.

We say that u, is connected to uo on the right by a rarefaction wave, if

.f'(ui) > f'(uo) and = f'(u()) if.f'(ut) > > f'(u4,)

With these notions under our command, we can solve the Riemann
problem. There arc only two cases to consider; namely, (i) it, > u,, and
(ii) it, > u,.

Suppose it, > u,; then since f" > 0. we have f'(u,) > f'(u,), and the
equation = has a solution u(5") where f'(u,) > > f'(u,). Assuming
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Figure 16.10

x
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that f'(u) > Q the solution can be depicted as in Figure 16.10. In the "fan-
like" region f'(u,) > x/t > f'(u,). the solution is given explicitly by solving
the equation

for u. This, of course, is possible since f" > 0. The solution is smooth every-
where in t > Q but is only Lipschitz-continuous on the two lines of speed
f'(u,) and f'(u,). Moreover, u is constant on the rays x/t = const., and u(x, t)
is an increasing function of x/t in the "fan-like" region, since 1

in this region. Note that u is discontinuous at the origin.
Now we consider the case u, > u,. We set

= f(u) - f(u.)
u, - u,

then f'(u,) > s > f'(u,), and so the solution is a shock wave of speed s, con-
necting the two states u, and is,. It is depicted in Figure 16.11.

It is clear that the above two solutions are the unique solutions of our
problem satisfying the entropy condition (16.4).

Figure 16.11



304

NOTES

16. The Single Conservation Law

The finite-difference equation (16.6) first appears in Lax' paper [Lx 1], and
the existence Theorem 16.1. is due to Olcinik [0 1]; the proof given here is
adapted from hers. By changing the mesh condition h/1 z S in Lemma 16.5

to the condition 12/h , Oleinik shows in [0 1] that the difference scheme
(16.6) can be used to construct smooth solutions u, of the equation u, + f(u)x
= ruxx. She further obtains compactness of the set jug} so as to recover the
(entropy) solution of (16.1) by passing to the limit as e -, 0. A crucial ingredient

in her proof is the use of the maximum principle for solutions of the parabolic

equation; see Chapter 9.
The entropy condition (16.4) is due to Oleinik [0 1]; it is the heart of the

existence and uniqueness proofs, as well as all results on the asymptotic
behavior and decay of solutions. An analogue of this for systems is unknown.
One consequence of (16.4) is however known for systems; namely (15.31). In
all attempts to use the difference scheme (16.6) (or rather, its analogue) for
systems of conservation laws, one is stopped very quickly since Lemma
16.2 fails to be true, and its replacement has yet to be found.

The elegant proof of uniqueness given in §B is due to Oleinik [0 1];
earlier proofs were somewhat less general; see Germain and Bader [GB, L].
Douglis [Dol]. and W u [Wu]. The analogous proof for an important class of
systems has also been given by Oleinik in [0 2]; (see Chapter 20, §E). In
principle, the technique is applicable to general systems: in practice there is
the obstruction of not knowing the replacement of (16.4) for such systems.

The study of the behavior of the solution as r no goes back to the earliest
papers on the subject; sec [Hf 2] and [Lx 2]. The proof of Theorem 16.13,
as well as the estimate (16.76), was shown to me by E. Conway in a private
communication. The original theorem is due to Lax [Lx 2]. Theorem 16.14
seems to be first stated by Glimm and Lax [GL], as a preparatory example
for the far more difficult theorem in the case of systems.

There are other approaches to the existence problem for (16.1), (16.2). In
[CoH], Conway and Hopf show how to reduce the problem to the Hamilton
Jacobi equation, v, + f (vF) = 0. This latter equation is solved via a calculus
of variations approach. They give an explicit representation of the solution
which enables them to develop a fairly complete study of the solution, as
concerns both qualitative and quantitative properties. Oleinik has given an
extension of the entropy condition in the case of nonconvex, nonconcave
functions f, [03]; this enables her to extend the uniqueness proofs to this
case. Quinn in [Q], uses this extension to give a new uniqueness proof. as
well as to show that the (entropy) solutions of (16.1) form an L,-contraction
semigroup. This fact has been used by Crandall [Cr], as well as Flashka
[Fk], to obtain an existence proof via techniques from theory of nonlinear
semigroups. Krushkov [Kv 2] has shown how to use the viscosity method
directly to solve (16.1), (16.2); see also [L]. The viscosity method relies on
techniques from the theory of second-order scalar parabolic equations (which
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satisfy a maximum principle). Next, in a paper of Douglis [Do 1], the exis-
tence problem has been solved via the method of characteristics, and in [Do 2]
and [Ku] one finds proofs of existence via a "layering" method, related to
finite-difference schemes. Similar work can be found in Dafermos [Df 4].

The existence proofs have been extended to the case of nonconvex.f in
[0 1] and [Ba 1]. In particular, in [Ba 2], Ballou gives an example of a
Riemann problem with a nonconvex f, for which the entropy solution is dis-
continuous on a dense subset of t > 0; see also [Wu].

The results of this chapter have been extended to the case of several space
variables. First, the analogue of (16.6) has been used by Conway and Smoller
[CoS 1], to give an existence proof if u0 e BVC. Here BVC is the class of
functions of bounded variation in the sense of Cesari. A function is in this
class if its derivatives in 9' (see Chapter 7). are in fact, finite measures. This
class is rich enough to contain shock-wave discontinutitics in R", and it
contains functions which are discontinuous on sets of positive measure
[GI]. This raises the interesting question as to whether a solution u of a system
of conservation laws can evolve in time to a state in which it becomes dis-
continuous on a set of positive measure. An affirmative answer would have
interesting interpretations. In [CoS 1] it is shown that for the single equation
the solution remains in BVC both in space and time, see also Kotlow [Kw].
An existence proof in this class via the viscosity method has been given by
Volpert in [V]. In this work is included a "calculus" on the class BVC which
should find many applications. These existence results were extended by
Kruskov [Kv 2] to the case in which the data is merely in L,,. His method is
via "vanishing viscosity." In this paper, he also gives a uniqueness criterion,
which extends the entropy condition to the case of a single conservation law
in »-space variables. Kruskov's result is used in [Cr] and [Fk] to apply
semi-group techniques to the existence problem. The methods of Douglis
[Do 2] and Kuznetsov [Ku] are valid for many space variables. The results
on asymptotic behavior of the solution in the case of several space variables
was given first by Conway [Coy], and then more generally by Hoff in [Hof I ];
sec the references therein for earlier work.

A general approach to scalar difference schemes is given by Crandall and
Majda in [CM].



Chapter 17

The Riemann Problem for
Systems of Conservation Laws

We shall begin this chapter by studying the Riemann problem for an im-
portant class of equations which we designate as p-systems. This class
includes as a special case the equations of isentropic as well as isothermal
gas dynamics. For these equations one can give a complete solution of the
Riemann problem for any two constant states. In §B we shall study the
general properties of shocks and rarefaction waves, while in §C we shall
solve the Riemann problem for general hyperbolic systems of conservation
laws, but only when the initial states are sufficiently close.

§A. The p-System

A model for isentropic (= constant entropy) or polytropic gas dynamics is
given by the following pair of conservation laws (in Lagrangian coordinates):

v,-ux=0, u,+(_) =0, t>0, xeR.
x

Here k > 0 and y z 1 are constants. These equations represent the conserva-
tion of mass and momentum [cf. (15.2)]. (Since the temperature is held con-
stant, energy must be added to the system; whence there is no conservation
of energy equation.) In these equations, v denotes the specific volume, i.e.,
v = p 1, where p is the density, and u denotes the velocity. y is the adiabatic
gas constant, and 1 < y < 3 for most gases.

We shall consider a somewhat more general class of equations which
includes the above class. These are systems of the form

v1 -ux=0, u,+ p(v)x=0, t>0, xeR, (17.1)

where p' < 0, p" > 0. We refer to (17.1) as the p-system. If we choose p(v)
= kv-r, then we recover the isentropic gas dynamics equations.

We let

U = (v, u), F(U) = (- u, p(v)),
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so that (17.1) can be written in the form

U,+

We note that (17.2) is a hyperbolic system since the Jacobian matrix,

dF
=(O 1

(PV) 0

has real and distinct eigenvalues

307

(17.2)

J1 -f p'(v)<0<No/ -p'()A2. (17.3)

The Riemann problem for (17.2) is the initial-value problem with data of
the form

U(x, 0) = U0(x) ^
U,=(vi,u,), X<0.
U, = (vro ur), X > 0.

(17.4)

We shall solve this problem in the class of functions consisting of constant
states, separated by either shock waves or rarefaction waves. Before doing
this however, we must develop a deeper understanding of these two classes
of waves.

We begin by studying shock waves. According to our discussion in
Chapter 15, §D, there are two distinct types of shock waves for (17.2); namely
I-shocks and 2-shocks. Using (15.31), the 1-shocks satisfy the inequalities

s < A,(U1), 2,(U.) < s < 22(U.), (17.5)

while the 2-shocks satisfy

,11(U,) < s < d2(Ui), 22(U,) < s. (17.6)

Since A, < 0 < )2, these inequalities show that s < 0 for 1-shocks and s > 0
for 2-shocks. We shall sometimes call these back shocks and front shocks,
respectively.

In view of (17.3), we see that (17.5) and (17.6) can be written as

- - p'(v,) < s < - /- p'(v,) (back-shocks), (17.7)

and

- RV,) < s < . (front shocks). (17.8)
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We now consider the following question. Given a state U, = (v u,), what
are the possible states U = (v, u) which can be connected to U, on the right
by a back shock? More precisely, we ask what are the states U. for which
the Riemann problem (17.2) with data (U,, U) is solvable by a single back
shock? The possible states U must satisfy the jump condition (15.11), which

in this case reads

s(v - v,) = -(u - u,), s(u - u,) = P(v) - AV,). (17.9)

Eliminating s from these equations we obtain

u - u, = f J(v - v,)(P(v,) - P(V)). (17.10)

We now determine the sign in (17.10). To do this, first note that (17.7) must
hold, so

- p'(v) <

This gives p'(v,) > p'(v), and since p' > 0, we have v, > v. Since s < 0, the
first equation in (17.9) implies that u < u,. This shows that we must take the
minus sign in (17.10). Thus the set S of states which can be connected to U,
by a 1-shock on the right must He in the curve'

S,:u-III = -_1/(v-v) (P(v,)-P(v))=s,(v;U,), v, > v. (17.11)

We call this curve the back-shock curve, or the 1-shock curve.
Next, we calculate ds,/dv :

ds, - V - v,
P ,(V) +

P(v,) - Pv) > 0.
dv 2,(v' - v,)(P(v,) - P(v)) v, - V

A tedious, but straightforward calculation, shows that the curve u - u,
= s,(v ; U,) in the region v, > v is starlike with respect to the point U,; i.e.,
any ray through U, meets this curve in at most one point. Thus the back-
shock curve can be depicted as in Figure 17.1(a). If U, is any point on this
curve, then the Riemann problem for (17.2) with initial data (U,, U,) can be
solved by a back shock, as in Figure 17.1(b). The speed s of the shock can be
obtained from the equation s(v, - v,) = -(u, - u,), as follows from (17.9).
Moreover, by construction, we know that (17.5) is valid for these things.

' The curve determined in (17.10) when the plus sign is chosen corresponds to the so-called
"rarefaction" shock waves; they do not satisfy the correct entropy conditions (17.5). We shall
return to these things in Chapter 20, §D.
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(a)

Figure 17.1

(b)
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With a similar analysis, we can construct the curve S2 consisting of all
those states which can be connected to the state U, by a 2-shock on the right.
We find

S2: u - u, = - (v - v,) (p(v,) - P(V)) = s2(v ; U,), v, < v ; (17.12)

we call this the front-shock curve, or the 2-shock curve. A calculation as above
shows that ds2/dv < 0, and that the curve u - u, = s2(v; U,) is also starlike
with respect to U, in the region v, < v. We can depict the front-shock curve
in Figure 17.2(a). As before, if U, is any point on this curve, then the Riemann
problem for (17.2) with data (U,, U,) is solvable by a 2-shock, as depicted in
Figure 17.2(b). The speed of the shock is obtained as above from the equation
s(v, - v,) = -(u, - u,), and (17.6) is valid for this solution.

We now turn to the study of rarefaction-wave solutions of (17.2); see
Chapter 16, §D. We recall that a rarefaction wave is a continuous solution of
(17.2) of the form U = U(xlt). There are two families of rarefaction waves,
corresponding to either characteristic family i., or tie. Thus a k-rarefaction
wave must satisfy the additional condition that the kth characteristic speed
increases as x/t increases, k = 1, 2. In other words, we require that 7.k(U(xft))
increases as x/t increases.

(a)

U,

(b)

U, x

Figure 17.2
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Now if we let g = xrt, then we see that U = U(x!t) satisfies the ordinary
differential equation

F(U)c = 0.

or

(dF - SI)U., = 0.

If U4 0, then U4 is an eigenvector of dF for the cigenvalue .2 Since dF
has two real and distinct eigenvalues, i,, < A2, we see that there are two
families of rarefaction waves, front- (or 2-)rarefaction waves, and back- (or
1-)rarefaction waves.

Let's first consider the case of 1-waves. The eigenvector Ue = (v4, u4)'
satisfies

G(V) -Aj)(U) Q
which gives A,v4 + u4 = 0. Or, since of 0, we must have utfv, _ -A,, so

du = - _ -pdtA1(V. u) _V V).

We can integrate this to obtain

v>vt. (17.13)
It

The requirement 21(v) > 2,(v,) gives p'(v) > p'(v,), so v > v,, since p" > 0.
Finally, by direct calculation, we find

dr, z

dv = - p'(v) > 0, and dt 2-' 0.
2 - p'(v)

We can thus depict the curve u - u, = r,(v; U,) in Figure 17.3(a). The
corresponding solution of the Riemann problem for (17.2) with data (U,, U,)
is depicted in Figure 17.3(b). The solution varies smoothly in the "fan," and
every value of U between U, and U, on the curve u - u, = r,(v; U,) in Figure
17.3(a) moves with speed .1,(U) in the solution drawn in Figure 17.3(b). More
precisely, if A,(U,) < x/t < A,(U,), we obtain U(x/t) as follows: from the
equation x/t = J.,(U(x/t)) p'(vjx/t)), we find v(xf t), and then we use
(17.13) to obtain u(x/t).

3 If Ut = 0. then, of course, U is a constant.
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(a)

Figure 17.3

Finally, the 2-rarefaction wave curve is given by

311

R2:u-u,= -JV -p(y)dy=r2(v;U,), v, > v. (17.14)
V,

and dr2Jdv < 0, d2r2Jdv2 > 0. This curve is depicted in Figure 17.4.

U,

U, U,

Figure 17.4

x

We can put all of these curves together in the v - u plane to obtain a
picture as in Figure 17.5. This shows that the v - u plane is divided into
four disjoint open regions 1, II, III, and IV as depicted.

We remark that the curves u - u, = rl(v; U,) and u - u, = st(v; U,) have
second-order contact at U,; i.e., their first two derivatives are equal at this
point. The same is true for the two corresponding curves of the second-

S,:u-u,=s,(v;U,)
Figure 17.5
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characteristic family. We shall not prove these facts here, since they are a
consequence of a more general theorem, Theorem 17.15 below.

Now consider the general Riemann problem (17.2), (17.4). We consider U,

as fixed, and allow U, to vary. If U, lies on any of the above four curves;
i.e., if it, - it, = r,4v,, U1), or if it, - u, = s;(v,; U,), i = 1, 2, then we have
seen how to solve the problem. We thus assume that U, lies in one of the four
open regions I, IT, III, or IV, drawn in Figure 17.5.

We define, for U E R2,

S;(U) = {(v, u): it = sAv; U)}, i = 1, 2.

R,(U) = {(v, u): it = r,(v, U)}, i = 1, 2.

and

W(U) = S,(U) v Rj(U), i = 1, 2.

For fixed U, E R2. We consider the family of curves

see Figure 17.6.

U

Sz(U)\
StO"d

Figure 17.6

Let us assume for the moment, that the v - u plane is covered univalently
by the family of curves T; i.e., through each point U there passes exactly
one curve W2(U) of F. Then the solution to the Riemann problem (17.2),
(17.4) is given as follows: we connect U to U, on the right by a backward
(shock, or rarefaction) wave, and then we connect U, to U on the right by a
forward (shock or rarefaction) wave. The particular type of occurring waves
depends of course, on the position of U,.
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For example, if U, is in region III (see Figure 17.5), then consider Figure
17.7(a). For each such U there is a unique point U, for which the curve
W2(U) is in F and passes through U,. Since U E S1(U,), U is connected to
U, on the right by a back shock. Since U,E R2(U), U, is connected to U on
the right by a front rarefaction wave; see Figure 17.7(b).

(a)

Figure 17.7

(b)

In Figure 17.8, we illustrate the four various possibilities.
It remains to determine whether the curves in . cover the v - u plane

univalently. We split the proof up into two cases; namely, in the first case,
we assume that U, lies in one of the regions I, II, or 111; and in the second
case, U, lies in region IV (see Figure 17.5).

Suppose first that U, lies in region I. Let the vertical line v = v, meet
W1(U,) at A, and let it meet W2(U1) at B. Referring to Figure 17.9, we observe
that the subfamily of curves in J F, consisting of the set {W2(U) = W2(15, u):
v, 5 u < v0 }, induces a continuous mapping p -+ O(p) from the arc U,A to
the line segment AB. This follows by transversality, since each of the S2
curves have negative slope. Now in the region U, AB, the slopes of these
curves are bounded; thus we see that points P sufficiently close to A must
map into points above U,. Since U, maps into B, which is below U,, we see
by continuity, that there must be a point U on the arc U, A which maps into
U,. This shows that the region I is covered by curves in I. Since a similar
argument works if U, lies in regions II or III, we see that regions 1, II, and III
are covered by members of F. This proves the existence of a solution of the
Riemann problem for (17.2), (17.4), if U, lies in regions I, 11, or III, with
respect to U, .

We shall now show that the curves in 9 cover regions I, II, and III, uni-
valently; i.e., that through each point U, belonging to any of the regions 1,
II, or III, there passes exactly one element of F.

Again let's suppose that U, lies in region I. Referring to Figure 17.10, we
see that it suffices to show that 8u/eti > 0. Now using the two equations

u = 141 t- )dy and u = it O(h(1- p(v.)
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(b)

(d)

17. The Riemann Problem for Systems of Conservation Laws

U, in rcgion I

U, in region III

SU R,U -.U

S1 S2
U, -+U U,

U, in rcgionIV U,-,U U,

Figure 17.8
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V=V.

Figure 17.9

we compute

cu du l

cue 8ci - -- {(c, - i5)P (15) - (p(13) - p(v.))
2., (U. i)(pff)

(o,-o) p(t')-p(u,)- v P 2v (c' _
p(v,))

P (7 + 8 - e
I > 0.

This implies the uniqueness result in region I ; the proofs for regions 11 and
Ill are similar.

We turn our attention now to the case where U, lies in region IV. It is
perhaps surprising that not every point in this region can always be covered
by an element of.. For example, if

u0 $ dy< (17.15)

Figure 17.10
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then it is easy to see that the curve

u = r, (V; a,, ut) = u, +
J

J P (v) dy
t,

has a horizontal asymptote; namely, the line is = u, + uo. Referring to
Figure 17.11, we take U, = (U,, u) to be in region IV, where u, is chosen so

u=u,+2uo
U=u1+uo

Figure 17.11

large that u, > u, + 2uo. Let U = (v,u7 be any point on W1(U1); then

u,+JP -P(y)dySu,+uo.
11

The point U' on W2(0) with abscissa v,, has ordinate

J
-p(Y)dy=a+JP dy

P t,

Su+ -p'(y)dy-<tit+2uo<u,.

Thus U, cannot lie on any curve in ,F!
We have thus shown that if (17.15) holds, then the region IV is not covered

by curves in F. Generally speaking however, (17.15) is true in the interesting
examples. Thus, for the case where

y z 1 (k = const. > 0),

an easy calculation shows that (17.15) holds if and only if y > 1(the physically
relevant range).

The convergence of the integral (17.15) can be given a nice physical inter-
pretation ; namely, it corresponds to the appearance of a vacuum. For
example, in the shock-tube problem, if the relative velocities on both sides of
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the membrane in the shock tube are sufficiently large, then a vacuum, or a
region void of gas is formed. In this case, p = 0, or equivalently, v = p t is
infinite. To sec this mathematically, note that the R2 curve through U, is
given by

u - u. dy = r2(v; U,),

and, as above, u has a horizontal asymptote in the region u < u, (see
Figure 17.11). Thus, along this curve - J-p'(v) _ A,, tends to zero as
v -+ oo, since p" > 0. Similarly, 22 = J-p'(v) -, 0 as v -+ oo, if v lies on
the R,-curve through U, (see Figure 17.11). A "solution" of the prob-
lem (17.2), (17.4) in this case is given in Figure 17.12, where we connect U, on
the right by a complete back-rarefaction wave, and we connect U, on the left
by a complete front-rarefaction wave. The solution is undefined on the line
x = 0, since v = + cc (i.e., p = 0) there, and, of course, u is undefined.

t

v = oo. u undefined

U, x

Figure 17.12

On the other hand, even if (17.15) holds, the vacuum does not necessarily
appear, and it is possible to solve the Riemann problem if U, is in region IV,
provided that U, and U, are close; i.e., provided that I U, - U,I is small. This
solution is depicted in Figure 17.13 (sec also Theorem 17.18 in §C of this
chapter).

We have now shown how to solve the Riemann problem for the p-system
(17.1), in the class of (at most three) constant states separated by shocks and
rarefaction waves.

It is interesting to note that in the case where p(v) = k/vp, y = 1; i.e., the
isothermal gas case, the vacuum does not appear, since the integrals

all diverge.
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I

U,

Figure 17.13

U, x

If the solution of the Riemann problem does not assume the vacuum state,
then an examination of all the possible cases shows that the intermediate
state in the solution lies between the rarefaction-wave curves determined by
the initial states. That is, the solution satisfies the inequalities

r >- min(r r,) - min(r(v,, u,), r(v,, u,)),

s < max(s,, s,) max(s(v,, u,), s(v,, u,)),

where

r(v, u) = u -
r

- p (s) ds,

s(v, u) = u + f _- p'(s) ds.

Knowing how to solve the Ricmann problem enables us to actually solve
certain types of interactions. For example, suppose that we consider the
equations (17.1) with the following initial data:

(v,, u,), x < x1,

(v, U) (X, 0) _ (v. u,,,), x1 < x < x2,

(V,, u), x > x2,

and suppose too that the discontinuity (v,, u,), (v., is resolved by a front
shock S 1 of speeds,, and that the discontinuity (v. us), (v,,u,) is also resolved
by a front shock S2 of speed s2; see Figure 17.14. From (17.6), we find 0 < s2
< 7,2 u.) < s,, from which it follows that S1 overtakes S2 at some time
T > 0. Notice at t = T, we again have a Riemann problem with data (v,, u,),
(v,, u,). In order to solve this problem, we must determine in what "quadrant "
(v,, u,) lies in with respect to (v,, u,); sec Figure 17.15.
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Our claim is that (v u,) lies in the first quadrant (not the second), so
that the Riemann problem is resolved by a back-rarefaction wave and a
front shock, as depicted in Figure 17.14. To sec this, note that (vm, un) lies
on the front-shock curve S. starting at (vt, u,). and (v u) lies on the front-
shock curve S2 starting at (va u,,,). If we can show that 92 always lies above
S2 (as depicted in Figure 17.15), we will have proved our claim. To this end,
we shall prove that: (i) the slope of S2 at (Vm, un) is greater than the slope of
S2 at (vm, um), so that 92 "breaks into " the depicted region ; and (ii), 92 never
meets S2 for v > v,n.

To show (i), note that S2 is given by the equation

U - Ut = - (L' - V1JP(V1) - 1kV)1

so that the slope of S2 at (vm, um) is

P(V.)+
p(v,) - P(v.)

_ P IL'.) + P'() Vt < < Vm.vt - Vet

2 I-P(y1) - P(Vr)

V V, - V,.,

(VI, U1)

Figure 17.15
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The slope of 9_ at (v" uis - since the (normalized) right eigen-

vector at (v., U,") is (1, Thus, since

O V.) + p(sp(v"> ,

- -
a)

statement (i) follows. To prove (ii), we define a new function 4(x, y) _
( )(p(y) - p(x)). It is not hard to show that if x > y > z. then O(x, z)

> O(x, y) + 0(y, z). Then, if there were a point (v, u) a S2 r S2, with v > v,",
then v > vm > v,, and

u - U," = - O (V, v,"), it - u, = - O(v, v,).

This gives

`Y(v,, vm) = u, - U. = O(v, v,) - Ov. vm) > /'(v",, v,),

which is a contradiction, and the proof is complete.

§B. Shocks and Simple Waves

In this section we shall formulate a general theory of shock and rarefaction
waves. It will turn out that to each characteristic family, ik, k = 1, 2, .... n,
and to each point it, e R", there corresponds a unique curve in u-space, this
curve being the set of states that can be connected to u, on the right by a
k-shock, or a k-rarefaction wave. These curves are analogous to the corres-
ponding curves u - u, = rjv; U) and u - u, = s,4u; U,), i = 1,2, which were
constructed in §A. In the general case studied here however, these curves
are only defined locally; i.e., near u,. If then u, is sufficiently close to
u,, we shall show that the Riemann problem is solvable. The proof is actually
a nice application of the inverse function theorem, and is based on the
hyperbolicity of the equations. Before giving the details, we must develop a
general theory of shock and rarefaction waves.

We consider the system of n equations

U,+f(u)x-0, xeR, t>0. (17.16)

Here u = (u1..... u"), f (u) = (f, (u), f2(u), ... , f"(u)) is smooth in a neighbor-
hood N e R", and the Jacobian matrix, df(u), has n real and distinct cigcn-
values ).,(u) < ... < A"(u) in N. Corresponding to each ).(u), we have a right
(column) eigenvector r,(u) and a left (row) eigenvector 11,(u). These eigenvalues
and eigenvectors are smooth functions of u e N. We shall sometimes refer to
the points in N as states.
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We began our study by considering a general class of solutions called
centered rarefaction wares. These are solutions which depend only on the
ratio (x - xo)/(t - to), where (xo, to) is called the center of the wave. We
begin with a definition.

Definition 17.1. A k-Riemann invariant is a smooth function w: N -: R such
that if u e N,

<rk(u) Vw(u)> = 0.

(Here < . > denotes the usual inner product in R".)

Proposition 17.2. There are (n - 1) k-Riemann invariants whose ,gradients are
linearly independent in N.

Proof. Consider the vector field Rk = rk - P. defined by

Rk(f) _ > rr u', where rk = (rk..... re).

In some coordinate system (Z ,, ... , Z"). we can write R = ajaZ,. Put
wj =Zj+,,j=1,2,...,n-1.Then in this
coordinate system, the Vwf, 1 :5.j < n - 1, are linearly independent.

EXAMPLE. 1. Consider the p-system (17.2)

Vt-uX=0, it,+p(u)x=0.

where p' < 0. Here f = (- u, p(v)). and df has cigenvalues 2, ,

)2 = The right eigenvector corresponding to, say, ).2, is R2 = (-1,
- )pSince n = 2, we should be able to find one Riemann invariant w2.

It must satisfy the equation R2. Vw2 = 0, or

N'i + / - p (v) w. = 0,

and is given explicitly by

x'2(v, u) = it +
J

\;` - p'(y) d y. (17.17)

A similar calculation shows that the Riemann invariant corresponding to

R, = (1, is given by

It" (V, u) = u - f v p '(y) dy. (17.18)
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EXAMPLE 2. Consider the gas dynamics equations in Eulerian coordinates.

PC + (Pu)x = 0,
p /density

u, + uu, + p,f p = 0, u = velocity ,

s entropy
s,+us.=0,

r--
where p = p(p, s), p, > 0. We denote the sound speed c by c = V po. The
matrix

Pu p 0,
otP U PajP

0 0 is

has eigenvalues u - c, u, and u + c, with corresponding right eigenvectors
(p, - c, 0)', (p 0, - po), and (p, c, Of The three pairs of Ricmann invariants
associated with these eigenvcctors can be taken as

{S, u + h}, {u, p} and Is. u - h},

where h = h(p, s) satisfies h,, = c/p; h is called the enthalpy. For example, if
we consider the eigenvector (p, c, 0)', then the Riemann invariants w must
satisfy the equation pwo + cw = 0. Clearly w' = s satisfies this equation,
and also if w2 = u - h, we find p%,,' + cww = p(-h,,) + c = 0. Since
Vw' = (0, 0, 1) and Vw2 = (-ho, 1, -h,), we see that Vw' and Vw2 are
linearly independent.

Definition 17.3. Let u be a C' solution of (17.16) in a domain D, and suppose
that all k-Riemann invariants are constant in D. Then u is called a k-simple
wave (or sometimes, a k-rarefaction wave).

EXAMPLE 3. Let us consider again the p-system (17.1). We shall show that
the rarefaction waves which we have discussed in §A satisfy the conditions
of this definition. To this end, it suffices to show that the functions w' and
w2, as defined in (17.17) and (17.18), arc constant along the curves (17.13)
and (17.14), respectively. This is trivial; consider, e.g., w' defined on the
curve given by (17.13). Letting this curve be parametrized by v, we have

dt t t

u ad +ad dv=- +1 0.

A similar calculation is valid for w.2
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This last example illustrates a simple fact; namely, that for a k-simple
wave u in a region R, the image, u(R), is actually a curve in R. To see this,
note that in R, we have, by definition, w,(u) = c;, i = 1, 2, ... , n - 1, where
the w; are the (n - 1)-Ricmann invariants, whose gradients are linearly
independent. Thus the matrix (having n-rows and (n - 1) columns)

M = [VtiVIVi ... VW i]

has rank (n - 1). This implies that not all the (n - 1) x (n - 1) minors in
M are singular. Thus, the (n - 1)-equations w,(u) = c;, in n-variables,
u = (u ... , u.), are equivalent to a system of the form u; = 4,(u,), j = 1,
2, ... , n, j i, for some i.

We call attention to the fact that the curve determined by the intersection
of the surfaces w,{u) = w,{u,), i = 1, 2, ... , n - 1, where u is a point in N, is
precisely the integral curve of rk passing through u,. Thus, if v(O) is such an
integral curve, and w is a k-Riemann invariant, Vw v' =
Vw rk = 0. On the other hand, if ¢(0) is a (local) curve along which all the
k-Ricmann invariants are constant, then dwv/dO = Vw d,' = 0 for every k-
Riemann invariant w. Thus 4i' is orthogonal to the (n - 1)-dimensional space
spanned by the Vw;, i = 1, ... , n - 1; i.e., 0' lies in the span of rk.

To continue our development, it is useful to state explicitly the following
lemma.

Lemma 17.4. Let d/dk = a/at + A a/ax denote differentiation in the 2,, direc-
tion. Then u is a classical solution of (17.16) if and only if lk du/dk = 0, for
k = 1, 2, . . ., n, where lR denotes the kth left eigenvector of df(u) corresponding
to the eigenvalue tik.

Proof. u is a classical solution of (17.16) if and only if u, + df (u)u,, = 0. If we
multiply this on the left by lk, we get

0 = lk(u, + df (u)u:) lk(u, + Ak ux) l,,
dk

as desired. 0

We next give a special property of simple waves. This result is analogous
to the result for scalar equations which asserts that solutions are constant
along characteristics, and that the characteristics are straight lines.

Theorem 17.5. Let u be a k-simple wave in a domain D. Then the characteristics
of the kth field (i.e., the curves dxldt = ) (u(x, t)), are straight lines along which

u is constant.
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Proof. From the last lemma, we have

dulk=0.A
(17.19)

Also, if w,_., are (n - 1) k-Riemann invariants, then they are all
constant in D. Thus

_ L w)
0 dk=Vw, d, j=1,2,...,n-1.

These equations, together with (17.19) gives

duA= 0.

VN'

Since the owl's are linearly independent, we see that the above (n x n) matrix
is nonsingular, because lkrk # 0. Thus duldk = 0, so it is constant in the kth
characteristic direction, and it follows that the kth characteristic curves are
straight lines.

Note that the lines drawn to form the "fan" of a rarefaction wave are
these straight line characteristic curves along which the solution is constant;
cf. Figure 17.3(b).

Definition 17.6. A centered simple wave, centered at (xo, to), is a simple wave
depending only on (x - xo)/(t - to).

We now make an important definition; it corresponds to the same notion
for systems as does convexity in the scalar case.

Definition 17.7. The kth characteristic family is said to be genuinely nonlinear
in a region D s R" provided that VA rk 0 in D. If this is the case, we shall
normalize rk by Wk rk = 1.

Notice that for a scalar equation, u, + f (u)., = 0, A = f'(u), r = 1 and
VA r = f"(u). Thus in this case, the notion of genuine nonlinearity reduces
to convexity.
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For the p-system (17.1), we have

22 = - P (v), r2 = (-1, - p'(v)r and

VA2 - r2 = - , 0 r (-1, -(u)Y = p"22
so that p" > 0 implies that the second-characteristic family is genuinely non-
linear. A similar calculation gives V)., - r, * 0.

We now want to describe the states u which can be connected to a given
state u, on the right by a k-centered simple wave. Here is the main lemma.

Lemma 17.8. Suppose that the kth characteristic field is genuinely nonlinear
in N, and let u, a N. There exists a smooth one-parameter family of states u(y),
defined for I y I sufficiently small, which can be connected to u, on the right by a
k-centered simple wave.

Proof. Let v(y) be the solution of the problem

d = rk(v(7)), v(A,(u,)) = uh Y > Ik(ur)
1

The function v(y) exists on the interval .t.k(u,) S y S 2k(u,) + a, for sufficiently
small a. Also

1.

Thus 2k(v(y)) = y, since v(,lk(u,)) = u,. Define u(x, t) by

u(x, t) = 1010, Mud 5 t 5 Ak(u,) + a.

Then if ik(u,) < x/t < 2k(u,) + a, w is a k-Riemann invariant, and x/t,
we have

1- =Vwd =Vwrk=0,
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so w is constant in the region. Hence u defines a k-simple wave. Also,
dAk/d = 1, so that Ak increases along this wave. Finally, since u is smooth,

we have

is, + dl(u)ux = 2)
d- t.

+
(if (v)(dv/dy)

I

- x df (v)rk(v)
zz rk(v) + t

- X Ak(L)rk(L)

t 2
rk(L) + t

f 2
(r(r,'(* + (x/'t 0.

so is is a solution of the conservation laws. This completes the proof.

The states which are connected to u, by a centered k-simple wave thus
form a one-parameter family u(y). Since the k-Riemann invariants w, are
constant, we have w;(u) = w,{u,), i = 1, 2, ... , n - 1. We introduce a para-
meter a by k(u) = ).Jut) + e (this amounts to writing y = e + dk(u,) in the
last theorem). We now have n-equations to solve for u(s); namely F(u) = 0,
where F maps R" into itself and is given by

F(u) = (wl(u) - wl(u1). , 4,"- 1(It) - 11' - 1(u1), Ak(u) - /,.(u,) - e), u e R".

Since the Jacobian matrix, dF = (Vtvl..... V%- r, Vik) is nonsingular, the
equation F = 0 defines a curve is = u(&. u,) depending on u,, for I r I sufficiently
small. This is just a consequence of the implicit function theorem. This curve
is (by uniqueness), the curve tv(y) of Lemma 17.8, with a different parametriza-
tion. We note that since d2jds = 1, the condition Ak(u,) < .k(u(e)) is satisfied
only for s > 0. Moreover, for any k-Riemann invariant w,

0=dIE=Vw- je' (17.20)

so that du/ds is in the set (owl, ... , Vw"_ 01. It follows that du/de = xrk, for
some a. But a = I since

1

de= VA..

de
= a(VAk' rk) = a.

Thus du/de = rk. If we differentiate (17.20) with respect to e, and denote
differentiation with respect to a by dot, we get

0 =Vw-i +Vwti=Vw-a+Vwr5.
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We consider the relation Vw rk = 0 along u = u(s), and obtain Vw ik
+ Vw - rk = 0. These two equations give Vw - (u - ik) = 0. It follows that
u - ik = fir,, for some constant fl. But since dAJds = 1, we have

d 2Ak d du d 2U du du
0

= _d_& = ds
V2

ds
= Wk d2 + T'k (de de

= VVAk(ik + frk) +

VAk rk)

=0+(VA*-rk)'=A.

Thus u = ik. We have therefore proved the following theorem, which in fact,
completes our theoretical discussion of simple waves.

Theorem 17.9. Let the kth characteristic field of the system (17.16) be genuinely
nonlinear in N, and normalized so that V).k rk = 1. Let u, be any point in N.
There exists a one-parameter family of states u = u(E), 0 < s < a, u(0) = u,,
which can be connected to u, on the right by a k-centered simple wave. The
parametrization can be chosen so that 6 = rk and u = ik.

We turn our efforts now to developing a general theory of shock waves
for systems (17.16). We recall from Chapter 15, §B, that if u suffers a discon-
tinuity across a curve x = x(t), and x (t) = s, we must have the following
jump conditions satisfied :3

slut - u,) = f(u1) - f(u,). (17.21)

Furthermore, recall that a discontinuity satisfying (17.21) is called a k-shock
if (see equation (15.31))

Ak- 1(u1) < S < itk(ut),

Ak(U,) < S < Ak, l(u,). (17.22)

Now in analogy to what we have just done for centered simple waves, we
pose the following problem. Given a state u, c- N, describe the states u, which
can be connected to u, on the right by a k-shock wave. Assuming that u, is a
known given state, we can view (17.21) as n-equations for the (n + 1)-
unknowns u s. This indicates that the answer to our problem should be a
curve in u-space. This is indeed true, but' it requires a proof. We shall show

J If the system (17.16) is linear, u, + Au, - 0, then (17.21) becomes s[u] _ [Au] = A[u].
Since [u] * 0, it follows that s is an eigenvalue of A. s - 7.k. Hence the curves of discontinuity
for a linear system must he along the characteristics. It is worth mentioning that this result is
also true for linearly degenerate fields, as will be shown in Theorem 17.17 below.

`Note that we cannot get this result directly from the implicit function theorem since
u = u, is a solution of (17.21).
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that under the assumptions of hypcrbolicity and genuine nonlinearity the
equations (17.21) do indeed define a one-parameter family of states near u,
which satisfy (17.22).

Before carrying out this program, we prove a simple lemma.

Lemma 17.10. Let Ik and rk denote the left and right eigenvectors of the hyper-
bolic system (17.16) corresponding to the eigenrector Ak. Then

lk . rk(VAk - rk) = lkd2f(rk, rk), (17.23)

where d2f is the second derivative (bilinear f)rm) of the mapping f.

Recall that if f = (ft, f2, where each f = f,{u), and 11(f;) denotes
the Hessian matrix of f,, then d2f (r;, r;) is the column vector defined by

1ri H(f1)r1

d2f (r,, r,) =
r; H(f2)r;

r, H(.fff)r,

Proof of Lemma 17.10. Let A = elf ; then Ark = Akrk. If we differentiate this
equation in the direction rk, we get

dA(rk)rk + A drk(rk) = dAk(rk)rk + /.k drk(rk)

Multiplying on the left by 1k gives

Ik dA(rk)rk + !kA drk(rk) = dik(rk)lkrk + 7.klk drk(rk),

or

Ik d A(rk)rk + Ak Ik drk(rk) = d).k(rk)lk rk + Ak Ik drk(rk),

so that (17.23) holds.

Now since lark # 0, (17.23) shows that the kth characteristic field is
genuinely nonlinear if and only if 1k d2f (rk, rk) * 0. Thus, the notion of
genuine nonlinearity is now obviously seen to be a condition on the second
derivative off.

From now on, in this chapter, we assume that if the system (17.16) is genuinely
nonlinear in the kth characteristic field, so that V).k - rk # 0, then rk is normalized
by VAk - rk = 1 and (then) 1k is normalized by lark = 1.

Theorem 17.11. Let the system (17.16) be hyperbolic in N, and let it, a N. Then
there are n smooth one-parameter family of states u = uk(s), k = 1, 2, ... , n
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defined for I E I < ak, where uk(0) = u,, all of which satisfy the jump condition
(17.21).

Proof. Since

f (it) - I (u,) = fo
l 6

f (u, + a(u - U,)) da

=f 1df'(u,+a(u-u,))(u-u,)da

=- G(u)(u - u,),

we may write the jump condition (17.21) in the form

H(u, s) - [G(u) - s](u - u,) = 0. (17.24)

We change to polar coordinates (r, (2); namely, set (u - u,) = rig, where
r = it - u,I and 0 c: S"-'. Thcn (17.24) can be written as

H(r, a s) = rK(r, as), (17.25)

where K(r, (2, s) = [G(r, i2) - s]i2. The solution set for (17.25) is given by
r = 0 and K = 0, where r = 0 gives the trivial solution u = u,. Now K = 0
has the solution (r, Cl, s) = (0, r,, A,), where Ir,I = 1, i = 1, 2,..., n. At these
points, K has full rank since K3(0, r4, Ai) = -r, (has range r,), and as
(I/r)(c/ci2) = o/au, Kn(0, r,, A,) = f'(u,) - ).,I has range {rt, 1 5 j 5 n; j A
i}. Thus the implicit function theorem implies that near the point (0, r,, A,),
K = 0 can be written as ((2, s) = (1;(r), si(r)), so that

u,(r) = r(2,(r), i = 1, 2, ... , n. 0 (17.26)

We shall refer to the curves which we have just obtained, as the k-shock
curves; k = 1,2,...,n.

Corollary 17.12. The kth shock curve satisfies

iik(0) = r,, where rk = rk(u,). (17.27)

Proof. At r = 0, (17.26) gives duk/dr = C2k(0) = rk. 0
Corollary 17.13. Along the k-shock curse, if the kth characteristic field is
genuinely nonlinear, we can choose a parametrization so that uk(0) = rk, and
iik(0) = rk, where rk = rk(u,). Moreover, with this parametrization s(0) = Ak(u,).
and 0) = 2.
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Proof. We consider the equations (17.21), specialize to u = uk(e), and differen-
tiate twice with respect to e. This gives

Silk + s(uk - Ut) = djUk (17.28)

and
silk + 2siik + s(uk - ut) = dfilk + dfilk. (17.29)

If we consider (17.28) at s = 0, we find

SUk = dfilk

so that from the last corollary, s(0) = i.k(0) Ak(u,), since 6 JO) = rk.

Now consider the equation df (u)rk(u) ).k(u)rk(u). If we take u = uk(e)
and differentiate with respect to r., we find

Rkrk + Aktk = d2J lrk, rk) + dflk.

Since Ak = Ohk rk = I at F. = 0 by genuine nonlinearity, we have, at e = 0,

rk + A.kt"k = d2f(rk, rk) + dfrk. (17.30)

Using (17.29) at s = 0, we find

AkUk + 2srk = dfilk + d2f(rk, rk). (17.31)

Multiply both (17.30) and (17.31) by Ik = Ik(u,) on the left and subtract to get

1 = 40) = 2s(0),

so that s(0) Now subtract (17.30) from (17.31) to get (ate = 0)

/.k(Uk - rk) = dJ (uk - 1'k).

Hence uk - r), = c'rk ate = 0. We can change our parametrization3 so as to
achieve c' = 0, and thus uk(0) = )k. This completes the proof. 0

We next investigate the validity of the shock conditions (17.22) along the
k-shock curve. It turns out that they are satisfied only along "half " of the

' Let 6 - }cd= define the new parameter.
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curve. The part of the curve in which they fail to hold consists of the so-called

,inadmissible) rarefaction shocks, in analogy with gas dynamics. Specializing
our results below to the gas dynamics equations, we will see later that the
"bad" half consists of discontinuous solutions in which the entropy decreases
across the discontinuity.

Theorem 17.14. The shock inequalities (17.22) hold along the curve u = uk(e)
if and only <0.

Proof. We write AS(E) = Aj(Uk(E)), and s(e) = sjuk(e)). The shock conditions
(17.22) can be written as

(a) Ak- 1(0) < s(s) < Ak(U),

(b) Ak(E) < s(E) < At 1(E)

Let c(e) = Ak(E) - s(E). Then 0(0) = 0, 0'(0) = VAk rk - s(0) = 1 - i > 0.
Thus if (b) holds we see r < 0. On the other hand, if e < 0, then we see
¢(E) < 0 so At(e) < s(E). Also §(0) = i and Ak(0) = s(0) imply A,(0) > s(E).
Since s(c) -+ 7.k(0) > A,- 1(0) as r 0, we have s(e) > ).k-,(O) for small S.
Finally Ak+ 1(0) > Ak(0) = s(0) gives Ak+ 1(E) > s(E) for small e. This completes
the proof. 0

Using this theorem, together with Theorem 17.9, allows us to form the
composite curves through u1 E N, as follows: For each k, 1 S k 5 n, define

I
Uk(E), E < 0,

Uk(s) = _
Ak(c), e z 0,

(17.32)

where Uk is the k-shock curve, and dk is the k-rarefaction-wave curve. Then
Theorem 17.9 and Corollary 17.13 yield the following theorem.

Theorem 17.15. The curves Uk(E), k = 1, 2, ... , n, have two continuous deritw-
tives at E = 0.

This is also a classical result for the gas dynamics equations.
As a final result along these lines we have the following theorem, which

again was classically known for the gas dynamics equations.

Theorem 17.16. (a) The shock speed of a k-shock is the arithmetic average of the
k-characteristic speeds on both sides of the shock, up to second-order
terms in c.

(b) The change in a k-Riemann invariant across a k-shock is of third order

in c.
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Since we may view s as a measure of the strength of a shock, these results say
that for sufficiently weak shocks, the shock speed is well approximated by the
average of the two characteristic speeds which impinge on the shock from both
sides, and that the k-Riemann invariants are almost constant across a weak
k-shock.

Proof. Along the k-shock curve, we have from Corollary 17.13,

s(E) = s(0) +.(0)5 + 02(5) = ).Jut) + 15 + 02(5), (17.33)

and

Ak(u,) ME) = AJO) + Ak(O)E + 02(c) = Ak(ut) + E + 02(s).

From the last equation we find

E = Ak(tU,.) - 2k(uf) + 02(5),

and using this in (17.33) gives the conclusion in (a). Since w is constant along
uk, we have v(0) = w(O) = 0. O

We now consider the final type of elementary waves, namely, the so-called
contact discontinuities. These arise when one characteristic family is not
genuinely nonlinear; in fact, when it is as far from being genuinely nonlinear
as possible. Thus we suppose that the kth characteristic field is linearly
degenerate in N; that is, VA - rk - 0 in N.

EXAMPLE 4. We consider the equations of gas dynamics which (as we shall
show later), we may write in the form

v,-u,=0,

S, 0,

where we take v, u, and S as variables, and p = p(v, S). The associated matrix
is

A. < 0, Pua > 0,
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with eigenvalues .1 - - pv , A2 = 0, d3 The corresponding
right eigenvectors are

r1 = (1, -A1, 0)', r2 = (p,.0. -pa)', r3 = (1, 7.1, Of

Then VA 1 r1 = - (a/dv) --p,, 0 and similarly, Vi 3 r3 # 0. However,
VA2 r2 - 0, and thus the second characteristic family is linearly degenerate.

Now suppose that the kth characteristic field of the system (17.16) is
linearly degenerate; i.e., V;.,, - rk - 0 in N. Then by definition, A. is a k-
Riemann invariant. Thus if u(s), Is I < a is the solution of the problem

du

de = rk(u(E)), u(0) = ut,

then VAk rk = 0, implies that 2k is constant along this curve; i.e., Ak(u(s))
= )?k(u(0)) = 2k(u,), I E I < a. Now if I e I < a, define a function v by

v(x' t) - ( u,, x < tAk(ur),

!ll u(e), x Z t%k(u,)

The claim is that v solves the equation (17.16) with the initial conditions

u(x, 0) =
(u,, x < 0,

u(P), x>0.

It is obvious that v takes on the correct data. To see that v is a solution, we
need only check that the jump conditions (17.21) hold across the line of
discontinuity. To this end, we set s = ).Jul); then

de
{ f (u(e)) - su(s)} = dfi& - sii = (df - .lk)r, = 0.

Thus f (u(c)) - su(e) = f (u,) - su,. This last equation is the jump condition,
for solutions with a discontinuity along a curve x = tAk(u,). A solution of
this type, where the shock speed equals the characteristic speed on one side,
is called a contact discontinuity. We can now prove the following theorem.

Theorem 17.17. If two nearby states u, and u, have the same k-Riemann in-
variants with respect to a linearly degenerate field, then they are connected to
each other by a contact discontinuity of speed s = Ak(u,) = ).,:(u,). If the kth
characteristic field is linearly degenerate in N1 then if u, e N, there exists a
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one-parameter family of states connected to u, on the right by a contact discon-
tinuity of speed s = k(u,).

For, if w,{u,) = w,{u,), i = 1 , 2, ... , n - 1, where the w; are k-Riemann in-
variants whose gradients arc linearly independent, then we have seen in the
remark just before Lemma 17.4, that u, and u, lie on the kth-characteristic
curve through u,, as long as u, is close to u,.

§C. Solution of the General Riemann Problem

In this section we apply the theory developed in §13 to solve the Riemann
problem for (17.16). We assume that (17.16) is hyperbolic, and that in N each
characteristic field is either genuinely nonlinear or linearly degenerate, so
thatVAk - rk - 1orV).k-rk=0inN,I SkSn.

We consider the equation (17.16) with data

u,, X < 0,
u(X, 0) =

u,, X > 0.
(17.34)

We shall solve this problem uniquely, in the class of (at most) (n + 1) constant
states separated by shock waves, centered simple waves, and contact dis-
continuities, provided that I u, - u,I is small.

In the remainder of this section, we shall assume that IeI is so small, that
the curves Uk(e), defined by (17.32) all exist provided that the kth charac-
teristic field is genuinely nonlinear, and that if the kth characteristic field is
linearly degenerate, the curves satisfying du/de = rk(u(e)) all exist.

Theorem 17.18. Let u, e N and suppose that the system (17.16) is hyperbolic and
that each characteristic field is either genuinely nonlinear or linearly degenerate
in N. Then there is a neighborhood t c N of u, such that if u, e 9, the Riemann
problem (17.16), (17.34) has a solution. This solution consists of at most (n + 1)-
constant states separated by shocks, centered simple waves or contact dis-
continuities. There is precisely one solution of this kind in R.

Proof. From Theorems 17.15 and 17.17, we know that for each k = 1, 2, ... , n,
there exists a one-parameter family of transformations

7:N-.R, IEkI <a,

which is C2 in ek, with the property that any u e N can be joined to T.*. u on
the right by either a shock, centered simple wave, or contact discontinuity
(depending on whether the kth characteristic field is genuinely nonlinear or
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linearly degenerate, and in the former case, depending on whether ek < 0 or
ek > 0).

Now let u, be any point in N, and define U = {(e,, ... , e") E RI: it, I < a,
= 1, ... , n}. We consider the composite transformation T : U - R" given

by T(e) = T. T.-,' ... T.. u,, c Our goal is to show that there
is an c in U such that T(Z)u, = u provided that I u, - u, I is small. To this end,
we define a mapping F : U -, R" by

F(e) = T(e)u, - u,.

Then F(0.....0) = 0, and since// (from Theorem 17.15, for example)

T., u = u + ek rk(u) + 02(ek), k = 1__n,

we have

F(e1,..., c,,) = i ejrj(u,) + 02(t).
j-1

This shows that dF(0,... , 0) = (r1(u,),... , r"(ut)). Since this latter matrix is
nonsingular (by hyperbolicity), we can invoke the inverse function theorem
to conclude that F is a homeomorphism of a neighborhood of a = 0 onto a
neighborhood of u = 0. Therefore, if I u, - u, I is small, there is a unique
i = s,) such that F(i ,, ... , s") = u, - u,. In other words,

7"T_"-I ... T_1u - u u u

or

This completes the proof. C3

No

The results in §A have been extended by Smoller [Smo], to systems of two
equations having "big" data. The equations are of the form u, + F(u).,, = 0,
where F = (f, g), u = (u1, u2). It is assumed that 0, a condition
stronger than hyperbolicity, and also that 1, d2F(r), rj) > 0, i, j = 1, 2, under
the usual normalizations of 1, and r,, the left and right eigenvectors of dF,
respectively. If f.=g,,, < 0, the shock curves can exhibit strange behavior,
and the Riemann problem may fail to be solvable; see Borovikov, [Bv]. The
results in §A have been extended to weakly hyperbolic systems by many
authors [Is, KK, Df 2, 3, DL]. The appearance of the vacuum is studied by
Liu and Smoller in [LS]. Shock interactions arc considered from a general
point of view in Smollcr-Johnson [SJ].

The results in §B are adapted from Lax' fundamental paper [Lx 2]. It is
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there where one first encounters the basic idcas in the subject : the shock
inequalities (17.22), the notion of genuine nonlinearity, the one-parameter
families of shock- and rarefaction-wave curves, as well as the solution to the
Ricmann problem.

The proof of Theorem 17.11 is due to Conlon [Cn], with a further
simplification due to K. Zumbrun (personal communcation); see also Foy
[Fo], and Conlcy-Smoller [CS 2], for earlier different proofs.
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Applications to Gas Dynamics

In earlier sections, we have written the equations of gas dynamics in several
different forms (see equations (18.3) and (18.3)' of this chapter, and Examples
I and 2 in Chapter 15). In many standard texts, it is shown that they are all
equivalent for classical solutions; i.e., they determine the same classical solu-
tions. What we shall do here first is to prove that the computation of eigen-
values, Riemann invariants, and the genuine nonlinearity or linear degeneracy
of the characteristic fields, are all independent of our choice of equations.
That is, they arc invariant under coordinate changes.

Thus let's consider two sets of coordinates u and win R", and suppose that
w = g(u) for some smooth invertible function g. Let the original system of
equations be

w,+ f(w)=0. (18.1)

We shall derive the equation satisfied by u. Let A = df(g(u)), and B = dg(u).
Then if we consider "classical" solutions of (18.1), we see that (18.1) is
equivalent to

Bu, + ABu, = 0,

or

it, + B-'ABu,, = 0. (18.2)

We shall show that the Riemann invariants and eigenvalues of (18.2) are the
same as those of (18.1). It is important to observe here, that these notions
have meaning irrespective of whether or not the equations are in conservation
form.

That the eigenvalues of (18.1) and (18.2) are the same is clear, since B-'AB
and A always have the same eigenvalues.

Suppose now that r is a right eigenvector of B`AB corresponding to the
eigenvalue A. Then, of course, Br is the corresponding eigenvector for A. If
¢ is a smooth function 0: R" -e R, let '(w) = 4$(g-'(w)). Then

d;lr(w) = d4(g-1(w)) dy-'(w) = d(k(q-1(w))B-1 = do(u)B-',
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so that

dq5r = dOB-'(Br) = dtji(Br).

Thus, 0 is a Riemann invariant for (18.2) if and only if 0 is a Riemann
invariant for (18.1).

Finally, Lemma 17.10 shows that the notions of genuine nonlinearity
and linear degeneracy are both independent of the choice of coordinates.

It follows then, that the transformed system may be used for the purposes
of deciding eigenvalues and Riemann invariants, as well as for computing
whether a characteristic field is genuinely nonlinear or linearly degenerate.

§A. The Shock Inequalities

We write the equations of gas dynamics in Lagrangian coordinates:

v, - u = 0 (conservation of mass),

u, + p,, = 0 (conservation of momentum), (18.3)

(e + 4u2), + (pu)x = 0 (conservation of energy).

Here v = p - 1 is the specific volume, p = density, u = velocity, p = pressure,
p = p(E, v), E = e + Jut is the energy, and e = internal energy. The relation
p = p(E, v) is called the equation of state. It depends on the particular gas
under consideration.

We assume, as is customary in thermodynamics, that given any two of the
thermodynamics variables p, p, e, T, and S, we can obtain the remaining
three variables.

The second law of thermodynamics asserts that

TdS=de+pdv,

where T = temperature, and S = entropy. This implies that

es = T, e = - p,

where we are now assuming e = e(S, v). Since

e,=esS,+e,.v,=TS,- pv,=TS,-Pux,

we have

(18.4)

(e+iu2),=e,+uu,=e,-up,, =TSt-pux-up=TS,-(pu)x.
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Thus we can replace the third equation in (18.3) by TS, = 0, and since'
T > 0, we can write the system (18.3) as

(18.3)'

where p = p(v, S), p, < 0. In these coordinates, the relevant Jacobian matrix
is

and the characteristic equation is A(A 2 + p,,) = 0. This gives for the eigen-
values

At = A2 = 01 A3 = p,,. (18.5)

As we have seen in Chapter 17, §B, the first and third characteristic families
are genuinely nonlinear, while the second is linearly degenerate. Thus there
are only two families of shock curves, namely the first and the third. The
system (18.3)' is equivalent to (18.3) only for smooth solutions; the two cannot
be equivalent for weak solutions since entropy is not conserved across shocks.

We shall use (18.3) to calculate the shock curves. In these coordinates, the
jump conditions are

a[v] _ - [u],
a[u] _ [p], (18.6)

ale + 'u2] _ [pu],

where the brackets denote the change across the shock, and a is the shock
speed. Let (vo, uo, eo) denote the state on the left. Then

a(e - eo) + 2 (u - uo)(u + uo) = pu - pouo.

But a(u - uo) = p - po, so

a(e - eo) + i(puo - pou) = pu - ipouo

' The equations are derived assuming T > 0.
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Since u = - o(v - vo) + uo, we get if a :h 0,

H(v, p) = e - eo + 2(p + Po)(v - vo) = 0. (18.7)

Equation (18.7) is called the Hugonior equation, and considering a as a function
of v and p, e = e(v, p), the points (v, p) with H(v, p) = 0 are referred to as the
Hugoniot curve; or shock adiabatic. The equation H = 0 is the condition re-
lating the thermodynamic variables across a shock transition, and it charac-
terizes all those states p, v which can be connected to po, vo by a shock wave.

If we write p = p(v, S), we make the assumptions

Pc<0, Pry.>0, p>0. (18.8)

We shall consider the shock curves in (v, u, S) space; as in Chapter 17, we
can write them in the form (v(s), u(s), S(c)), where, as we recall, s < 0. Our
object is to see how the thermodynamic variables change across a shock
wave.

We have seen earlier that there are two families of shock curves, corres-
ponding to the first and third characteristic families (see (18.5)). For either
of these families we showed in the last chapter that the entropy S is a Riemann
invariant. Thus S is constant along one branch of the composite C2 curves
defined in Equation (17.32). It follows from Theorem 17.16(b), that

S'(0) = SOP = 0, (18.9)

where prime denotes differentiation with respect to e.
Now from (18.4), TS' = e' + pv', and differentiating (18.7) with respect to

e we get

e = - 0 (u - vo) - -(P + POW. (18.10)

It follows that

TS' = iv'(p - Po) - 2(v - vo)p'. (18.11)

Now p = p(v, S), so that p' = p5S', and using (18.9) we find

P'(0) = P., v'(0). (18.12)

We shall now consider the consequences of the shock inequalities (17.22).
We know that they hold locally for genuinely nonlinear characteristic
families (cf. Theorem 17.14). Let's consider first the case of a 3-shock. Here
(17.22) gives

- P1,(e) < a < - PA), (18.13)
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where p,,(s) = pjv(e), S(E)). From (18.13) it follows that and
since

sAJ10) + 02(c), e < 0, (18.14)

we see from (18.8) that tj0) < 0, and hence v(s) > v(0). It follows that

p(0) > p(E) across a 3-shock. (18.15)

Now (18.13) shows that a > 0 across a 3-shock. Thus, if we consider Figure
18.1, we see that 3-shocks are compressive, in the sense that the density
increases after the shock passes.

Figure 18.1

Next, from (18.10), we find e'(0) > 0, so

e(0) > e(e) (18.16)

and thus the internal energy increases after the passage of a 3-shock. Finally,
(18.12) and (18.8) give p'(0) > 0, so that

p(0) > P(E), (18.17)

and thus the pressure also must increase across a 3-shock.
We now investigate the change in entropy across a 3-shock. In view of

(18.9), we must compute S"(0). We differentiate (18.11) with respect toe to get

TS"+T'S'=iv"(p-Po)-I (v-vo)P".

Then differentiating this expression and using (18.12) we obtain, at c = 0,

2TS"'=v"p'-v'p"
= vP"

But p' = p,,v' + p,S' so that we have p" = p"(v')2 + again from (18.9).
Thus, at s = 0,

2TS' = -pjv')3. (18.18)
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But we have seen earlier that v'(0) < 0, so that

S(0) > 0.

18. Applications to Gas Dynamics

Writing

S(e) = S(0) + 5.60) e3 + Os(e), (18.19)

we find

S(0) > S(e), (18.20)

and thus the entropy increases after the passage of a 3-shock.
We call attention to the fact that this conclusion is a consequence of the

shock inequalities (18.13), which in turn follow from our general inequalities
(17.22). We remark that similar calculations show that the density, pressure.
and entropy also increase across a 1-shock.

Conversely, if we consider the 3-shock curve (tv(e), u(e), S(e)), and assume
that (18.20) holds, then since (18.9) always holds, we have from (18.19)
S"(0)s3 < 0 so (18.18) gives 0 > - p,,,(sa' )3, whence sgn r. = sgn v'(0). Then
from (18.14) pi(e) > pJ0) or .13(e) <).3(0). Since A3(0) = V23 r3 = 1, we see
e < 0 and since o'(0) = 2, we have A3(0) > a(s) > ,t3(s). Since similar results
hold for 1-shocks, we have the following theorem.

Theorem 18.1. Consider the equations of gas dynamics (18.3), where the equa-
tion of state p = p(v, S) satisfies (18.8). Then for sufficiently weak shocks, the
inequalities (17.22) are equivalent to the increase of entropy across a shock.

We shall show that the shock inequalities (17.22) actually hold globally
along the shock curve, under an additional assumption on the equation of
state; namely that

p,>0. (18.21)

Again let's only consider 3-shocks. Writing the equations (18.3) in the
form U, + F(U), = 0, the jump conditions become a[ U) _ [F], where [0]
denotes the difference of 0 on both sides of the shock, [¢] = 4)(e) - 0(0).
We assume that the jump conditions define the shock curve U = U(e),
(where U is nonsingular; i.e., U * 0) with shock speed a = a(c), e 5 0. We
know that for small e < 0, A3(e) < a(e) < .3(0) (by Theorem 17.14). We shall
show that these inequalities hold everywhere along the shock curve, provided
that (18.21) holds.

Thus, suppose et is the first point where A3(F.) = a(r), F.1 < 0. Since

a'[U] + aU' = dFU', (18.22)
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if we consider this at e = E,, and multiply by the left eigenvector 13(E,), we
get d13 [U] = 0. Suppose now, that

13 - [U] 0;

then a'(E,) = 0; hence at f;,, A3 U' = dFU' so that U' = r3. Then

d
(a-23) = -dd31 = -VA3-r31,=,,= -1.

LPL, L-L,

(18.23)

Thus A3 = a for some E2, E, < r.2 < 0; this contradicts the definition of E,.
We conclude that if (18.23) holds, then a(e) > A3(E) for all s. Furthermore, if
a(E,) = A3(0) for some e, < 0, then there is an z2 with t, < E2 < 0 such that
a'(E2) = 0. Now a(E2) > 23(e2) > 0 so (18.22) at z, gives aU' = dFU'. Thus
necessarily U'(E2) = r3(E2), and a(E2) = A3(e2). Thus d(r) doesn't change
sign, so sgn a'(E) = sgn a'(0) from Corollary 17.13. Hence a' > 0 so
o(E) < A3(0), if E < 0.

To recapitulate, we have shown that if (18.23) holds, then the shock
inequalities (18.13) hold. We shall now prove (18.23). Using (18.3)' an easy
calculation shows 13 = (p,,, A3, p,). Thus

13 - ([r'], [u], [S]) = P1[v] + A3[u] + [SIP,- (18.24)

Now (18.6) implies [v] 0; otherwise there is no discontinuity. Thus from
(18.15), [v] > 0 so that

P,,[v] < 0. (18.25)

Next, from (18.6), we see that [u] # 0 implies a 0. Hence if [u] * 0, we
find from (18.6) again,

02 = _LI']
[L]

Differentiating this along the shock curve gives

TS' = aa'[v]2, (18.26)

where we have used (18.11). Now [S] # 0; otherwise there is a first point
where S' = 0, so that from (18.26), a' = 0. This gives the same contradiction
as above. Thus, if [u] 0, a > 0, [S] < 0 and [u] = [p]la. Since [p] * 0,
[p] < 0 by (18.17). Thus using p, > 0, (18.25) shows 13 - ([v], [u], [S]) < 0.
If [u] = 0, at a first point c,, so a(E,) = 0, then if [S]p, + p,[v] = 0. at
E=a, <0,wehave[S] =0forsome 2,E, <E2 < 0. Then S' = 0 at some
E3, E2 < E3 < 0, so that from (18.26) either d(E2) = 0, in which case we get
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the same contradiction as above, or else o(s2) = 0, and hence from (18.6) we
find [u] = 0 at E2. Again this is a contradiction. Thus (18.23) holds. It follows
that if p, > 0, then the shock inequalities hold. We have therefore proved the
following theorem.

Theorem 18.2. For the gas dynamics equations (18.3), assume that the equation
of state p = p(v, S) satisfies

PU<0, p11.>0, p,>0, p > 0.

Then the shock inequalities (17.22) hold everywhere along the shock curves,
provided that they are nonsingular.

We end this section by showing that the assumptions on p given in this
last theorem imply that S is monotone everywhere along the Hugoniot curve
(18.7).

Theorem 18.3. Consider the Hugoniot curve H(v, p) = 0 defined by (18.7). and
assume that the equation of state p = p(v, S) satisfies p,, < 0, p,,,, > 0, p, > 0.
If dH 0 0 along H = 0, then S is monotone all along this curve.

Proof : To determine the behavior of S on H = 0, we consider Son those curves
y where the 1-form

w=dH - TdS

vanishes. Using (18.4)

dH=de+ -j'po)dv+ 2(v-vo)dp
_ -pdv+TdS+j(p+po)dv+1(v-vo)dp
=i(po-p)dv+1(v-vo)dp+TdS.

Hence

tit = it (Po - p) do + ;(v - vo) dp,

and thus the curves are solutions of the differential equations

6=v-Uo, P=P-Po- (18.27)

This system has only one critical point, (vo, po) which is easily seen to be a
repellor.

Let y be any integral curve of (18.27). Since dH = to + TdS, we see that
the critical points of H1., and S1y, coincide; i.e., H and S are critical together
on y.
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At this point we need a lemma.

Lemma 18.4. S has at most one critical point on y.

Proof. On 7 we have

P-Po=P=R,i.+PA
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We differentiate this along I and evaluate it at a critical point of S along';
i.e., at a point where $ = 0. This gives

Poi = P".(z)2 + P,,t + p, .

Since ii = u = v - vo, we get

p",(i:)2 + p3S = 0,

which shows 9 < 0 when = 0. Thus S can have at most, and so precisely,
one critical point on y ; this being a maximum. This proves the lemma. C]

We can now complete the proof of the theorem. Since dH # 0, we can
write H = 0 as a curve v = v(o), p = p(a). Let

d dvC dp0
du = dQ&' + dQulp

denote differentiation along H = 0.

Suppose S were critical at (vpwhere H(v,, p,) = 0; then dS/di = 0
at (v,, p). Now (18.4) gives at (vp

de dS dv dvP=TT-pT_-PdP,

so from (18.7), we have, at (v,, p,),

dH de dv d
0 dig

P
dv

+ -(p + Po)
da

+ (v - CIO)
dP

dp dy dP

dv dp
= 2(po-P) jiI+2(v-vo)dy
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Thus

d t\
dp k p/

j Po - P,
\ v, - vo

,

so that at (v p,),

d l k ( V' - '° k , k = const. (18.28)
d p \Pj pi - pol P/

Note that k * 0 since dH 0 at (v,, p,). Hence from (18.28) we see that the
integral curve of (18.27) through (v,, p,) is tangent to H = 0 at (v,, p,). Thus
at this point,

esb+asp=k
1

asdv+aSdp =k-1 dS=0.
8v ap av dp Opdjz die

If y is the orbit of (18.27) through (v,, p,), we have shown that H = 0 at two
points on y; namely at (vo, po) and at (u,, p,). Thus H on y must be critical at
some intermediate point on y. So S too must be critical at this intermediate
point. But since S is critical at (v,, p,), this implies that S is critical twice on y,
and thus violates Lemma 18.4. It follows that S is never critical on H = 0,
and the proof is complete. Q

§B. The Riemann Problem in Gas Dynamics

In this section we shall solve the Riemann problem for the equations of gas
dynamics for ideal polytropic gases without any restriction on the magnitude
of the initial states. Of course, we will have to rule out the vacuum, as was
necessary in Chapter 17, §A.

We assume that the gas is ideal, so that the equation of state is given by

p = RpT,

and that it is polytropic, so that e = c, T, and

p = kesr`°py.

(18.29)

(18.30)

Here R, k, c,,, and y are positive constants, and 1 < y. Thus p, > 0, p > 0
and p, > 0. This implies from Theorem 18.2, that the shock inequalities
(17.22) are everywhere valid along the shock curves.
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We shall consider the gas dynamics equations in Eulerian coordinates:

op
+ a (pu) = 0,

C[ ax

(pit) + (p + put) = 0,
ax

Cf[{)(2u2+e)]+GY[pu(ZU2+e)+pit] =0.

(18.31)

There are three characteristic families corresponding to the eigenvalues
A, < A2 < A. The relevant facts are summarized in the following table (the
calculations are quite straightforward, and we omit them).

i=1 i=2 1=3

i.; u-c U u+c
R; (p, - c,OY -PoY (p.c.OY

R; VA; -C - pco 0 c + pc;,

Ricmann invariants { s, u + - 2 - c } {u, p} { s, u - c }
11 _1 111 ll

v-1

Here c2 = yp/p =- ah/ep, and c is called the sound speed.
We shall explicitly compute the one-parameter families of shocks, simple

waves, and contact discontinuities. Since the formulas which we shall obtain
are explicit, we shall not bother with the normalizations R, - VA, = 1 which
were needed in the general case (Chapter 17, §B), in order to make the analysis
easier.

The jump conditions for this system are

a[p] = [pit],

a[pu] = [p + pu2], (18.32)

a[P(iu2 + e)] = [pit + pu(Zu2 + e)].

We shall rewrite these in a more convenient form by introducing the
variables

n=it - a, m =pv.
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In (18.32) we eliminate u; this gives for the first equation in (18.32),

a(P-Po)=Pu-Pouo= p(v+a)-Po(vo+a)=m-mo+a(P-Po)

The first equation can thus be written as [m] = 0, and similarly the second
equation becomes a(povo - pv) - (vm - vomo) = p - po. Since [m] = 0,
we have [p + mv] = 0. The third equation in (18.32) becomes

P(]u2 + e)(a - u) - Po(io + eo)(a - uo) = pit - pouo,

or

[pit +m(e+Zu2)]=0.

But pv = (yp/p)(pvj;) = mc21y, and e = c2/y(y - 1). This gives the following
jump relations:

[m] = 0,

[p + ??IV] = 0,

m 2
C2 + v2 = 0,

ly - J

(18.33)

where the last equation comes from [m([2/(y - 1)]c2 + v2)] = 0, since
m = const.

We now see what further implications come from the shock inequalities,
knowing that they hold all along the shock curve. For I-shocks we have

or <III -C,, !t,-C,<a<u
so that c, < v, and v, - c, < 0 < v,, or 0 < v, < c,. Hence

c, < v, and 0 < v, < c, for 1-shocks. (18.34)

Since c, > 0, we have It, > a and u, > a. Thus the gas speed on both sides of
the shock is greater than the shock speed, so for 1-shocks particles cross the
shock from left to right.

For 3-shocks, the shock inequalities give

u, <a<u,+C,, u,+C,<a,

so that v,<0<v,+c, or

- c, < v, < 0, v, < - c, < 0 for 3-shocks. (18.35)
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Thus r > u,, u, implies that for 3-shocks the shock speed is greater than the
gas speed on both sides of the shock; particles cross a 3-shock from right to
left.

Note that for both shock families, v, # 0, and v, # 0, so that m = pv # 0.
Now let us denote by the subscript I the state of a particle just before it

reaches the shock, and by the subscript 2 the state of a particle just after the
shock. Hence

for 1-shocks, l = 1, r = 2;

for 3-shocks, 1 = 2, r = 1.

Then in this notation, for 1-shocks

u1 >c,>0, c2>v2>0 sov,>c,, c2>v2,

while for 3-shocks,

v, < -C, < 0, - c2 < v2 < 0 so v; > c, and c2 > v2 .

Thus in both shock families we have

2 2 2 2
D, > Ct, C2 > V2.

Next m # 0, so that the third equation in (18.33) gives [2c2/(y - 1) + v2]
= 0. It follows that

2 2 2 , 2
2+c,< c2+v = c2+L'2 <ciy-1 y-1 y-1 - 1c2+c2,

so c, < c2 or c, < c2, and thus v, > v2. This gives

c2 > c, and Iv, I > Iv21. (18.36)

Since m = pv is constant, pjV, = p2v2 and (18.36) shows P2 > pt. From
(18.33), p, + mvt = P2 + mv2 so that p2 > p, ; thus shocks are compressive
(we have observed this fact in §A. This is a consequence of the shock
inequalities, just as before).

We now explicitly calculate the one-parameter family of shocks. We begin
with 1-shocks and define the quantities

n=P2, Z=P2, p=Y+1r-y-1. (18.37)
Pt Pt Y - 1 2y

Note that our above calculations show n > I and Z > I.
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Now c2 = yp/P so that (c2/c,)2 = (YP2/P2)(P1/YPt) = (P2/p1)(P2/Pt)-' or

C2
2

_ "_ (18.38)
C, z

Similarly p,v, = P2V2 gives v2/v, = PIIP2 SO

Pt V2 1

P2 VI Z

Using (18.38) and (18.39) in (18.33) gives

2 2 2 2 n 2 L, j

y-lc`+v, y-lzc,+z2, or

vv, 2 _ 2z z - it
c, -1(1-z0 )*

(18.39)

(18.40)

Also, from (18.33), p, + mv, = P2 + »w2 , and since m = pv and p = c2
we find v2) = p2(c2/y + v2), and from (18.39),

-,

+ V2 =
V

2

Using (18.38) we can write

ej 2 (c21 7t v2, cin v2,

yz z y z

zyt(1 -7r)=v2(1 -z).

Comparing this with (18.40) gives

1 + 7rl
7r+/3

(18.41)

Note that this implies z < /3, and since 1 < z, we find pt < p2 < Ppt. This
givcs a bound on the density p2 in terms of pt.
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If we use (18.41) in (18.40) we get

vl 112

cl j3 - z
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(18.42)

where the + sign is for 1-shocks, and the - sign is for 3-shocks (since v1 > 0
for 1-shocks, v1 < 0 for 3-shocks, and c1 > 0). Using v = u - a we obtain
the following formula for the shock speed :

1
a=u tc. L J (18.43)/t - z

with the + sign for 3-shocks, and the - sign for 1-shocks.
Now (18.39) implies (u2 - a) = (u1 - a)/z and so

z - 1 (I'3 1)
u2 - u1 = z (a - u1) = +cl

v z(

Finally from (18.41), we get the equation relating the change in velocity
across a shock transition :

u2-III = EC1
2 R-1

(18.44)
Y(Y-1)..i+

with the + sign for 3-shocks and the - sign for 1-shocks.
We shall use (18.44)for 1-shocks. This will give an expression for (u, - u,)/c,.

If we would use (18.44) for 3-shocks we would obtain an expression for
(u, - u,)/c,. Now in order to again get an expression for (u, - u,)/c,, we can
proceed as follows. First define 7r = p1/P2, z = P1/P2, then find the expression
for (c1/e2)2 = n/z and follow the procedure as above to obtain v2fc2 =
±[(p - 1)z/(/3 - Z)]112, with the - sign for 3-shocks. This gives

2 n-1
rl1 - 112 = ±C2

i'(}'-1) 1+rt(3
(18.44)'

In this equation we only take the + sign; this corresponds to 3-shocks.
The expressions p2f p1 = n, P2/P1 = z, together with (18.41) and (18.44)

give the formulas for the shock curves. To make these somewhat more
explicit, we introduce a new parameter x where

x = -loge. (18.45)
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Notice that e-x = n = P2/Pt > 1, so that x < 0. In terms of this parametri-
zation, we have the following formulas for the shock curves. (Recall that
T=(y - l)/2y,andQ=(y+ 1)/(Y- 1).)

Pr = e-x'
Pt

Pr I +/3e-x ex+(f
1-shock curve

(x < 0)
pr - + e-" - 1 + flex'

u, - u, 2,/I -e-x

(18.46)

c, y'
Pr

Pr

Pr_I+13ex
3-shock curve Pr ex+p' (18.47)

(x 5 0)

u, - u, 2v/-T ex-1
.-

C1 )'- 1VI + flex

We now calculate the simple-wave curves. Let us only consider the 1-
simple waves; the details for the 3-simple waves are analogous.

Since the 1-Riemann invariants are constant in a 1-simple wave, we have

Sr=S,,

and

2 2
11r + ) - 1 C, = U1 +

y
- 1 C,.

(18.48)

(18.49)

From (18.30) S/ce = log(p/pyk), so (18.48) gives pr/pt = (pr/Pr)" Also from
c2 = 'p/p, we get (crlct)2 = (P,/Pr)(Pr/Pi) = (P,/P,)(7-tL1 so that

2rf(r-1)
'\
y

) (18.50)

Also by (18.49),

Pr c1 P

u, u, 2

)1

(18 51)
1Cr )

?
\ C

.
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But A, = is - c must increase in a l-rarefaction wave, so .tl , Z .11,, gives
u,-u,zc,-c,.Thus from (18.51),

c.ccr<_ 2 1)(I -s.,
i Y - \ c,) ` ' - I c,l

so that 0 < 1. Using this in (18.50), we find

0<p'S1.
Pr

We can thus introduce a parameter x by

(18.52)

x =
log(!)

>- 0. (18.53)
VI)

Then we can write the formulas for a I-simple wave using (18.50) and (18.51)
as

P,=e-s,

1-simple wave curve
(x>-0)

u, - u, 2

Similarly, for the 3-family we have the formulas

P._e',
P,

(18.54)

3-simple wave curve Pr = e"''. (18.55)

(x >- 0)

u,-ce,_ 2 (erx-1).
y-Cr

We turn next to the contact discontinuity. This type of wave comes from
the linear degeneracy of the second characteristic family. There are no shocks
or rarefaction waves in this family, but instead a one-parameter family of
contact discontinuities. The 2-Riemann invariants u and p arc constant, and
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the density can have an arbitrary jump. Thus we have the following formulas
for the one-parameter family of contact discontinuities:

-x.<x<cc, (18.56)

Now we can put together our formulas for the one-parameter families of
curves, as follows:

1-family, for x c- R,

E' = e-',
Pr

u, - u,
Cl

e-x"', x Z 0,
Pr = f1(x) = R + ex
Pr

1 + fex-
x<0,

2

^; - 1
0 x Z 0,

= ht(x)
2.j 1 - e-x
y- l(1+fe-')l2' x0;

2-family, for x e R,

Pr=
1,

Pr=
ex, U,- 111=0;

Pr Pr

3-family, for x e R,

Pr
_ 3(x) -

I

P1 A (x)'

= h3(x) _
1C

U, - U,

2 (e<x-1), xa0,

2f ex-1-1
1+13e

xSO.
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Concerning the functions hl, h3, and f1, we need the following simple
lemma, whose proof is completely straightforward, and omitted.

Lemma 18.5. (a) h1 > 0, and h1(R) _ (- oc, 2/(y - 1)].

(b) h3(x) = ft(x) e:12h1(x)

It is useful to express the above one-parameter families in general notation.
Thus let

v = (v1, v2, v3) (P, P, U),

and define transformations T,", i = 1. 2, 3, as follows:

7x1)v = (fi(x)vi.e_xvzvs + ` vi I1`2ht(x)J,

Ts
2'v = (e"v1, v2. v3),

v1
Tx31v = (f3(x)v1, a?v2, v3 +

.v 12)
h3(x) e

where the f1's and hi's are defined as above. Note that in this notation, we
really mean that the state v can be connected to the state T,,(') e, by an i-shock
or i-rarefaction wave if i = 1 or 3 and x < 0 or x > 0, respectively, and if
i = 2, it can be connected to the state TF21v, by a contact discontinuity. We
can now prove the main theorem of this chapter.

Theorem 18.6. Consider the equations of gas dynamics (18.31) for an ideal
polytopic gas whose equation of state is given by (18.29) and (18.30). Let v1 and
v, be any two states (not necessarily close). Then there is a unique2 solution to
the Riemann problem with these initial states, if and only if

U, - U1 < 2 (c1 + c,).y-1

1f (18.57) is violated, then a vacuum is present in the solution.

(18.57)

2In the class of shocks, centered simple waves, and contact discontinuities separating
constant states.
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Proof. We let v, = (p,, p,, u,) and v, = (p, p u,), where the p's and p's are
positive. To solve the Riemann problem with this data means finding real
numbers x,, x2, and x3 for which

v = T(3)7'(217^(1)U
xt z= x, r+

or more precisely,

J 1(x1)eT3(x3)Pl
ex`-x'pr

/ e

=(X

1
u, + cr[h1(Xt) + f 1)

h3(X3)]

(18.58)

(18.59)

where we have explicitly computed the composition. We define

A_P., B=&, C=u,(18.60)
Pr pA Cr

The second component in (18.59) shows that

x3 - x, = log B. (18.61)

The first component gives

f1(x1)e f3(x3) = A, (18.62)

and from the third component,

Thus from (18.62)

(xI+x:1

C = h1(x1) +
8

fi(X1)
h3(X3)

C = hl(x,) +
8

h3(X3),
Af1(X3)

where we have also used the fact that f, f3 = 1. Using Lemma 18.5(b) we find

h1(x1) + A-112e(x,-xl),2h1(x3) = C,
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so from (18.61),

hl(x1) + Ah,(x, + logB) = C. (18.63)

Now Lemma 18.5(a) shows that this last equation has a (unique) solution if
and only if

921(1+ F
>C.

This is (18.57). The procedure is to first find x, from (18.63), then (18.61) gives
x3, and finally (18.62) gives x2. This completes the proof of the theorem. 0

We remark again that this is a global theorem, in that the two states are
not required to be close to each other. If (18.57) is violated, then the relative
velocities on both sides of the membrane are so large that a vacuum is formed.
Thus, strictly speaking, there is even existence in this case; we simply put a
vacuum (p = 0) in between the two parts of the gas, and leave the other
variables undefined. This is similar to what we found for the p-system in
Chapter 17, §A.

We now show how these methods provide simple criteria for telling which
of the two possibilities, shocks or simple waves, occurs in the 1-family and
3-family. That is, we show how to obtain the exact qualitative form of the
solution.

Corollary 18.7. Consider the solution of the Riemann problem obtained in
Theorem 18.6. Then the following statements hold :

(i) The 1-component of the solution is a simple wave if and only if

/hi(logB) < C < y
2

11 1 + I
A AA

and is a shock otherwise.
(ii) The 3-component of the solution is a simple wave if and only if

Bi
h,(- log B) < C < 2 11 1 +

J

and is a shock otherwise. (Recall that A, B, and C are defined in (18.60).)



358 18. Applications to Gas Dynamics

Proof: We have seen in the theorem that the inequalities on the right must
hold in both (i) and (ii).

We consider first the 1-family. If O(x) = h,(x) + v.'BIA h,(x + log B),
then ¢(0) = Ii Bf A h,(log B), and 0' > 0. Thus (18.63) shows that the 1-wave
is a simple wave if and only if C > 0(0), and this gives (i). For (ii) we use
(18.61) in (18.63) to get

.h,(x3 - log B) + ht(x3) = C.
AA

This shows that the 3-wave is a simple wave if and only if C > h, (- log B). p

§C. Interaction of Shock Waves

The results in §B can be used to solve the shock interaction problem for an
ideal polytropic gas; i.e., for the equations (18.31), where the equation of
state is given by (18.29) and (18.30).

We formulate the problem as follows. Given three constant states v,, v.
v such that

v = T(3)v.j'
v,. = TSt31t'm, S, t < 0,

we want to solve the Riemann problem for (18.31) with data v,, v, at the time
of interaction; see Figure 18.2. That these two 3-shocks do indeed interact
with each other is a consequence of the shock inequalities (18.13). We leave
the details to the reader; cf. Chapter 17, §A, where the same problem is
considered for the p-system (17.1). Our first theorem is the following.

Figure 18.2

Theorem 18.8. The interaction of two sufficiently weak 3-shocks produces a
1-rarefaction wave if y < 5, and a 1-shock if y > 3. (The same result holds for
1-shocks provided that we interchange 1 and 3.)

Proof. We give the proof for 3-shocks and drop the subscript 3.
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We have, using the formulas in §B,

`p'lI 112

)).h3(t7v,)f3(t)P,> eP,, u, +

and

1.12 , er 112

7. T,(L,) = 1 f3(S)f3(t)P,, a -pl, u, + (PI)+h3(t) +
(j3(t)p,) h3(s)

This gives the equations

P, = f3(s)f3(r)P,,

p.=es+'P,,

u

YP,l Ire h(112

,
= u 1

+
( ! h3(t) +

\ f3(t)PI
h3(S)-

Now recalling definitions of A, B, and C from (18.60), we have

A = f3(s)f3(t), B = e.+.,
C = h3(t) + h3(s) e

f3 t1
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Using Corollary 18.7, the 1-wave is a rarefaction wave if and only if
C > '(BIA) h1(log B). From Lemma 18.5(b), this is equivalent to

h1(t + s) < h1(s) + hl(s)hl(t)
h3(s)

We define

1 + fle""'

and

G(t, s) = tot + s)ty(-s) - ty(s)*(-s) + ty(t)s(s);

then (18.64) is the same as

G(t,s)<O fort<O,s<O.

(18.64)

(18.65)
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Defining O(x) = Vi(x)lx, we can write

G(t, s) _ 21O(s) - _(- t)1

[
(t) - 0(- tJ

s2t(s -+t) L s + t JL 2t

q5(s + t) - O(s) 00) - 0(-s)
t s+t

S

But

s.' t
O(s + t) - q(s) = f c'(x) dx = t f q'(ty + s) dy,

o

and

0(t) - 0(-s) = f t ¢'(x) dx = (s + t) f 1 0'((s + t)y - s) dy,
: o

so that

g(s + t) - O(s) 0(t) - q(-s) - '
t - s+r f0'(ty+s)-0'((s+c)y-s)]dy

0

0

where is an intermediate point. It follows that

O(s+t)-O(s) OW-0-S)
t s+t

s

Thus

= 10"(0).

li orn
S2

rs.+)t)
= 2¢'(0) 10(0)0"(0)

S.

This shows that for small s and t, G(t, s) < 0 if y < ; and G(t, s) > 0 if
7>3 C3
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We remark that the condition y < is true for most media; in particular
= 1.4 for air.
We shall now develop a qualitative method for solving shock interaction

problems, again for ideal, polytropic gases. The idea is to focus attention on
the u -p plane, and to consider the projections of the shock- and rarefaction-
wave curves in this plane. Since u and p do not change across contact dis-
continuities (see (18.56)), we may effectively ignore the contact discontinuities
which are produced in the resulting interactions: i.e., two states separated
by a contact discontinuity represent the same point in u - p space. This
allows us to treat the gas dynamics equations in a manner completely analo-
gous to the way in which we treated the isentropic gas dynamics equations
(Chapter 17, §A); namely, we can study Riemann problems and shock
interaction problems in a two-dimensional plane.

We begin by obtaining expressions for the shock- and rarefaction-wave
curves in the it - p plane. For ideal polytropic gases we can write

1e=y PT, r=P-'

If we use this in the Hugoniot relation (18.7) and let

u2=

we find (z, - p2to)pl = (to - p2t,)po. so that

Pt _ to - 142t1 P1 - 142Po

PO T, Po - ItZPi

Next, from (18.33), p, + P,v; = PO + Povo so that if r:,
we get

-m2 = PI - PO
T, - To

This, together with (18.66) gives

m2=Pi+112Po=Po+P12P1
(I

- P!2)to (1 - PZ)tt

(18.66)

= 1r1, Uo = nto,

(18.67)

(18.68)

Again from (18.33), n(v, - vo) = po - p, so n(u, - uo) = Po - Pi, and in
view of (18.68) we obtain

(u, - uo)2 = (Pt - Po)2( O = (Pi - Po)2(1 - uZtl . (18.69)
Pr +µ PO Po+µ P
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This equation and (18.68) imply
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»t PO - Pt = \/Pt + P2Po
14, - uo (1 -

P2)ro

and thus we get the desired formula,

III - uo = f#o(p1), (18.70)

where 0o is defined by

4o(P) = (P - Po) (1 - p2)r
p + 1LPo

(18.71)

In this connection, we take the + sign in (18.70) for 3-shocks, and - sign
for 1-shocks; this holds since for both shock families, u, > u while for
3-shocks p, > p, and for 1-shocks, p, > p,, as we have observed earlier.

It is easy to check that the function 460(p) satisfies the following properties :

(i) 0o > 0.
(ii) 4o(Pt) = -0i(Po)

(iii) 0o(p) co asp - co.

(iv) fo(p) - 0 as p -+ cs.

We may depict the relations (18.69) in Figure 18.3(a) and 18.3(b) below. In
Figure 18.3(a) we show the set of states connected to (u,, p,, r,) on the right
by a shock wave S, of the ith family, i = I or 3; i.e., here we are given the
state on the left. In Figure 18.3(b), we arc given the state on the right.

We can do a similar analysis to obtain the simple-wave curves. Namely,
from (18.49) we know that the quantity u + 2c/(y - 1) is constant for a
1-simple waves. Similarly for a 3-simple wave is - 2c/(r - 1) is constant.

(a) (b)

Figure 18.3
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From (18.50) we have

vL;P1 Pt a-11j2y =
T0POPO('-1)(2Y

so that

2 r'--
Y-1

4

= 4:V
_

2

N. TO
P-'2

Y(Po
lnzr _ Al 1)r2Y)P
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This yields the following formula for the simple-wave curves:

where

ul - uO = ibo(P1). (18.72)

0O(P) = 'V/Top1
y(Pt i-1)RY - Po -1)nY (18.73)

In this connection, we take the + sign in (18.72) for 3-simple waves, and the
- sign for 1-simple waves (u1 < u,; and p, > p, for 3-waves, p, < p, for 1-
waves).

It is easy to check that tyo(p) has the following properties:

(i) 16 > 0.
(ii) i0(P1) = -g1(Po1
(iii) io(P) - oo as p - o c.
(iv) ;yo(p) -+ 0 as p - oc.

We can depict (18.72) in Figure 18.4, which is completely analogous to
Figure 18.3.

(a) (b)

Figure 18.4
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The formulas (18.70) and (18.72) are the desired analytical form of the
projections of the shock- and rarefaction-wave curves in the u - p plane.
They give us Figures 18.3 and 18.4 which we will use to study shock-wave
interactions in a qualitative manner.'

We consider the case of two forward-facing shocks (i.e., two 3-shocks)
catching up with each other ; see Figure 18.2. We can depict this situation in
the u - p plane in Figure 18.5, where we have p, < P. < p, and u, > U. > u
as noted above. We know that if < 3, the 1-wave produced when the shocks
interact is a simple wave, provided that the shocks are weak; this follows
from Theorem 18.8. Using Figure 18.5, this means that the shock curve
through (ur, p,,) starts below the shock curve through (u p,), in the region
u > u., as depicted. We shall now obtain the following global theorem.

(u,, Pi)

u

Figure 18.5

Theorem 18.9. If y S J, the interaction of two 3-shocks produces a 1-simple
wave. (A similar statement is true for the interaction of 1-shocks; just interchange
1 and 3.)

Proof. As we have observed above, it suffices to show that u > u (see Figure
18.5).

We have from (18.70),

um = U, + 0AP.),

u = u, + k,(p),

u =U,,,+or(p),

so that

U - U = U, - Um + 4,(f") - Y.W.

7 One can also use these to solve the Riemann problems qualitatively; we leave the (easy)
details to the reader.
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But um = u, + 46,(pm/),, and so we must show

Or(P) > 4)m(P) + OAP.) P > P. >

To this end, let x = pf pm, y = p, f pm, and define

1 s+Qg(r,s)=(r-s)
/3r +s /3s+

From (18.68), we can write

r =
T=

= h(Pr/pm),
Pm T,

where h(t) = (fit + 1)/(t + /3). This gives

T.
(y

+ fl
Tr h(y)-Tmfy+1,
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(18.74)

which can be used in the expressions for 4,(p) and 4,(pm). An easy calculation
shows

OP) = (fl - l )Pm T. 9(x, y),

46m(P) = J(13 - 1)P, T. g(x, 1),

7''(P.) = (/3 - 1)Pm Tm9(l,
y).

Thus (18.74) is equivalent to showing that

0>g(x,1)-g(1,1)-g(x,y)+g(l,y), (18.75)

if x > 1 > y > 0. Now the right-hand side of (18.75) is equal to

f,

(
,' g ,(x,),)d )dx,

so we will be done if we can show g,,,, < 0 if x > I > y > 0. We find

9xY =

/3 [(1 + 2#)P x - (2 + fl)y] (fly + 1) (l3 + y) - (/1x + y) [Qx + (2 + fl)y]U32 - 1)

2 (fix + y)sr2(/1 + y)', (fiy + 1)
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The numerator can be rewritten as

-13(82 + 1)(fl - 4)(x - y)y - fl2(J32 - 1)(x - 1)2

- /2(2/32 - 2# - 3)(x - 1)(x - y) - /32(/32 - 2fl - 2)(), - 1)2

-fl(fl + 2) (y - 1)2y - #2(2/3 + I)(x - 1)(y - 1)2,

which is negative if fi Z 4; i.e., if y < 3. This completes the proof.

If y < ;, we may depict the interaction of two forward shocks as in Figure
18.6, where V, = (u,, p,, p,), V. = (um. pm, pm), and V, = (u,, p p,). The differ-
ent values p, and p2 of the density on both sides of the contact discontinuity
are obtained from (18.69) and (18.68), once u and p arc known.

u - u,= -'i(P)
(u1, P). ''

(um P
PL(up - Pr)

U

Figure 18.6

contact discontinuity

(u P. P2)
i

-"--S'

x

Finally, we note that using these curves in the u - p plane, it is easy to
see that the collision of a forward and backward shock produces a backward
and forward shock separated by a contact discontinuity; see Figure 18.7.
This qualitative statement is not easily proved in the general context in
which Theorem 18.8 was obtained, even for weak shocks.

contact discontinuity

A Pz)

U

Figure 18.7



Notes

Nores

367

The computations giving the Hugoniot curve are classical, and can be found
in many standard textbooks; see [CF], [LL], and [ZR]. The conditions
p, > 0, p, > 0 are found in Weyl's paper [Wy], as well as in Bethe's paper
[Be 1]. The inequalities (18.15)-(18.17) are classical, but are usually obtained
differently. Theorem 18.2 is due to Wendroff [We 1]. The increase of S along
the Hugoniot curve, Theorem 18.3, is due to Weyl [Wy] and Bethe [Be 1, 2];
see also [We 1, 2]. The proof given here follows Conlcy-Smoller [CS 7],
where a more general theorem, applicable to magnetohydrodynamics, is
given.

The global solution of the Riemann problem is part of the "folklore" in
the subject, but is difficult to find in print. The book [CF], by Courant and
Friedrichs does give an outline of the solution. The proof given in §B, for
ideal polytopic gases, is due to Conway and Rosencrans in an unpublished
manuscript [CR]. These results have been extended to the case of more
general equations of state by Smith [St]. It is shown there that assuming
(18.8) and (18.21), the Ricmann problem is always solvable, but, somewhat
surprisingly, the ("correct ") solution need not be unique unless one imposes
an additional condition on the equation of state. Thus Smith's result implies
that either all gases satisfy this additional condition, or that there must be a
way of choosing the "physically relevant" solution, which differs from the
requirement that the entropy S increases across the shock. See also [We 1, 2]
for the Ricmann problem in gas dynamics.

The proof of Theorem 18.8 is taken from [CR]. The advantages of the
u - p plane to solve the Ricmann problem and to study interactions of waves
was first recognized by Courant and Friedrichs [CF]. The statement
(without proof) of Theorem 18.9 is also found in [CF]; see also [Nn 1].

The book [CF] is an excellent source for the work on gas dynamics prior
to 1948, and includes the research on shock waves done during the Second
World War, when the development of supersonic aircraft, and the creation
of the atomic bomb demanded a better theoretical understanding of shock
phenomena. The standard work [LL], is a good reference for the physics of
shock waves.



Chapter 19

The Glimm Difference Scheme

We consider a general system of conservation laws

(19.1)u,+f(u)x=0, xeR, t > 0,

whcrc u = (ut,..., u"), with initial data

u(x, 0) = uo(x), x e R. (19.2)

The system (19.1) is assumed to be hyperbolic and genuinely nonlinear in
each characteristic field, in some open set U a R" (see Definition 17.7). We
let Al(u) < < ),"(u) denote the eigenvalues of df(u). Concerning uo(x), we
assume that

T. V.(uo)

is sufficiently small, where by we mean the total variation. With these
assumptions, we shall show that the above problem has a solution which
exists for all t > 0.

The proof will depend on four main ingredients:

(i) construction of approximate solutions,
(ii) interaction estimates.
(iii) compactness of a subsequence of approximate solutions,
(iv) showing that the limit is indeed a solution.

The approximate solutions will be constructed by suitably "glueing
together" solutions of Riemann problems. As we have seen in Chapter 17,
§C, we know that these exist only if the states are sufficiently close; this is one
reason for the smallness restriction on T.V. u0.

To be a bit more explicit, the approximate solutions will be solutions of a
difference scheme which involves a random choice. This can be roughly
illustrated as follows. We divide the line t = n At into subintcrvals by the
points kAx, k = 0, ± 1 , ±2, ... , where we suppose that for each k we are
given a constant state u,, in the interval k Ax < x < (k + 2) Ax, where
(n + k) - 0 (mod 2). We solve each of the Riemann problems for (19.1) with
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data
wuk-Z, x < k Ax,

u(x, n At) _
x > k Ax,

369

in the region n At < t < (n + 1) At; call this solution vk(x, t). If Ax/At > C,
where C = max IA,j (At are the eigenvalues of df ), then the solutions in each
interval will not interact with each other. We can thus unambiguously define

u(x, (n + 1) At) = uk((k + 1) Ax + Ax, (n + 1) At),

if kAx <x<(k+2)Ax,

where k + n + I = 0 (mod 2), and O +1 is some randomly chosen point in the
interval [ - 1, 1]. This is the essence of the difference scheme. Of course, it is
not a-priori obvious that the difference schemes is even well-defined, since
we do not know that the states remain sufficiently close, in order that the
Riemann problems are all solvable, or that c stays bounded. In other words,
we must prove that the approximate solutions can be defined!

To do this, it is, of course, necessary to obtain bounds on the solutions of
the Riemann problem, and, in fact to study the interaction problem. That is,
we must obtain a quantitative estimate on the "strengths" of the emerging
new waves, in terms of the "strengths" of the original interacting waves.
Once this is accomplished. it is possible, with the help of certain functionals
which decrease in time, to simultaneously show that the difference scheme is
well defined, and that the difference approximations are uniformly bounded,
and have uniformly bounded total variation. This implies that a subsequence
of the approximate solutions, depending on the random choice, is compact
in a strong enough topology so as to enable us to prove that the limit is indeed
a solution, for "almost all" choices of the random points.

§A. The Interaction Estimate

We consider the Riemann problem for (19.1) with data

u(x, 0) _
u,, x < 0,

fu,. x>0,

which, for short, we shall refer to as "the Riemann problem (u,, u)." This
will cause no ambiguity, since the equation (19.1) will be fixed throughout
our discussion. We will also denote by (u, = u0, u 1,... , U. = tt,), the solution
of this Riemann problem, where, we recall from Chapter 17, §B, uk is con-
nected to uk_

1
by a k-shock, or a k-rarefaction wave, k = 1, 2,..., n. That is,

Uk lies on the composite k-shock/rarefaction-wave curve through u,,-,, so
that in the notation of Chapter 17, §C, uk = 1, where ek < 0 if uk is
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connected to Uk_ 1 on the right by a k-shock, and Ek > 0 if uk is connected to
uk_ 1 on the right by a k-rarefaction wave. We shall gather all this information
in the concise notation:

(u1, ur) = [(Up, it 1, . . . , un)/(E 1, ... ,;)]. (19.3)

We call 141 the strength of the k-wave connecting Uk to u,t_, in the above
solution. We obviously can also unambiguously speak of the k-wave in
uk_,/Uk, and with a slight abuse of notation, we can also call this uk.

Now let U1, u,,,, and u, be three states near a given state u and let

(u,,Um) = 1(116, 111,...,un)/(y1,...,}'e) ,

(Um, u.) = [(u' , lti, ... , u)1(b1...... 5n)], (19.4)

denote the solutions of the respective Riemann problems. We say that
j-wave u f and the k-wave u' are approaching waves if either (i) j > k, or (ii) if
j = k, yk < 0, or Sk < 0. Thus two waves are approaching, if (i) either the one
on the left belongs to the larger characteristic family; or (ii) if both waves
come from the same family, and at least one wave is a shock. In particular,
rarefaction waves of the same family do not approach each other. Thus waves
of different families approach if and only if the wave on the left travels faster
than the wave on the right, while for waves of the same family, one of the two
waves must be a shock wave. This is a perfectly reasonable definition if one is
interested in studying interactions of waves, since it isolates those types of
interactions that are possible ; adjacent rarefaction waves of the same family
cannot interact with each other since the"head " of one wave travels with the
same speed as the "tail" of the other wave.

Proposition 19.1. If u,, it., and it, are three states near u, and if (19.3) and (19.4)
hold, we have

ei = + 6, + O(Iyl I6I) (19.5)

If there is a coordinate system {w;} near a with Riw; - r; - Vwj = 0, i # j, then

s,='I;+6,+O([IyI+ISI1) (19.6)

Remark. We shall show in Chapter 20. that (19.6) always holds in the case
n = 2; the associated coordinates are called Riemann invariants.

In what follows, we use the notation R) = r, V ; where V is the gradient
with respect to u.



§A. The Interaction Estimate

Proof. Using the results of Chapter 17, Corollary 17.13, we can write

u, - u = bjr, + E SjS;Rjr,{1 - 2S;J) + O(I6 13)
j j!1

and
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U, - U. = -yjrj + y,y,Rjr,(1 - jS,J) + O(1y13). (19.7)

where the coefficients are all evaluated at um, and Stj is the usual Kronecker
delta. Thus

u, - u, = E(a + yi)ri + O([IyI + I5I]2). (19.8)

But also

u, - u, = Ee;r, + E eje,Rjr,{1 -'S;j) + O(IEI3). (19.9)
i jsi

where the coefficients are evaluated at u,. Now considering a as a function of
y and S, then since E = 0 if S = , = 0, we have E = 0(1yl + 161). Also, since

r,(u,) = r,(u,,,) - E y j R, ra(u.) + 0(1712), (19.10)
j

we get as in (19.7),

u,-III +O([IyI+151]2).

Comparing this with (19.8) gives

E,=yi+S,+O([ly1+15112).

If we use (19.10) and (19.11) in (19.9), we find

u, - u, = EEiri(uh,) + E eje,Rjr,(u.)(1 - ZS;;)
i

- Eejy1Rir,lu.) + O([I,I + 151]3).
i.j

?inally, if we compare this with (19.7), we get

E(Ei - yi - S)r, = E yiSj[Rirj - Rjri] + O([IyI + I5I13)

(19.11)

E(ei - yi - 5i)R = E [Ri, Rj],i5j + 0(( 171 + 15I]3)
1 j<i
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This proves (19.5). If a coordinate system {w;} exists with R, w) = 0, i =j, then
in this coordinate system Rj = c1l dw j, and [R1, Rj] = 0; this proves (19.6).

The principal result of this section is the following improvement of (19.5)
and (19.6).

Theorem 19.2. Under the hypotheses of Proposition 19.1,

C.=y;+0.+D(y,b)0(1) (19.12)

and if (19.6) holds,

Cj=yj+b,+D(y,b)0(Iy1+161) asfyl+161-0. (19.13)

Here D(y, b) = Y_ I yj I I b; I where the sum is over all pairs for which the i-wave
from u' and the j-wave from u" are approaching.

Proof. We consider first the case where D = 0. If k is the largest index such
that yk 0 (so yk+ 1 = = y = 0), then 61 = 02 = =6k-1 =0, and
either (a) yk < 0 so bk = 0; or (b) yk > 0 and bk > 0. In case (a), vk = v, = vk,
so that the waves fit together to give the unique solution ; see Figure 19.1.

VA bk+1

Figure 19.1

Vi

oR+ 1

V,,, V,,, V,

That is, s; = yi, i < k, Ej = b;, i > k. In case (b), the waves again fit together;
see Figure 19.2.Thus e;=y;if i<k-1,ek=yk+b.,and e,=y;if 1>k.
In both cases (19.12) holds; this proves the theorem if D = 0.

We shall now prove the general version. The proof proceeds by induction
on the number of nonzero waves in b. Namely, we assume that the estimate is
valid for all b of the form 6 = (61, b2,..., b,_ 1, 0,..., 0), and we shall prove it

Figure 19.2
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true for any b of the form (61,...,6p_,,bp,0,...,0). If b = (0,...,0), then
D = 0, and we have just observed that the theorem holds. We need only
prove the induction step.

We define

A = (61,62,...,bp_11 01. 0), Ao = (19.14)
p-t

and =A+Ao.

7 + S -. e

Figure 19.3

We indicate the dependence of a on v,,, by writing e = e(y, S ; v.).
We first let y and A interact.' Wedefine p = (u1...... ,Jandv = (vt,...,vR),

by

p, =

e,(y, A; v,,),

0,

0,
v, =

es(Y,A;v.),

if the i-wave (y) in v', and the

p-wave (bp) in v", do not approach,

otherwise,

if pr = OY, A ; v,J,
ifp,=0.

Notice that

p,=0 ifi>p, v;=0 ifi<p,

p + v = vim,), and the interaction of y with A produces the e-waves;
i.e., 7 + A -. p + v. We denote by 0., the state joining p and v; i.e., if yp or
by is a shock, then v, = vp_ 1, while if both yp Z 0 and Sp >_ 0, 8,,, = vp; this
follows from our earlier remark.

' We are being here a little loose with our terminology; when we say that we are letting
waves a and ft interact with each other to produce waves i; (and write a + P {), we really mean
that we have three Riemann problems (v (v,,, o,), and (v v,), which have solutions (v,. V.)

(v, = r%.... , U. = v,.)I(a,...., a )]. (v.. V,) = [(v = vo,... , I'm = v,).((f ,..... BJ] and (v v,)
[r, = va..... V, = v,)!({,..... CJ], respectively, as in (19.3).
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We next allow v and AO to interact with each other; this requires 1 to
play the role of v, and we have v + AO - n = e(v, AO; vD_ 1). Now we let n
interact with p. µ + it -' e(p, n; o,,). Since the last resolution joins v, to v
and since we have uniqueness of this Riemann problem (provided that the
states are close; see Theorem 17.18), we must have

e(y, b ; 4(µ, n; iin). (19.15)

Now by our induction hypothesis,

e,{,, A ; v.) = yi + A\ + D(y, A)0(1).

But D(y, A) 5 D(y, b), and so we can write

ej(y, A; v,e) + 61P6P = y, + bi + D(y, 6)O(1), (19.16)

where b,P is the Kronecker symbol. If we now use (19.5), we can write (cf.
Figure 19.4)

ni = v, + b,PSP + IvI IbPIO(l (19.17)

At this point, it is convenient to prove a lemma.

Lemma 19.3. I v 116,1 = D(y, 6)O(1)

Figure 19.4

°i

Figure 19.5
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Proof: By definition, v, = 0 if i < p; thus IvII6,I = E;2oIv;II6,I. Now if
i = p, either v, = 0, or since vp = ep(y, 0; v,,), we can use (19.16) to obtain
VP = yp + D(y. 6)0(1). Thus

IvpI IbpI = IypI Ibpl + D(y,b)O(1)I bp1

s D(y, S)[1 + 0(1)16,I ]

= D(y, 6)0(1).

Finally, if I > p, (19.16) gives v, = yi + D(y, 6)0(1), so that here too I
Vi I I by I

= D(y, 6)0(1). This completes the proof of the lemma. p

We use the lemma to improve (19.17) to

rz, = v, + b,pbp+ D(y,5)O(1). (19.18)

Since s(y, A ; r;,,,) = p + v, (19.16) gives

y,+b,= jr,+vi+b,pbp+D(y,5)O(1). (19.19)

Now define it = v + Do; then D(p, n) = 0. for, if i < p. i, = 0, if i > p,
p, = 0, and if i = p, either pp = 0, or else vp = 0 and pp does not approach
bp. Thus, since the theorem holds if D = 0, we have

e(p,i;t5,,,)=it +n,

so that s,(p, n;9,,,) = p, + v, + 5,pbp. If we use this in (19.19), we get

e,(p, n ; vp,) = y, + b, + D(y, 6)0(1). (19.20)

Since a is a C' function, we have

I df4 7r; U'.) - gyp, n ; v,K)I = In -A 10(1).

But from (19.18), In - it i = D(y, 6)0(1). Thus

e(p, rr; 0A,) = y, + b, + D(y, 6)0(1),

and (19.15) implies (19.12).
In case (19.6) holds, then using (19.6) instead of (19.5) (above), we obtain

IR - nI0(1)

<- D(y,b)(IyI + ISI).
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Thus we can replace (19.20) by

E,oe,n;i3,) ='h + bi + D(',6)0(1)'II' I), (19.21)

and the rest of the proof proceeds in a similar fashion to give (19.13). The
proof is complete.

§B. The Difference Approximation

In all existence proofs, the main step is to obtain estimates on certain
approximate solutions, in some norm. The question of which approximation
to use is often only one of convenience. To obtain compactness of theapproxi-
mating solutions u, we must obtain estimates on the approximations, and on
their "derivatives." In order for a limit to be a solution we need strong
convergence for both the approximations u. and all derivatives of u which
occur nonlinearly, together with weak convergence for the higher derivatives
of u. Thus, if k is the order of the highest nonlinear derivative which occurs in
the equations, we need bounds on Dk+'te. In our case, k = 0, so that we must
obtain bounds on both u and Du. Of course, the bounds on Du are more
delicate than those on u. We remark that for linear equations, Du itself solves
a linear equation, so that a method which yields bounds on u is likely to
yield bounds on Du too. For conservation laws, it may happen that the
conservation laws themselves give a bound on u, in that some conserved
quantity, such as the energy, may be definite. But this fact doesn't help
much as far as Du is concerned. However, in our case, we shall show that Du
satisfies an "approximate" conservation law in the sense that the total
variation of u is approximately conserved.

The norms which we choose on u and Du are

Du II = T.V.(u),

Bull = IIUIILx < Iu(U-)I + l1e(-"°)I + T.V.(u),

where T.V. denotes the total variation.
We shall now turn to the construction of the approximate solutions. As

mentioned earlier, these will be solutions of a difference scheme. We choose
mesh lengths Ax and At such that At < const. Ax, and we approximate the
initial data by piecewise constant data. We then solve the corresponding
Riemann problems; this propagates the solution for one time step. Our
choice of At will be made so that nearby waves do not interact with each
other; namely,

where A is an upper bound for ik, 1 < k S n.
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Observe now that on the line t = At, the solution is no longer piecewise
constant. Thus in order to continue our procedure (of solving Riemann
problems), we need a mechanism for choosing a constant value in each interval.
We accomplish this by choosing a new constant state as the value of the
solution at a randomly chosen point in each mesh interval; see Figure 19.6.

(m+0,)Ax (m+2+0,)Ax
1)Ax \ (m + 1)Ax / (m + 3)Ax

(m + 2)Ax (m + 4)Ax

Figure 19.6

To do this we let 0 = {00, 01, ...}, be a random sequence in the interval
[-1. 1]. For each such 0, we get an approximate solution uB,,,l. ue,o is
clearly an exact solution except across the lines t = n At, and by construction,

us.&,(x, n At + 0) = ul + 1)Ax + 0 Ax, n At - 0),
for mAx5x<(m+2)Ax, withm+n=0(mod2).

To understand this procedure better, we consider an example of a single
shock wave solution (u,, u,) of speed s, propagating out of the origin. At
t = At, there are two possibilities depending on the random point, namely
03 = a or 0, = J3; see Figure 19.7. We can depict these two solutions in

L, Lz
1 - y
1 1 1

1 1 1

1 1 1

1 uu,
0

Figure 19.7

t=At

t=0

Figure 19.8.2 If we set L, = Ax + s At, and L2 = Ax - s At, then the prob-
ability that solution (a) occurs is

L, Ax + s At At
L, +L2 2Ax -+s2Ax'

: Note that for each random choice, the approximate solution is a shock wave, as it should
be; what we have lost is only the position of the shock.
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a

0

Figure 19.8

while the probability that solution (13) occurs is

L2 Ax - s At At

L1 + L2 2Ax
s2

Ax*

Hence, the expected change in the shock po sition is

// lI At I At
I(Ax)(Prob.c)-(Ax)(Prob.(1)I=Ax( +s2 O - Ax( - s2 1

= s At.

\` 1111

We thus conclude that the shock speed is correct, on the average, so that the
conservation law is preserved, on the average. However, the total variation of
ue equals the total variation of the true solution u; i.e., the total variation is
preserved exactly.

Now let's consider many time steps, and introduce the notation

ua, = ua,,((m + 1) Ax + 0, Ax, n At),

m Ax 5x <(m+2)Ax, withn+m=0(mod2).

Since the initial data is either u, or u,, we see that these arc the only values
assumed by the approximate solution. A typical approximate solution
(depending on 0), can be depicted in Figure 19.9, (heavy lines).

exact solution

I
i/

Figure 19.9
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Now it is easy to see that

u,, if m < J,,,
u,_ [m+n=- 0(mod 2)],

u m>-J,,,
where J. = (number of 0t, ... , 0 which are less than s At/Ax) - (number of
01, ..., 0 which are greater than s At/Ax). But according to the strong law of
large numbers, [Rs, p. 258],

in sAt
as n - oo.

n Ax
(Indeed, if we let

then

1, if x > 0,
H(x) _

1, if x < 0,

s AtH(x)HIx- )_
1, if At

< X.

-1, if s At >x

and J. H(0,). Thus according to the strong law of large numbers,

H(0,)
E(H(O)) as n - oo,

n n

where E(H(0)) is the expected value; i.c.,

E(H(0))=P(0<
At )-P(0> AY),

where P denotes probability. Assuming s > 0, we have

I+sAt sAt
set // set Ax Ax setP(©< Ax)-P16> Ax)- 2 - 2 Ax

The discontinuity in the approximate solution at time t = n At is located at
the point

rsn At=l + O(n) Ax
AX I

= st[I + (Ax)0(n)] -+ st as n -+ oo.3

That is, ue,,s - u as Ax -' 0. In the case of more general data, we shall
prove the convergence of the approximate solutions for "almost all" 0 as
Ax - 0.

By taking 0 = n ,/-Z for instance, one can get optimal rate of convergence, whereby
0(1,+,./n) is replaced by 0(1/n log n); see [Ku N].
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We now shall describe the difference scheme in precise detail. We may
assume, without loss of generality, that u = 0. Let U, be a compact neigh-
borhood of 0, and let U3 C U2 e U1 be neighborhoods of 0 such that if u,
and it, are in U3, then there is a unique solution of the Ricmann problem
(u,, u,), with intermediate states u1, u2,..., in U2. We choose Ax and
At such that the stability condition,

sup{ I ) JO ) 1: u s U2, 1 S j S n} < Ax (19.22)

holds, and we let Ax/At = c be held fixed so At = c- 'Ax. Let

Y = {(m,n)EZ2:m+n=0(mod 2),nZ0},
and

[I {[(m - 1)Ax,(m + 1) Ax] x {n At}}.
(m.n)c r

We put the same probability mass on each interval ((2Ax)` times Lebesgue
measure), and let m have the product measure dm. We choose a point am.,,
(m Ax + 0, Ax, n At) where 0 is randomly chosen in [-1, 1]; this is our
random choice, and the points am,,, will be the mesh points.

We can now define the difference scheme. This is done inductively by
assuming that u = u(x, t) has been defined at a,,_ and a,,,,To
define u at we solve the Riemann problem

r,+f(u)x=0, (m - 1) Ax :x5(m+1)Ax, (n - 1)At <t<nAt,

with data
u(am_1,._1), (m - 1) Ax s x <mAx,

u(am+1.h_1), mAx < x 5 (m + 1) Ax.

We then define u(am,,,) = v(am,,,). Notice that this can be done if both
u(am _ 1) and u(am+ ..-1) lie in U3. The process can be repeated provided
that the resulting intermediate states also lie in U3; thus it is not a-priori
clear that the difference scheme can be defined at all levels nAt. This will be
proved simultaneously with the proof of the estimates on U9.ilx and T.V.(ue,sx).

We find it convenient to set

i4x, t) = v(x, t), (m - 1) Ax 5 x 5 ()n + 1) Ax, (n - 1) At S t < n At.

Then it is a solution in this rectangle. In view of our stability condition (19.22),
we see that if x is near (m - 1) Ax (resp. (m + 1) Ax), then u(x, t) = u(am _ 1.n_ 1)
(resp. u(am+,,,_)). Thus, if u is defined in the strip (n - 1)At < t < nAt,
-oo < x < oo, then u is constant across the lines x = (m - 1)Ax,
in + it =_ 0 (mod 2), and u is a solution in this strip, since waves don't
interact with each other across the lines x = (m - 1) Ax.
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In order to obtain the desired estimates, it is convenient to consider not
horizontal lines, but rather, curves consisting of line segments joining a...
to both a.+ t Thus, we cover the upper-half planet z 0 by "diamonds,"
the corners of which are the random points in the mesh intervals; see Figure
19.10.

Definition 19.4. A mesh curve is a (nonbounded) piecewise linear curve lying
on diamond boundaries going from \V to N or S, see Figure 19.11.

Figure 19.10

E

S

Figure 19.11

If I is any mesh curve, then I divides the half planet ;?: 0 into an I
and 1- part ; the I- part being the one containing t = 0. This allows us to
partially order the mesh curves by saying 11 > 12 if every point of It, is
either on IZ or contained in Ii . We call I an immediate successor to J if
I > J and every mesh point of I except one is on J; see Figure 19.12. Finally
we let 0 be the (unique) mesh curve which passes through the mesh points
on t = 0 and t = At.

Figure 19.12

We shall obtain our estimates by considering certain functionals F defined

on the restriction of u to a mesh curve J; i.e., F(J) = F(u4,), where ul,
consists of those shocks and rarefaction waves separating constant states,
which intersect the mesh curve J.
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Let a be a j-wave crossing J, and let /3 be a k-wave crossing J. We say that
a and Ji approach if either

(a) j 46- k, and the wave belonging to the faster family (higher index) lies
to the left of the other on J; or,

(b) if j = k, we have x + fi and at least one is a shock wave.

(This definition is consistent with our earlier definition of approaching
waves in §A.)

Given an approximate solution ug.u, we define functionals Q and L on
the mesh curve J by

Q(J) _ { I a I I fl I: a, fl cross J and approach),

and L(J) _ { Ia I : a crosses J},

where a and J3 are waves in the function ue,,,,.
We can now prove the main theorem in this section.

Theorem 195. Let I and J be two mesh curves with J > 1, and suppose that I
is in the domain of definition of u8,6.. If L(I) is sufficiently small, then J is
in the domain of definition of ue,,s, Q(1) >_ Q(J), and L(I) + kQ(I) z L(J) +
kQ(J) for some constant k independent of J. If T.V.(uo) is small, uB,&' can be
defined int>_0.

Proof. We first assume that J is an immediate successor to 1, so that J and I
differ by a single diamond A; see Figure 19.13. Let I = 10 v I', and J =
1o v X. We have

L(I)=L(10)+L(1')=L(I0)+EIyj +EIb,I.
and

L(J) = L(10) + L(J') = L410) + E Ie I,
J.

and from Theorem 19.2,

L(J) 5 L(1) + koQ(I'),

where ko is the 0(1) in Theorem 19.2. Next, both

Q(I) = Q(Io) + Q(I') + Q(10, I').
and

(19.23)

Q(J) = Q(10) + Q(10, J')

hold, where, e.g., by Q(10, I'), we denote the sum of the products of two
approaching waves, one crossing 1o and the other crossing I'. Now again
from Theorem 19.2,

Q(Io, J') = Ic I lal s F (InI + Ia I)IaI + k0Q(1')L(Io)

(If e; and a have the same index, and a is a rarefaction wave, so that s; < 0,
then if y, and/or S; is a rarefaction wave, it will not approach a. However, in
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this case, Ie;I = 1 ,1, + b, + O(1)D(y, b)I < 13, + O(1)D(y, 6)1, since er < 0 and
y, > 0. If bi > 0 too, then Ie,I < JO(1)D(y, b)I.)

<- Q(10,1') + k0Q(1')L(10)

5 Q(10, F) + 12Q(I'),

provided that L(10) is sufficiently small; i.e., k0L(I0) < 1. Thus

Q(J) - Q(1) = Q(1o, J') - Q(10, I') - Q(1')
5 IQ(II) - Q(1') = -2IQ(1') 5 0.

Figure 19.13

This shows that Q is monotone decreasing. Next, using (19.23), and the last
inequality,

L(J) + kQ(J) 5 L(I) + koQ(I') + kQ(I) - ZkQ(I')
5 L(I) + kQ(I),

if k z 2ko. Thus the inequalities hold in case J is an immediate successor to
1. Moreover, we have in this case

L(J) + kQ(J) <_ L(O) + kQ(0)

5 L(O) + kL(0)2

5 2L(0),

if L(0) < Ilk. This shows that if the total variation of the initial data is small,
the variation of ua,s on J is small. This means that us,e can be defined on an
immediate successor to J. Thus if J is now any arbitrary mesh curve, with
J > I, we can pass from I to J by immediate successors where at each stage
Q and L + kQ are monotone nonincreasing, and ua,o can be defined on J. If
T.V.(uo) is small then L(J) + kQ(J) 5 2L(0), so that

sup{IiJ(ue,sx)I, I 5j 5 n} <
Axet,

and ue,e,r can be defined in t z 0. 0

Corollary 19.6. If T.V.(uo) is small, then on any mesh curve I,

osc u9.Ax S T.V.(us,ex) 5 const. L(I) 5 const. L(0)
5 const. T.V.(uo),

where the constants are independent of 0 and Ax.
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Proof. osc ue,ex < T.V. u9,.,,,, is always true, while T.V.(ue,,x) < const. L(I)
holds since T.V. and L are equivalent metrics. Also L(1) < L(I) + kQ(I)
5 2L(O) 5 const. T.V.(uo) if T.V.(uo) is small. E]

Corollary 19.7. If T.V.(uo) is small, then

T.V.[ue,,Y(x, n At)] + sup ue.,(x, nt) < C T.V.(uo)
X

where the constant C is independent of n, 0, Ax and At.

Proof. Since T.V.(uo) < oc, we know that Iimx_,) uo(x) exists; call it 1. From
the definition of ue,Ax, lima..,, uo,,x(x, n At) = 1, for each n. Corollary 19.6
thus implies that sup,, ue,ox(x, n At) is bounded by C, T.V.(uo). O

We next show that these estimates imply that our approximating solutions
are locally L, Lipschitz continuous in time.

Corollary 19.8, If T.V.(uo) is sufficiently small, then

r
J _

lue.ex(x, t) - ue.ex(x, t')I dx -< C[I t - t'l + At],

where C and C, are independent of 0 and Ax.

Proof. Let t2 > t,, and to = sup{t 5 t, : t = n At for some n}. Let S =
[(t2 - to)/At] + 1; then S At S t2 - t, + 2 At. Now u(x, ti) is determined
by the Cauchy data

{u(y,to):ye1}, where I = [x - S Ax, S + Ax].

Thus, by what has already been shown,

u(x, t2) - u(x, t,)I 5 const. sup{Iu(y, to) - u(x, to)I: ye 1}

5 const. T.V. {u(y, to): y e 1).
Hence

(m+2).x
I u(x, t2) - u(x, t,)) dx 5 const. Ax T.V.{u(y, to): y e 1}

j'm&c

5 const. Ax T.V. {u(y, to): y e Im},

where Im = [(m - S)Ax, (m + 2 + S) Ax], so that

rv (m+2)Ax

f_ ju(x,t2)-u(x,t,)IdxIu(x,t2)-u(x,t,)Idx
m f.46X

5 const. Ax T.V.{u(y, to): y e Im},

5 const. Ax T.V.{u(y, to): y e
m
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where 1 _ [m Ax, (m + 2 + S) Ax]. It follows that

f
r

Iu(x, t2) - u(x, rt)I dx 5 const. Ax(2S + 2) T.V. to)J-
S const. Ax(2S + 2) T.V. 0)

(2S + 2) At= const.
At

const.[(t2 - it) + At].
This completes the proof. Q
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The compactness of the difference approximations is really a consequence of
Corollaries 19.7 and 19.8, and is similar to the corresponding result for the
scalar conservation law in Chapter 16.

Consider the following three hypotheses on a set of functions {uQ(x, t)):

M1, (H1)

T. V. u2( t) < M2, (H2)

Ilun( ,t1) - s 1"131t1 - t2I, (H3)

where M 1 is independent of a, M2 is independent of t and x, and M3 is inde-
pendent of a, t , and t2.

Theorem 19.9. Let {u1} he a family of functions satisfying (H1), (H2), and (H3).
Then a subsequence {uA} converges in LI°` to a function u.

The proof is exactly the same as the corresponding result in Chapter 16,
Lemma 16.8. In view of Corollaries 19.7 and 19.8, we can apply this theorem
to the family (U0 %x : 0 e (b, Ax > 0}, to obtain the desired compactness. How-
ever, we must show that the limit functions are solutions.' As a first step we
shall prove the following corollary.

Corollary 19.10. Let {u,} he as in the theorem. Then there exists a subsequence
(u.,} a {u.) such that flu. d . f(u) in L for every continuous function f.

Proof. Since un -' it in LI°`, there is a subsequence of such that
u,, -' u, a.e. Thus f f (u), a.e. But (u.,) is uniformly bounded, so that
{f(u)} too is uniformly bounded in L;°`. The result now follows by the
Lebesgue bounded convergence theorem. E]

' This is highly nontrivial. It is here where we shall make essential use of the random choice
method.
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Let's fix 0 E m, and temporarily write uex for ua,x. If 0 E C;, (t > 0) is a test
function, we define a functional £b by

r
fou

2O(u, f(u)) =
J

(uo, + f(u)¢x) dx dt + S(x, 0)uo(x, 0) dx. (19.24)

Our goal is to produce a u for which :P,(u, f(u)) = 0 for each test function 45.
Now we know that u,x is a weak solution in each time strip I At < t <

(I + 1) At, so that for each test function 0,

If*1)Jr a,

100{4,,usx + Oxf (uex)} dx dt + 4,(x, l At)u1x(x, l At + 0) dx
JfAr M -I

If we sum this over I we get

f
a.

(flex)) =
J -

{ e I t,%, CPU,.) I dx dt
o a

+ ¢(x, 0)usx(x, 0) dx

+
..

a 4,(x, I AO [u,.,,] (x, l At) dx = 0. (19.25)
f=1 m

Comparing (19.24) with (19.25), we see that the following corollary of
Theorem 19.9 and Corollary 19.10 is valid.

Corollary 19.11. Let OET; then it = lime.,-o fle.ex is a solution of (19.1),
(19.2) provided that the following two conditions hold (as Axe - 0):

148,,x,( , 0) uo weakly, and (19.26)

rr

I At)] . [u6.ejf 0 weakly. (19.27)
f=f tit

Thus our existence theorem will be proved if we can show both (19.26)
and (19.27). Since (19.26) can be easily achieved, we confine our attention to
(19.27). To this end, we fix the following: a test function ¢, 0 E 1, and Ax > 0.
We define

Jf = f(x,f!I At)[ue.x], dx = J1(0. Ax, 0),
a
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and

J = J1 - J(0. Ax,
r- 1

387

Lemma 19.12. Let 0 E 4), (P e CO n L,,, and assume that (H2) holds with
x = (0, Ax). Then there are constants M and M1, independent of 0, 0. and Ax
such that

J,(0, Ax, 0)I S M(Ax) I fi II and (19.28)

J(0, Ax, 0)I < M,(diam. support (19.29)

Proof. (19.29) is a consequence of (19.28) since if the support of 46 is in
[a. b] x [0. T], then J, is nonzero only if I < TfAt; i.e., there are only
(At)-'(diam. support 4)) = O((Ax)-')(diam. support P), nonzero terms in the
sum. It thus suffices to prove (19.28). We have

(ma I).'x

IJ,(0, Ax ¢)I Z Jim I4,(x. I At)[ue.,x]iI dx
M=-

".
-I)Ax

Im+ 1 )Ax

fII 4> II r I uo.sx((m + 0,) Ax, I At - 0)
m m - I)Jx

- ue_,x(x. /At - 0)I dx

I I.1x

on [(m - 1)Ax.(m + 1)Ax]} dx
tm - I

IAt - 0)

on [(m - 1) Ax, (m + 1) Ax]) 2 Ax

= MAx 11411

This completes the proof.

The measure space m depends on Ax; however there is an obvious iso-
morphism, D -- [j[0. 1], of cD with a countable product of copies of the unit
interval. By means of this isomorphism, we can consider the random points 0
being defined in a fixed probability space m, independent of Ax. In the next
theorem we shall find a null set N in d) independent of Ax, such that if
O e (D\N, there is a sequence Ax, - 0 for which (19.26) and (19.27) hold. But
before doing this, we need one final lemma.

Lemma 19.13. Let 4, have compact support, and suppose that 0 is piecewise
constant on segments of the form [(m - 1) Ax, (m + 1) Ax] x I At. Then if
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11 12, J,,( , Ax, O) 1 where the orthogonality is with respect
to the L2 inner product on (D.

Proof. The idea is that independent random variables with mean zero are
orthogonal. Thus, if 11 < 12, then it, is independent of 0,,, and we assert that

J
J,, d0,, = 0.

m

Assuming (19.30), for the moment, we have

<11' J1,> _ J(p,1i,1 dOr,) ill* j2 d0,

= f it, (f J,, d0r) fl,x,, d0,

= 0.

We now prove (19.30). Let t1 = l At - 0; then

jo
J,,(0, Ax,,O) dOt=

00 (m 4 1)Ax

=
J

E (u0

ax

((M + 0,) Ax, to
mm--. (m-1)Ax

- uo.Ax(x, t,)] dx d0,.

But, by definition, we have

(19.30)

p
J u(x, t1) dx d0, -

J J
u((tn + 0r) Ax, (,) d0, dx = 0.

m=-
aoof

m-1)Ax (m-1)Ax m

The proof of the lemma is complete. Q

We now consider only Ax of the form 2-", and note that if 0 satisfies the
hypotheses of Lemma 19.13 for some Ax, it satisfies the hypotheses for all
smaller Ax.

Theorem 19.14. Suppose that (H2) holds where a = (0, Ax); then there is a null
set N c 4) and a sequence Ax, O such that for any O e (D\,N and 0 e C,') (( > 0).

oo.
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Remark. J(0, Ax,, 0 is equivalent to (19.27).

Proof. Let 0 satisfy the hypotheses of the last lemma; then

389

J(

(19.31)

since fm d0 = 1. But from (19.28),

E II Jj(' , Ax,, 4,) Il 2 < E M'(At,)21j p 112
tEA

where A = {1: (R x I At,) n (support 0) is nonvoid), so that

J( , Ax,, 4,) !! 2 < M2 Ar, (diam. support 0) 110 II
Q

(19.32)

It follows that for each piecewise constant 0 with compact support, there is a
sequence Ax, - 0 such that J( - , Ax,, 0) tends to zero in L2.

Next, for each ¢ e L°` n Co, (19.29) gives

11J(',Ax,.4,)1!2 s s const.I!0!!, . (19.33)

Let {4,.} be a sequence of piecewise constant functions with compact support
which are L.-dense in the space of test functions.-' For each 0,, there is a
null set N, c m and a sequence Ax,,, -+ 0 such that

J(0, Ax,,,, 4:) , 0 if 0 e O\N,.

Let N = U, N, and let 0 e cI\N ; by a diagonal process, we can find a sub-
sequence, call it Ax, again, such that for each v

J(0, Ax,, 4i,) - 0 as i - oc. (19.34)

Now let be any test function; then if 0 E o\N,

s IJ(0,Ax,. - 0")l + IJ(0,A;,,4.)
s const.11 - 4,,!I . + 0(1),

as i - oc, by (19.33) and (19.34). Choosing v first to make 117 - 0,!I,,, small, we
then choose i large to make the second term small. This completes the proof.

0
Our main theorem is really a corollary of Theorem 19.14.

For example, we could choose the Haar functions; see [GP].
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Theorem 19.15. I f T.V.(uo) is sufficiently small, there exists a null set N e ID
and a sequence Ax; -+ 0 such that if 0 e 4 %,N, us = lim ua,,s,,, is a solution of
the problem (19.1), (19.2).

Proof. First choose a subsequence of {Ax;} such that (19.26) holds. Then
choose a further subsequence such that for Or= 4)\N where N is as in
Theorem 19.4 J(0, Ax,, ) - 0 as i -+ oo; this can be done by the last theo-
rem. Then choose another subsequence so that {us } converges; this can be
done by Theorem 19.9. Then Corollary 19.11 finishes the proof. Q

NOTES

The entire contents of this chapter is taken, with some minor modifications,
from Glimm's profound paper [G 1]. This work constituted the major
breakthrough in the subject, and it is fair to say that all of the subsequent work
on systems of conservation laws is based upon it. In particular, we mention
the paper ofGlimm and Lax [GL] which deals with the decay of the solutions.
In this work the estimates (19.10) and (19.11),

D(}', 0)0(1), if n > 2,

D('1.60111 + 101), if n = 2,

arc also quite crucial. For the existence theorem the bound I e;1 5 (17i I + I S;
+ (error)} suffices, but the decay comes from the cancellations in (+): if
sgn yi * sgn S; (i.e., if one is a rarefaction wave and the other a shock wave),
then I&,I = { 11 y,I -16,11 + error}.

The papers of DiPerna [Dp 2, 4], Liu [Lu 4, 7], and Greenberg [Gb 3]
are concerned with rates of decay, as well as the asymptotic form of the solu-
tion as t -+ + x). The problem of uniqueness is still not completely resolved,
but see the papers of Oleinik [0 2], Liu [Lu 10], and Di Perna [Dp 5]. A
deterministic version of the difference scheme presented here has been given
by Liu; in it he proves that the difference scheme converges for any equi-
distributed sequence 0 e D; see [Lu 2].

For special equations, or general equations with certain restrictions on
the data, see Nishida [N], Nishida and Smoller [NS 1], DiPerna [Dp 1],
Smoller and Johnson [SJ], Greenberg [Gb 1, 2], and Moler and Smoller
[MS]. In particular, Nishida obtains a global existence theorem for the
p-system, with p(v) = const. v - ', with arbitrary data of bounded variation.
Nishida and Smollcr INS 2], consider the mixed (i.e., piston) problem; see
also Liu [Lu 6]. The papers of Liu [Lu 5] and Temple [Te] deal with the full
system of gas dynamics equations. DiPerna in [Dp 3], studies the regularity
of solutions, and Liu and Smoller [LS] study the problem of the vacuum.
An important unsolved problem is to extend Glimm's theorem to the case
where the initial total variation is not small. Here one obstruction, say for the
p-system, is the development of solutions whose density comes near to zero ;
the main estimates in §A no longer hold; see [LS].



Chapter 20

Riemann Invariants,
Entropy, and Uniqueness

There are better results known for pairs of conservation laws than for systems
with more than two equations. We have already seen an example of this in
the last chapter; namely. the interaction estimates are stronger when n = 2
than when n > 2. This was due to the existence of a distinguished coordinate
system called Riemann invariants, which in general exists only for two
equations. We shall study the implications one can draw using these co-
ordinates. It turns out that the equations take a particularly nice form when
written in terms of the Riemann invariants, and using this we can prove that
for genuinely nonlinear systems, global classical solutions generally do not
exist. (We only know this now for a single conservation law; see Chapter 15,
§B.)

The second advantage of these coordinates is a bit more subtle. The point
is that if we use them to measure the strengths of waves, then this allows for a
great simplification in the form of the Glimm functionals F(J) as described in
the last chapter. We take advantage of this to give a global existence theorem
for the isentropic gas dynamics equations where the data can have large total
variation. Finally, we shall use Riemann invariants to obtain a precise in-
stability theorem. Thus, we will show that shocks violating the entropy
conditions (17.22) are unstable in a strong mathematical sense ; namely, they
are not closed under regularization ; i.e., smoothing.

Another goal in this chapter is to define a general notion of entropy from
which we can deduce some nice quantitative features about solutions. The
most important one is that solutions which are limits of viscous equations,
as well as solutions constructed via the Glimm difference scheme of the last
chapter, must satisfy the shock conditions (17.22).

In the final section we shall prove a fairly general uniqueness theorem for
the p-system. The result says that solutions with a finite number of shocks and
centered rarefaction waves are uniquely determined by their initial data. The
method of proof is the same as for the scalar case, and relies on solving the
" adjoint " system. Only now there is no entropy inequality and the estimates
are much more difficult to obtain.
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§A. Riemann Invariants

We have studied certain particular Ricmann invariants earlier in Chapters 17
and 18. Here we give a general approach, followed by several applications.

Thus consider the pair of conservation laws

u, + flu, v) = 0, v, + g(u. v) = 0. (20.1)

where u and v arc in R. We let U = (u, v), and F(U) g), so that the
equations (20.1) can be written as

U, + dF(U)U = 0. (20.2)

where dF(U) is the Jacobian matrix of F. Since the system is assumed to be
hyperbolic, dF has real and distinct cigcnvalues i. < Et. Let 1a,1,,, and r,i, r
denote the corresponding left and right eigenvectors of dF.

Consider the Riemann invariant w = w(u, v) corresponding to A. From
Chapter 17, §B, we know that it satisfies the equation

Vw ra = 0. (20.3)

This says that w is constant along trajectories of the vector field T. We solve
(20.3) by taking a curve %' nowhere tangent to ra, and we assign arbitrary
values for w along W. We then solve the pair of characteristic (ordinary
differential) equations through ri,°, U = ra(U), and make w constant along
each orbit. If w is taken to be strictly increasing along 91, then it has distinct
values along distinct orbits.

If we now define z = z(u, v) to be the Riemann invariant associated with
µ, then

Since ra and r arc linearly independent, any trajectory of U = r,,(U) could
serve for c as above. Let's fix a particular one, r',,. Now fix a particular
trajectory r't passing through r,,, and choose z to be strictly increasing along
r ; see Figure 20.1. If we show that trajectories of distinct families (i.e., those
corresponding to ra and r ). can meet in at most one point, then the mapping
(v, u) - (w, z) is bijective, and we can take (w, z) as a coordinate system. To
see that this is always possible, suppose for example, that an r trajectory
r meets an ra trajectory Ix, at two points P and Q; see Figure 20.2. The
vector field r must point towards opposite sides of 171 at both P and Q. This
implies that r must be tangent to ra somewhere on Tx between P and Q. But
at this point ra and r would be linearly dependent; this is a contradiction.
Thus no r trajectory meets an ra trajectory more than once. We have thus
proved the following theorem.
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Figure 20.1

Figure 20.2
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Theorem 20.1. The mapping (u. v) -+ (w, z), as described above, is bijective in
any simply connected region.

Recall that left and right eigenvectors corresponding to distinct eigen-
values are orthogonal.' Thus since Vw ra = 0, we see that the equation
'a r,, = 0 shows that Vw is a multiple of la. That is, Vw is a left eigenvector of
IF with eigcnvaluc u :

Vw dF = pVw. (20.4)

Similarly we find

Vz dF = AVz.

Now multiply (20.2) on the left by Vw, and use (20.4) to get

0 = VwU, + VwdF(U)U,, = It,, + ipVwU,,,

)r

(20.5)

w,+µw.=0. (20.6)

' If Or - Ar. I dF = pl. then pir = I dFr - Air so 1r = 0 if A p.
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Similarly, we find that z satisfies the equation

z,+).z'=0. (20.7)

Equations (20.6) and (20.7) can be considered equivalent to (20.1) only for
smooth (i.e., classical) solutions. (In fact, since the former are not in conserva-
tion form, it is not apparent how one would interpret nonsmooth solutions;
see [V].) Nevertheless these equations arc quite useful, as we shall soon see.

Observe that (20.6) implies that w is constant along ju-characteristics, and
(20.7) shows that z is constant along i.-characteristics. This is a nice analogy
with the scalar conservation law u, + f'(u)u = 0. where it is a constant
along the f'(u) characteristics. This fact was used to prove the nonexistence
of a global smooth solution for the single conservation law; the corresponding
statement will be used for proving the same result for the system (20.1).

We remark that by definition the Ricmann invariants are constant across
rarefaction waves of the corresponding characteristic family. Thus, if we
consider z and iv as coordinates, then in this frame, the rarefaction wave
curves (see Chapter 17, §B), become straight lines. This fact too can often be
useful; see §C.

We now assume that (20.1) is genuinely nonlinear in the p-characteristic
field. Recall from Chapter 17, §B, that this means

Vp r, # 0. (20.8)

We wish to write (20.8) in the (w, z) coordinates. For this, let The the bijective
mapping

T : (u, v) - (w, z),

which we have discussed above. If k = det(dT), then k # 0 and

(dT)-t
kL-z w,j - LJvw v:

Since clx = Vz = (z, we see that we may choose r = (z1., Thus

Vµ - r. = Vµ - (zo, kVp - (uw, v,,,)

= kuw.

Similarly, VA rt = ki,,. We record these facts in the following lemma.

Lemma 20.2. The A (resp. p) characteristic field is genuinely nonlinear if and
only if A. # 0 (resp.1u 4 0).
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In Chapter 15, *B, we showed that global classical solutions of a scalar
conservation law are usually impossible to find. Our proof was geometric
and consisted in showing that the solution was constant along characteristics,
and that the characteristics were straight fines. In the case of two equations,
equations (20.6) and (20.7) show that z and w are constant along characteristics.
However, the characteristics are not straight lines, so that the scalar non-
existence proof cannot be extended to our case. We present now a different
nonexistence proof for the scalar case which is capable of generalization to
pairs of conservation laws.

Let u satisfy the equation u, + f (u). = 0, and let a = f'. Then u, + a(u)u.
= 0, and differentiating with respect to x gives

u,x + auXX + 0.

If " prime " denotes differentiation in the direction aJvt + aa/ax, and u., = q,
then we can write

This equation can be integrated explicitly and we find

q(x, t) =
q0(x)

1 + kt qo(x)'

where qo(x) = q(x, 0), and k = a (u) is constant along the characteristic.
Thus if f"(u(x. t))u'o(x) = kgo(x) < 0 for some x, then ux(x, t) = q(x, t) blows
up in finite time.

We shall extend this proof to the pair of conservation laws (20.1). For this
purpose, we may consider the equivalent system (20.6), (20.7) for smooth
solutions.

Theorem 20,3.1f (20.1) is genuinely nonlinear in the pth characteristic field; i.e.,
uw > 0, and both W(x, 0) and z(x, 0) are bounded, then if 0) < 0, for
some x, w becomes infinite in finite time. (A similar statement is true upon
replacing Ft by 2 and w by z.)

Proof. We assume that the system (20.1) has a smooth solution defined in
t > 0. Then (20.6) and (20.7) are everywhere valid. Thus we can differentiate
,20.6) with respect to x to get

Wrx + Usv + µ" %V + /1. Wx Z = 0,

ar if wx = r.

r, + prx + u, r2 + p=rz = 0. (20.9)
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Now let "prime" denote differentiation in the direction 8/8t + p8/8x; then
(20.9) becomes

r' + u,,.r2 + u.rz., = 0. (20.10)

If "dot" denotes differentiation in the direction d/dt + A0/c3x, then (20.7)
shows i = 0. Thus

z'=zr+uz.=(z-Az.)+pz =Cu -))zx,

or zs = z'/(p - A). If we use this in (20.10) we get

u
A

Let a = a(w. z) be a function satisfying

Since w' = 0, we find

a' = a,,,w' + a.z = azz' = u-
u

Thus (20.11) can be written as

(20.11)

r' + µ,,.r2 + a'r = 0. (20.12)

We can actually prove the blow-up of r at this stage, but it is perhaps easier
to get rid of the linear term. To this end, multiply (20.12) by e" and let p = re".
This gives

0 = ?r' + e°a'r + p,,,e°r2 = p' + pe°r2,

or p' + 0. If we let k = u,,e-a, then the last equation becomes

p'+kp2=0.

The solution of this equation is given by

p(x, t) _ fix' O)

+ p(x, 0)K(t) '
K(t) = fo k(s) ds, (20.13)

i

where the integration is along the u-characteristic.
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If w and z are bounded at t = 0, then they satisfy the same bounds for all
t > 0, since they are constant along characteristics. Thus k is bounded from
below, k > ko ; whence K(t) z ko t, t z 0. Since by hypothesis p(z, 0) < 0 for
some Y, (20.13) shows that p(.. t) becomes unbounded for some t > 0. This
contradiction concludes the proof.

Corollary 20.4. Suppose that Dµ r., * 0, and both u(x, 0) and r,(x, 0) are
hounded. If wx(x, 0) # 0, then there is a T > 0 such that if I t I > T, a classical
solution of (20.1) cannot exist.

The proof of this corollary is a consequence of (20.13) and the argument
which follows this equation.

We shall give further applications involving Riemann invariants in
subsequent sections.

§B. A Concept of Entropy

We have seen in Chapter 15 that physically nonacceptable discontinuous
functions can arise as solutions of conservation laws. Such discontinuities
were rejected on the basis of "entropy " conditions. We shall now introduce a
concept of entropy which both generalizes and unifies all of the previous
notions. As a byproduct, we shall also see how these ideas can be used to
obtain some a-priori bounds on solutions of conservation laws.

Consider the system

u,+f(u)s=0. (20.14)

in n-dependent variables u = (u,...., un). We may assume that f(0) = 0;
then if I u I tends to zero sufficiently fast as x we can integrate (20.14)
over R to obtain

J u dx = 0.
R

Thus the integral ofJR tt is conserved ((for smooth solutions); i.e..

t) dx =
J

u(x0) dx, t > 0.
R

Viewing this phenomenon more generally, we ask the following question.
When does the system (20.14) imply the existence of an additional conserva-
tion law?; that is, an equation of the type

U, + F,, = 0, (20.15)

where U = U(u), and F = F(u) are real-valued functions?
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When (20.15) holds, we call U an entropy for (20.14), in analogy with the
equations of gas dynamics where we know that the equation S, = 0 can be
(formally) derived. Here S is the "physical" entropy; see (18.3)'.

To analyze this, we carry out the differentiations in (20.15) and find

dUu,+dFu,r=0.

In order to get this from (20.14), we rewrite (20.14) as

Multiplying this equation by dU on the left gives

dUu, + d U dfu = 0.

Thus (20.15) holds if and only if

d U df = dF. (20.16)

This is a system of n partial differential equations for the unknown quantities
U and F. Thus if it > 2, this system is usually overdetermined and has no
solutions. However, there are some very important special cases in which a
nontrivial solution exists.

EXAMPLE 1. Suppose that f is a gradient, that is. f = V. In this case df is
symmetric, and (20.14) can be written as

We sct

and compute :

u,+(V4 =0.

U(u) = Z l u 12, F(u) _ <u, V4> - 0.

F. _ <ui, VO> + <u. (V4).> - <V4, u.>
_ <u, (VW)x> = - <U, u,> = - U,.

EXAMPLE 2. Here we take n = 2, and consider the "antigradient"system

u, + 0"(14, a) = 0. V, + * , (U, v).,, = 0.

We put U = 0. F = and then

U, = 5w u, + 4 v, = -[TY(Tp)X + Oc(y'wj _ -(Y'a0c)x = -F.
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Note that systems of the form

u,+f(v).=0, v,+g(u)x=0.

arc special cases of antigradient systems. This is easily seen by writing

0(u, v) =
J

V f (s) ds + ju g(s) ds.
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In particular. if J '(v) = p(v). and g(u) = - u, we recover the p-system (cf.
Chapter 17, §A). In this case.

u2

-(u, v) 2 + Jp(s)ds.

The role of the entropy conditions is to differentiate " physically " realizable
discontinuous solutions from the others. Another way in which the former
can be characterized is to recover them from equations containing viscous
terms, i.e., second-order derivatives. The equation we consider is the following
modification of (20.14):

U, + f (u).,, = EAus,,. E > 0, (20.17)

where A is an n x n positive semidefinite matrix with (for simplicity), constant
coefficients. We multiply (20.17) on the left by dU, and assuming (20.16). we
get

U, + F, = rdUAu.,,,,

or

U, + F = Eu;,d2UAu,,, (20.18)

where d2U denotes the hessian matrix of U. We assume that U and A are
^ompatible in the sense that

d2UA -> 0. (20.19)

Observe that if A is the identity matrix, (20.19) means that U is convex.
Now if we integrate (20.18) over the region ST = {(x, t) E R2 : 0 S t S T},

we find

U(u(x, T)) dx - U(u(x. 0)) dx = - e fl us d2UAu, (20.20)
ST
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provided that u(x, t) vanishes sufficiently fast at infinity.' Then from (20.19)
we can obtain the estimate

U(u(x, T))dx <_ U(u(x, 0)) dx. (20.21)

Notice that for the p-system. U = - U2./2 + p(s) ds, and (20.21) gives
the interesting estimate

t12

2

(' - : [ - u(x, 0)2 ri.tx.ot
p(s) ds dx] 5 J 2 +

J
p(s) (IS dx.

x

Furthermore, if instead of (20.19). we assume the stronger condition

d2UA > ci. (20.22)

where c is a positive constant, (20.20) yields

I. U(u(x, t)) dx + rc if uX < f U(u(x. 0)) dx.

ST

If U is non-negative, then this last inequality gives the bound

e
J
J u < const.. (20.23)

ST

where the constant depends only on c and the initial entropy; i.e., U(u(x, 0)).
Consequently, if u is bounded, we see that the term e(dUAux)T tends to zero
in the sense of distributions as c 0. Thus from (20.18) we can conclude

U, + Fx S 0, (20.24)

in the sense of the theory of distributions. We thus have

Theorem 20.5. Suppose that the system (20.14) admits an additional conservation
law (20.15). Let u be a (weak) solution of (20.14) which is the limit, boundedly
(i.e.. Lam, on compacta), together with its x-derivatives. of solutions of the
"viscosity" equation (20.17). If (20.22) holds, and U >_ 0, then u satisfies
(20.24) in the sense of distributions.

In the case A = I. the identity, we can strengthen the theorem as follows.

2 In view of (20.16), there is no loss in generality to assume F(O) - 0.



W. A Concept of Entropy 401

Corollary 20.6. If U is convex and (20.14) admits the additional conservation
law (20.15)4 then any solution it of (20.14) which is the limit, bounded!y, of
solutions of u, + f (u)x = euxx, satisfies (20.24) in the sense of distributions.

For, in this case we can conclude from (20.18) that U, + Fx S r.(dUux),,
= sU.,,r. Ifs 0. then EU.,, tends weakly to zero, and the result follows.

Corollary 20.7. Under the hypotheses of Theorem 20.5 or Corollary 20.6. if u is
a piecewise continuous solution, then across each discontinuity u satisfies

s[U, - Lt,] - [F(U,) - F(U,)) < 0. (20.25)

where s is the speed of the discontinuity, and U, and U, are. respectively. the
states on the left and right side of the discontinuity.

The proof of this follows by integrating (20.24) around a small portion of
the discontinuity, as we have done in Chapter 15, §B.

We shall refer to both (20.24) and (20.25) as entropy conditions. The follow-
ing theorem justifies this.

Theorem 20.8. Suppose that the system (20.14) is hyperbolic and genuinely
nonlinear, and U is a strictly convex function satisfying the additional con-
servation law (20.15). Let u be a solution of (20.14) which contains a weak shock
of speed s. Then the entropy inequalities (17.22) hold if and only if (20.25) holds.

Proof. From the results in Chapter 17, §B, we know that the totality of states
u, which can he connected to a state it, by a k-shock, forms a one-parameter
family. u, = u(E), F < E < 0. Let

E(c) = s(c)[U(c) - U(u,)] - [F(s) - F(u,)], (20.26)

where (U(E), F(s)) _ (U(u(E)), F(u(c))). To prove the theorem it suffices to show
that E > 0 for smalls, iff c < 0, since we have seen in Theorem 17.14 that the
inequalities (17.22) hold if and only if.- . < 0.

To this end, we differentiate (20.26) with respect to c, and get (with the
obvious notation),

E=s(U - U,)+sU'it-F'u.

But from (20.16),1-' = U'.f'. so that

E = ..(U - U,) + sU'iu - L' f'ii. (20.27)

If we evaluate this at E = 0. and use Corollary 17.13, we find $(0) = U'r
- U'f'r = AU'r - U'(itr) = 0. where r is the right eigenvector of df cor-
responding to the kth eigenvalue A.
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Now s(u - u,) = f(u) - f(u,), so that f = sti + S(u - u,), and

P=F'u= Uf'iu= Uf = sU'it+§U'(u-u,).

If we use this in (20.27), we get

8 =§(U - U,)- kU'(u-u,).

We differentiate this with respect to a and find

P=s(U - U,)-sU'(u-u,)-sU'(u- u,),

so that E(0) = 0. If we differentiate again, we get

- =s(U - U,)-'sU'(u-u,)-2sU'(u-u,)-SU'(u-u,)-sU'u.

Thus again using Corollary 17.13. we find

E(0) _ - s 071 I = o = - I Ur < 0. (20.28)

by the strict convexity of U. Since e < 0. it follows that (20.28) implies E > 0
for small t if c < 0. The proof is complete. 0

We remark that it is possible to give another proof of one part of the last
theorem using the results in Chapter 24, §A. Namely, if the shock conditions
(17.22) hold, then we shall show that the shock wave solution (u,. u,, s) of
(20.14) is a limit of travelling wave solutions of the system u, + f (u).,' = cu...
Therefore Corollary 20.6 implies (20.25).

We conclude this section by showing that the solution constructed in
Chapter 19 via the Glimm difference scheme satisfies the entropy conditions
provided that the system admits an additional conservation law. Precisely,
we have the following theorem.

Theorem 20.9. Suppose that (20.14) is hyperbolic and admits an additional
conservation law (20.15) where U is strictly convex. Then any solution u of
(20.14) constructed by the Glimm difference scheme (Chapter 19), satisfies the
entropy inequalities (17.22) across shock waves.

Proof. It suffices to show that u satisfies (20.24) since this implies (20.25), and
the result follows from Theorem 20.8.

Recall that u is a limit of approximate solutions ue,each one being piece-
wise continuous in each strip k At < t < (k + 1) At, and having only shocks
as discontinuities. It follows from this together with Theorem 20.8, that
(20.24) holds for each approximate solution in each strip. We multiply (20.24)
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by a positive test function 46 and integrate over each strip. If we integrate by
parts with respect to t over each strip, and then sum over all strips, we get

fcttx. k At)[U9.e(x, k At + 0) - Us.e(x, k At - 0)] dx
= 1

- jJt Ue., + &YF9.,)dx dt < 0. (20.29)

where (F0,e, L`e,a) = (F(ue,,), U(u9,,)). The sum in (20.29) tends to zero, at
least for a suitable subsequence of mesh lengths, for almost all random points,
by Theorem 19.14.

Since the approximations converge in a topology strong enough to pass
the limit through U and F (by Corollary 19.10), we see that (20.29) implies

-11(0,U+0.F) <0,

1>0

.or all positive test functions. This gives (20.24), and the proof is com-
plete. 0

C. Solutions With "Big" Data

In this section we shall consider the system of isentropic gas dynamics
squations (cf. Chapter 17. §A) in Lagrangian coordinates,

v, - U. = 0, ul + p(v)x = 0, xeR, z>0, (20.30)

vhere p(v) = k2/v', and y is a constant, 7 = I + 2e, and s z 0. Together
vith (20.30) we consider the initial values

(v(x, 0), u(x, 0)) = (vo(x), uo(x)), x e R, (20.31)

vhich we assume to be bounded, and to have bounded total variation. In
.ddition, we assume

0<vSvo(x)<0 <00, xeR (20.32)

ar some constants v, 13. With these assumptions, we shall prove that the
,roblem (20.30), (20.31) has a global solution provided that

e T.V.{vo. uo}
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is sufficiently small. This allows us to consider data with large total variation.
but only for small e; i.e., only when y is near 1. If y = 1, then there is no
restriction on the size of the initial total variation. The method which we
shall use is a modification of the method described in Chapter 19, and involves
a study of the global properties of the shock curves in v - u space. The proof
makes considerable use of the special form of the equations.

The system (20.30) is hyperbolic in v > 0 and the matrix (d(-u. p(v)) has
eigenvalues

,l = ±k`'y = ±k r 1+cA. Gt+c VYP

where p = v-', with corresponding Riemann invariants.

r=u -

It is easy to check that the mapping (u. p) -> (r, s) is bijective when p > 0, and
s - r > - 2k'j/; thus we may use (u, p) or (r. s) as variables, according to
our convenience.

The Riemann problem for (20.30), with initial values

(Po(x), uo(x)) =
J(P-, u_), x < 0,

(P+, a+), X>0.

where p t > 0, has been considered in Chapter 17, §A. The solution satisfies
the estimates

r(x, t) - r(u(x. t), p(x, t)) >- min(r_, r+),

s(x, t) - s(u(x, t), p(x, t)) 5 max(s_, s+), (20.33)

where (r t , s t) = (r(u t , p ±), s(u t , p ±)), provided that s_ - r+ > - 2kf /c
(i.e., provided that the solution does not assume the value p = 0). The esti-
mates (20.33) merely state that the solution lies between the extreme Ricmann
invariants (or rarefaction-wave curves); see chapter 17, §A.

If we consider the shock curves for (20.30) we find a[v] [u],
a[u] = [p], where a is the shock speed, and [ ] denotes the difference of the
quantities across both sides of the shock, going from left to right (in the x - t
plane). Eliminating a gives

PPo
u - uQ = ±k (P - Po)(P' - PD
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The shock curve St corresponding to A- can be written in the form

St:

r=kPaj (a-l)aa'-1)+ fa`

(a-
s - k

1)(a'-1) a`-1 azl,Po
a

- f y
a

so -
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where (ro, so) = (r(uo. Poi s(u0, po)) is the state on the left, and a = p/po ? 1,
while S2, corresponding to A+, takes the form

S2:

(1 - a - - 1 - a`
so - s=kpo

a'))(1a

+ y
r

a`ro - r=kPo lr,1-
c

1,of <

where 0 < a = pIpo < 1. We can depict these curves in the r - s plane as in
Figure 20.3. We note that we may write so - s = g,(ro - r, po) and ro - r
= g2(s - so, po), for S, and S2, respectively.

Figure 20.3

Of course, the lines r = const. and s = const. correspond to rarefaction-
wave curves.

With these preliminaries out of the way, we can prove our first lemma.

Lemma 20.10. The shock curve St starting at (ro, so) can be written as

so - s = g1(ro - r, Po) =
J

h1(a) d/t, r < ro. (20.34)1
0 a- at(plkp?)

where 0 S ag1(P. po)Jaf < I and 0 S a2g1(p, Po)la#2. A similar representation
is valid for the S2-curves.
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Proof. Let

and compute
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_ a(so - s)Jc'a
h,{a)

a(ro
- r)Joa*

1)2 where y =
Iya"(a- 1)

(y+1)2' a"-1

If we define jo by

kPO

then fo(a) > 0 for a > 1 so the implicit function theorem gives a = a,(1l/kpo)
The calculations for g, are now straightforward, and we omit them. Q

The next lemma is our main estimate; it shows how the Riemann
invariants change across two shock waves of the same family.

Lemma 20.11. Let s z 0, s, > so, and consider the two S, curves originating
at the points (ro, s,) = (u,, p,) and (ro, so) = (uo, Po}, Po Pt > 0. which are
continued to the points (r, s2) and (r, s), respectively (cf. Figure 20.4). Then
there is a constant C depending only ono and y, such that

0 < (so - s) - (s, - s2) S Cc(s, - s)(ro - r). (20.35)

Proof. Set z' = s, - S2, z° = so - s, w = ro - r; see Figure 20.4.

--r------ (roast)=(ut,P1)

'L
r

'(r,.'2)

- (ro so) _ (uo Po)
zo l

Figure 20.4



§C. Solutions With "Big" Data

Using the last lemma and the mean-value theorem we find

z° - z' = s:'[h1(1())
- hl

(oil
kPil dp

f " dh1(a)Ia da(O) /I _ Jf

Jo da -a(9 d0 kpo kp1

407

where fl/kp; < 0 < Q/kpo. Since the integrand is nonnegative, we see
7° - z' >- 0. If y is as in the proof of the last lemma, and a = a(0), we have

dhl(x) da 4(), - 1) _,/ya''+ M2 [ar+I - (y + 1)a + y}
doe dO - (y + 1)3(2y - 1)2 (1. + 1)2

<4(1'- 1)/yaC,1,112(y+ 1)(a- 1)(a,- 1)]

(y + 1)3(a7 - 1)2 y2

4(),- 1)2(y + 1)(a' - 1)2

Thus

z°-z1 S

(y + 1)3(x' - 1)2 ya'

4(y + l)x(I -7)!2(x, - 1)
fY(y + 1)s

4(y
+

1)
(P`

w
x(t -7112 Y - I

k vIjAoPi
I - A)

o
/ (y + 1)3 d/I

w
la-11 +7)112 dfl,

< C(y, P1, PO) (PC - Po)Jo

where we have used the inequalities

0:5(y- 1)(y + 1)-' < I and (j,+ 1)-2 < y-2

Since y z 1, the first inequality is easily seen to be valid, while the second
allows from

(y+1)-2<y-2=1a'-I <ya'-'(a-1)
x'(a - 1) y(a - I )x'

=a

iincc (3/kpC < 0 and doe/d0 > 0, we have

2-0+012 1 5 01
-(I +7)121
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But

so that
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j3 (x - 1)(a 1) ,

kPi («)<2 1
«

<2«r,2

f2
(1+r112I

a = a(8)

2kpI

This gives

zo - YI <

(i+ I)1r

/3 dpi, for tv S I.
Jw

C(7 PI, PO) (Al - Po)

11

1

S
o

211, 2.

SC(P,1 - Po)-1+2e
+ (1L.24!(1+2e) - 1

2e

forw > 1,

for w < 1.

for IV > 1.

Since pi - Po = z(s1 - so)f2k+y, and

for 05IV 51, 1,2

S j
C

1,124`

for IV > 1, 2' +
I + 2s(w2c;(t+24)

- 1) (

w

)
r

we concludc that

z° - z' S C e (sI - so)w,

and the proof is complete.

We definer and s by

[r"" s] = [iniru0x, po(x)). sup s(uo(x), Po(x))
xcR Xts

and choose mesh lengths Ax and At to satisfy

Ax-(4'k+ 2kv
J

fldfl+Iw"

(20.36)

We now construct our approximating solutions as in Chapter 19.
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From our assumption (20.32), together with (20.33), we see that there
is an ro > 0, such that if 0 < s < e,,, then the approximate solution
(148,.,x N. A.) satisfies pe.,,r Z 13 > 0 in the strip 0 5 t < At.

In order that the method of the last chapter works, we must find an
analogue of Theorem 19.2, the interaction estimates. In our case, we must
study the interaction of only two families of waves. Thus if R1 and R. are
rarefaction waves corresponding to the first and second characteristic families.
respectively, then we must study the following six nontrivial interactions
(here the "first" wave is considered to be on the left of the "second - wave):

S, interacts with S, ;
S2 interacts with R, (or R2 interacts with S,);
S2 interacts with S2 (or S, interacts with S,);
S2 interacts with R, (or R1 interacts with S,);
R, interacts with S. (or S1 interacts with R1);
R2 interacts with R, ;

sec Figure 20.5. (The interactions obtained by interchanging the indices
1 and 2 can be treated similarly.)

((n + 1)h. (m + 1)0

Y

(nh. (m -- I + U )!) { y } ("11, (m + I + 000

((n - 1)h, (m +

Figure 20.5

Let J2 and J, be mesh curves, with J2 an immediate successor to J,, and
let 0 e D. cf. Chapter 19. §B. Let t4 (resp. ) be an S, (resp. S2) shock on J,, and
let /3' (resp. y') denote an S, (resp. S2) shock on J2. Let the absolute value in
terms of the Ricmann invariant r (resp. s), denote the strengths of the St
(resp. S2) shocks ; see Figure 20.6. Observe that with this definition of strength
of shocks, the variation always decreases across shocks. This is one advantage
of using the r - s coordinates; see the definition of the functionals L, Q, and
F in (20.38), below.

10.

r

Figure 20.6
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In the next lemma, we use the notation y + /3 -' /3' + y' to denote the
interaction of an S2 with an S, which produces an S, and an S2 ; the other
cases are written similarly. Rarefaction waves will be denoted by 0.

Lemma 20.12. Let c 2: 0, 0 < p < A < co. and suppose that all waves con-
sidered below lie in the strip [p, p], u E R, in the r - s plane. Then for the
interactions given below, the corresponding estimates are valid, where C and
Co are independent of r, /3, y and po c-

0) Y+/t-/3'+y':
(a) I$'I < l/3l + Ce1/31lv1, l>'l 5 IYI + Cc1/31IYI, or there exist

n, such that
(b) 05n5

g1(Ifll,po)5 < ',or
(c) 05

n g,(171,PoK < C.
(ii) y+0-+0+Y:Iv'I =11'1.

(iii) Yt + 72 - 0 +': IY I= IYt 1+ I'21-
(iv) y+0-'/3'+y',ory+0- 13'+0:

There exist f0, yo such that Yo + /30 -+ /3' + y' is the same interaction
as in (i), and

IN + IYol 5171- Cal/3ol.

(v) 0+y-4/3'+y', or0+y-+J3'+0:

In'1 + I'/I 5 IYI - Colf'I

(iv) 0+0-1.0+0.

(Note that the qualitative form of the interactions is obtained by solving
Riemann problems for this system (see Chapter 17, §A), and considering all
possible choices of "random points." Thus, for example, we cannot have
S, + S2 - R, + R2, etc.)

Proof. We shall only give the proof for a single typical case, namely case
(iv); for the other cases, we refer the reader to [NS 1]. To this end, consider
Figure 20.7.

From the figure we see that

1#o1=r1

(IYI - IYoIW2(A,Po),
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(ro, so) = (u(,, PO)

r

Figure 20.7

where 0 is between 171 and 17(, 1. Thus

411

I?oI+I1SOI-IyII110I-I1fol= _I1fol(l -g :) (2037)
92 J2

But since gz(I I, p0) 1 as I yI x, (see (20.34)2), we have

lim 1 - 92(Iyi Po) = 0.
Irl-x

so that - 1-fli(IYI>Po1=C0
> 0.

g2(IYI,Po)

It follows from (20.37) that I Yo I + 1#01 - I yI _< -C01#01. This proves
(iv). O

We remark that we can treat the interactions of three waves in a similar
way to obtain similar estimates. (The interaction of three waves in a diamond
does occur.) As in Chapter 19, in order to investigate the convergence, we
introduce functionals on mesh curves. In our context, if J is a mesh curve, we
define

L(J) = Y{ I x I: a is a shock crossing J }.

Q(J) = Y- { I P I 121 :# E St, y e S2, J3. y cross J and approach}. and

F(J) = L(J) + KQ(J). (20.38)
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where K > 0 will be chosen below. It suffices to only consider shock waves
in the above functionals since only shocks contribute to the decreasing
variation of the solution across J, and the total variation is majorized by
twice the decreasing variation, plus the difference in the value of the functions
at +oo.

Now if Fo is defined as above (after (20.36)), then if e < co, (20.33) shows that

L(O) < T.V.[ro(x). so(x)],

where 0 is the unique mesh curve passing through the mesh points on
t=0andt=At.

Let (rt, st) = lim t (ro(x), so(x)), and define

V = {(r, s): dist[(r, s), (r_, s_)] + dist[(r, s). (r,, s+)]

5 8T.V.[(ro(x), so(x)] + dist[(r-.s_), (r+. s+)]},

where dist[(r,, s,). (r2, s2)] = Ir, - r21 + Is, - 521.
Now choose F, so that 0 < F, ro and -! n {p = 0} _ for 0< z < e,.

Let K = 4Cc, where C is the constant of Lemma 20.12 for this region V.
We take F, so small that 4CF,L(0) <- 1; then if 0:5 F :5 F,,

F(0) = L(0) + KQ(0) < L(0) + KL(0)2 < 2L(O).

Lemma 20.13. if FF(O) is suf ciently small, then F(J2) < F(J,) where J, and J2
are mesh curves and J2 is an immediate successor to J, .

Proof. In order to prove this lemma, we must consider all the possible types
of interactions of waves in "diamonds"; cf. Lemma 20.12. We shall content
ourselves here in considering just a typical two-wave interaction ; namely,
S2 + S, S1 + S2; for other cases, the reader should consult [NS 1]. Thus
suppose we have the situation depicted in Figure 20.8; namely,

S2.

Figure 20.8
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Then

L(J2) = E Iakl + I fl'l + IY 1 L(J1) = E IakI + lil + 17, 1,

where ak crosses J, (i = 1, 2) and lies outside of the diamond for every k, and

Q(J2) I +E Ifl,117, 1!

Q(J1)=EIIkIlYll+EIfk1111+E1#11711

where /k and y, cross J; (i = 1, 2), and lie outside of A for every k and 1. Then

F(J2)-F(J1)=1/i'I+I)'l-(If!+IYI)

+ K[EIfkl(1Y l -171) + EIY(I(IP'I - IfI) -1#1171].

Since we are considering S2 interacting with S1, we may apply Lemma
20.12(i), in view of our previous choice of et.

Now suppose (ia) holds; then

F(J2) - F(J1) < 2CEIf I IYI + KCeiII IYI F(J1) - KI#I IYI
= CelfhIYl[2 + KF(J1) - 4]
< Celfl IyI[KF(0) - 2] 5 0,

if we take F(O) < 2/K. If (1(b)) (or analogously, (1(c)) holds, we have

F(J2) - F(J1) < -y + CE1711fI + n

+ K[E Ifkl(CcIf I I), I +n) - E Iy1I(C) - Ifl 1171]

5 -z + Cc IyI Ifll + q -
3K11111lvi+ K[CElyl I/'IE)/3kl + n L 1& 1 - 11#1 1Y1]

<5 -5 + n + YK(2CEF(0) - 1)IYI IfI + K;lEIPkI

+ 9'i(1Q1 Po) + Kg', (I a1 Po) E I#kI]

< wt(1 al. Po)[KF(J1) - 1
g,10111, Po)1

J

5 Co] 5 0

if KF(0) 5 Co. D

We can now prove the main theorem of this section.

Theorem 20.14. Let the initial data (uo. po) have bounded total variation, and
suppose 0 < p 5 p(x) 5 p < for all x e R. There exists a constant C.
depending only on p and p such that if

- 1) T.V.{uo. po} < C. (20.39)

then the problem (20.30), (20.31) has a global solution.
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The proof of this follows exactly the procedure in Chapter 19 once Lemma
20.13 is known to be true.

Note that if y = 1, (20.39) affords no restriction on the total variation of
the data, save that it be bounded. We can say that when y is near 1, the
"isothermal" gas case, one can allow "big" data, and conversely, as y
increases, one must take correspondingly smaller data.

Finally, in view of Theorem 20.8, and Example 2 in §B, we see that our
solution satisfies the entropy inequalities (17.22) across shock waves.

§D. Instability of Rarefaction Shocks

In this short section we shall show that for the p-system,

v,-u., = 0, p'<0, p">0, (20.40)

shocks which do not satisfy the shock conditions (17.7) and (17.8) are unstable
relative to smoothing of the data. That is, for such a shock, a so-called rare-
faction shock, if we smooth the data, and solve the corresponding problems
with the smooth data then the limiting solution is not the original shock.

Recall from Chapter 17, §A, that there are two families of rarefaction
shocks corresponding to the two characteristics i., = - - p'(v) <

-1r
p j

= A2; we call these S, and S'2 shocks, respectively. Moreover, these shocks
satisfy the equations

S', : u - ut = /(_V - v!)(p(vt) - p(v)), v < v,,

S'2: u - fit = v'(v - vt1(p(vt) - p(v)), v > V4.

We depict these two curves in Figure 20.9. Furthermore, from Chapter 17.

Figure 20.9
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§A, we know that if

r = u + J` - p (x) dx and s = u - f V v -p'(x) dx

415

are a pair of Riemann invariants for (20.40). then the S, and S, curves lie
between the curves r = r(v,, ut) and s = s(vi, u,), at least for points near (u,, u,).
However, the curves s = s(v,, u,) and r = r( v,, u,) are really the rarefaction-
wave curves

u = wt(v; v1. u,) = u, +
J ` .,J-p(x)dx and

u = w2(v; v,, u1) = u, - ' -AX) dx.

respectively. But from the Schwarz inequality,

J

r
- p'(x) dx 5 (v vvt)(p(vt) - p(v),

so that the S1 and Si curves always lie between the curves r = r(v1. III) and
S = S(v,, U,).

Now suppose

I

(v -, U j x < at,
(r,U)(x,t) =

(V+ U+), x > at.

is a rarefaction shock-wave solution of (20.40). Then we must have

r_ < r+ and s_ < s+,

where the notation is clear. Now let us smooth the initial data

(20.41)

r_, x < 0, s_, x < 0,
r(x. 0) = ro(x) = j s(x, 0) - so(x) =

r x > 0, s., x > 0.

This gives a sequence of smooth data functions r° = ro * aw,,, s° = so * w,,,
where o) is the usual averaging kernel of radius 1 In, and * denotes convolution
product (cf. the appendix in Chapter 7). It is easy to check that both r° and
s° are nondecreasing functions, for each n. Using (20.13), we see that the
corresponding solutions (re, are globally defined smooth solutions for
each n, and furthermore. for any T > 0, if 0 5 t S T, these functions are
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uniformly bounded, (by (20.6) and (20.7)), and their x-derivatives are also
uniformly bounded (again by (20.13)). Thus the sequence is compact, and
any limit (r, s) is continuous on each line t = const. > 0. Thus, no limit can
be equal to our original rarefaction shock. We have thus proved the following
theorem.

Theorem 20.15. Any rarefaction shock-wave solution of (20.40) is unstable
relative to smoothing of the initial data.

§E. Oleinik's Uniqueness Theorem

We have not said very much about the uniqueness of solutions of conserva-
tion laws except for the case of a single equation (Theorem 16.11). The reason
for this is simple- --there is just not too much known about the problem. We
present here a uniqueness theorem for the p-system. The proof uses the same
idea as in the scalar case; namely, it consists of showing that the "adjoint"
system has many solutions (Holmgren's method). Of course. here the esti-
mates are more difficult to obtain since we do not have an "entropy"
condition, and we must work merely with the shock inequalities (17.7) and
(17.8).

Theorem 20.16. Consider the p-system (20.40), where p e C2, p' < 0, p" > 0,
p(v) - oo as v 0, and p'(v) - 0 as v - oo. Suppose that the initial data
(v(x, 0), u(x, 0)) _ (uo(x), v0(x)) is piecewise continuous. Then in the strip
0 < t < T, there is a unique solution in the class of piecewise continuous func-
tions, all of whose discontinuities are shock waves, having a finite number of
centered rarefaction waves and shock waves in each compact subset of t z 0.

We remind the reader that by "shock wave" we mean a discontinuity
satisfying both the jump conditions (17.9) and the shock conditions (17.7),
(17.8). The latter are equivalent to the two inequalities:

u(x + 0, t) < u(x - 0, t) and v(x, t + 0) < v(x, t - 0). (20.42)

Of course, the two inequalities in (20.42) are also equivalent to each other.
This follows, for example, from considering Figures 17.1 and 17.2.

We shall first prove a preliminary uniqueness theorem. To this end, let D
be a compact region in t >- 0 which is bounded by a segment of the line t = 0.
Let

(v(x. 0), u(x, 0)) = (vo(x), uo(x)), x e R, (20.43)

and suppose that (v(x, t), u(x, t)) is a solution of (20.40), (20.43) which satisfies
for x1 > x2,

u(xc, t) - u(x2, 1) < k(x! - x2), (20.44)
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where k is a constant. Note that (20.44) implies (20.42). Also observe that
(20.44) cannot hold if (v, u) contains a centered rarefaction wave. For, if
(xp, tp) is the center of the rarefaction wave, then

x, - xp x2 - xp
u -u

it - to t2 t0 - 00
X1 - x2

as xt -+ x2 since in the wave u is constant along the rays (x - xp)J(t - tp)
= const.

Theorem 20.17. Let (vt, u,) and (v2, u2) be a pair of bounded and measurable
solutions of (20.40) with bounded and measurable initial data (20.43). 1 f both
solutions do not contain any centered rarefaction waves; i.e.. both satisfy
(20.44), then the solutions are equal (a.e.) in the subregion D, C- D. Here D, is
the region hounded by the lines t = 0. r = r, x = At + a, and x = At + b.
where

A = max P(x, t). P(x. t) =
p(vt(,x, t)) - p(v2(x. r))

D v,(x. () - v2(x, t)

and a and b are constants.

(20.45)

Proof of Theorem 20.17. If w" = w"(x, t) is the usual regularizing kernel
depending only on the distance PPp and h, we let (v;, u;) and (v2, 02) denote
the regularizations of (vt, u,), and (v2, u2), respectivcly. These functions will
be defined in D, with t z a if h is sufficiently small. Let D,,j = D, n (i > a).

Now we know that for any solution of our problem, if 0, ,' are in Co(D),
both of the following equations hold:

b

IS vO, -
uIPx+ fpvolp = 0,

D

A

if ur¢, + p(v)4., +
up40

= 0. (20.46)

D

If we let 0 = w" in the first equation, we get

[,u'' au"
0.=

at ex
(20.47)

But (20.44) gives au'/ax < K, and au"210,x < K21 where Kt and K2 are
constants independent of h and a. Thus from (20.47) we conclude that

a~
< K j, i = 1.2. (20.48)

at
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Now consider the equations

- c'z = f1, at
+Phi = Pith, (20.49)

where f, and f2 are smooth functions which vanish in some neighborhood of
OD,, and

P(ii)-P(ii)= rtPh(t, x) =
h

J p'(t t + S("'2 - v;)) ds. (20.50)
tl -t12 0

The system (20.49) is hyperbolic, and its (distinct) characteristics satisfy the
equations

Ifs > 0 is a given small positive number, then for It sufficiently small.

max s+ - P,, S max , - P + E.
DT 1)

This implies that in D the system (20.49) has a solution 0, 0 (depending on h),
which vanishes in a neighborhood of that part of consisting of segments
of the lines t = r, x = a + At, x = b - At (see [Ga, p. 121 ft]; the proof is
analogous to what we have seen in the scalar case. Theorem 16.11).

Now differentiating equations (20.49) with respect to r gives

r?x
= lu and

Ph On 4" + ax 0r + 9tYt = .f2t
a

We multiply the first equation by ee'4, the second by

_ee`ir

where 0 > 0
will be chosen later, and integrate these equations over D,a. We find

fJ 12
(02e") - eer02 - ax(ee`c3t0j - 2 a [ee'(Ph)-tdJ, ]

+ 2eer(Ph)-t42 - eera`[(Ph)-']21 dx dr

= JJ[4tf1t - Wrf2r]eer dx dt.

D
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Applying the divergence theorem and using the fact that ¢r and 0, vanish on
3(D,.) gives

J1,
(Ph +

J
J - (Ph)10; ] dx di

D,.

- ii1e8c c r [(Ph) dx dt + ff [,P,.f2r - 4 r fi:]eer dx dt,

D- D-

where 1"Q = DTQ n t = a}. Since p" > 0, (20.48) and (20.50) show that

2 cat
(P") > <'.

(20.51)

(20.52)

where c is independent of h. Using the inequality 2afl < a2 + j32, we see that
the right side of (20.51) does not exceed

rr 1 1

eel
JJ

-CO; +0 +; dxd + JJ'e8[f, +f2,1 dxdt,

so that

Jr.2`8!( I - Pn I )+
JJ

0;LZ-ZJeei+2Pb i +c-2Jeer
Des

f 2 e*[f,, + f24

Now let 9 > 3 and 0 maxlPhI - 1 > max(3 - 2c, 2); then

2e°1(-Ph)"I >
02(-Ph)-' > 1, i(8 - 1)eei > (g - 1) > 1,

and

(20.53)

2(-OP; ' + 2c - 1) > 1.

Thus from (20.5) we get

ifJr. (0; + +,,) dx + (¢t + ,) dx dt < Mi.
(20.54)

D,.
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where P 1
is independent of h and a. Next, (20.54) together with (20.49) implies

that

J
(q + yti2) dx + f f (0x + 0') dx dt < M 2, (20.55)

where ,tif 2 is independent of h and x.
We extend the functions 0 and into the region 0 5 r :5 cc. by setting

(cb(x. t), r(x. t)) = (O(x. oc). y(x. a)). Now take a so small that both f, and f2
vanish fort < a. From (20.49), we get

JJ[fi(ui - u2) + Phf2(vl - v2)] dx dt

D,

= f
J

U4g - ')(u1 - u2) + ('fit + PhQX)(vl - VA dx dt.

(20.56)

and (20.46) implies that

JJ(Ph - P)O.(vl - v2) - JJ Pkcx(D1 - V2) - Ws(u1 - u2)
D D1D

= i/i)(ul - U2) + (Wr + Ph#x)(vt - v2),
D

since = 0 if t <- a. Thus from (20.56).

ff [ft(ul - U2) + Phf2(vl - V2)] = $j'(Ph - P)SS(vt - v2)
D, D

- f f PhO.(v1 - v2) - O:(ul - u2). (20.57)

Now v1. v2, rr1, u2 and P are uniformly bounded. Thus if we use the Schwarz
inequality, together with (20.55) and the convergence in the mean of P. to
P as h -+ 0, we see that the right-hand side of (20.57) tends to zero as h, a -+ 0.
Thus

fJ
.f1(u1 - u2) + Pf2(v1 - v2) = 01

D,

from which it follows that u1 = u2 and v1 = v2 a.e. in D. This completes the
proof.



§E. Oleinik's Uniqueness Theorem 421

We turn now to the proof of Theorem 20.16. We assume that for the class
of solutions (v. u) as stated in the hypothesis. we have (as in (20.42)),

v(x, t,) - v(x, t2) < K(t,, t2, x)(t1 - t2) (20.58)

for all (x, t,), (x, t2) in the strip 0 <- t 5 T, where T > 0 is any fixed positive
number. Here K is continuous and everywhere bounded in the strip, except
at a finite number of points, P1, P2, ...,P,,, the centers of rarefaction waves.

In a neighborhood of any Pk = Pk (xo, to), if t >- to, there are (at most) two
sectors of the form A, < A < A2, (A = (x - xo)f(t - to), sgn A, = sgn A2),
in which (v. u) can be represented as follows:

v(x, t) = 7(A2) + S(x, t).

u(x, t) = rr(A2) + a1(x, t) + C1,

u(x, t) _ -ts(%2) + 6 2(x, t) + C2,

if Al > 0,

if Al < 0. (20.59)

Here a-'(s) _ -p'(s), x' < 0, 6 > 0, S, S1, S2 are continuous and tend to
zero as (x, t) - (xo, to), and C1 and C. are constants.' In other words, the
solution (20.59) is a rarefaction wave in the sector Al < i. -< A2. If (x, t) is
outside of these sectors, the function K is continuous and bounded near each
Pk. Finally, for A > A,, if Al > 0 (and for A < A2 if At < 0), if (x, t) is near Pk
and t z to, we shall require that the following inequality holds:

'(j, t1) - v(x, t2) > H(t1 - t2), (20.60)

where H is some constant. This inequality is again a consequence of our
results in Chapter 17, §A; see, e.g., Figure 17.4.

With these preliminary things out of the way, we can proceed with the
proof.

First let us recall that in a small neighborhood of any point P = (xo, to},
either, (i) the solution is continuous at P. or (ii) the solution has at most one
rarefaction wave centered at P in each of the regions x < xo and x >- xo,
or (iii) the solution has at most one shock wave passing through P in each of
these regions. These facts follow easily from the shock conditions (17.7), and
the definition of rarefaction waves; namely, no two rarefaction waves of the
same family can have the same center.

s This is consistent with our results in Chapter 17. §A: namely. we showed there that along
a rarefaction wave, Ll - --p(t(2)). where 1. , (x - to). and

u(A) - ISO - P (s) ds

since v(1) is a function of V. The presence of the S's is due to the fact that we consider a small
neighborhood of the centers.
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Now suppose that (v,, u,) and (c2, u2) are two solutions of (20.40) satisfying
the conditions of Theorem 20.16. Let the centers of the rarefaction waves of
these solutions be on the lines t = tj, j 0 -< t3 < T. If there are no
tis on t = 0. then Theorem 20.17 shows that the two solutions are equal
(a.e.) in 0 5 t 5 t,. If t, = 0, then in view of Theorem 20.17, it suffices to
prove that the solutions are the same in a neighborhood of a center of a
rarefaction wave.

Thus, let P = (xo, 0) be the center of a rarefaction wave. We shall assume
that at P, for both solutions (since they both satisfy thesame initial conditions),
there emerges a back shock and a front rarefaction wave; the argument is
similar for the other cases. Let A, and i.2. respectively, denote the speed of the
"tail " and "head " of the rarefaction wave.

Let S be a small region bounded by t = 0 and containing Pin the interior
of that segment, and let the rest of the boundary be described by the equation
t = p(x), where jju (x)I is sufficiently small. Denote by di and u2 functions
defined in D which are regularizations of v, and u2 with the kernel uo(h, r),
outside of a strip of width 2h around the line (x - xo)/t = 2,. and equal to a
constant V inside this strip. We define v, - vo =- v2 and u2 = u = u2 in
t < 0. We choose the constant V such that V > maxn(v,, c2) and

- p'(V) < X11. (20.61)

From our assumptions on the boundedness and continuity of K(t t2, x) in
(20.58), we see that for (x - xo)/t = A < ;e, and (x, t) e a we have

air,<K'
and

av2<K,
at at 2

where K, and K2 do not depend on h. For A > i.,, (20.60) gives

at
> H, and aat2 > H2,

where H, and H2 and also independent of h.
Now consider the system

01 - Vl- = f(1 01 + P60. = Phf21

(20.62)

(20.63)

(20.64)

where f, and f2 arc arbitrary smooth functions equal to zero in a neighbor-
hood of OM and

P(0i) - P(62,,)
- V2

v, v2
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In analogy to what we have seen in the proof of the last theorem, we find that
(20.64) has solutions (4.,i) in a which vanish on the curve t = U(x). Since
K(t1, t2, x) in (20.58) is continuous in Q for t > u > 0 (r small), and con-
sequently bounded, it follows that for any ¢ and 4 in Q n (t z a), theestimates
(20.54) and (20.55) hold, for 2,, where M1 and M2 depend on O, but not
on h.

We shall now estimate the derivatives of 0 and in the region d <- A,
For this we shall proceed as in the proof of the last theorem. Thus, let
Sts = S2 n (t >_ a) n (A 5 2,); we have

9e°rle - (Ph)-tifr2] + h)- 10,2 ] dx
r e

f4

+ f eeiOO, dt + ee`[0r - (Pb)-1Y'i ] dx
(x-xo)ii-A,

'If r G
f1r - Grf2t]

at
[(Pk)- JAG2 (20.65)

Let us consider the last integral on the left. Since 01 = 9'2 = V and PA, = p'(V)
on (x.- xo) t = a 1, we obtain by (20.61)

eertb,,&, dt + I e*[0, - (Ph)-1jPi ] dxf(z-xO)lr= tr

,,t I r 1

z f eOtY', dt + eer[0,2 + X20, A, dt
(x-xo)!t-Aj 1

2

= J(x_xo)l,_A, eetrl+ dt>0.
\ Al

Therefore in 0a we can again derive estimates of the form (20.54) and (20.55),
where M1 and M2 arc independent of h and v. Also, from the estimate of the
type (20.55), it follows that 0 and 0 are uniformly bounded in h in the region
S2 n (A < 2k); this follows from a simple application of the Schwarz in-
equality and writing

4'(x. t) =
J

x cx(s, t) ds, 4'(R- t) = 0.
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We now estimate the functions 0.0 in IZ for (x - xo)/t >- 2.,. Let 0 =
S n (t z a) n (7. >- A,). If we multiply the first equation (20.64) by e"4, and
the second by - e°i/i, integrate over Q6, and add, we get

Cjt
(eef 02) - x

a
(e"00) - 2 t

(e6r(Ph)-1,/,2) _0eer02e

= JJ[fie81c - fzeei01
n.

(20.66)

If we choose 0 sufficiently large and observe that (20.63) implies
at < C. then since the functions 0 and y are uniformly bounded in h on
A = A, , we may apply the divergence theorem to (20.66) to conclude that ty
and 0 are bounded uniformly in a and h, in the space L2[0 = a) n S2°].
From (20.46) and (20.64), we find

11
rivisa

[f1(ul - u2) + Phf2(v1 - VA dxdt

= f f (Ph - P)4x(v1 - v2) dx dt
n1U s °

- f [u1(x, a) - u2(x, a)10(x, a) dx
t

[v1(x, a) - v2(x, a)

a -' 0, the last two integrals in (20.67) tend to zero since each v, and u, is
picccwisc continuous, (vi, u,)(x, 0) = (vo(x), uo(x)) for i = 1. 2, and 0 and 4
are uniformly bounded in L2, independent of h and a, on (t = a) n D. If h is
small, then since Ph tends to P in I.2 ash -. 0, and we have estimates of the
type (20.55) for fixed a, the first integral on the right in (20.67) tends to zero
as h -. 0. Consequently, first letting h > 0, and then a -+ 0, gives

if [f1(111 - u2) + PJ2(v1 - U2)] dx dt = 0,

so that in view of the arbitrariness of f and f2 we conclude that

(v1, u1) = (v2, u2) a.e. (20.68)
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in Q. Thus (20.68) is valid in r, < t 5 t2. In the same way, we can prove that
(20.68) holds in each strip t, 5 t 5 tj, 1.j = 2..... n - 1. This completes the
proof of the theorem. 0

We note that the previous analysis does not give a complete proof of
Theorem 20.16. This is because claims (20.62) and (20.63) are not conse-
quences of (20.58) and (20.60) unless additional structures arc assumed on the
solutions. The problem is that in, general, Kt and H1 (i = 1, 2) may depend on
h, if the wave fans in (u1, v,) and (u2, v2) overlap and the line (x - xo)Jt = i.1
lies in the overlap. A different proof, using a new entropy condition can be
found in: P. LeFloch, and Z.-P. Xin, Uniqueness Via the Adjoint Problem for
Systems of Conservation Laws (Comm. Pure Appl. Math., 46, 1993, 1499-
1533).

NoTPs

The results on Riemann invariants for systems of two equations is classical.
Their use for "nonexistence" proofs was first recognized by Lax [Lx 3]. Our
proof of Theorem 20.4 is taken from this paper; see also John [J2], and Liu
[Lu 8]. The notion of generalized entropy is due to Lax,[Lx 4] ; we Friedrichs
and Lax [FL], and also Godunov [Go], Dafermos [Df 1], and Hsiao [Hs],
for related results. Section B is taken from Lax [Lx 4]; see also DiPerna
[Dp 6]. Using results in Conley-Smoller [CS 2], one can extend Theorem 20.8
for two equations, to the case where the shocks are not necessarily weak;
this was noticed by Lax in [Lx 4]. The theorem in §C is taken from Nishida-
Smoller [NS 1], following the work of Nishida [N] concerning the case
y = 1. These results have been extended to the "piston" problem (i.e.,
system (20.30) in regions x, t > 0 with boundary data on x = 0), in [NS 2],
and to the full gas dynamics equations by Liu [Lu 6] and Temple [Te].
Theorem 20.15 is the only known stability (or rather, instability) result for the
full initial-value problem. The proof given here is a specialization of the one
given by Conway-Smollcr [CoS 2], for a more general class of systems. It
would be interesting to extend this result to n > 2 equations. Theorems
20.17 and 20.18 are due to Oleinik [O 2]. Some extensions have been given
by DiPerna [Dp 5], and by Liu [Lu 11).



Chapter 21

Quasi-Linear Parabolic Systems

We have studied second-order quasi-linear parabolic systems in Chapter 14,
where it was assumed that the equations admitted a bounded invariant
region. For the gas dynamics equations with all of the dissipative mechanisms
taken into account (viscosity and thermal conductivity), and for various
models of these, there may exist invariant regions, but they are usually un-
bounded. Thus we cannot conclude that the solution is a-priori bounded,
and global existence theorems become more difficult to prove. One way to
overcome this problem is to obtain "energy" inequalities in the unknown
function and its derivatives, in a manner somewhat analogous to what we
have done for linear hyperbolic equations in Chapter 4. In order to obtain
these estimates for nonlinear equations, certain additional restrictions must
be imposed : small data, special forms of the equations, restrictions on the
data at infinity, and so on.

We shall prove three typical theorems using the energy method. The last
theorem will include as a special case the equations of isentropic gas dynamics
with viscosity. Since the viscosity matrix is only semidefinite for these systems,
a-priori sup-norm bounds are not sufficient for a global existence theorem.
It is necessary to obtain additional estimates on certain Holder norms of the
function and its derivatives.

§A. Gradient Systems

We begin by illustrating the energy method for a fairly general class of
systems in "gradient " form, where the nonlinear function doesn't grow too
fast at infinity. Thus let 0 be smooth, 0: R" - R, and assume that 0 satisfies

M2

1 1 + max 0"(u)
IuI s M

Here 11 0"(u) 11 denotes any convenient matrix norm of the hessian 0", of 0.
We note that (21.1) implies that grows slower than Jul' at infinity. Now
consider the system

u, + (4'.)x = Buxx, xl < x < x2, t > 0, (21.2)
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where B is a positive definite constant matrix, and 0. denotes the gradient
of 0. We study the initial-boundary value problem for (21.2) with data

u(x, 0) = uo(x), u(x t) = u(x2, t) = 0, xl 5 x 5 x2, t z 0. (21.3)

We assume that uo is smooth and satisfies the compatibility conditions
uo(xt) = uo(x2) = 0. There is no loss of generality in assuming ¢(0) = 0.

Theorem 21.1. If 0, uo, and B satisfy the above conditions, then the problem
(21.2), (21.3) has a global solution. This solution tends to zero uniformly in
the interval x 1 <- x <- x2. as t - oo.

Proof. We take the inner product of (21.2) with u, and use the identities

> = c?x {<u. &> - 0(u)},<u, (0.0

and

I? 2

<u,u,> =2&Iul ,

to get

2 dt I u 12 + k R u,
4)(u)} = <u, BuXX>

We take T > 0 to be arbitrary, and let Rr be the rectangle {x1 5 x 5 x2,
0 5 t 5 T}. Integrating the last equation over RT gives successively

2

X

X'I u(x, T)I 2 dx - 2 f I uo(x) 12
x, J x i

I

<u, BuXX>,+ f (<u, . > - (u)}s dt = if
0

Rr

2 X= Iu(x, T)I2 dx - 2 f
X

uo(x)I2 dx = - f s <uX, BuX>,
s X,

Rr

in view of the boundary conditions in (21.3). Since <ui,BuX> > bluXI2 for

some b > 0, we have

X2 I X1

i f I u(x, T)I 2+ b 111 uxl 2 5 -f I uo(x)I 2 dx. (21.4)
2 X 2

Rr
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Next, we differentiate (21.2) with respect to x, and let v = uX; this gives
the equation

v1 + Bvxx

We take the inner product with v and integrate over RT to get

X'
1

x= 1

2 SItx,T)I2 2 f I v(x, O) 12 + f f <v, (TY)xx> = J$<v.Bv>.
X1 ,

RT Rr

and after integrating by parts,

2

f' I `.(x, T) 12
2f

X

I

LIx, °) 12

+ f f <v., BvX>
x x,

Rr

T

= f f <uxx, (OY)x> + <Bvx - (WY)x, v>IxX.

00
RT

The boundary term on the right can be rewritten as

X= X= _{{,,
01" uX> U,<BuXx - (WY)X, ux> Ix1

10,110,

Z f I uX(x, T) I 2 + b f f I uxx 1 2 S 2 f x I uo.x(x) 1 2 + if <vxx, (&)x>
X1 x1

RT Rr

xl

s 2f
Iuu.xl2

+ 2 f f Iux I2 + Zb f fx1
Rr RT

X=

<<-2f Iuo.xl2+2ff luxxl2
1

AT

+ 26ff II0"(u)I1 2Iu.I2,
RT

since

C(OY )X, uxx> SbIuXXI2 + 2b I(1¢Y)x12. (21.5)
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Therefore

429

X

2f = lux(x, T)I2 + JJ Iuxsl2 < 2

x2

uo.xl2 + JJ
"(u)2Iux1 2

x,
RT Rr

Let M = max{Iu(x, t)I :0 5 t S T}, and max,.,,m II ¢"(u)II. Thcn
from the last inequality and (21.4) we get

x2 1 X2

J
uz(x, t) 12 + b j

J
I uxx 1 2 S

x, 0 x,
+ 6I46"(M)I2 111U.1 2

1x2

ux.o
2

J
Rr

x 2

<
1.

' Iux.ol2 + 262 Iuo(=.
, x,

(21.6)

Now since u(t, x,) = 0, we have

x

x(u 12 = <u, u> =
J

<u, u> dx = 2
J

<ux, u> dx
GX xt

x2 u2)1/2,

< 2r
rx2

u
i12(

I.,``J (xI2
x,

again by the Schwarz inequality. Then using (21.4) and (21.6), we see that we
have an estimate of the form

Iu(x, ()I2 < CIO-(M)l + C1, (21.8)

where C and C, depend only on the L2-norms of uo and uo,x, and not on t.
From (21.8), it follows that

M2 < CIO"(M)I + C,, (21.9)

which, in view of (21.1) implies that M < Mo, with Mo independent of t.
Thus for any (x, t) in the strip {x, 5 x 5 x2, t >_ 0}, we have

Iu(x, t)I 5 Mo.

The existence of a global solution follows from this inequality; see Theorem
14.4, for a similar statement.
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We now consider the asymptotic behavior of our solution. We shall show

that 11 t) 11 . 0 as t - a;. For this, it suffices to show that

, x2

z(t) =
J

l ux(x, t) 2 dx 0 as t -- oo. (21.10)
x,

This follows at once from (21.7), since (21.4) implies that t) is uniformly

bounded in L2(x, 5 x S x2).
From (21.4), we see that

r xj00 X

Jm z(t) dt = 10 ` luxl2 S 2b Iu0(X)12 < Co. (21.11)
0 0 x1

since the estimate (21.4) was valid for any T > 0. Also, since u, = 0 on the
boundary, we have after integrating by parts and using (21.2) together with

(21.5),

r3

=2<ux, uxt> dX 2<ux+ ur>ls_' 2

fXX

<Ilxx, u,> dX

x= x7

= I - 2 f (uxx, Buxx> dx + 2 <uxx,
s, xI

5 +2b f" Iuxxl2 + 2 I = l<uxx, (&y)x>I dX. (b = IBS),
x, s,

X1 x2

< +2b
J

x' Iuxxl2 + b f Iuxxl2 +
J

Il#"(u)l121uxI2
x x, b x,

Therefore, from (21.6)

fIz'(t)Idt < 1 I0"(Mo)12 J1uX12 + Co
0 o

SC<oo. (21.12)

Thus z has finite total variation so it has a finite limit at t = oo. In view of
(21.11), this limit is zero, and thus (21.10) is proved. This completes the proof
of the theorem. 0

We remark that we could also assume that u satisfies the somewhat more
general boundary conditions u(x,, t) = u(x2, t) = c, since we can replace u
by u' = u - c, and observe that this transformation doesn't change the form of
(21.2). It is also interesting to notice that if B = eB1 where e > 0 and Bt is
positive definite, then MD is of the form M1/e, where M1 is independent of t
and e. Thus one cannot use this technique in a"vanishing viscosity" approach
to prove an existence theorem for the system u, + (&)x = 0.
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§B. Artificial Viscosity

We next consider the p-system with "artificial" viscosity terms; namely

v, - ux = wxxI U, + p(v)x = tuxx, e > 0. (21.13)

Here, x1 <x <x2, 1>0, and as usual we assume p' <0 and p" >0 in
V>0.

We consider (21.13) together with initial- and boundary-value conditions

(v(x, 0), u(x, 0)) = (vo(x), uo(x)), x, < x < x2, (v, u)(x;, t) = (h, 0),

tz0, i= 1, 2. (21.14)

where vo(x) z b' > 0, and h is a constant, h z b'. We assume that uo and uo
are bounded and satisfy

Jxa {t4 + uo + (uo)2 + (vo)2) dx < ac. (21.15)
xt

Theorem 21.2. Under the above assumptions, the initial-boundary-value prob-
lem for (21.13) has a global solution defined in t > 0.

We shall obtain a-priori bounds for u and v from which as above, the
global existence theorem will follow ([CCS]). To this end, we recall, from
Example 5 in Chapter 14, §B, that we have the important a-priori estimate

v(x, t) > S > 0, (x, t) E R x R + ,

for some S S b'. (Furthermore, in the case where p(v) = kv-', y > 1, we
recall from the same example that we also have a bound I u(x, t) I S M in
R x R. , so that in this case it is only necessary to bound v from above.)

Let T > 0 be arbitrary, and let 0 5 t S T. If we multiply the first equation
in (21.13) by u, the second by [p(h) - p(v)], and add we get

utx r' (p(h) - p(s)) ds] + 5-(up(v)) = e(uuxx - p(v)v..) + p(h)v,.
t7t

[U2
2 + fh

If we integrate over R,. _ (0 < t 5 T, x, S x S x2), we find

x [u' + Ju (p(h) - p(s)) dsILT dJT up(v) x- dt
P, 10 xi

1 x [u0 + J(p(h) - p(s)) dsJ dx + e J J Al(xx + (p(h) - p(v))vxx-
xt 2 RT
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From the boundary conditions u = 0 on x = x, and x = x2, the second term
on the left vanishes. Also. we can integrate the last term by parts to get

U2 c(x.r)r- + . (p(h) - p(s)) ds dx
fx,x2L2

.IA, ILT
(21.16)- E if p'(c)ez + E if IIx _ k'

RT RT

where k depends only on the initial data.
Next we differentiate (21.13) with respect to x, then multiply the first

equation by vx, the second by u, add the results and integrate over RT. We
obtain

1
xf 2 22J (Ux + t:x) r=7. + UxPxx - I'xltxx

Y
RT

= k, + r. if Uxllxxx + VXVXxx-

RT

where k, depends only on the data. Then integrating by parts gives

if Uxpxx -
RT

and similarly,

2
Uxx Px - EUxx,

Rr

Rr

r
If- EUa xxx - 6'xUxx = - if I'x2x -V" It,.
RT Rr

Thus from (21.17),

x2

if2 J
(ux + ux)I,-Tdx + E

J
J uxx + zxx = k, + 11 IlxxPx - vxxu

Rr RT

2- k, + l l 2 uxx + 2E + Lxx + [ I

RT

(21.17)

r.t.

cu, llxxx =
J

(Ux px - lfx f.Uxx) I X, -
J

Uxx px - Etlxx
0

Rr

T
x2 2

IIx(- Ur) I x, - uxx Px - auxx
0
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so that

433

r X2

J
(uX + vX) I _ r dx + E i uxX + r 5 2k1 + £

J
J px + uX. (21.18)

x,
Rr RT

Now since p' < 0, p" > 0, pX = p'(v)2t!x 5 p (b)2vX, and thus we have

r JJ px + ux 5 P Ed) 11
- p(v)& X+

s
f uX

Rr RT

<_ - - +
E E E

by (21.16). Hence (21.18) implies

(21.19)

k
(uX + vX) I = r dx + E if ux, + vvx < 2k 1 + E2 (1 - p (b)). (21.20)

x i .!
Rr

where k, and depend only on the data.
We define an auxiliary function f by

f (v) = [ (p(h) - p(s)) ds1 u2 dy.
h h

Note that f(h) = 0; thus

=I LJ
f(v)I fxx,

Px
dx

s

f'(v)vx dx
x,

xl t;2 x 1;2

s I f'(t:)2 dx Iv2` x xi

(px: c

= 1 J f [p(h) - p(v)] ds dx
x A

so that in view of (21.16) and (21.20), we have

x

11;2
I.((v)I 2k3 + (1 - p'(6));-2)

RT

1;2/x2
1((`\ u//11s

(21.21)

where k3 depends only on the data.
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Let A = {(x, t) e RT : v > 3h); then on A
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I .f (v) I =

it". [ J3

(P(h) - P(s))
ds]112 dy

h J

> (p(h) - p(s))
dslldy

c [J 3

12

J2h 2h

>
[J

r
(p(h) -

P(2h))ds]1,2

dy
12h 2h

= v'p(h p( h2) (y - 2h) 1/2 dy
2h

= 3N P(h) - p(2h)(v - 2h)312

zc,c3'2.

where c, depends only on h. Thus from (21.21), if v > 3h,

/// k 172

C1V312 S K
p-I12(2k, + (1 - p'(8))

This implies an estimate of the form v 5 Mo, where MO is independent of T.
Thus since T was arbitrary, we have the bounds

65v+(x,t)SM0, xeR, t>0. (21.22)

We now estimate u. Using (21.16) and (21.20), we have

x
= _u2 u 2 dx = 2 uux

aX x,

Jx= lit/ xl
5 2 u2 dxl l

)I!2

/ \ xt;2
5 2(2k')1 `2(2k1 + (1 - P'(6)))

This yields the required a-priori bound on u. which, in conjunction with
(21.22), completes the proof.
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§C. Isentropic Gas Dynamics

The equations we study here have the form

v, - ux = 0, u, + p(v)x = (k(v)ux)x, x e R, t > 0, (21.23)

where p' < 0, p" > 0, and k(v) > 0, in v > 0. This system describes isentropic
gas motion with viscosity, when we take p(v) = clv"', and k(v) = c2v- `,
where c1, c2 > 0 are constants, and y > 1. We assume that (21.23) satisfies
the initial conditions

(v(x, 0), u(x, 0)) = (vo(x), uo(x)), x E R. (21.24)

Here vo and uo are smooth, and satisfy both

vo(x) >- S > 0 for x e R, and

lim (vo(x), uo(x)) = (h, 0), (21.25)
IxI -.m

where b > 0 and h > 0 are constants. (We can consider the boundary condi-
tion uo - c as I x I - cc, but since the transformation u -+ u - c, v -+ v leaves
(21.23) invariant, we may as well assume c = 0.) We also assume that the
following integral converges:

in
[u0 + (uo)2 + (vo)2 + P(vo, 6)] dx < oo, (21.26)

where P(v, 6) is defined by

P(v, 6) =
J

(p(b) - p(s)) ds >- 0.

In the sequel, we shall let Co and ao denote constants depending only on
the data, while C0(T) and xo(T) denote constants depending on T and the
data.

The existence of a solution to problem (21.23), (21.24) can be proved by
the following method. Let T > 0 be arbitrary and let Rr = {(x, t): x e R,
0 5 t S T}. We define Holder norms in RT by

l f lo = sup l f(x, t) I,

I f(x, t) - f(X , 01fl2=If 0+
Ixsup Ix'-xIa+It,_tl,,=.

.fl.Ix'.t')F1r

fII+a - If 0 + Ifxla,

I
i2*a

= IfIT
+ Ifxal + Ifla'
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where 0 < a < 1. Suppose that in some R, 0 < r < T, there exists a solu-
tion such that v> v, = const. > 0, and lull,.. + lu1i+, + IvIi+a < 00.
Such a solution exists for sufficiently small r (see [Na]). In order to prove
that there is a solution in the large, it suffices to obtain a-priori estimates of
the form

lull,.. + lul?+a + lvli+a < C0(T), 0 < a < ao(T) < 1, (21.27)

and

v >- h, > 0, h, = const. (21.28)

Indeed, if we take (v(x, t), u(x, t)) as data on t = r, we can extend the solution
to the strip Rt+,, where a depends only on C0(T) and h,, see [Na]. In this
way we can extend the solution to RT, and in view of the arbitrariness of T,
the solution exists in the entire upper-half planet > 0. The required estimates
(21.27), (21.28) will be obtained via the "energy" method. All arguments will
be carried out in the strip R.

We multiply the second equation in (21.23) by u, the first by p(S) - p(v),
add the results, and integrate over the rectangle R = {lxl S X, 0 S t 5 t,},
t, < r, where X is an arbitrary positive number. This gives

If T (Zu
+ P(v, S)) + kus = if ax [u(ku + P(v, M],

R R

so that

J
(u2 + P(v, 6))dx + if kux =

11XI

(1u
o

+ P(vo, S))0 dx
xIxI<x s10,

+ u(ku + p(S) - p(v) l x x dt.

(21.29)

In this equation, the right-hand side is bounded independently of X, and the
integrands on the left-hand side are nonnegative. Thus

(2u2 + P(v, S)) dx + k(v)u' < co,
fR 10 -oo

for every t, 0 < t < t. Since t) e L2(R), and (u2)x is bounded, it follows
that u(x, t) -+ 0 as l x l -+ co for every such t. (To see this, suppose that for
some such t ands > 0. u2(x,, t) i? 2e > 0, for a sequence x, - co. Then for
each i, there is an interval 1, about x, where u2(Ii, t) >- c > 0. Since u2 E L,(R),
diam.1, - 0 as i - co. and this violates the boundedness of (u2)x.)
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Now since u, is bounded in R5, u(x, t) -+ 0 uniformly in t as I xI Co.

(Take {t,,} countable and dense in [0, r], and if I u, 5 M, choose t such that
M t - t < z/2, then choose K such that I u(x, t,) < c/2 if lx > K. Then
if 0 < t s r, I u(x, t) s I u(x, t) - u(x, I + I u(x, tn) < e if l x I > K.) It
follows that we can pass to the limit as X -+ oo in (21.29) to get

= $ m (luo + P(vo, S)) dx. (21.30)
J

(u2 + P(v, S))I r=, dx +
J J

U2 2

rt o

We shall now obtain an energy estimate for ux. First we define

cK(v) =
J

k(s) ds,
a

and then rewrite the second equation in (21.23) as

u,-Kx1+P(u)vx=0.

Multiply this by Kx and integrate over the rectangle I x 5 X, 0 5 t :9 tt 5 r.
After integrating by parts and using the first equation in (21.23), we get

11XISx JO2 k2vx I `-`' J p
(v)kvkr. u +

1

(Kur) X x dtf
Ixlsx Ixi X Jo

+
dI

0'
Jkux dx dt - (uK) I x x +) u'o K(vo) +

2
k2(vo)vo.x

:ISX Ixlsx Ixlsx
(21.31)

Now from (21.29) and the inequality

1IxIx
ukv< J k2t,,+

4 Ixlsx
U

2,

we obtain from (21.31),

I

4 IxISx

r.2
vx

Ir=t1 -

0

J,xlsxp'kv.2

<_ -u(x,tt)K(v(x,tt))1 Xx +
1

(Kur)Ixx +
J

uoK(vo)
o IxI sx

f
I

[uo + 2P(vo, S)]+ ZJ k2(vo)vo +
xlsx xISX

+
1,

[kuux + u(p(S) - p(v))] I Xx.
0
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In this inequality we let X -+ xo, and bearing in mind that u(x. t) - 0 as
xI -' oo, v z const. > 0, and

r, r,

r Ku,=uKIo -J asI xI -'oo,
0 0

we find that for 0 S tt S T < T,

4 J k2vx I r=r, - f r, Lp''< Co. (21.32)
R 0

f (V) = f u k(s)(P(s, 6))1.2 ds. (21.33)

Using (21.30), we see that t), 6) is integrable on R, and since 5Pf dx
= (p(8) - p(v))vx is bounded, we may conclude as above, that P - 0 as
lx - x, ; i.e., v -- b as I x I - ao. Thus /(v) 0 as I x I oo, so we may write

rs x

f (V)
ff

= J _
TX

dx = Jvk(v)(P(v,o))1/2dx.

Therefore, using (21.30) and (21.32) together with the Schwarz inequality, we
see that

\1/2(in 1(2

6) dx) < CO. (21.34)1f(V)1 < (r k2vx dx f P(v,
R /

I
a

k(v)(P(v, 5))112 dv = 00, (21.35)
0

and in addition

k(v)(P(v, 6))112 dv = oo. (21.36)

We shall not pause here to discuss these conditions; this will be done below.
If we compare (21.35) and (21.36) with (21.33), we see that from (21.34), it

follows that there are constants v and u, depending only on the data, such
that

0 < v S v(x, t) < tT < oo, (x, t)E R,. (21.37)
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These inequalities imply that there are constants k;, i = 1, 2, 3, depending
only on the data, such that

0 < k, < k(v) < k2, 0 < k3 < - p'(v)k(v). (21.38)

We shall now estimate ux. In order to do this, we shall first obtain an
"energy inequality" for the difference quotient Au/Ax, where we define
Au = u(x + Ax, t) - u(x, t).

From (21.23), we get

e (Au N x _ 0 A(kux)

8t Ax} + Ax 8x-(-AX-)-
We multiply this equation by Au/Ax, and integrate over the rectangle
R = {I x 1 S X, 0 S r 5 t, 5 T}. In so doing, we make use of the identity

A(ku.,) Au., Aux [icvx AuAk
ex

-
Ax

=
Ax

+ Ax, t))
Ax + Ax ux(x, t)

and inequalities of the form ab 5 sae/2 + b2/2E. This gives

2 Aux 2 1 (' Auo 2

2)Ix15X1°xl if Ax 2 ,x,sX
R

I

max Ip(V)12 f f
Ac12

+
2e

R

2

+ max I k'(v)E2 2f f f (tlv) u-
R

\ X:, iAu (A(kux) - Ap I

+ + Ax Ax Ax X

If we let Ax 0, we obtain

2 2+ (k, - E) f f u""
c uo'x + it max IP (t-) f f Ux2J uX

,X i5c5a
R R

+ max I k'(v) 1 2 V2 U2

£SVVsV,
R

zI

+
J

(ux(kux)x - px)I x x. (21.39)
0
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Since ux, uxx, and v,, are bounded in Rj, we see from (21.30), (21.32), (21.37),
and (21.38), that the right-hand side of (21.39) is bounded independently of
X. Thus the two integrals

r rr,

J
UX(x,t1)dx,

J J
UXx(x,t1)dxdt

R 0 R

both converge. The convergence of the first of these integrals together with
the fact that (u')., is bounded, implies that u., 0 as lx oo. Thus, passing
to the limit in (21.39) as X -+ cc, we find for 0 < E < k1,

2 Ux(x, t t) + (k 1 - E)
J

,' Uxx 2 (UO.x)2 + max I p'(u)I 2 I Lx
0 R R 0 R

1rr,

+
1

- max k'(v) 2
J J

u2v2. (21.40)

We see from (21.38) and (21.32), that the second term on the right in (21.40)
is bounded by a constant depending only on the data. We consider now the
third term.

Since ux -- 0 as x - - oc, we can write

f
x

U
x I!2 (f 1i2

UX = J _ A (u2) dx = 2 1 ux uxx 2(1' Uz'\ 1 JR uzx 1V X f \

< uX+e
J

112" f.>0.
! R

Therefore

X F2
10' IR(U2 ,x

I12)( Jq
L'zJ df + L2 dt

,

r

R

<- CO+&CO
f0J

Uix.

by (21.29), (21.32), and (21.38). Thus from (21.40),

(21.41)

2 J uX(X. t 1) + (k t - )
JE I j

11Xx S E3 CO + SCp 1 UXx
R 0 R 0 R
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Accordingly, if t: is sufficiently small,

441

ju(x.ti)dx +
JR

uxx dx dt < Co, 0 5 tt 5 t. (21.42)
R 0

rxm l;2 ;t42

= 2 juux 2 uZJ
)12

- R R

and thus from (21.29) and (21.42),

I u(x.1)15 CO. (21.43)

We now estimate Ivxl. For this we multiply the first equation in (21.23)
by k(v) to get K, = kux, where K is as above. Then

K(v) = K(v0) +
J

kux dt,
0

Kx = kux = k(v0)v0 + (kux)x dt,
0

so from the second equation in (21.23),

kv =k(v0)v' +u-u0+

Then using (21.37), (21.38), and (21.43), we see

rti
pvx. (21.44)J0

,
1 + v., dtivx 1 < C0

J0

and therefore by Gronwall's inequality,

i vx 1 5 C0(T). (21.45)

Now we can consider the second equation in (21.23) as linear equation for
u. In this regard, the coefficients are all bounded (because of (21.37), (21.38),
and (21.45)), so that we can use the Schauder-type estimates (cf. [Kv 1]), to
obtain an estimate of the form

(u i +a < Co(T), 0 < x < a0(T). (21.46)
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It still remains to estimate Ivxxl and lull.,. We begin with v,,.,. We take
difference quotients of both sides of (21.44) to get

L: _ Ak A(yo k(yo)) Auo Au
t)) Ax =

V

Ax + Ax Ax + Ax

r

Jvx(x,t)_dt.
+ p'(t,(x, t)) . dr + (21.47)f

Then using (21.37), (21.38), (21.45), and (21.46). we have

x 5 C0(T)I 1+
jo
t ex dr),

J

so that again using Gronwall's inequality, we get

Av

Ax
< C°(T).

It follows that vxx exists a.e. in R`, and

l vxx l < C°(T). (21.48)

We now estimate l u l T . ,. For this, we will work with the averaged function
v', where r denotes the radius of the averaging kernel. Let us first define v in
r <_ 0, by v(x, t) = v°(x) + u°x(x)t. Let it satisfy

=
a TOU,

O u'(x, 0) = uo(x). (21.49)
c'. t + c?x

P(d)
c?x (

From inequalities (21.37), (21.38), (21.45), and (21.48), we have estimates of
the form

_It, < v' < 20, kt < k(v') < 2k2 (21.50)

ltxl < Co(T). lvxxl < Co(T), (21.51)

for sufficiently small r. Now let's regard (21.49) as a linear equation for u'. It
follows from the maximum principle for this equation, [IKOJ, together with
(21.50) and (21.51) that

lu'l < Co(T). (21.52)
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Using (21.50)-(21.52) together with the Schauder-type estimates in [Kv 1],
we obtain as above

u'I1 < C0(T), 0 < a < xo(T). (21.53)

Now differentiate (21.49) with respect to x; this gives

2 2Vux
- k(u')

°t7 t!2
- 2k(e')vx

auz
= [k"(v')(vz)2 + k'(v')vr ]u' -

G t
ax ax ax ax2

We regard this as a linear equation for ux. Applying again the Schauder-type
estimates of [Kv 1], and using (21.50)-(21.52), we obtain

ull,. < C0(T), 0 < a < ao(T). (21.54)

Now set Au = if - u, and subtract the second equation in (21.33) from
(21.49) to get

aeu a'Au aeut - k(v)
%,x2

- k'(v)v
ax = f'(x, t). (21.55)

where

a2fl'
J.(x, t) = (k(v') - k(v))

az2
+ (k'(v')tf - P (v)vx - P (v.W.

We shall show that f,(x, t) -. 0 as r -, 0, uniformly in the strip R,. We have
already seen that v - S as I xI - oc. Since v, = u., is bounded, this conver-
gence is uniform with respect to t, 0 S t S z. Hence v' -' v as r -, 0, uniformly
in R,.

From (21.32) and (21.38), t) E L2(R) for 0 S t S T. From (vx)., being
bounded, it follows that v., -+ 0 as I X I - 00, 0 5 t 5 z, and since v,,, = is
also bounded, this convergence is uniform in t, 0 < t < T. Therefore v' - v
as r - 0, uniformly in R,. Also, (21.53) and (21.54) show that u and u'." are
uniformly bounded with respect to r. Thus since (v', vx) converges uniformly
to (v, v'X) in R., it follows that f, 0 as r 0, uniformly in R,.

Now consider (21.55) as a linear equation for Au. Since f, II L,.(R,) -> 0 as
r -I 0, and Au(x, 0) = 0, the maximum principle (see [IKO]), implies that
Au - 0 as u' u, uniformly in R.. This, together with (21.54) gives the
desired estimate; namely,

lull,, < C,(T), 0 < a < ao(T).

In particular, usx is bounded, so since v = ux,,, it follows from (21.37), (21.45),
and (21.48), that we can obtain our final estimate:

Ivll+a
< Co(T).
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We have therefore proved the following theorem.

Theorem 21.3. Consider the system (21.23) together with the data (21.24). We
assume that (21.25) and (21.26) hold, and in addition we require that (21.35) and
(21.36) hold. Then a global solution exists in t > 0.

We remark that if p(v) = c.,v- and k(v) = c2v-a, then (21.35) holds if
26 + x z 3, and (21.36) holds if S 5 .13. In particular, if S = 1, then all we
require is a z 1. Thus, the hypotheses (21.35), and (21.36) are valid for the
most important example; namely, isentropic gas dynamics.

Noms

The theorems in this chapter are all due to Kanel' [K 1, 2]; our proofs are
taken from these papers. Theorem 21.3 has been extended to the full gas
dynamics equations by Itaya [It], Kazhikhov and Shelukhin [KS],
Kawashima and Nishida [KN] and by Matsumura and Nishida [MN 1, 2] for
very general equations in 3-space variables. These authors require certain
..smallness" hypotheses on the data or very specific equations of state. In
the last four papers, the method is the same; namely to obtain a-priori
estimates via energy methods. Itaya uses a different method but for a parti-
cular equation of state; he does not require the data to be in L2. It would
be interesting to obtain a general existence theorem where the data is non-
zero at infinity. A step in this direction was taken by Nishida and Smollcr in
[NS 3].
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The Conley Index





Chapter 22

The Conley Index

In any theoretical investigation of a real physical system, one is always
forced to make simplifying assumptions concerning the true nature of the
system. Since such idealizations are inevitable, it is reasonable to inquire as
to how far one can go in this direction and still obtain satisfactory results. In
certain cases, for example the motion of the planets, the equations of celestial
mechanics provide a quite accurate model of the real physical system. In
other situations, such as ecological or chemical interactions, or the study of
large scale atmospheric phenomena, one either writes down certain reason-
able relations between the quantities involved and their rates of change, or
one tremendously reduces the number of actual equations involved. If such
"leaps of faith" are to be of any use, it is necessary to study "rough" equa-
tions in "rough" terms. This in a nutshell, is our aim in this chapter and the
next one. In other words, we want to fit these vague notions into a precise
mathematical framework.

We have come across such ideas earlier in Chapter 12, where we defined
the notion of the degree of a mapping. This integer is a topological invariant
which depends solely on the boundary values of the mapping. Furthermore,
the boundary values themselves need not be given precisely. Thus, if the
mapping is deformed to another one in such a way that throughout the
deformation the image of the boundary is nonzero, then the degrees of the
two mappings are the same. It follows that the degree is perfectly well defined,
even though the mapping is only "roughly" known. Our approach in this
chapter will be of a similar nature. That is, we shall obtain other algebraic-
topological invariants which have similar "stability" properties with respect
to changes in the equations.

A salient feature of these techniques is that they do not require difficult
computations and they are, therefore, of an intrinsically qualitative nature.
On the other hand, in order to show that these techniques are applicable to
a given situation, it is often necessary to bring to bear upon the problem
something of a quantitative nature. For example, one might have to prove
an a-priori estimate, or compute the homotopy type of some space, and so
on.

We shall develop here a powerful topological tool, the Conley index,
which is a generalization of the Morse index in somewhat the same spirit
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that the Leray-Schauder degree is a generalization of the Brouwer degree.
The Conley index, however, is different from other "indices" in that it has
two uses. Thus it can be used as in the case of most "index-theories," to
prove the existence of certain distinguished solutions, but secondly, since it is
a "Morse-type" index, it is an invariant which carries stability information.
Furthermore, it is a true extension of the Morse index in that they both agree
when the latter is defined; i.e., for nondcgcncrate rest points. But note that
even in applications to gradient flows, it is desirable to have an index for sets
other than nondegenerate critical points. This is easy to see from the point of
view of bifurcation theory, since at the "time" of bifurcation, the critical
point becomes degenerate, and thereafter may continue to a set which does
not consist of only critical points; the Morse index doesn't apply but the
Conely index of all of these sets is perfectly well defined.

We shall begin with a purely descriptive section, in which we describe the
basic notions, by giving a fairly careful analysis of an easily understood
example. We use it to illustrate the important theorems, and then we present
two examples which show how the index is used. In §B, and §C we give a
complete development of the theory for flows defined by differential equa-
tions, except that we omit a proof of the continuation theorem; this will be
done in greater generality in the next chapter.

§A. An Impressionistic Overview

The purpose of this section is to convey to the reader the general ideas of the
Conley index theory, and to indicate some ways in which it can be applied.
As the title indicates, we shall be rather descriptive; the rigorous justifications
will be given in the succeeding sections.

We consider the ordinary differential equation

x' =f(x), xER", t (22.1)

Here f is assumed to be a locally Lipschitz-continuous function. We shall use
the notation x - t to denote that point in R" which lies on the orbit (solution
curve) starting at the point x, which runs for t units of "time"; thus x - 0 = x
and x - (s + t) = (x s) t for all s, t e R. A (complete) solution curve is a set
of the form x - R = Ix t : t e R}. A set I e R" is called an invariant set if ! is
the union of solution curves; evidently I is invariant if and only if I R = 1.
The objects of study in this chapter arc the special class of invariant sets
which we term isolated invariant sets according to the following definition.

Definition 22.1. A invariant set S is an isolated invariant set if S is the maximal
invariant set in some bounded open neighborhood of itself. A compact
such neighborhood N is called an isolating neighborhood.
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Thus S c int N = N, and S is the maximal invariant set in cl(N).
For example, consider the origin in Figure 22.1(a) and (b). The hyperbolic

point in Figure 22.1(a) is an isolated invariant set, and an isolating neighbor-
hood is indicated. On the other hand, the origin in Figure 22.1(b) is an isolated
rest point, but it is not an isolated invariant set since every neighborhood of
the origin contains an invariant set different from 0; namely, a periodic orbit.

(a)

Figure 22.1

(b)

Note that disjoint unions of isolated invariant sets are themselves isolated
invariant sets since the union of the isolating neighborhoods will serve as an
isolating neighborhood for the union of the sets. This is not true in general,
however. In Figure 22.2, the flow on the disk has three rest points and all
other solutions run downward as indicated. Both orbits connecting the
middle rest point to another rest point are isolated invariant sets, but their
union obviously is not.

The interest in isolated invariant sets comes from the fact that they are
stable objects in the sense that they can be continued to nearby equations.
Here the notion of continuation is defined in terms of isolating neighborhoods.
Thus if N is an open set having compact closure, N is an isolating neighbor-
hood for the isolated invariant set S if and only if S c int(N), and S is the
maximal invariant set in cl(N). This latter property clearly holds provided

Figure 22.2
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that no point on ON is on a solution curve contained completely in cl(N);
otherwise S would not be the maximal invariant set in cl(N). Now this condi-
tion is stable in the sense that if f is perturbed slightly to 1, then orbits off
which pass through ON also cannot be contained in N ; hence N is an isolating
neighborhood ofd. We have thus shown:

If N is an isolating neighborhood of some equation, it is one
for all "nearby" equations.

The corresponding isolated invariant sets so determined are called the
continuations of S. Specifically, if N is an isolating neighborhood for a
"connected " set of equations, the corresponding isolated invariant sets are
said to he related by continuation. We can extend this relation to non-nearby
equations by making the relation transitive.

Let us pause here to illustrate these ideas by means of a simple but quite
instructive example. Thus consider the scalar equation on R given by

x'=x(1 -x2)-A=-f(x,A), xeR,

where A is to be thought of as a parameter. In Figure 22.3. we have sketched
the curvef (x, A) = 0, and in addition we have marked off some points together
with certain intervals containing them. Observe that the curve f = 0 meets
each horizontal line in the set of critical points of the equation with the
corresponding value of A ; for each fixed ). = A,,, the horizontal line ). = A0
is the "phase space" of the equation x' = f(x, ).o).

At each of the three A-levels, the intervals which are marked off are easily
seen to be isolating neighborhoods ; namely, neither boundary point lies on
a solution curve which stays in the interval. The rest points are all examples
of isolated invariant sets. But more generally, any interval each of whose
endpoints is a rest point, is also an isolated invariant set: a slightly larger
interval will serve as an isolating neighborhood. So for example, the closed

A=A2
A=A,

A = o

x(l -x2)=A

Figure 22.3
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interval dO is an isolated invariant set for the 2 = 0 equations. Since disjoint
unions of isolated invariant sets are again isolated sets, we can easily find all
of them. Thus for the A = 22 equations, there is only one (nonvoid') isolated
invariant set ; namely, the point a. Similarly, for the A = A, equations there
are four isolated invariant sets: b, c, the set (b, c}, and the interval [b, c].
Finally, the A = 0 equation has twelve isolated invariant sets : d, 0, e, [d, 0],
[0, e], [d, e], {d, a}, {0, a}, (d, 0), {d, 0, a}, {[d, 0], a}, and {d, [0, e]}.

If we choose N to be the interval marked off on i. = 22, we sec that the
left-hand rest points in each phase portrait are related by continuation;
namely, "translate N down." If we choose N to be the interval depicted on
d = 0, we see that a is related by continuation to the full set of bounded orbits
in the other two phase portraits; it follows that d is related by continuation
to the set of bounded orbits for the A = 0 equations. The same statement is
true for the rest point e. But not all isolated invariant sets are in this class;
for example, 0 is not, since no choice of N will continue 0 to a or e. We shall
soon see another, perhaps better, reason for this.

As we have mentioned several times before, the Conley index is a generali-
zation of the classical Morse index (Chapter 12, §C). It takes the form of the
homotopy type of a pointed topological space. For our purposes here, it
suffices to think of a pointed space simply as a pair (X, x), where X is a topo-
logical space, and x e X; x is often called the "distinguished" point. The
pointed spaces (X, x) and (Y, y) are said to be homotopically equivalent,
written (X, x) - (Y, y), if there is a homotopy (roughly speaking, a con-
tinuous deformation), from X into Y which takes x into y; homotopy type
is defined similarly; see the appendix to Chapter 12.

The Conley index is computed from special isolating neighborhoods
which are called isolating blocks, and they have the property that the solution
through each boundary point (immediately) leaves the neighborhood in one
or the other time direction. (Notice that for flows in R, all isolating neighbor-
hoods are isolating blocks.) If B is an isolating block, the subset of O B con-
sisting of points which leave B in positive time (the exit set), is denoted by V.
Denoting by S the maximal invariant set in B, the Conley index of S, h(S), is
defined to be the homotopy equivalence class of the quotient space B/b+ ;
i.e., h(S) = [B/b+]. Of course, we may view B/b+ as the pointed space (B, b+).

Let us return to the last example and compute the indices of some of the
isolated invariant sets. Consider first the rest point 0. Taking for B any proper
subinterval [a, fi] of the interval [d, e] (see Figure 22.4(a)), we find that b+ is
the complete boundary, {a, R}. If we identify these two endpoints, we see
that B/b+ has the homotopy type of a (pointed) circle which we denote as
V; i.e., h(0) = E'. Now consider the rest point a. Taking for B the interval
indicated in Figure 22.4(b), we see that b+ is void. Now when the empty set
of a space is collapsed to a point, the resulting space is homcomorphic to
the disjoint union of the space and a point (Figure 22.5(a)). We may deform

' The empty set 0 is always an isolated invariant set; 0 is its own isolating neighborhood.
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the interval to a point without changing the homotopy type; this gives (cf.
Figure 22.5(b)) a (pointed) two-point space. Therefore h(a) = E°, the pointed
zero-sphere. We shall show in Chapter 23, §C that the Conlcy index is in-
variant under continuation in the sense that if S and S' are isolated invariant
sets which are related by continuation, then h(S) = h(S). This will be called
the continuation theorem. Since the zero sphere is not homotopically equiv-
alent to the one-sphere (they have different cohomology groups; sec the
appendix to Chapter 12), we see that a cannot be continued to 0.

Next observe that all of the rest points in the A = 0 phase space (Figure
22.3), are nondegenerate critical points of the gradient system

2 a
x'=VF, F = 2 - 4

and so they all have classical Morse indices. These are (cf. Chapter 12, §C)
the number of positive eigenvalues of the linearization. The linearized
equations are

y = (1 - 3x2)y

and when x = 0, 1 - 3x2 > 0, while at x = d or x = c, 1 - 3x2 < 0. Thus
the Morse indices of 0, d, and e are 1, 0, and 0, respectively. This agrees with
the dimensions of the pointed spheres which we obtained for the Conley
indices. We shall prove later that this is a general fact; namely, the Conley
index agrees with the Morse index whenever the latter is defined; see
Chapter 23, §D, 4.

Finally, let's consider the rest point c (Figure 22.3) for the i. = Al equa-
tions. It is clear that this point is a degenerate rest point of these equations
(I - 3x2 = 0 at c; see footnote 7); thus the Morse index is not even defined
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for this critical point. But c is an isolated invariant set so we may compute its
Conley index. Referring to Figure 22.4(c), we see that b' = a. Thus B,"b+ has
the homotopy type of a pointed interval. Since a simpler representative
can be obtained by collapsing the interval to a point, we see that 1:(c) = a,
a (pointed) one-point space. Now consider the interval about c as depicted
in Figure 22.3. If we raise this interval (i.e., increase )), we see that c continues
to the empty set. As we have noted earlier, the empty set is an isolated in-
variant set and it can be taken to be its own isolating block. The exit set is
thus empty and the space obtained by collapsing the exit set to a point is
therefore the one-point (pointed) space, O. This agrees with our above
calculation since we have continued the degenerate rest point c to the empty
set.

Let us dwell a little longer on the 1. = A, flow, the middle portrait in
Figure 22.3. If we increase ). above i.,, then the isolated invariant set c con-
tinues to the empty set 0. Now suppose that we start with ). slightly larger
than ),, and decrease ) to a,. Here we see that 0 continues to the isolated
invariant set c; i.e., we may alternately say that c bifurcates out of the empty
set. For A slightly below A we see that c itself bifurcates into two non-
degenerate rest points which continue to 0 and e. These rest points therefore
have indices E' and V. But we have not taken into consideration still
another isolated invariant set; namely, as A. decreases from i.,, the critical
point c actually continues to the isolated invariant set consisting of the two
nondegenerate critical points, together with the entire interval between them.
This isolated invariant set, on the other hand, continues to the interval [0, e.].
It follows then that h([0, e]) = 0. Similarly. h([d, 0]) = 0. Note that these
latter two isolated invariant sets both consist of two rest points together with
the orbit connecting them. We shall see later that these simple remarks are
actually illustrations of a very general theorem (Theorem 22.33).

We have noted above that the disjoint union of isolated invariant sets
again forms isolated invariant sets. It is therefore reasonable to expect that
there should exist relations between these various indices. This is indeed the
case, as we shall now demonstrate. Consider first the case of the disjoint
union of two isolated invariant sets, St and S2. Using the fact that one can
always construct an isolating block for a given isolated invariant set (Theo-
rem 22.18), we may assume that each Si is contained in an isolating block B
with B, n B2 = 0. Then B, u B2 will be a block for S, u S2. To calculate
h(S1 v S2), we collapse the exit set of each block individually, and then col-
lapse the resulting two distinguished points to a single point. The first col-
lapse gives the disjoint union of B, /b; with B2/b2 . The second, upon iden-
tifying b; with b2 gives a space which we denote by B, /b; v B2/b2+. This is
called the wedge or sum of the two pointed spaces, and is the pointed space
which results from "glueing" the two pointed spaces together at their distin-
guished points; see Figure 22.6. Thus

h(St u S2) = h(S,) v h(S2). (22.2)
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X x-~(X, x) 1t

(Y, Y) Y

Figure 22.6

X

(X, x) v (Y, Y)

(x, Y)

Y

This operation is always well defined on pointed spaces (sec [Sp]); the
topology on (X, x) v (Y, y) is the obvious one: a neighborhood of (x, y) is
the union of a neighborhood of x in X with a neighborhood of y in Y. To
illustrate this by a specific example, consider the set in Figure 22.7, consisting
of two rest points. We can take as a block, the disjoint union of the depicted
blocks for each of the rest points. Since B,/b; = E', and B2/b2 = 1:°, the
index of {p,, p2} is h((p,, p2)) = E' v E", the sum of a pointed one-sphere
and a (pointed) zero sphere.

B, B2

P, P2

Figure 22.7

Note that the "zero" element is just 0, i.e., (X, x) v 0 = (X, x), as follows
easily from the definition; this corresponds to the relation S u 0 = S, where
S is any isolated invariant set. However, there arc no inverses under the
wedge operation. In fact the index is nonnegative in the sense that if the sum
(i.e., wedge) of two indices is 0, then each factor is equal to 0 (Lemma 22.27).

Indices (and more generally, pointed spaces) can also be "multiplied"; the
(smash) product (X, x) A (Y, y) of two pointed spaces is defined by

(X, x) A (Y, Y) = X X Yl(X x y) v (x x X),

i.e., the space obtained from the topological product upon collapsing to a
point the set of pairs, either of whose entries is a distinguished point. The
product of isolated invariant sets is isolated, and the index is the product of
the indices of its factors (see [Sp]). To see how one might use this, consider
the equations dx/dt = VF(x), dyfdt = VG(y), xeR", yeR", and assume that
the origin is a nondegenerate critical point for both F and G. Thus each
equation admits the origin as an isolated invariant set, with isolating blocks
( I x I < c), and { y < E}, respectively, for some E > 0. For the "x-equations,"
the origin has index E1, the pointed k-sphere, and for the "v-equations" it
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has index E', the pointed 1-sphere, where k and l are the Morse indices of 0
for the x and y equations, respectively. The product of these two isolated
invariant sets is the origin in R°""; the product of the two blocks is the pro-
duct block in R"'+", and the index h(0, 0) = Ek A E' = r" (see [Sp]). If,
for example, we modify the equations by considering system

(it = VF(x) + J '(x, y), ty = VG(y) + g(x, y),

where f (0, 0) = g(0, 0) = 0, and both f and g are (say) C2-small near (0, 0),
then the same calculations apply, and h(0,0) = Ek''. Note that the pointed
zero sphere is the multiplicative identity, not just on pointed spheres, but in
general; it is sometimes denoted by 1.

We can use these ideas to demonstrate the correspondence between the
classical Morse index and the Conley index for nondegenerate rest points.
This in fact can be done somewhat more generally, as we shall now show.
Thus let dx/dt = f (x) be an equation on R" which admits x0 as a rest point,
and let the linearized equations about x0 be given by Our
assumption is that the matrix A has no eigenvalues with zero real part; i.e.,
x0 is a hyperbolic rest point. Note that this is always true for gradient systems
if 0 is not an eigenvalue of the linearization.

Assertion. The rest point x0 is an isolated invariant set of the equation dx/dt
= f (x), and h(x°) = Ek, the pointed k-sphere, where k is the number of eigen-
values of A having positive real parts.

To see this, first note that the origin 4 = 0 is the only bounded solution
of the linearized equations and is thus an isolated invariant set (it is the
maximal invariant set in any ball of positive radius centered at the origin).
Since the linearized equations provide a good approximation to the non-
linear ones in a sufficiently small ball about x0, the rest point x = x0 is also
an isolated invariant set, having the same index as 4 = 0. In order to compute
the index, we observe that A can be deformed to a diagonal matrix having
diagonal entries ±1, in such a way that throughout the deformation, no
eigenvalue has zero real part. Thus the number of positive entries in the
diagonal matrix is the number of eigenvalues of A having positive real part.
The rest point of the diagonal matrix is a continuation of that of A since the
unit ball can be taken as the isolating neighborhood throughout the defor-
mation. The final equation is completely dc-coupled; namely, it is a product
of equations d yldt = f y on R. The origin, being an isolated invariant set
which is a product of those of the one-dimensional systems, has index which
is a product of the one-dimensional indices. If dy/dt = y, the index is E', while
if dy/dr = - y, it is E°. The product is therefore a pointed sphere Ek, where
k is the number of eigenvalues of A having positive real parts. This result
will be carried out in detail in Chapter 23, §D4.
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We shall close this section by giving two nice consequences of the con-
tinuation theorem, both of which are not easy to prove without these tech-
niques. The first is what might be termed a result in bifurcation theory and
takes the following form. Suppose we are given a one-parameter family of
differential equations in R"

dx

dt
=f(x,A), JAI 5 1.

and that the origin is a rest point for all A ; i.e., f (0, A) = 0, 1).1 S 1. Suppose
too that this rest point is an attractor if A < 0, and a repellor if A > 0. Thus
if A * 0, the origin is an isolated invariant set, and we have

E", A > 0,
h(0) =

oE, A<0.

This change of index reflects a change in structure of the solution set as A
crosses zero. In fact, if N is a compact neighborhood at zero for the A = 0
equation, N cannot be an isolating neighborhood of zero for the A = lei
equations for lei small enough. This would violate the continuation theorem.
Thus if N is any compact neighborhood of the origin in R", the A = e or
A = -e equations must contain a complete solution curve different from
x = 0 which stays in N. In the case n = 2 and the eigenvalues are complex, it
is not too hard to show that N must in fact, contain a periodic orbit; i.e., a
"Hopf bifurcation" occurs at A = 0. The corresponding (weaker) statement
for general n can also be considered as a "bifurcation" theorem.

We can also view these results somewhat differently. Namely, suppose
that N is any compact neighborhood of the origin in R" which is an isolating
neighborhood for the origin when A = ± I and 0 is an attractor (resp. repellor)
for the A = + I (rcsp. A = -1) equations. Then there must be some A,
I A I < 1 such that there is a solution of the equations with this A which stays
in N for all t e R and which passes through a boundary point of N ; in particu-
lar, it is not the rest point. (Otherwise N would define a continuation of the
origin to itself for A = f 1, and this would force the indices to be the same.)
Observe that the vast freedom of choice in N implies the existence of many
solutions which lie near the origin, but not necessarily for the same value of A.

Our next application is a bit more special but it again serves to illustrate
the power of the continuation theorem, together with the "addition " (sum)
theorem. Consider the system of equations in R",

dtt = y,+ 2, ... , n - 1; dt = Yi - 1. (22.3)

The problem is to show that there are nonconstant bounded solutions.
Observe that the system obviously has the two rest points (±l,0,...,0).
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In order to analyze these equations, we make the change of variables

".-1+ti_e Y

then ill <i<n

dzi_dz,dy,dt
dz - dY( dt dz

=
- Y.+te - t )i+I = z,+1.

and

dz" =
1)e = E2nt1'1 - I) = (e"y1)2 - r2" = Z; 2"

A

dz,

dT
1,...,n - 1;

LT = zi ctn

Consider now the related system

dT = -i+ t, i = 1, ... , n - 1,
dT =

zi.
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(22.4)

(22.5)

We claim that (0.....0) is the only bounded solution of (22.5). To see this,
note that the function z"(T) is nondecreasing on solutions so that on bounded
solutions it must have limits at T = f oo. If the limit were nonzero in either
case, the solution would be unbounded as we see from the equation dz"-1/dz
= z". Thus z"(T) must vanish identically on bounded solutions, so that the
equation dz" _ 1JdT = z"(z) implies that z" _ 1(z) is constant on bounded solu-
tions. Were this constant nonzero, the equation dz"_z/dr = z"-1(z) would
imply that z"-2 is unbounded. Working upward in this way, we see that all
the z;'s must be zero on any bounded solution. This proves our claim.

It follows from this that the origin is an isolated invariant set for (22.5).
Taking the unit ball N as an isolating neighborhood, we see that for small c
this set continues to an isolating neighborhood for the system

dzj
A = zj.1, 1 = 1,...,n - I:

dz
= z; + asn. (22.6)

This system has no bounded solutions since 0; hence the maximal
invariant set of (22.6) in N has index 0. The same is thus true for the isolated
invariant set of (22.5); i.e., h(0) = a. This set on the other hand, continues for
small a to an isolated invariant set of (22.4) in N, having index 0.



458 22. The Conley Index

For small s, N contains the two rest points (±e, 0, ... , 0) of (22.4). The
linearized equations arc

vi=w1+1, i= 1,...,n- w"=2w1,

and at the rest points the linearized matrix is

0 1 0 0

0 0 1 0

0 0 0 0

±2r 0 0 0

This matrix has eigcnvalues satisfying 7." = ±2e. This shows that not both
rest points have zero index. The sum formula (22.2) implies that there must be
a complete solution in the unit ball N which is different from the rest points.

In this section we have tried to give an overview of the main features of
the Conley index, together with an indication of how it can be applied. In
the next sections we shall develop these properties in detail.

§B. Isolated Invariant Sets and Isolating Blocks

Our purpose here is to describe some aspects of the index in greater detail,
and to give proofs of the important theorems relating the notions described in
the title.

Throughout this section, unless otherwise noted, X will be a compact
metric space; the reader can think of a bounded closed subset in R", or even
in R2.

Let f : X x R - X be continuous; denote f (x, t) by x t. We give a general
definition of when f is a flow.

Definition 22.2. If (a) x 0 = x, and (b) (x t) s = x (t + s), both hold for all
x r= X, and all t, s in R, then f is called a flow on X.

It follows easily from the definition that if f is a flow on X, then the function
f': X - X defined by x - x t is a homcomorphism of X onto itself for all
tER.

We put the compact-open (C-0) topology on the set of functions X x R - X ;
i.e., f" f if and only if f" converges to f uniformly on compact subsets of
X x R. We let F be the (closed) topological subspace consisting of the flows
on X endowed with the (relativized) (C-0) topology.
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It is easy to see that ifs > 0, and f is a flow, then f is completely determined
by the restriction

fr=fIX x
On the other hand, the topology on F corresponds precisely to the topology
of uniform convergence of the ft's; thus F is a complete metric space.

In this section (and in fact, in this entire chapter), we will be mainly
interested in those properties of flows which are shared by all "nearby"
flows, where in this case, " nearby" means with respect to the (C-O) topology.

We shall use the following notation: namely, if Y c X, and J S R, the
set f (Y, J) will be denoted by Y J. In these terms a subset Y c X is called
invariant (under f) if Y. R = Y, or equivalently, if Y- t S Y for all t E R. If'
Y is invariant under f then so is CI(Y) (closure) and Comp(Y) (complement);
the same statements are true for the union and intersection over any collec-
tion of invariant sets. If x e X, the orbit through x means the set x - R ; the
orbit is obviously an invariant set. It is easy to check that a set is invariant
if and only if it is a union of orbits.

We pause now to illustrate these notions. First, in these terms, if x - R = x,
then x is called a rest point off. If there is some t such that x t = x, and if x
is not a rest point, then x is called a periodic point, and t is called a period of
x. The set of periods of x is a closed subset of R, and if it contains t, it also
contains nt for all integers n. It follows that the set of periods ofx must be a
discrete set, and hence contains a minimum positive period called the
fundamental period. If x is periodic, then so are all points of x R, and more-
over they have the same fundamental period. Periodicity is therefore a
property of orbits. Note that if x is a periodic point or a rest point, then
x - R is compact, since it is a closed subset of a compact space.

If x e X, we define the following important sets:

a(x) = n cl[x (- oc, t)],
1-0

w(x) = n cl[x (t, x)].
i>0

x(x) and w(x) are called, respectively, the a- and wdimit sets of x. One thinks
of these as the "asymptotic limits" of the orbit through x. If x and y lie on
the same orbit, then they obviously have the same limit sets. Both a(x) and
(0(x) are closed invariant sets, and since we have assumed X to be compact,
these limit sets are compact, connected, and nonvoid (see, e.g., [NeS]).

We are now ready to state the main definitions in this section ; they concern
the objects which will be of primary interest to us.

a The reader having difficulty proving these statements and similar ones given below, should
consult [NeS). for example.
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Definition 22.3. (a) The closure of a bounded open subset N c X is called an
isolating neighborhood for f if for each x e ON, there is a t e R such
that x t t N.

(b) A (closed) invariant set I is called an isolated invariant set if it is the
maximal invariant set in some isolating neighborhood.

It is important to notice that I n ON = 0, and thus I is the maximal in-
variant set in some neighborhood of itself. Also, it is clear that the intersection
of isolating neighborhoods is again an isolating neighborhood.

If N e X is the closure of an open set we let

Q1(N) = { f e F: N is an isolating neighborhood for f }.

Since ON is compact and Comp(N) is open, it follows that 9l(N) is open in F.
This allows for a natural "continuation" of isolated invariant sets off to
nearby flows.

Thus let C(X) denote the collection of closed subsets of X (without
topology for the moment); here is the key space.

Definition 22.4. The set Y c F x C(X) is defined by

Y = {(f,1):1 is an isolated invariant set off }.

We want to put a topology on Y which is suitable for the continuation
results alluded to above. Thus, if N is the closure of an open set in X, we
define the map ax : 'fl(N) Y by

aN(f) = (f, 1),

where I is the maximal f-invariant set in N. The maps aN are "sections" of Y
in the sense that 7r c o : &(N) -+'(N) is the identity; here n is the projection
onto the first factor. We put the topology on Y which is generated by the
sets a,,,(U), where U c cW(N) is an open subset of F.3

Sets in the same component of Y are to be thought of as "continuations"
of each other, and are said to be related by continuation. We shall see later
that they share some of the same properties; notably that their "index" (as
yet undefined), is the same.

Theorem 22.5. The projection n : Y F is a local homeomorphism (i.e.,
(Y, F, n) is a "sheaf ")

D Thus the sets a (U) form a subbase for the topology in the sense that the family of all finite
intersections of these sets gives a basis for the topology. i.e., every open set is a union of these
basis elements.

` See. e.g., [Sp].
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Note that this theorem tells us how to recognize when two points aN(f )
(f, 1) and a.1(f') _ (f',1') in So are related by continuation. For example,

if f and f' lie in the same component C of -T(N), then since it-'(C) is a com-
ponent in .9', (f, 1), and (f',1') are related by continuation.

We shall need a few preliminary results before giving the proof.

Lemma 22.6. Suppose N, and N. are isolating neighborhoods jr of which
isolate the same invariant set 1, and N, N2. Then there is an open set V with
f e V c q!(N,) r !(N2) c F such that aN, I V = aN2I V.

Proof. Since I e int N2 is the maximal invariant set in N it follows that for
each x e Cl(N1\,N2), there is a t such that x t t N,. Such a statement obviously
holds for all f" in some open set V in the (C-O) topology on flows, since
el(N,',N2) is compact and Comp(N,) is open. This V meets the desired
requirements. 0

Corollary 22.7. Let N; be closures of open subsets of X and let U, a °P!(N,) he
open sets, i = 1.... , n. Then if (f, 1) e f, aN,(U,), there exists a closed set N
and an open set V c V(N) such that (f, 1) e aN(V) c n; a, ,(U,).

Proof. Let U = n, U and let N = f ; N,. Then U c ?!(N) since if f e U,
f e U; for all i so f e OU(N;) for all i. Thus if x c- iN, x e c?N, for some i so
x t # N; for some t so x - t # N. Furthermore (f, 1) e aN(U), since (f, I) being
in a,, (U,), implies f e U, and I is maximal in N, for each i. thus f e U and I
is maximal in N. In particular, the Ni, as well as N are all isolating neighbor-
hoods of ! for the flow f. Using the last lemma, we can find V c i'(N) such
that or.,, I V = aN, I V, i = 1, 2, ... , n, and the result follows. 0

Note that this corollary gives us some insight concerning the topology
on.V. Thus, if (f, 1) and (g, J) lie in n, a v (U,), (a typical basic open set), then
the corollary implies that (f,1) and (g, J) both lie in a set of the form av(V).
Thus f and g belong to'W(N) so that N is an isolating neighborhood for both
f and g. Thus, two points that are "close" in this topology means that their
flows arc "close" in F, and their maximal invariant sets are "close." in the
sense that they both lie in N.

Corollary 22.8. n: .9' -- F is an open map.

Proof. Let 0 be open in .50, and let f e n(0). Then by definition of the topology
on .9', 0 is the union of finite intersections of sets of the form av(U), where
U and U c &(N). Thus there exists an isolated invariant set I off
such that (f. 1) is in such a finite intersection. By Corollary 22.7, 0 contains
a set of the form av(V) which contains (f, 1). Thus n(0) must contain the open
set V containing f, and n(0) is open. El
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Proof of Theorem 22.5. We must show that given s e 5', there is a neighbor-
hood 0 of s such that n : 0 - n(O) is a homeomorphism. Since it is open, we
need only find 0 such that it: 0 n(0) is one-to-one and continuous. Thus
let s = (f, I) and let N be an isolating neighborhood of I (for f ). Choose V
to he an open set containing f with V c '(N). Let 0 = aN(V); then if si
= (f;, I.) is in aN(V) for i = 1.2, and ft = n(st) = n(s2) = f2, it follows that
11 = I2 since they are both maximal invariant sets in N. This shows it is
one-to-one on 0. On the other hand, if U is open in F and U c n(0), then
n'(U) n 0 = {(f,1) E aN(V): f E V} n 0 is open in 0 by definition of the
topology. Thus it is continuous on 0 and the theorem is proved.

We shall now turn to the notion of an isolating block. In preparation for
this, we need the following definition.

Definition 22.9. Let S c X. Given b > 0, we define ha : S x (- F, b) - X by
(x, t) - x - t. If for some S, ha is a homeomorphism with open range in X,
then S is called a local section.

This notion is illustrated in Figure 22.8(a). S is not a local section in Figure
22.8(b) near p, since no mapping ha is one-to-one near the point p. Note that
if S is a local section, then if x E S (- S, S), there is a unique t c- R, t < d,
such that x - t c- S.

orbits orbits

(a) (b)

Figure 22.8

Given S e X, let p,: X [0, ax] be defined by

p,(x) = sup{t >- 0: x - [0, t] n S = 0). (22.7)

Thus p,(x) measures "how long" it takes to get to S along the orbit through
x. Obviously p,(x) = 0 if x c- S, and conversely.

Lemma 22.10. Let S be a local section (with respect to 8). and let U e X be
such that for some b' > 0, U c X\(S - (0, b')). Then :

(a) p, is upper semicontinuous on U.1

' Recall what this means: if 4 E U. and :. > 0 is given. there is an Y > 0 such that if x c 3!
and Ix - 41 < x. then p,(x) z p,(y) - e..
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(h) t f x e (,` is a point of discontinuity of p,, then there is a t. 0 < t < po(x)
such that x t e r-S - cl(S)1,S.

(c) !f'x e U and p,(x) < ll then x p,(x)E S.

Proof. In order to prove the semicontinuity of ps, first note that p, I S (- b. 0]
is continuous. Namely, if tr is the projection of S x (- b. 0] onto (- c5.0],
then pJ S (-- 6, 01 = n - It

Since S (- c5.0] is relatively open in U. we have only to show semi-
continuity at points x where p,(x) >_ b. Furthermore. if p,(x) = + x, then x
is automatically a point of semicontinuity. We may thus assume that
S: p,(x)<x.

Now given F > 0 there is a t, 0 < t - p,(x) < F, with x - [0, t] n S + 0,
since t > p,(x). If x' is close to x, and x' c- U, then using the continuity of the
flow together with the fact that S is a section (so S (-F, c) contains a neigh-
borhood of S), we have that x'. [0. t J r S (-r:, c) :# 0. It follows that there
exist T. 0 < r < r and t t. (t t I < F such that x'- z = s - t, for some s c- S. Thus

if
Now choose F < 6/2: then since x'4 S - (0, S) (since X' E U). X'- (- b, 0) 0 S

so t' # (- b, 0). Furthermore, t' > 0 (if t' < - c5, then r - t, < - (5 so r < t,
- J < c - b < 0), and thus t' >- p,(x'). Then

t' - P3(x) = (r - p,(x)) - t t < t - p,(x) + F < 2F,

and p,(Y) < t' < p,(x) + 2F; this shows that p,I U is upper semicontinuous.
To prove (b), suppose that x e U is a discontinuity point of p,. Then there

exist xR E U, x x with p,(x) the upper semicontinuity).
Therefore x - p,(xn) -+ x t' a cl(S). But x (4 S since t' < p,(x).

Finally, that x p,(x) e S if p,(.x) < is obvious; this gives (c) and the
proof is complete.

We can now define an isolating block. Let B be the closure of an open
subset of X, and let S+ and S- be disjoint local sections related to B as
follows (see Figure 22.9):

(1) [cl(S`)1S'] n B = 0.
(ii) S - (- b, d) n B = (S r n B) [0, 6).

(iii) S (- b. S) n B = (S + n B) (- S, 0].
(iv) If x e c?B\,(S u S - ), then there exist r., < 0 and c2 > 0 such that

x- [F,, t:2] c OB and x- F1 E S-, x- 82 E S+.

Definition 22.11. If B satisfies the above requirements then B is called an
isolating block for the flow f.

Observe that both S' and S- meet B only in c' B, and that neither inter-
section is void unless B = X and S' = S- = 0.
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Figure 22.9

Note that according to our definitions the isolating neighborhood $ as
depicted in Figure 22.10(a) is not an isolating block. However, it is "almost "
one; namely, it can be modified near P and Q to give the block as depicted
in Figure 22.10(b). On the other hand, given any block B, we can construct a
set b as in Figure 22.10(a) by using the flow to identify the orbit segments

n B and b n B to points, without changing the maximal invariant set in B.
That is. both B and b have the same isolated invariant sets and in fact as we
shall show below, they have the same Conley index. Thus we could have
developed the theory using sets of the form B'; we have chosen our way
because it is technically a little easier.

Proposition 22.12. Isolating blocks are isolating neighborhoods.

Proof. If p e dB, then the orbit through p meets S' or S' (both if p4 S+ U S-).
and thus B is an isolating neighborhood. 0

If B is an isolating block, we define the following sets (cf. Figure 22.11):

h=aB,

h+=BnS*ch,

b- = BnS- c b,

z = cl[b\(b L., b- )],

A' _ {xe B: x R_ c B), (R _ R+

A- _ c B;,

I = A4 r A-,

A A'uA'-,

a+=A'nhch4,

a- A-nhc-h'.
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(a)

Figure 22.10

Concerning these sets, we have the following result.

Lemma 22.13. The sets b' , A', a, and I are closed, at c int b' (relative to
the topology on St ), and I c int B. I is an isolated invariant set, maximal in the
isolating neighborhood B.

Proof. Since B is closed, the sets bt are relatively closed in St ; since
B n [cl(S`)'\,S'I = 0, b' and b- are closed in X. If x4 A+, then there is a t
such that x. t B ; thus the same holds for r near x. Hence B'\A' is relatively
open in B, so .4' is relatively closed, and so A+ is closed in X. Similarly, A-
is closed and it follows that a' = A- n b are closed, as is I = A' n A -.

Now I is the union of those orbits of the flow contained in B ; thus I is the
maximal invariant set contained in B. Since no boundary point of B stays in
B for all time, we see I c int(B).

b-

b 4

Figure 22.11
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Finally, using (iii) in Definition 22.11 above, if x E i0b+ (relative to S+),
then x e T. Hcncc x 0 a' and a' c int(b+). Since a similar result is true for
a the proof is complete. 0

Before stating the next lemma, we recall the notion of a strong deformation
retract. Thus, we say A c X is a strong deformation retract (sdr) of X if there
is a continuous function r: X x [0, 1] - X such that r(x, t) = x for all
x e A, (r(x, 1) E A for all x, and r(x, 0) = x for all x. One thinks of X being
"squeezed" to A whereby points of A stay fixed at each stage of the
deformation.

We can now state the following important result.

Lemma 22.14. The sets b+ and b- are strong deformation retracts of the sets
B%A- and B\,A', respectively, and b+\a+ is homeomorphic to b-'sa-. In
particular, if p(x) p,. (x) (cf (22.7)), then the function r: (B\A) x [0, 1] -,
B\A -, defined by r(x, r) = x (t p(x)) provides the deformation retraction from
B`A- to b' and rl[(b '\,a-) x {1}] is the homeomorphism from b-!a- onto
b+1a+.

Note that since b+1a+ is homeomorphic to b-\a- under the flow, we see,
in particular, that the mapping from h-'tia- to 6+1,a+ defined by the flow is
continuous. If we identify b\(S+ u S-) to a point (by using the flow; cf.
Figure 22.10), then there cannot be any internal tangencies in the resulting
set. Thus, for example, if there was an internal tangency as depicted in Figure
22.12. then the mapping from b-\a' to b+\a+ would obviously not be con-
tinuous at P.

Figure 22.12

Proof of Lemma 22.14. Since B e X `%[S+ - (0, S]], Lemma 22.10 shows that
pI B is upper semicontinuous, and for any point x of discontinuity there is a
t', 0 < t' < p(x), such that x t' e cl(S')\S+. On the other hand, since
[cl(S+)\S+] n B = 0 (by (i) in Definition 22.11), the orbit segment from x to
x t would have to meet 8B. From (iii) and (iv) of Definition 22.11, the inter-
section would have to include a point of S' which would mean p(x) < t'. This
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contradiction shows that p I B is continuous. Also, p I B = ac exactly on the set
A- (from the definition of A-). Thus x e B\A implies x p(x) a S+, and r is

continuous.
IfxeB\A-,r(x. 1) = and since r(x, 1)eS'

n b = h. If x E b+ c S+, then p(x) = 0 so r(x, t) = x. Thus b' is an sdr of
B\A' . That b- is an sdr of B\A' follows by symmetry and a time reversal.
Finally, if x e b-\a_, then function x -, r(x, 1) is continuous and maps onto
b+ \a+. This holds since if x e b - `a r(x, 1) = x p(x) E b+. If x p(x) E a+
= A' n b, then x p(x) E A' so x p(x) . R _ e B so x-(-6,0) a B. But
x e b- = B n S ` ; this is a contradiction. Thus r(x, 1) E b+';a+.

To see that b-\,a- gets mapped onto b' \a' , let y e h' \,a+. We are to find
x E b - la - such that r(x, 1) = y: i.e., x p(x) = y. Since y 4 a' , there is a t < 0
such that y t 0 B. But y - [ -d, 0) c B since y E b+. Thus there is an x c- b-
such that x t, = y, for some ti > 0. By definition, t, < p(x), but t, < p(x)
implies x t 0 S. Thus t, = p(x) and the map is onto. Finally, if r(x, 1)
= r(y. 1), then x . p(x) = y p(y) so x = y. Hence b -%,a - gets mapped onto
b'',,a', injectivcly. Finally, the fact that the inverse map is continuous is
obtained again by symmetry and time reversal. This completes the proof. 0

The following corollary is immediate.

Corollary 22.15. If r: (B`A') x [0, 1] -' B,\A+ is an sdr of B\,A+ to b-, then
the map r: R\A+ -+ b- defined by r(x) = r(x, 1) is continuous.

We shall pause here to give an application. Consider a flow which is
defined in a neighborhood of a disk crossed with [0, 1] as depicted in Figure
22.13 below. That is, orbits go out on the sides, and come in on the top and
bottom. Let y c b' be as depicted. Here b- is not connected and since each
end of y lies in a different component of b-, the corollary implies that not all
of y gets carried back to b- in negative time. Thus there is a point on y which
stays in B for all r S 0; whence A+ # 0. It follows that there is a point in B
whose a-limit set lies in B, so 14 0.

Local sections are usually obtained as level surfaces of some function ; the
relevant definition and lemma follow.

Y=

Y=

Figure 22.13
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Definition 22.16. Let U c X be open, and let g: U - R. The flow f on X is
called gradient-like with respect tog in U if x [0, r] c U and x : x t imply
g(x t) > g(x).

Thus g is strictly increasing on nonconstant orbit segments in U ; in
particular, f can have no periodic orbits in U.

For example in R" consider the equation z = BVF(x), where B is a positive
definite matrix, and F is a smooth real-valued function. Then F = <VF, x>
= <VF, BVF> > 0 if VF 0. Thus the flow is gradient-like with respect to
F.

For another example, consider the equation in R', x = kx + f(x),
k = const. > 0. If x = y, y = ky + f (x), and F' = f, then the equations are
gradient-like with respect to H(x, y) = y2/2 - F(x), the "total energy." This
holds since fi = ky2.

Lemma 22.17. Let f be gradient-like with respect to g in an open set U e X,
and assume that for some constant c, the set S c {x:g(x) = c} is relatively
open and cl(S) c U. If S contains no rest points off, then S is a local section
for f.

Proof. Since cl(S) c U, there exists b > 0 such that cl(S) - [ - b, b] a U. Also
since f is gradient-like with respect to g in U, there is no orbit segment in U
which meets S in more than one point. Combining this with the fact that S
contains no rest points we see that the function ha : cl(S) x [ - 6, b] - cl(S)
x [ -b, 6] defined by x -+ x - t is one-to-one. Since it is also continuous, it

is a homeomorphism (both spaces are compact metric). Thus h.IS x (-6,6)
S (- b, b) is a homeomorphism.
It remains to show that S (- b, b) is open in X. Let x e S - (- b, b), and

let x t = y e S, where I t I < 6. Let J be an open interval containing both 0
and t, such that cl(J) c (- b, 6). Note that g I x J increases from below c to
above c.

Now let x" x ; we shall show that for large n, x" e S (-6,6), and this
will imply S - (- b, b) is open. We have x" J - x J and, in particular,
g(x" - J) -+ g(x J). It follows that for large n, x" - J meets the set {g(x) = c}
in a point, say y.. Now they"'s must converge to y (since x,, t" = y", g(y") = c
SO and thus t=Isoy=
x - I = x t = y). But since S is relatively open in {g(x) = c), the points y"
must eventually be in S. Hence the points x" a y" (- b, b) must eventually
be in S (-b, (5); thus S (-b, b) is open in X, and the proof is complete. 0

We can now state the first fundamental theorem about isolated invariant
sets.

Theorem 22.18. Every neighborhood of an isolated invariant set contains one
in the form of an isolating block.
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Proof. We may assume that the given neighborhood is an isolating neighbor-
hood N for the isolated invariant set 1. We define

A3 = c N}, I = A+ r) A-.

For any set Y, let O(x, Y) denote the component of x R n Y which
contains x. Let O'(x, Y) and 0-(x, Y) denote respectively, the positive and
negative half-orbits (from x) of O(x, Y); both halves are to contain x.

Observe that if x - x from within Y, then if Y is open, lim Ot(x,,, Y)
03(x, Y), and if Y is closed, urn 0:1 (x., Y) a Ot(x, Y).6
Now let p : N -+ R be continuous and nonnegativc, with p(x) = 0 if and

only if xel. Define 11:N

l'(x) = inf{p(Y ): x' c- O+(x, N)},

I - (x) = inf{p(x'): Y e O (x, N)}.

Observe that I' (resp.I-) is nondecreasing (resp. nonincreasing) as t in-
creases on orbit segments.

We define VV = {x E N : p(x) < c); then we have

Lemma 22.19. l' is lower semicontinuous. Furthermore, if x E VV is a point of
discontinuity of l', then there is an x' e ON such that 03(x', N) n VV # 0.

Proof. To see that I' is lower semicontinuous, note that the values of
are determined by those of p in a neighborhood of O'(x,,, N), while 1'(x)
is determined by p on 0 +(x, N). Since 0' (x, N) = N)], it follows
that l' (x) 5 lira 1+(x.), and thus 1' is lower semicontinuous.

Now suppose that I+ is discontinuous at x. Then there are x x with
lim 1'(x.) = l' (x) + S, for some b > 0. Let x' c- 0'(x, N) be such that

lirap(x') 5 min(c, l'(x) + 6f2); such an x' exists since p(x) < e. Then x' o
0'(x,,, N) lim 0'(x,,, int N) D 0+(x, int N), and x' e V, It follows that
the segment xx' meets ON and the proof is complete. 0

Define

T, = inf{ I t I : 3x e ON, and 3x' e V, such that x t = x');

then T oo as e - 0, since otherwise some orbit would run from ON to I
in finite time.

6 Recall that lim S. - {p: any neighborhood of p meets all but finitely many Se}. and
lim S. = (p: any neighborhood of p meets infinitely many S,).
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Lemma 22.20. There is an open- set V containing I in which 1* are continuous.

Proof. If not, there would be a discontinuity point x of 1 ` (say), in each neigh-
borhood V, = I. Let x e CN be such that O'(x,, N) and 0-(x, N) both meet
V, Then x, [ - T, Tj c N. Let x be a limit point of {x,.} ass -* 0. Then
x R c N since T - oo. But this contradicts the fact that N is an isolating
neighborhood. E]

Now define T(x) = max(1-(x), l+(x)) for x c- V. Then T is nonnegative and
continuous on V and T(x) = 0 if and only if x e I. Also O(x, V) is:

(a) = 0 if x e I,
(b) = l+ (hence nondecreasing) if x e A +,

(c) = 1- (hence nonincreasing) if x c- A-,
(d) = 1- on an initial segment, and = l+ on an (overlapping) final scg-

ment,ifxOA= A - uA+.
Choose c > 0 such that T> c in some neighborhood of 8V, and let

W = (x: T(x) < c}. Define 1: cl(V) -+ R by 11 W = Ti W, and I = c otherwise.
In view of (a)-.(d) above, Ot(x,cl(W)) = cl0i(x, W), and this enables us

to write the right-hand equality in the following definitions of the functions
k' and k- : cl(W) -* [0, oc]; namely

k' (x) _
JO_(X.C1(W1)

(c - l(x s)) ds = (c - l(x s)) ds,
lo-(x.W)

k-(x) (c - l(x s)) ds = (c - l(x s)) ds.
10. xQIW

101

(x.W)

Let k(x) = min(k+(x), k-(x)).

Lemma 22.21. k and k t are continuous on cl (W) and nonzero on W. k + (resp. k-)
is strictly increasing (resp. decreasing) as a function on the orbit segments in W.
k+(x) = oo if and only if x e A', while k - (x) = oo if and only if x e A
k(x) = oo if and only if x e 1, while k(x) = 0 if and only if x c- d W.

Proof. Let x. x ; using the facts that

0+(x, W) c lim W) c lim O'(x,,,cl(W)) c O+(x,cl(W)),

c - 1 > 0 in W, and l is continuous on W, we find

J(c - 1(x s) ds 5 lim
J

(c - l(x s)) ds
o (x.%') o (x.,.W

5 F IM- (c - 1(x s))ds <- J (c - l(x . s)) ds.
(x .c(W) o (x.cIW)
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Since the two ends are equal, k- must be continuous; similarly, k+ and thus
k are continuous. Also, k+ and k- can be differentiated along orbit segments ;
the firsthasdcrivativec - I > 0 while the second hasderivative -(c - 1) < 0.
k+I A. is infinite, since if xeA`, Similarly, k-I A_ is
infinite. Of course, x e 1 if and only if x e A ` n A - so k = min(k+, k -) is in-

finite on I. If x e 0W, then either 0 `(x, cl(W)) or 0 -(x, cl(W)) consists of just
one point, depending on whether 1+ > 1- or I- > 1+ at x. In the first case,
since 1' is nondecreasing on V, x must leave cl(W) before re-entering W in
the forward direction. A similar argument is valid for the backward direction
if 1- > 1'. In any case, either k-(x) = 0 or k+(x) = 0, so k(x) = 0. This
completes the proof of the lemma. 0

Finally, we can describe an isolating block. To this end, let e > 0 be given,
and define

1R = {x: k(x) ? c and sup kI O(x, W) -> 2r.}.

Lemma 22.22. Let B = cl(int P); then B is an isolating block.

Proof. Define

S- = {x: k(x) = k F(x) = e and k+(x) < k-(x)},

S` = (x: k(x) = k-(x) = c and k-(x) < k+(x)}.

By the last lemma, the flow is gradient-like with respect to k' and k in W.
Also, cl(S+) and cl(S-) are contained in W (k = s on the closure). Further-
more, the sets S- and S+ are relatively open in the sets { k+ = e} and {k - = r.'r,
respectively, since the sets {k+ < k-} and {k" < k+} are open. Thus S+
and S- are local sections. Since k+ = c on S- but not on S, we see that S+

and S- are disjoint.
Now if xecl(S-)`S-, then k`(x) = k - (x) = s, so k 5 son O(x, W) and

x $ so x 0 B since $ = B.
Choose S > 0 so that x e cl(S -) [ - b, b] implies k+(x) - < r12. If

x e S- (- S, 0), then k+(x) < c and x 11, so x 0 B. If x e S - [0, d), then
x e $ if and only if there is an x' e O(x, W) such that k(x') = 2s. But this is
equally true for the point in S- from which x' comes. Thus $ n {S -(0,6))
= (R n S-) [0, 6). This implies the same result for B (cf. the statement that S
is relatively open in {g(x) = c} implies that S S. (-6, 8) is open, in the proof
of Lemma 22.17). The proof of the last statement (iv). in Definition 22.11 is

left as an easy exercise. The proof of the lemma, and hence of Theorem 22.18

is considered complete. 0
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§C. The Homotopy Index

By an "index," we will mean a function which is constant on components of
:P, or in other words, a property of invariant sets which is invariant under
continuation.

The index is defined in terms of isolating blocks. To show that it really
is a function on .?, we shall show that it is independent of the block. In a
later section, we will show that the index is invariant under continuation.

For the state of completeness, and for the convenience of the reader, we
shall review some definitions and results from topology.

A topological pair is an ordered pair (X, A) of spaces such that A is a closed
subspace of X. If A = 0, (X, A) will sometimes be written X.

A map f : (X, A) - (Y, B) is a continuous function from X into Y which
takes A into B. lx will denote the idcntity map from (X, A) to (X, A) for any
A.

The pair (X, A) x (Y, B) is [X x Y, (X x B) v (A x Y)]. From now on,
J will denote the unit interval.

Let fo, f1 : (X, A) - (Y, B): fo - f, means that there exists a continuous
function F : (X, A) x J - (Y, B) such that F(x, 0) = fo(x), and F(x, 1) = f,(x).
We think of "continuously deforming".fo to f1 through the maps f,: x
F(x, t). It is easy to check that - is an equivalence relation.

Let (X, A) and (Y, B) be pairs; then (X, A) - (Y, B) means that there are
maps f : (X, A) (Y, B) and g: (Y, B) - (X, A) such that f g - 1,. and
g f - Ix. (it is instructive to compare this with the statement that if X and
Y are groups, and there exist homomorphisms f: X Y, and g: Y - X
such that g c, fandf u g are isomorphisms, then f and y are also isomorphisms.)

It is straightforward to check that this last relation also is an equivalence
relation. We call the equivalence classes homotopy equivalence classes, and
we say that all elements in a given such class arc homotopically equivalent.

Lemma 22.23. If A is a strong deformation retract of X, then A X. The
inclusion A e X gives a homotopy equivalence.

Proof. Let r: X x J - X he the deformation retraction and let i denote the
inclusion A c X. Define f: X -, A by f(x) = r(x, 1). Then f J i = 1r1 by
definition of r. Also (i ; f)(x) = r(x, 1). and r is the homotopy between g,, f
and lx. The second statement follows from this.

We recall the notion of a pointed space: cf.. Chapter 12, §D. Thus a
pointed space (X, x0) is a pair where xo is a point in X. Suppose (X, A) is a
pair: let -- be the equivalence relation on X defined by x - y if and only if
x = y or x and y both are in A. Let X1 denote the set of equivalence classes
[x] and let n : X - X1 -r be the projection x -+ [x]. A topology on XJ - is
obtained by defining U e X;' to he open if there is an open set V in X such
that V n A # O or V=) A, and n(V) = U.



W. The Homotopy Index 473

The pointed space X/A is defined to be the pair (XI [A]), provided
A 0. If A = 0, X/A means the pair (X a xo, xo), where xo is a point, and
X L. xo denotes disjoint union; i.e., xo X.

Lemma 22.24. Let f : (X, A) -> (Y, B), and define [f]: XIA -+ Y/B by [f ] ([x])
_ [1(x)]. Then [f ] is well defined and continuous.

Proof. Since f (A) c B, [f ] is well defined. Also if V is open in Y/B, then there
is an open set V e Y such that n(V) = V and either V m B or V n B = 0.
Let G = f '(V); then 0 is open in X and either 0 A or 0 n A = 0.
Thus tt(O) U is open in X/A, and U = [f]-'(V). El

Now suppose that Jo and f, are homotopie, i.e., fo - f, and both map
(X, A) into (Y, B). Let F: (X, A) x J (Y. B) be the homotopy. An argument
similar to the last one shows that the mapping [F]: (X;'A) x J -> YJB,
defined by ([x], t) [F(x, t)] is well defined and continuous. Thus [fo] -
[fl], and this proves the next lemma.

Lemma 22.25. If (X, A) - (Y, B), then X/A - Y/B.

From now on, X/A denotes the honwtopy class of X/A.

For two pointed spaces (X, xo) and (Y, yo), their "sum" or wedge is the
space (X, xo) v (Y, yo) = X s. Y/{xo, yo} = ((X, xo) u (Y, yo), (xo yo)), ob-
tained by "glueing" together the pointed spaces at their distinguished points,
see Figure 22.6. The next lemma shows that this operation is well defined on
homotopy equivalence classes.

Lemma 22.26. If (X, xo) - (X', xo), and (Y, yo) - (Y', yo), then (X. xo) v (Y,
Yo) - (X', xo) v (Y', A).

Proof. We have

(X .. Y, (x0, yo)) _ ((xo x Y) U (X x yo). (xo, Yo))

((x' x Y') U (X' x yo), (xo, yo)) = (X' IL Y" (Xo, Y4)),

and the result follows from Lemma 22.25. 0

We define the one-point pointed space 0 by 0 = xo/xo. Concerning this,
we have the next lemma.

Lemma 22.27. If XlA v Y/B = 0, then X IA = 0, and YJB = 0.

Proof. X f A 0 if and only if there are maps f, : O -> X/A, f2 : Xiii 0 with
both f, o f2 - id, and f2 o f, - id.
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Now if X/A v Y/B = 0, then there is a map F: (X/A v Y/B) x [0, 1] ->
X/A v Y/B with F(z,0) = z, F(z, 1) = [A] x [B] for all zE X/A v Y/B. If
j is the inclusion map X/A x [0, 1] c (X/A v Y/B) x [0, 1], and k is the
projection (X/A v Y/B) - X/A, then

k - F -j:X/A x

is easily seen to be a homotopy from the identity to the constant map, whence
X/A - 0; similarly Y/B - 0. 0

We are now ready to show that the Conley index is independent of the
particular isolating block containing it. In order to do this, we shall intro-
duce the notions of "shaves" and "squeezes."

Let B be an isolating block for the invariant set I and let Y c B. We
define

O(Y, B) = U O(y, B),
Y*Y

where we recall from the last section that O(y, B) is the component of
(y R) n B containing y. Suppose that U c b- is an open neighborhood of
a-, and let Y = b"\cl(U). Then the set B1 = B\O(Y, B), obtained by "shaving
of " Y is a block for I with bi c cl(U); see Figure 22.14(a). Note that

b-

a

1

(a)

Figure 22.14

(b)

B, u b- is a deformation retract of B (take a neighborhood U of B1, outside
of U, let the flow carry points up to b`, and on U\B1, make the map con-
tinuous-one must be careful near T1). Hence the inclusion (B1 u b-, b-)
c (B, b-) is a homotopy equivalence. Since the inclusion B,/b! c (B1 u b-)/
b- is a homeomorphism, it follows that the inclusion Bl/b1 c B/b- is a
homotopy equivalence; similarly, the inclusion B1/b; c B/b+ is a homotopy
equivalence. Thus we have shown that the block B1 obtained by "shaving"
B has the same "index" as the block B1; see Definition 22.30.
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Now let x e B\A; then there arc numbers ti > 0, t2 < 0 such that x i
e dB; let tx = ti - t2. If x e A let t,, _ + oo. We define T = inf{tX: x e B}

10(x, B) I. Then if T' < T, the set B2 = B\b - [0, T'), obtained by" squeez-
ing" B is a block, and b-, as well as b2 = b- T' are strong deformation
retracts of B - - b - [0, T] ; see Figure 22.14(b). It follows that the inclusions
(B2. b2 (B, B-) (B, b-) are homotopy cquivalences, and that (B2, b2 )

(B, h ) and B2 hZ B;`b-;similarly, B2;'b2 B;b Thus the block B2
obtained by "squeezing" B also has the same "index" as B. We call T as
defined above the amount of the squeeze.

Lemma 22.28. Let B be an isolating block, and let there be given neighborhoods
V of A and W of 1. Then there exist blocks B1 e V and B2 C W such that B1
is obtained by shaving B, and B2 is obtained by squeezing B1.

Proof. First note that there is a T > 0 such that A+ (- T) and A T are
contained in W' - W n V. since n {A- t: t > 0} = I = n {A' - t: t < 0}.
Choose a neighborhood U- c b- of a- such that V - U- [0, T) c V,
and a neighborhood U' c b+ of a+ with V `- _- U+ (- T, 0] c V. Let
V' = V* u W' u V-, and note that V' e V is a neighborhood of A.

Now observe that if x E B, and xp -+ a E A. then lim O(x,,, B) c A ; namely,
as x - a, I O(x,,, B) I - x,. and this implies that for x e Jim O(x,,, B), I O(x, B) I
= oo so x c- A. Thus we can choose U b- to be an open set about a so
small that if x e cl(U), O(x, B) c V' and I O(x, B) I > 2 T. Let Y = b - \cl U ;
then B1 - B\O(Y, B) c V' and B2 - B1\,bl [0, T) u b+ (- T, 0] a U, the
last inclusion being true since x e U - (or U+) forces x [ - T, 0] 9-4 B (or
x [0, T] 41- B). This completes the proof. 0

Here is the main theorem in this section.

Theorem 22.29. Let B1 and B2 be isolating blocks for 1. Then B1/b; - B2/b2,
and B1/b, B2Jb2.

Proof. We shall give the details only for the first statement ; the proof for the
second is similar. By a shave and a squeeze, we can assume that B2 = B1;
thus A2 = A1. Let V be a neighborhood of A2 such that different components
of A2 n B1 are contained in different components of V n B,. Let W be the
union of those components of V n Bt which meet A,, and let B3 e V be
obtained by shaving B2. and having the property that it can be squeezed to
B4 in W. Let T be the amount of the squeeze.

Now let x e b4, so x (- T) e b., and x is the unique point on O(x, B2)
O(x, B1) with this property. It follows that the orbit segments 0-(x, B,)

meet B4 only in x. These segments are precisely the paths traversed by x
under the deformation retract of B,'\,Ai to b1 ; in particular, B U 10 -(x,
B1): x e b4 } is homeomorphic to b4 x J; similarly B+ U {0"(x. B1):
x e b4 1 is a product.
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It follows then that B. = B4 u B+ u B- is a block and it is in fact ob-
tained from B, by shaving off the set Y = b; ',.(B5 n b; ); namely, if x E B5,
0(x, B5) = 0(x, B,) so B5 is obtained from B, by removing a collection of
orbit segments O(x', B,).

Since (B4, b4) c (B5, B-), and (B5, bs) c (B5, B-) are homotopy equi-
valences, we have (B4, b4) - (B5 , bs) and thus

B2,-'b2 BaJb4 - B5/b5 B,/b;,

as desired. 0

Definition 22.30. Let I be an isolated invariant set and let B be any isolating
block for l ; we define the Conley Index of ! by h(1) = [Brb+]; i.e., the homo-
topy equivalence class of the pointed space B/b+.

The last theorem shows that h(l) is well defined. Our next result is the
important "addition" property of the Conley index.

Theorem 22.31. If 11 and 12 are disjoint isolated invariant sets, then I = 11 u 12
is an isolated invariant set, and

h(1, 12) = h(1,) v h(12) (22.8)

Proof. A block B for 1, u 12 is obtained by taking the union of two disjoint
blocks B, and B2 for 1, and 12, respectively. Then B/b+ = B,Jb; v B2fb2,
and this is well defined in view of Lemma 22.26. 0

As an application of this theorem, we shall give a proof of a result stated
in Chapter 12, §C. Namely, suppose that (12.18) holds; then f cannot have
exactly two critical points both of which are relative minima. Namely, (12.18)
implies that the set S of bounded orbits of the gradient flow x = VF(x) is
compact and thus S is an isolated invariant set having index 1". the index of
a repellor. If the only critical points in S were the two relative minima, then
these would have to comprise the entire set S (any bounded orbit of a gradient
flow must tend to rest points both time directions). Then (22.8) would give
E" = E0 v 10, the desired contradiction.

Next, note that h(o) = 0; thus we have the following useful result.

Theorem 22.32. If N is an isolating neighborhood for the isolated invariant set
S, and if h(S) -* 0, then S # Q ; i.e., N contains a complete orbit.

Finally we end this section with a useful application of (22.8) ; the so-called
"connecting orbit" theorem. First, we recall that a flow is called gradient-
like with respect to a real-valued function F, if F increases on nonconstant
orbits of the flow (Definition 22.16).
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Theorem 22.33. Let x = f(x) be gradient-like in an isolating neighborhood N,
and let N contain precisely two rest points x1, x2, off, not both of which are
degenerate.' Let S(N) be the maximal invariant set in N. If h(S(N)) = 0, then
there is an orbit off connecting the two rest points.

Proof. It suffices to show that S(N) contains an orbit y different from xt and
x2; y would then tend to different rest points in both time directions, due to
the gradient-like nature of the flow. If S(N) = {xt, x2}, then (22.8) gives
0 = h(xt) v h(x2). But h(xt) v h(x2) # 0, by nondcgeneracy. This is a
contradiction, and the proof is complete. 0

Nom
The subject matter in §A is adapted from Conley's basic monograph

[Cy 2], with some modifications and expansions. The material in §B and §C
is taken from unpublished class notes of Conley; here too I have made minor
changes. The papers of Conley and Easton [CE], Churchill [Chr], and
Montgomery [Mt], contain the original proofs. Theorem 22.33 is found in
Conley and Smooler [CS 3].

' Recall that this means that zero is not an cigcnvalue of the lincarized matrix df at the critical
point.



Chapter 23

Index Pairs and the
Continuation Theorem

In this chapter we shall consider the Conley index from a more generalpoint
of view, one which allows us to apply the theory to a wide variety of equations
including in particular, systems of reaction-diffusion equations. For such
equations, it is not at all clear that the equations even define a flow. To get
around such problems, we introduce the concept of a local flow and develop
the theory in this setting. Roughly speaking, a local flow is a subset of the
underlying space which is locally invariant for positive time; one thinks of a
subspace of a function space, say L., which is invariant under the equations
for small t > 0.

The new idea in this chapter is the concept of an "index pair" (N1, NO),
in an isolating neighborhood N, which generalizes the notion of the isolating
block given in the last chapter. Thus, in particular, if B is an isolating block,
and h+ is the exit set in 5B, then (B, b) is an example of an index pair. If N
is a given isolating neighborhood and S is the maximal invariant set in N we
shall show three things:

(i) index pairs in N exist;
(ii) if (N1, NO) and (A 1,90) are index pairs in N then N1/N0 - 191/90

so that the Conley index h(S) = [N 1 /,ti 0] is well-defined as the
homotopy equivalence class of N IN.; and

(iii) h(S) is "invariant under continuation."

The first two properties are analogous to what we have proved in Chapter
22 for flows; namely, that isolating blocks exist, and that the Conley index
of S doesn't depend on the particular block which isolates it. The third
property was alluded to in the last chapter, but never proved; the proof will
be given in §C.

The development given here has been done with an eye towards the
applications in the next chapter. Thus we introduce the concept of a Morse
decomposition of an isolated invariant set, and construct our index pairs
at this level of generality. This gives us the results discussed above, but in
addition, it makes applicable powerful algebraic techniques. Thus, the Morse
decompositions allow us to construct in a fairly standard and straightforward
way, exact sequences of cohomology groups involving the index of S with the
indices of the elements of the Morse decompositions. One use ofsuch structures
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is to calculate indices, but there are more subtle applications as we shall show
in the next chapter.

The final section is devoted to a few miscellaneous remarks. Here we have
tried to both clarify some aspects of the theory, as well as to "set things up"
for Chapter 24.

§A. Morse Decompositions and Index Pairs

Let r be a metric space, and let F be a flow on r. As before, we denote
F(x, t) by x t. If N is a subset of r, we denote by l (N) the maximal invariant
set in N:

I(N) = {y e N: y- R c N}. (23.1)

Definition 23.1. Assume that I is a compact invariant set in r. A Morse
decomposition of I is a finite collection {M;: 1 S i < n}, of disjoint compact
invariant subsets of 1 which can be ordered (M1, M2...., in such a way
that if y r= I\ s { M; : 1 < i < n }, then there are indices i < j such that
we') c M, and x(y) c M. Such an ordering will be called admissible. The
elements M; of the Morse decomposition of I will be called Morse sets of I.

We pause to give some examples.

EXAMPLE 1. Consider the equations in R2:

x=Y, j'=9y-Ax -§ )(1 -x).

For various values of 0, the complete set of bounded orbits is depicted in
Figure 23.1 below. In all four cases, this set is an isolated invariant set.

(a) 0 = 0.

(b) 1>0>0.

(c) 0 = 0*.

(d) 0>1.

Figure 23.1
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In (a), the Morse decompositions are:

and

In (b), they are:

}, { , -,, .01. {0, 3. 11, {0. 1. 1), and { 1, 0, 3}.

In (c), they are :

In (d), they arc:

and

(0,1.I} and {1,0,3}.

For an admissible ordering of a Morse decomposition I we
define subsets M,j c I,.j >_ i, by

.M,) = {y E l: oo(y) and 1(y) are in M1' M;, I u ... u Mj}; (23.2)

in particular. MB = MP For example, in (b) above, for the Morse decomposi-
tion {0, 3, 1}:M12 = M23 = {}, 1), and M13 = I.

The following statement follows at once from the definition.

Lemma 23.2. Let (M 1,... , be an admissible ordering of a Morse decomposi-
tion of I; then (Mt,...,Mi_1, M1j, Mj, 1,..., is an admissible ordering
q1 'a Morse decomposition of!. Also, (M;, M,+ 1, ... , M. 1, M)) is an admissible
ordering of a Morse decomposition of M.

Our aim is to introduce algebraic invariants of the Morse sets of a Morse
decomposition of 1. and to relate them to algebraic invariants of I. These
invariants will depend on the flow near 1. In order that we can apply these
methods to partial differential equations, we introduce the notion of a local
flow.

Definition 23.3. Let X be a locally compact subset of r. X is called a localJlow
if for every y e X. there is an s > 0. and a neighborhood U c r of y such that
(X n U) [0, c) c X. If U and n can be chosen so that (X n U)(-F., c) e X.
the local flow is called two-sided.

Thus for a local flow, the orbit, as well as a neighborhood of itself, is
required to stay in X, locally; i.e., for small time.
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EXAMPLI: 2. Consider the Hamiltonian system on R2:. = H,, = - Hr.
Then I? = 0. so the "energy surfaces." 11, = {(x. y): H(x. y) = c} are all
two-sided local flows.

We wish to mention here that we can construct local flows for reaction
diffusion equations which are not (apparently!) defined on locally compact
spaces. This will be demonstrated in §D where we shall construct a local
flow in some function spaces.

Definition 23.4. Let N c X be a compact subset of a local flow X. If 1(N)
c int N (relative to X) then N is called an isolating neighborhood in X and
1(N) is called an isolated invariant set.

Proposition 23.5. Let S = 1(N) he an isolated invariant set in the local flow X,
and let { M; } be a Morse decomposition of S. Then each M, is an isolated
invariant set in X.

Proof. By hypothesis, there is a compact set N S with 1(N) = S c int N.
Let Ni be a compact X-neighborhood of Mi such that Ni r Mk = 0 if
i # k and Nk c N; then Ni is an isolating neighborhood of M,. If y E I(N;),
then y - R c Ni c N so 7 e S. Since and x(y) are in N the only Morse
set containing them is ,tili. Thus by definition of Morse decompositions,
y e M, so 1(N) = M, c int Ni. Q

We now turn to the important concept of index pairs for Morse dccom-
positions; as we have remarked earlier, these will be generalizations of the
pair (B. b+) where B is an isolating block and h' is the exit set on eB. Before
giving the definition we need some preliminary notions.

If Z e Y e F. we call Z positively invariant relative to Y, if y e Z, and
y [0. t] e Y, together imply that y [0. t] cZ. By a compact pair (Z,. Z2).
we mean an ordered pair of compact spaces with Z, Z2.

Definition 23.6. Let S = 1(N) be an isolated invariant set in the local flow X.
A compact pair (N Al.) in X is called an index pair for S if the following
hold:

(i) cl(N,1,N0) is an isolating neighborhood for S.
(ii) N. is positively invariant relative to N,.

(iii) if y e N, and y - R+ <# N, then there is a t >_ Osuch that 7- [0, t] c N1.
andy- teNO.

Note that orbits can leave N, only through No ; thus No does indeed play
the role of b+ ; in fact. if B is an isolating block for the isolated invariant set S,
then it is easy to check that the pair (B. V) is an index pair for S.

We shall first show that index pairs do indeed exist; this is analogous to
the construction of isolating blocks in the last chapter. After that. we shall
show that the homotopy type of the space N,;-'No is independent of the index
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pair (N,, No) and depends only on S. this too is a generalization of a result in
Chapter 22. The Conley index of S will be defined as this homotopy equiv-
alence class. Finally, we shall show that if S, and S2 are isolated invariant sets
which are related by continuation, then they have the same Conley index.

Concerning the existence of index pairs, we have the following more
general theorem which actually gives the existence of index pairs for each
element in a Morse decomposition of S; i.e., we in fact obtain a "(Morse)
filtration" of an isolated invariant set.

Theorem 23.7. Let S be an isolated invariant set and let Of,, M2...., J%4.) be
an admissible ordering of a Morse decomposition of S. Then there exists an
increasing sequence ofcompact sets (a (Morse) filtration of S),

No c N, c - - - a N., (23.3)

such that for any i < j. the pair (N1, Nt - ,) is an index pair for M,, . In particular,
(N.. No) is an index pair for S, and (Ni, Nj _. ,) is an index pair for M) . Further-
more, given any isolating neighborhood N of S, and any neighborhood U of S,
the sets N, can be chosen so that e U and each N1 is positively
invariant relative to N.

The rest of this section is devoted to the proof of this theorem.

Let N be an isolating neighborhood of S, so 1(N) = S, and for j = 1,
2,.. ,n, define

I! cNandw(y)cM,i

I1 = {yeN:y-R_ c Nand a(y)c (23.4)

Then l (resp. I;) stays in N in forward (resp. backward) time. Furthermore,
if i < j, then I,' nI) =M;i;in fact, if yEI nI),then
Also w(y) c ,tiff v ... v M,,, so a(y) c M; u ... u M.. But a(y) c M, tJ

LI Mi; whence a(y) c M! Li t M. Similarly, w(y) c M, v LI Mj,
and thus y e M;;. The inclusion Mi; c 1; n Ii is immediate.

Lemma 23.8. The sets I P are compact.

Proof. We break the proof up into three parts.
(a) The sets I; and 1 are compact: Since Ii = (y c- N: y- R+ c N}, it

follows that for y I', y t 0 N for some t > 0. Using the compactness of N
and the continuity of the flow, there is an open neighborhood u c r of y
such that (U t) n N = 0. Thus if y e U n N, then y ¢ 1; , so N\1; is open
relative to N. Thus I; is compact; similarly, 1,,- is compact.
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(b) Suppose n = 2: Let (M 1. M2) be an admissible ordering of a Morse
decomposition of S. By definition 12 c and by (a) 1 is compact. We
must show that IZ is closed. Thus let -,,'.E I: , then y E 1; so w(y)
c U, v M2, and we must show ow(y) c M2. Suppose co(y) c M1. Since
All n ,M2 = 0 and both arc compact, we can find open neighborhoods U,
and U2 of b1, and M2, respectively, with cl(U 1) n cl(U2) = 0. Since
oxy") c ,M2 and r:o(y) c M,, there exist to and t.' with y. [t.. x) c U2. and

t' ' E U1, n = 1. 2..... Thus we can find such that
y e N'.,(U 1 u U2). Choose a subsequenoe such that lim ;' t

exists. Then i M2 and [0, !x) c N'',,U, so w(1 C ,ti12- If is

bounded, then e y R so cuO c A'12, contradicting w(y) c M1. If
. t,.j is unbounded, then for any t > 0 [ t, 0] is a limit of orbit segments

t ' [ - t, 01 = y ' [t - t, t ]. For large n. these segments lie in y,, R, c N.
and thus - [ - t, 0] N. Since this holds for each t > 0,1- R _ c N. so 7Y. R
is in N so c: S. Since (Af,, Al,) is an admissible ordering of a Morse decom-
position of S. wO e ,M2 implies E Ale. and this contradicts M, v M2.

(c) The general case: Note that if j > 1. then 1" is the set TZ where
corresponds to the Morse set M2 = MJ of the 2-decomposition (M 1 =
.M1(j_ 1) Aft = of S. Since a similar remark applies to l;_ 1 for j 5 n, we
see that the result follows from (b). M

For a subset Z c N. we define the set P(Z), where Z c P(Z) c N, by

P(Z) = { y e N : there exist ),'c- Z. t' > 0 with ;' [0, t'] c N and y' t' = y}.
(23.5)

Thus P(Z) consists of those points in N which can be reached by orbit seg-
ments contained in N which "begin" in Z; P(Z) is the set "swept-out" by Z.
Obviously P(Z) is positively invariant relative to N.

Lemma 23.9. Let V be any r-neighborhood of 1) . Then there is a compact
X -neighborhood Z of 1; such that P(Z) is compact and P(Z) c V.

Proof. l; and 17+ , being compact and disjoint implies that we can find open
X-neighborhoods V + of and V- of I; such that V - e V', and
cl(V') n cl(V ) = 0.

Claim. There is a t > 0 such that if y e N1 V -. the arc y [ - 1. 0] contains a
point in V ' or a point in f-,,N ; i.e., y e N%V - implies y - [ -1, 0] N11 V +.

To see this, note that if )' e N%. V - and y R - dt N then there is a t such that
y (- t) 0 N. If y R _ e N. then since y 0 l , a(y) c 1 v UM. C J)+ ,
c V- and there is a (with (- r') E V'. In either case there is a neighbor-
hood W of y such that W' t, or l ,V- t' lies in the complement of N'',,V+, and

the claim follows since N-.,V is compact.
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In order to define Z, let y e 1; ; then y R _ c Ii c V , and we can find a
compact neighborhood Cy of y such that C. [ - t, 0] e V -. Since I, is
compact, a finite collection of such Cy's cover 1, , and we let Z be their union.
Z is a compact neighborhood of 1,, and the claim now is that P(Z) e V-.
Suppose not, then there is a ' E P(Z) with y 0 V -. By definition y = y'- t' for
some y' c- Z and some t' z 0 with y'. [0, t'] c N. Pick r such that y [0, r)
e V- and 7-= y r N\V - . Then y [ - r, 0) e V- and f-(-r) = y' E Z_
By definition of Z, y' [ - t, 0] c V- so that y [-(t + r),0] el(V-)
c N\V+, and this contradicts our above claim. Thus P(Z) c V-.

It remains to show P(Z) is compact; this will be done by showing that the
complement of P(Z) in N is open. This let ye,V\P(Z); then a(y) M1 u
u ,Mt so there is a t such that y (- t) 0 N\ V +. Let t1 = sup{t Z 0: y [ - t, 0]
c N\V +), then y [ - t 1 , 0] c N\ V+ since N`s V + is closed. Also y . I- (I , 0]
n Z = 0 since y of P(Z). Using the compactness of Z, we can find t2 > tl
with y [- t2, 0] n Z = 0 and y (- t2) # N\V +. Using the continuity of the
flow and the compactness of N\V ' , we can find a neighborhood W of y such
that and W-(-12)n(N\V+)=0.SinceP(Z)c V-,
we conclude that if y e W, then there is no orbit segment from Z to y, which
lies in N\V +. Thus y 4 P(Z) and the complement of P(Z) in N is open so
P(Z) is compact. O

The constructions in this lemma arc schematically illustrated in Figure 23.2.

Figurc 23.2

We shall now construct the index pair (N,,, No) for S = 1(N). From their
definitions 1+ n I- = S -- int(N). Thus since 1+ and I; are compact, if U
is a neighborhood of S, we can choose open neighborhoods U+ of I1 in N
and U- of I,-, in N such that cl(U+ n U-) c U n (int N). We define

No = P(N\U); (23.6)

then No is positively invariant relative to N. We shall show that No is
compact.
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Since N\ U+ is compact and disjoint from I, = {y e N : w(y) e M, u
u there is a t' > 0 such that y e N\ U+ implies y [0, t`] ¢ N. Let be a
limit point of No ; then there exist y,, e N0 with y . By definition yq =
y - to with y ;, e NIU+ and )/,,- [0, c N. Thus 0:!9 tp < t, and since N'-U'
is compact, we can find y e N\U ', and r >_ 0 such that y t with y e N\U +
and y [0, t] c N. Thus y e No and No is compact.

In order to define N., we use Lemma 23.9 and find a compact neighbor-
hood N. a U- of the set 1. . which is positively invariant relative to N, and
define

N. = N. u No. (23.7)

By construction, N. is positively invariant, and (N., is a compact pair.

Lemma 23.10. (N., NO) is an index pair for S and cl(N x N0) c U.

Proof. We shall verify the three conditions in Definition 23.6.
(i) S and No being compact and disjoint implies that N\N0 is a neighbor-

hood of S. N,, is also a neighborhood of S, so that N,,, and thus is a
neighborhood of S. Also since (N\U+) e N0 and N. c: U-, we conclude that

c U- n U+, so c cl(U+ n U-) c (U n int N). Thus
cl(N \N0) is an isolating neighborhood of S.

(ii) If y e No and y [0, t] c N, then 7. [0, t] a N, so that y - CO. t] e N0,
since No is positively invariant relative to N. Thus N0 is positively invariant
relative to N,,.

(iii) Suppose y e N. and y - R + 94- NA ; if y e No we arc done. If y N0,
set t = sup{t z 0: y [0, t] c N.\N0} ; then y . re cl(N %%N0) c int N (relative
to X). We now use the fact that X is a local flow ; namely, since y t e X, there
is a r -neighborhood W of y - t ands > 0 such that W n X [0, r.) c X.
Since Y - I E int N (relative to X), there is an a > 0 such that y [11, 1 + s] e N.
But N. being positively invariant relative to N implies that this orbit segment
is in N. From the definition of f we see that there is a t', t < t' < I + c with
y - t' e N0. Since y - [0, t'] c N,,, the third condition holds.

Finally, we shall construct the desired filtration (23.3). Applying Lemma
23.9 to N. c- N in place of N, we can find for every j, 1 < j < n - 1, a
compact neighborhood N1 of Ij such that

(a) 1, cNJN.,
(b) N;n1 , =Qf,
(c) N1 is positively invariant relative to N.

(Recall that 1, n 1!+, = 0.) Now define successively

NJ =N'uN!_ 1 <j:n - 1; (23.8)

see Figure 23.3.
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Figure 23.3

The next lemma completes the proof of Theorem 23.7.

Lemma 23.11. (Ni. N,_) is an index pair for M,1.

Proof. Again we shall verify the conditions in Definition 23.6.
(1) Suppose y R cl(Nj%N,_,); then yeS and since a(y) a M,

Since ; 1j+,, co(y) c M, .M1, so ye M,,, and I(cl(N
N,_,)) a Mi1.Since M,1 c 17 c N1, M,, a I, and I,` n N,_, = 0,wesee
M,1 c N1\N,_ 1, and thus cl(N,\N,. 1) is an isolating neighborhood for M.

(ii) By construction. N, _ 1 is positively invariant relative to N,,, and since
Ni e N,,, N. t is positively invariant relative to N/.

(iii) Suppose ye N11,N,_, and y R+ ¢ N1; then y- R+ ¢ N. since N1 is
positively invariant relative to N,,. Thus by Lemma 23.10, there is at z 0, such
that y [0, t] c N,, and y t e No. Since y e N; we have y [0, t] c N1. Also
by construction, No c N,_. Thus we have shown that if y R, ¢ N1, there
is a t >_ 0 with y [0, t] a N1 and y t e N, - 1; this proves the third condition.

Thus the proof of the lemma, and therefore of Theorem 23.7, is
complete.

§B. The Conley Index of an Isolated Invariant Set

We recall from Chapter 22, §C the notions of a pointed space and quotient
topology. The theorem that we shall prove here is that if (N 1, No) is an index
pair for the isolated invariant set S. then the homotopy type of N , jNo depends
only on S. More precisely, we have the following theorem.

Theorem 23.12. Let (N 1, No) and (N 1, NO) be two index pairs for the isolated
invariant set S. Then the spaces N 1f No and N1/N0 are homotopically equivalent.
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Thus, if [ ] denotes the equivalence class of a pointed space, we can asso-
ciate to S the unique homotopy equivalence class

h(S) = [N1INo] (23.9)

where (N,, No) is any index pair for the isolated invariant set S. We call h(S)
the Conley Index of S. Note that if B is an isolating block for the isolated
invariant set S, then as we have observed earlier, (Bb,.) is an index pair.
Thus, in view of the theorem, the definition (23.9) agrees with our old definition
(Definition 22.30) of the Conley index of S.

Before giving the proof of the theorem we define some useful sets.
If (N 1. No) is an index pair for the isolated invariant set S, we define for

t z 0 the following subsets of N 1:

N, = c N1),
(23.10)

No' _ {-i EN1:there
and t'E[0,t]with c N1

It is easy to see that N. c No', and that

N', = { y E N 1: there is a Y e N, with y'- [0, t] c N, and y'- t = y).

Roughly speaking, N', is N, "pushed forward" for time t, and No' is N.
"pulled backward " for time t ; the definition of No' takes into account that
the local flow X is not necessarily two-sided.

It is easy to check that N, and No' are both compact and positively
invariant relative to N,. Furthermore, one can easily show that (N,. No') is
an index pair for S, and that (N;, No) is one also if X is a two-sided local flow.

The proof of Theorem 23.12 will follow from a sequence of lemmas. Let

is (Ni, Ni r) No) (N I, No)

be the inclusion map, and let I be the induced map on the pointed spaces

is Nil(N, n No) -. Ni/N0,

defined by i[x] = [i(x)]. Of course, i is also continuous.

Lemma 23.13. Let t >: 0; then f is a homotopy equivalence.

Proof. We define

F: (N1/No) x J - N /No, J = [0, 1], (23.11)
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by

[Y- at]. if y [0, a(] c N,\!\to,

1 [No], otherwise.
(23.12)

Note that if y e No, then if y [0, at] c N,, it follows that y [0. at] c No,
so F([y], a) = [No]; thus the map is well defined. We show that F is con-
tinuous. First assume F([y], a) 0 [No]; then from (ii) in Definition 23.6,
y [0, at] c N1`..No. Let U be any neighborhood of y at disjoint from N0,
and let V be any neighborhood off [0, at] disjoint from No. From the
continuity of the flow, there are neighborhoods W of f and W' of a
such that if ()', d) e W x W', then y'- dt e U. and y- [0, a't] c V. It then
follows from Definition 23.6(iii). and the fact that V n No = 0. that y'- [0.
a't] c N1'1No. Thus F([y'], a') = [l a't] c [U] and F is continuous at
([y], a). Suppose now that F([y], a) = [No] ; then there are two possibilities :
y [0, at] N, or y [0, at] c N,. If y [0, at] ¢ N,, then for y' near y and
a' near a, we have / [0, a't] N, so F([y'], a) = [No], and again F is
continuous at ([y]. a). Finally, if F([y], a) = [No], and y [0. at] a N,, then
y at e No. Let U be a neighborhood of [No] in N,/No : then there is a neigh-
borhood U of No such that [N n U] = 0. If (y. a) is near (y, a), then
y'- a't a U, by the continuity of the flow. If , [0,a't] c N,, then F(y', a')
= [y' a't] a i - 1 . If y' [0, dt] 4# N,, then F([11, o') _ [No] a U. Thus in
both cases, if (y, a) is close to (y, a), F([ y'], a') e U and so here too F is con-
tinuous at ([y], a).

We shall use F to prove the homotopy equivalence. If a = 1, the map
F(-, 1) on N,/No has its range in (N, v N0)/N0 = Nil(No n N,). Let f be
the map 1), now considered as a map from N,JN0 into N;l(N0 n N;);
then

i f = F(-, 1) id. on N1/No, (23.13)

by definition of F (- denotes "homotopically equivalent to"). On the other
hand, since N, is positively invariant relative to N,, the restriction of F to
[(N, u No)/No] x J has range in (,V; v No)/No. Let F, denote this re-
stricted map as a map into (N1 u No)/No; then

f - i = F,(-, 1) - id. on N,I(No n N10. (23.14)

The lemma now follows from (23.13) and (23.14). 0

Next, for t z 0, define the map

g: Nt/No' - Nt/(No n Ni),



§I3. The Index of an Isolated Invariant Set

by

489

[ti' t] if y [0. t] c N,''1N0,
g([f']) - { [No n N,], otherwise.

(23.15)

To sec that g is well defined, note that if y e Na', then y [0, t] N1\No so
g([y]) = [Non N;]; also, if y [0, t] c N1'\No. then y t e N. so g([y]) _
[y' t]eNi/(NonN').

Lemma 23.14. The map g defined by (23.15) is a homeomorphism.

Proof. If g([y]) = [No n N;], then y [0, t] ¢ N,-.' No. so by definition,
y [0, t] n N. o 0, so y e and thus g- `([No n N,]) = [NA. Also, if
both [y,] and [y,] are different from [NA'] (in N1/No'), then y;. [0, t]
c N,'tiN0,i = 1.2,soy,-t [y2-t]inN',/(N0nN;).
Hence g is injectivc. To see that g is onto, let y e Ni1No. Then there is a f in
N, with y [0, r] c N1\No, and y'- t = y. thus g([y']) = [y]. Next, the
continuity of g can be proved in a manner similar to the proof of the con-
tinuity of F in the last lemma. It follows then that g is a homeomorphism since
it is a mapping between compact Hausdorff spaces.

Let j: (N 1, No) (N1. No') be the inclusion map, and let) be the induced
map on the quotient spaces; i.e.,): N,/No - N,,NO', and j([y]) = [j(y)].

Lemma 23.15. ) is a ha,noropy equivalence.

Proof. Consider the sequence of maps

N,/No J N,/No' v N,/(No n N,) - N1?No.

From the definitions, g where f is defined as above; thus
(i g) -) = i f id. on N1/No, in view of (23.13). On the other hand, using
(23.14), (g i = f o i - id. on N;!(No n N,). Since g is a homeomorphism,
we have

)c.(log) g-t `,[(g'))oi]og.., id.

and this proves the lemma.

on N1/No `,

In §A we showed that for any isolating neighborhood N of S = I(N),
there exists an index pair (N1, No) for S such that No c N1 c N, with the
property that N1 and No are positively invariant relative to N. We call such
an index pair, an index pair contained in N. Note that for an index pair (N 1, No)
contained in N. if

I±(N) _ {yeN: y- R, c N),
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then

I -(N) c N, and I'(N) n No = Q .

Lemma 23.16. Let (N,, No) and (.R,. ,No) be two index pairs in N for S = I(N).
Then there is a t > 0 such that

(Nl. Non N1) c

and

(N1. No n N1) e (N,, Nol.

Proof. Since I - (N) e N,, y E cl(N'-.,N,) implies y R_ ¢ N. Using the
compactness of cl(N',,N,). we can find t, z 0 such that y E cl(N'\,N,) implies
y [-t,, 0] ¢ N. Similarly, if y e No, then y R+ ¢ N so there is a to > 0
such that if y e No, then y [0, to] ¢ N. Let 1, and io be the corresponding
numbers for the pair (N,, No), and set t = max(t,, to, i,, io). Let y e N11;
then y [-t. 0] c N, c N so y and thus y E N1. and N; e ,Y,.
If y e (No n N,) c N,, then 7 [0, t] ¢ N so by (iii) in Definition 23.6,
there is a i < t such that y [0, i] a N, and y I E No. Thus y e No', and
y e Ni,'. The other inclusion is similar. 0

The next lemma shows that index pairs contained in N have homotopically
equivalent quotient spaces.

Lemma 23.17. Let (N,. No), and (N,, No) be two index pairs for S contained
in the isolating neighborhood N of S = I(N). Then [N1/No] = [N1/N0J.

Proof. Let t > 0 be as in the last lemma, let i, and i2 be the inclusion maps :

i,:(N1,NonN'1)-.(N,,No'),

i2: (N1. Non N'1) - (N,. No').

and let f, and 12 be the corresponding induced maps between the quotient
spaces. Consider the sequenceof maps

N',I(N0 n N'1) T' NI,'No' n Ni/(No n N1)
Nt/No' A i/(No n N'1)

where the map g is defined by (23.15), and g is the corresponding map
N,/AO' y N;/(No n N;). Observe now that by definition

12.9.'1 =)ofogojci.
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since both maps take [y] onto [7- r] or [No']. Thus by Lemmas 23.13-23.15,
f2 ° j f, is a homotopy equivalence. Similarly, f, g - i2 is a homotopy
equivalence. Using Proposition 12.25. we see that g o i,. i2 and f, o g are
homotopy equivalences. Thus by Lemma 23.14, f, is one also. It follows from
the sequence of maps

N,/No 1' NI No' w N'/(Non N,) N1/No' Ni/(No n R') r N,/No,

that N1/No R1.+No

In order to prove Theorem 23.12, we must show that N,/No N1/No,
for two arbitrary index pairs (N I, No) and (!\ 1, No) for S. In order to do this
we shall show that they are equivalent to two index pairs both contained in a
common isolating neighborhood, and then the last lemma will finish the
proof.

Let (N1, No) be an index pair for S. and let N' be an isolating neighborhood
of S whose interior contains c](N,1N(,). Define the pair (Ni. N o) = (N' n N,,
N' n No) ; then the claim is that (N ,, No) is an index pair for S contained in the
isolating neighborhood N = N' r) N1 of S. To see this, note first that
N,\No = N11No, so that cl(N,\No) is an isolating neighborhood for S.
Furthermore, to sec that go is positively invariant relative toN',,suppose that
ye NttiRo, and y- [0. t] ¢ N. Let f = supjs: y- [0, s] c N,ti,No} ; then
y I e cl(N 1 \,No) = cl(N 11 No) c N'. But y f is not in the interior of cl(N 1\No),
so y Ye N0 and te N0 N' = No.

Lemma 23.18. N1/No isltomeomorphic to N,fNo.

Proof. Since N1',No = N1\No and N, e N1, No c No, the inclusion map
is (N,, No) -. (N1, No) induces the desired homeomorphism.

We can now complete the proof of Theorem 23.12. Let N be any isolating
neighborhood of S contained in N1\No = N,1,No. Using Theorem 23.7, we
can find an index pair (N,, No) in N, such that N, and No are positively
invariant relative to N and cl(N1\No) a int N. As we have seen above.
(N, n N, No n N) is in index pair for S in N and (', n N)/(No n N) is homco-
morphic to N,/No (by the last lemma). But (N,, No) is an index pair in N,
so from Lemma 23.17, N1/No - (N1 n N)/(No n N).

We have thus shown that N 1/No has the homotopy type of an index pair in
N ; namely, that of (N 1 n N)/(No n N). It follows then that if (N,, No) is any
index pair and N c int (N, \No) is any compact neighborhood of S. then
N,/No has the same homotopy type as the index pairs of S in N (Lemma
23.17). If (N,, No) is another index pair for S, we simply choose N" interior to
cl(R,',Ro), and using Lemma 23.17 again we find 1Q1/No NI/NO. The
proof of Theorem 23.12 is thus complete.
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We can use our theorem to obtain algebraic invariants associated with an
isolated invariant set S. In order to do this, note that if (X. A) is any pair.
then, e.g., for the tech-cohomology, Ii*(X, A) = H*(X/A) (see [Sp]). If we
use the fact that the cohomologies of two homotopically equivalent pairs are
isomorphic (appendix to Chapter 12, §4C), we can obtain the following
consequence of Theorem 23.12.

Corollary 23.19. Let (N1. N°) and (R1. R°) be two index pairs for the isolated
invariant set S. Then H*(N1. N°) is isomorphic to H*(R1, R°).

Thus the cohomology groups H*(N1. N°) are algebraic invariants associ-
ated with the isolated invariant set S; they are independent of the particular
index pair we choose for S.

We shall conclude this section by proving " Morse-like" inequalities for a
filtration; see §A. In analogy to the proof of Theorem 12.24, these will be a
consequence of the axioms of cohomology theory. Thus, if A z B C are
compact spaces, then there is a long exact sequence

0-+H°(A,B)-.H°(A,C)-,H°(B,C)-

H2(A. B) .. . (23.16)

We assume that the above groups are all finitely generated, and we denote by
rk(X, Y) the rank of H'k(X, Y), and by dk(A, B, C), the rank of the co-kernel of
dk(= rank[Hk+'(A, B)/Image(S*)]). If (X, Y) is a compact pair, we can define
the following formal power series with nonnegative integer coefficients:

p(t, X, Y) = r"(X, Y)t"
,' 0

q(t, A, B, C) = Y d"(A, B, C)t". (23.17)
"ao

Now from the exactness of (23.16), we find for every n > 0.

r°(A, B) - r°(A, C) + r°(B, C)

-r'(A,B)+r'(A,C)-r'(B,C)

+(-I)"r"(A,B)-(-1 )"r"(A,C)+(-1)"r"(B,C)

- (-1)"d"(A, B, C) = 0.
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This gives

1)"d"(A,B,C)=(-1)"d"(A,B,C)+(-1)"r"(A,B)
- (-1 y'r"(A, C) + (-1)"r"(B. Q.

Multiplying by (-1)"t" and adding gives

q(t, A. B, C) = - tq(t. A. B, C) + p(t, A. B) - p(t, A. C) + p(t. B. Q.

or
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p(t, A, B) + p(t, B, C) = p(t, A, C) + (1 + t)q(t, A, B, C). (23.18)

We can use this to prove the following result.

Proposition 23.20. Assume that No e N 1 e . - . e N. is a filtration of the
Morse decomposition (M1, M2,..., M,,) of the isolated invariant set S. Then

p(t. Ni. Ni_ 1) = p(t, N", Na) + (1 + O Q(t),
j .. l

where

Q(t) = q(t. Ni. Ni- 1. No).i.2

Proof. We apply (23.18) to the triples N1 Ni_ 1 = No. j > 2 to get

p(t, Ni, Ni-1) + p(t. Ni- t. No) = p(t, Ni, No) + (I + t)q(t, Ni, Ni- 1, No).

Summing over j 2 gives the result. Q

Now using Corollary 23.19, we may define

p(t, h(S)) = p(t, N", No), (23.19)

where h(S) is the Conley index of the isolated invariant set S, and (N", No) is
any index pair for S. We then have the following consequence of Proposition
23.20, which generalizes the classical Morse inequalities.

Theorem 23.21. Let S be an isolated invariant set in the local flow X, and let
(M1...., M,,) be an admissible ordering of a Morse decomposition of S. Then

Y p(t, h(M,)) = p(t, h(S)) + (1 + t)Q(t),
f=1
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where Q(t) is defined in Proposition 23.20. In particular, the coefficients of Q
are nonnegative integers.

Proof. By Theorem 23.7, there is a filtration N. a N, .. a N. for the
Morse decomposition such that (Na, No) is an index pair for S. and (N j, N j _,)
is an index pair for Mj, 1 j S n. The result now follows from Proposition
23.20 and (23.19).

That this generalizes the usual Morse inequalities follows from the fact
that the coefficients of (1 + t)Q are nonnegative, so the coefficients of
Z p(t, h(Mj)) - p(t, h(s)) are nonncgative too.

§C. Continuation

In order to define the continuation of isolated invariant sets to ncarby
equations, it is first necessary to define what we mean by "nearby" equations.
We havc actually already done that in §A, but not for local flows. Moreover,
we want our equations to depend on parameters which will define a family
of local flows in which we can speak of "nearby local flows."

In order to motivate the next definition, suppose J = [0, 1], X is an open
subset of R", and f : X x J -> R" is continuous. Assume too that for each
A e J, f ( , .) is Lipschitz continuous. then there is a unique curve y,,(t; x)
e i'(X) (= space of curves on X with the compact-open topology) such that
dyz(t)idt = f (yx(t), 4), AA(O) = x. If 0: X x J -. F(X), where O(x, A) = x),
then the continuity of the solution with respect to both initial conditions and
parameters shows that 0 is continuous. In fact the range of 4), R(O), is a local
flow in r (x) (where we consider the translation flow on I(X): namely

r(x) x R -+ I X), defined by (y( , x), t) (), t)( , x), where (y t)(s. x)
= y(s + t, x)). Now we can obviously write R(¢) = v {cDA:;. a J), where
(b,, = {y,,(- , x): x e X} is also a local flow. Moreover if A, ,u e J, then mZ and
mk arc homeomorphic. Thus if N,, is an isolating neighborhood in (Z, and y
is close to A, then if things are set up right, the corresponding N (under the
homeomorphism), should be an isolating neighborhood in )a, and the
corresponding isolated invariant sets should have the same Conley index.
This is the idea.

Now J can be replaced by any connected Hausdorff topological space
A.. 1'(X) can be replaced by r (X x A), and y(.), can be replaced by A).

The map (x, A) -> (y(-), ;.), where y(0) = x, from X x A into F(X x A) is
again a homeomorphism. This leads to the following definition.

Definition 23.22, A product parametrization of a local flow 4) c r = I'(X x A)
is a homeomorphism

0:X x A-*0
such that for each i., O(X x A) __ (D., is a local flow. We write dx = 4) x x tA) .
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We think of 0,, as a (local) flow depending on the parameter A, and 0 as a
flow on the product space X x A, or as a flow on m e r. Thinking of 0 in this
latter way makes possible the application of these ideas to parameterized
families of differential equations on a space U ; namely, if uo E U is the initial
condition, the A-differential equation defines a curve u(t, uo, A). and the map
b takes (u0, A) into u( - , uo, i.).

From now on X is assumed to be a locally compact subset of a metric space,
and A is a connected Hausdorff space.

Lemma 23.23. Let 0: X x A -+ m be a product parametrization of b, let K
be a compact subset of X. and let U be open in T. Then the set

A(K, U) = {A: 4,Z(K) c U)

is open in A.

Proof. If iueA(K,L'),then 4,(K.io)c U;i.e.,4,(k.lo)eUif keK.Since Qtis
continuous and U is open, then for any k e K there is a neighborhood U of k
and an Ek > 0 such that if k c- Uk, and I A - A0I < ck, then 4,(k. A) a U. Finitely
many of the Uk cover K ; say U,,,. - -, Uk.: Let s = min sk, ; then if I A - Ao I < a.
and k e K, k e Uk, for some i so since I A - A0I < e;, 4,(k, A) e U. 0

Lemma 23.24, Let K, and K2 be compact subsets of X and let Q be a compact
subset of R. Then the set

T = {A e A: OA(Kt) - Q r' cba(KZ) =0)

is open.

Proof. Let A e T. Now ¢Z(K2) and 4,A(K,)- Q are both compact, since 0 is
continuous. Thus there are disjoint open sets U, and U2 with ¢,,(K,) e U,,
and 0,,(K2) - Q e U2. By the previous lemma, we can find e, and ct > 0 such
that if IA - A < e,, then c U,, and if IA - 20 I < e2., then 4,;,,(K2)
Q C U2. Ifs = min(e,, S2), then I A - to I < c implies that AO E T. 0

We now define the space of isolated invariant sets of a family of (local)
flows; cf. Definition 22.4. Thus let 0: X x A - m be a product parametriza-
tion of the local flow m. We define

,9P = b"(¢) = {(SA, mx): SZ is an isolated invariant set in 0J.

For more compact notation, we will write (S, ).) for the isolated invariant set
in (D,,.

If N is a compact subset of X, let

A(N) = {A e A : 4,,(N) is an isolating neighborhood in mx}.
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(The reader should think here of #A(N) as the isolating neighborhood N for
the "i.-flow," if i. e A(N)). Define

a,v: A(N) -+ Y. by

oN(A) = (S. A) = (SA. ma),

where S is the maximal invariant set in &;,(N). We put the topology on .P
which is generated by the sets QN(U), where U is open in A(N). Observe that
(TN is a continuous function with this topology.

Here is the main definition in this section.

Definition 23.25. Let p, = (S1, ).,), and p2 = (S21 A2), be two points in .;
then p, is said to be related by continuation to P2 if they both lie in the same
quasi-component of.P; i.e..P is not the disjoint union of two open sets, each
of which contains one of the points.

We sometimes say that p, and p2 are continuations of each other, if they are
related by continuation.

We need a few technical lemmas. Here is the first one.

Lemma 23.26. Let (S, A) e .So, and let N be a compact subset of X such that
¢x(N) is an isolating neighborhood for S. Then there exist compact subsets
N1, N2, R1, N. of N with Ni a int Ni (relative to N). i = 1, 2. cl(N11,N2)
e intN, and such that <,1(N,),,O,1(N2)) and <0,(,R 1).0;,(Nz)) are index
pairs for (S. A).

Proof. Since A is fixed here, we suppress the ¢,1 notation. Using Theorem 23.7
(see also Lemma 23.10), we can find an index pair <N,, No) in N with
cl(N, \No) c int N.

Now choose an index pair <At,, No) in cl(N1\N') (which is an isolating
neighborhood for S), with 9, No, and, without loss of generality, No
c int No (relative to N). (This last condition can be achieved by replacing No
by No for sufficiently large t.) Choose <N,. JRo) an index pair in cl(N, , No)

c int Ni (relative to N), and let <N,, No) = <N1, No), and <N,,1V0>
= <N,, No). We have N,\,No c int N, N1 a int N1 (relative to N), and
No c int N0 (relative to N).

To see that <N,, No) is an index pair, note that N1 and No are positively
invariant relative to N, S c int N,'.,N0 = int N1\No, and if y e N,. y t 0 N.
then y E R 1 so there is a t' such that y [0, t'] c N 1 = N, and y t' E No c No.

To see that <N,, Ro) is an index pair, again N, and No are positively
invariant relative to N, S e int R, A0 = inn N1\No, and if y e N,, y t 0 N,
then there is a t' such that y [0, r] c N,, y - t' c- No = No. This completes
the proof. p
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Before proceeding. we need an important definition. For Z c Y e T. let

P(Z, Y) = n{K a Z: K is compact and positively invariant relative to Y}.

Concerning this set we have the following lemma whose proof is immediate.

Lemma 23,27. If Y is compact and Z e Y. then P(Z, Y) contains Z, and it is
the smallest such compact subset of Y which is positively invariant relative to Y.

We turn now to another technical lemma.

Lemma 23.28. Let (S, p) E 9' and let N. 0.(N). N,, No, N,, Nn be as in Lemma
23.26 (with A replaced by µ).

(A) There is a neighborhood W of p in A such that W c A(N).
(B) If

Pt(1) = 0a 'P(Oa(N1). 4a(N)). i = 0. 1.

then if i. e W, P(A) c N;, and <0,,(P,), O,,(P0)> is an index pair for
S,, = an(A) in Oa(N).

Note that the lemma implies in particular that A(N) is open in A.

Proof. If x e el(N\R,), then if aq(x) c N, it follows that c S c ,Y,, and
from the positive invariance of N,, x E R,. Thus a (x) N. so there is a
t,, > 0 with 4 (x) (- tx) 0 4 (N). From the positive invariance of N,,
0,,(x) . [ - tx, 0] n t/ (N,) = 0, and using the continuity of the flow together
with the compactness of N. we can find a compact neighborhood Kx of x
in N such that both of the following hold:

tx. 0] n ¢w(1V,) = 0. and

(Kx)' (- t,) n 0. (23.20)

From Lemma 23.26, for each such x there is a neighborhood Ws of P in A
such that A a Wx implies that (23.20) holds, with p replaced by A. Since
cl(N\N,) is compact. a finite number of the Kx cover cl(N'\N,); say
Kx.. Then W, = n { Wxi : 1 S i S n), is a neighborhood of u in A such that
(23.20)holdsforallAe 1,V,. Wcclaimthat ifAe 14%,. P(¢,,(N,),0k(N)) c
To see this, let x e P(4AA(N 1). 0,(N)), then x lies in every compact set K N,
which is positively invariant (for Al relative to N. If we show that N, is
positively invariant (for i.), relative to N. then we will have proved the claim
since N, is compact and N, a N,. Thus suppose x c- N. and q,,(x) [0, t] e N.
If Oa(x) s ON,, 0 < s < t, then cti,,(x) s E cl(N\.N',), so from (23.20), there is a
tx > 0 with OA(x) [s - tx, s] n RI = 0. and O,(x) (s - tx) n N = 0. But
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s - tx < 0, since otherwise, 4,(x) (s - tx) e N and thus 4),(x) [s - t,r, s]
n N, = 0 implies 4,(x) e N,, a contradiction. Hence N, is positively invariant
(for ).) relative to N ; this proves the claim. Thus IV, is a neighborhood of µ
in A such that if i. E W1, P(4,,(N1), 4,(N)) c 4,(N 1), so P,(1.) _= 0.; 1 P(-O,(N1),
O.,(N)) c N,.

If now x e No, 0.(x) R+ ¢ No (since S n No = 0), so that by the positive
invariance of No. there is a r, > 0 with 4 (x) t, V N and 4 (x) [0. t,] n

4). Thus as above there is a compact neighborhood Kx
of x in N with

N{Kx) [0, tx] n QS and tx (N)
Thus again as before, there is a neighborhood WO of p in A such that if
AEWoand xEN0,

0,(Kx) - [0, tx] n cl(4x(N)\4)x(Ato)) = 0. 4)(x) tx tr 4a(N). (23.21)

and P0(A) c Ro. Let W=W1 n WO; then ue Wso Wis a neighborhood of
p in A. If ). e 6tW, then P,(2) c N,, i = 0, 1, and (23.20), (23.21) hold. Hence,
(A) holds. (We will cut W down to 141, below.)

Now Ps c ,Q,, and by definition. P, N,, both for i = 0, 1. Hence
P,\Po c N1\No so cl(P1\Po) c cl(N1\No) c int N.

Next we shall find a neighborhood W of p in A such that (13) holds. The W
we obtain will lie in W, n W2; hence all of the above results will be valid for
this W. and N. c P, c R, will also hold.

If x (int N,)ti,No, then x e No so x t S. Thus there is a tx such that either
tX 0 or tx) 0 As before, there is a compact

neighborhood K of x in N such that either 0,,(Kx) t,, n 0, or
tx) n 4),,(N) = 0. Arguing again as before, there is a neighborhood

W3 of u in A such that if i. a W3, and x 0 int(¢,(N,)\¢,(N0)), then either

Ox(x) - tx 0 4) (N) or 4x(x) - (- t.) 0 4)A(N) (23.22)

Let W = Wn W3 ; we show that A e W implies that «,(P, ), 4,(Po)> is an
index pair for S,, = in ci,(N); see Definition 23.6. Again we shall verify
the conditions in Definition 23.6.

1. To see that A e W implies that av(A) = S, is in int(4),(P,)\¢,(Po)), we
proceed as follows. Let A e W, x e S,. If x e 4,(Po), then PO = Po(A) e No
implies that x e 4),(Ro). But from (23.21), there is a t' > 0 such that 4),(x)
t, 0 N, and this contradicts x e S,. Thus x e S, implies x 0 ¢,(Po). To sec that
such an x e int ¢,(P,), we suppose that x 0 int 4),(N1); then x 0 int(4),(N,))\
4,k(No) so by (23.22), 4),(x) R qP- N. This is a contradiction so S, c int 4;(N1)
e int P(4),(N,), 4,(N)) = int 4),(P,), where we have used Lemma 23.27. Thus
S, c int(4),(Pt)\4) (Po))

2. Since 4),(P;) = P(r),(N,), 4) (N)), Lemma 23.27 shows that 40,) is
positively invariant relative to 4),(N), i = 0, 1.
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3. Suppose 4,,(x) e 0,,(P,), t > 0 and OA(x) t 0 SA(N). We shall show that
there is a t' > 0 such that 4A(x) [0. t'] c 0,,(P,) and 4A(x) t' e 4 (P0). Let
t, = sup{t > 0:¢,,(x).[0, t] c 01(N)), then by compactness
and in fact, (4A(x) - t, EON, by definition of t,. The claim is that 4A(x) - t,
e (¢A(R1).Thisholds since 4A(x)e P(/A(N,), 4'A(N))andd A(x)- [0. t,] c (IA(N);
hence since P(r¢A(N,), SA(N)) is positively invariant relative to ¢A(N), it
follows that OA(x) [0. (,] 0,(N)) = 4;(P1) c (¢A(:Y1). Thus
0A(x) - t t E OAR . ,/, `

Now if ¢,,(x) t, 4 4 (N1), then 4(x) t 1 E 4. A(N ,)I46A(No) c int N, an
impossibility. Thus cA(x) t, e 0 ,,(NO) c ¢IA(P0). Also, OA(x). [0, tl] c 0A(N).

4A(x)eOA(P1) so since &(P1) is positively invariant relative to 4' (N), we
have ¢A(x) [0, t,] c OA(P1). Thus the third condition for an index pair
holds, and the proof is complete. 0

We define the projection n: P A by n(S, ).) = 7..

Theorem 23.29. The projection n:.9"(0) -> A is a local homeomorphism; in
.fact, if N is a compact subset of X, nlast,,,N is a homeomorphism with inverse
aN.

As we have remarked after the statement of Theorem 22.5, this theorem
tells when two points (S, A) = (SA, mA), and (S, it) = (S,,, 0.) are related by
continuation.

Proof. We are to show that for (S, p) _ (Sµ, e P, there exists an open set
U containing (S, µ) such that it I U is a homeomorphism onto its range.

Let (S, u) be any point in Y. Take N to be a compact subset of X such that
4 (N) is an isolating neighborhood for Sin D. Now p E A(N), so from the
last lemma we see that a.v(A(N)) is an open subset of Y containing (S, it). We
set U = a,,(A(N)), and we shall show that U has the required properties.

If t )) = n(o.ti(A2)). A. 1.2E A(N), then rt(SA,> D ,) = n(SA2, (DA) implies
it = i.2. Thus nI U is one-to-one; it is also continuous by definition of the
topology on P ; namely, if V is open in U. then n-'(V) = is open in P.

The proof will be complete if we show irIv is open. To this end. note that it
suffices to show that if V = a,(U) s tr,,,(U,), are two sub-basic open sets in
.9°, i = 1, 2, then n(V1 n V2) is open in A. For if this were the case, then ni
(basic open) is open so if V is any open set in P, then V = v W., where W,
are basic open sets in P. and n(V) is open. Hence if n(x) e tr(V). then x E W.
for some a so n(x) s n(W,,) a n(V), and since n(WQ) is open, n(V) must be
open.

Thus let V, = Q,(U,), i = 1. 2, where U; is open in A(Ni), and Ni is compact ;
i.e., Q, = Q,,,. Now if V1 n V2 = 0, then n(V2 n V2) is certainly open in A;
thus we may assume (SA, QUA) E V, n V2. Now 0A(N,). i = 1, 2, both isolate SA
in fiA. Let No = N, n N2; then OA(No) is an isolating neighborhood for



500 23. Index Pairs and the Continuation Theorem

S,, in tD,,. Also by the last lemma, there is a neighborhood W of A in A such
that if v E W, then the maximal invariant set in is in int 0, (NO). At this
point we need a lemma.

Lemma 23.30. Let C be closed in A and suppose that ¢,,(N) is an isolating
neighborhood for each i. in C. Let A = ((A, x): ). E C, X E S;,}; then A is closed.

Proof. If the lemma were false, then there would exist (A.. e A such (A,,,
(A, x) 0 A. Thus x E Sx so 0;,(x) R N. It follows that for large n, O.,. (x)

R ¢ N; an impossibility.

Returning now to the proof of the theorem, we know S. = a2(N,) = a2(No).
and No 5 N,. We claim that this implies that there is a neighborhood W
of A such that if v E W, then a,(N,) = o,(N0). To see this we argue by contra-
diction ; thus assume that there exist A. E A with A. - A and S', = a; (NO)

,, ,S; . By compactness of N,, we may assumea; -(N,) = S,. Choose x a &'% S'
that x - z, and by our lemma, x c- S so by hypothesis, x e S. Thus for n
large, x e ¢,,,,(N0). Also x E S \S;, implies that there exist t > 0 such that
x,, t E N,`int No, and by compactness, we may assume {x t,,} converges;
say x t -, x e N,%jnt No. Again by our lemma, x c- S so x e S' c No, a
contradiction. This proves the claim.

It is now easy to see that the maps a,v,, all agree on W. i = 0, 1. 2. Namely.
if v e W, aN (v) = (S,, 4), (S;., (D,), and by our claim S. = S,, so
a,,,,(v) = aN0(v); similarly aY2(v) = aN0(v) = From this it follows that
aN,(W) c V, n V2 (since if v e W, then aN,(v) = CNO(v), i = 1. 2). But v e W
implies aN,(v) E V,, and aN,(v) = aN,(v); hence aN,(v) E V, n V. so e
V, n V2 and thus a,,,.(W) c V, n V2). Therefore, W c n(V, n V2) so that n IV
is open and this map is a homeomorphism. This proves that 7t is a local
homeomorphism and completes the proof of the theorem.

We now come to the main theorem in this section, the invariance of the
Conley index under continuation.

Theorem 23.31. If S,, and S are related by continuation then they have the same
Conley index.

Proof. We claim that it is only necessary to show that the set of points in ,So
with a given index is open. To see this, suppose that (S,,, (DM) e .9' and U =
{S,., (D,,) e .P: h(S,.) = h(SM)) is open. If h(S,) * h(S,,), then (S,, (D.) clearly can-
not lie in cl(U), so (S,. (D,) a Soticl U, (Sn, (b2) E U, and since Y\cl U and U are
disjoint open sets, (S., D) and (S,,, D) are not related by continuation. This
proves the claim.

Now let (SM, E .9' and let N be a compact subset of X such that 4M(N) is
an isolating neighborhood for S. in mr,. Choose sets N,, R,, i = 0, 1, as in
Lemma 23.28; then there is a neighborhood Wt of u, W, e A(N) such that if
A E W1, (N,, No) a (Pt, Po) a (R,, N0), where <0,,(N1), M(NO)> and «(R,).
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4,,(R0)> are index pairs for S, in 41,,, and <0.,(P4), 42(Po)> is an index pair
for S,in(b,,.

Now S c int N,\No c int N,, so N, is an isolating neighborhood for
S in ¢,(N,). We take N;, R;, i = 0, 1, as in Lemma 23.28, where
0,(N;)> and 0 (R0)> are index pairs for S in N,. Again using
Lemma 23.28, we can find a neighborhood W2 of It in A(N,) such that if
,I E W2, then (N,, N') c (PI, Po) e (R;, R0), where P are the analogous
"P's" associated with these latter two index pairs.

Let W = W, n W2 ; then p c- W, W is open in A, and W c A(N) n A(N, )
e A(N). To complete the proof, we shall show that if A E W, then h(SA) = h(SR).
Thus for 1. e W, consider the sequence of maps

N1/N0 ;; P"it 0" 1 0T" N'IR' ,y N1INo PtIPo,

where i,, i2, and i3 are inclusion-induced maps, and ty is the homotopy
equivalence map between the index pairs (Ni. N0) and (N,, No) (for the
isolated invariant set S ), whose existence was proved in Theorem 23.12. We
re-write this sequence as

i3 ,_

Ni1No P,1Po N,INo Pi1Pt . (23.23)

For simplicity in notation, let's rewrite this last sequence in the form

where i and j are inclusion induced maps, f and g are homotopy equivalences
and f, is chosen such that f = f, a i, while g, is chosen so that g = g, -j.
(To see how to construct f,, for example, define fl(x) = f(x) if x e A, and
extend f, to B by the Tietze extension theorem ; see [Sp].) From Proposition
12.25, it follows that i is a homotopy equivalence. Referring back to (23.23).
this implies that

xNilN0 o,

so that h(S,) = h(SA), and the proof is complete. p
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§D. Some Further Remarks

In this final section we shall derive some consequences of our previous results
which will be useful in the applications.

1. Recall from §B, that if A, B, and C are compact spaces, and C c B c A,
then there is a (long) exact sequence of cohomology groups

-+H"-'(B.C)-+H"(A,B)-> H"(A,C) H"(B,C)- . (23.24)

Now suppose that No c N, e . . . c N. is a Morse filtration of the isolated
invariant set S (see Theorem 23.7). Then if 0 < p - I < p < p + 1 S n, we
have Np- , c NP c Np. ,and from (23.24) we obtain the (long) exact sequence

H"-t(Np.N,,-t)- H"(Np.,.1.N,)-+11"(Np-1,Nr-t)

-H"(N,.Np-,)-+
.'

Now as we have seen in §B, H(X, A) = H(X r'A) if (X. A) is a topological pair.
If we use this in the above sequence we obtain the important (long) exact
sequence

H"- t(NjVrNp- t) - If-(Np+ t /Np)

-' H"(!\tp+, N,_ t) H"(Np1Np- t)

relating the cohomologies of the indices of the Morse decomposition of S.
Now suppose n = 2, (M,, ,x'12) is a Morse decomposition of S and

No c N, c N2 is a filtration for (M,. M2). Then from Proposition 23.5 the
Mk are isolated invariant sets, and from Theorem 23.7. (N,, No) is an index
pair for M,, (N2, N,) is an index pair for M. and (N2, Nt,) is an index pair for
S. We thus obtain the exact sequence

... -+ H"- t(h(M,)) H"(h(M2)) -+ H"(h(S)) -. H"(h(M1)) - .... (23.25)

In particular. (23.25) applies to the case where M, and M2 are critical points
connected by an orbit; here S is the isolated invariant set consisting of the
two rest points together with the connecting orbit. The orbit is assumed to
run from M. to M,.

2. We point out that if we have a gradient-like equation in a local flow
having a finite rest point set C = (x,, x2, ... , x") contained in an isolat-
ing neighborhood N, then the rest points form a Morse decomposition
of I(N). To see this, let F be the gradient-like function, and let x E I(N)\.C.
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Then if t > 0, F(x t) > F(x), so F is constant on both the a- and w-limit set
of x. Now we can consider the flow on the compact set 1(N). Since this flow
is gradient-like. (:)(x) and a(x) must be rest points. Then the result follows
once we order C as (xi,x,,..., xi.), in such a way that if ,j > k, then
F(x;k) > F(xj,).

3. It is often important to know when an invariant set is isolated. This is a
difficult problem in general, but here is one useful criterion.

Theorem 23.32. Suppose that x0 is an isolated rest point in a local flow X of a
gradient-like equation. Then xo is an isolated invariant set.

Note that the gradient-like hypothesis is crucial ; a center for an equation
in RZ is an obvious counter-example, since every neighborhood of such a
point contains a nonconstant periodic solution.

Proof. Let N be a compact X-neighborhood of x0 for which x0 is the only rest
point. Let U be any X-neighborhood of x0, U 9 N. Then N',U is compact,
and if x e N',U, F(x 1) > F(x), so F(x 1) - F(x) ? b > 0 for some b > 0
and all x e N'\ U. If y e N and y - R c N, then w(y) is a rest point so w(y) =
xa e !(N). Similarly x(y) e !(N) and x(y) = x0 since a(y) is a rest point. Thus
y R c U in view of the above inequality. Since this holds for all U. we see

{.xo}.

4. We shall explicitly show how the Conley index generalizes the classical
Morse index. To this end, consider the equation x = VF defined on a closed
compact manifold M of dimension k. This equation defines a flow on M and
we take the local flow to be all of M.

Let the critical point set of F be C = {xt,..., As we have seen in §2
above. the elements in C are all Morse sets, M; = {x;}. If x; is a nondegenerate
rest point (Chapter 12, §C), then the equation near x; can be written as

z- = A-x- + 02(x),

z+ = A+x+ + 02(x),

where x = (x'. x*) e V_ x V+ = R", and where <A-x-, x > < 0 if x- * 0.
and <A, x', x' > > 0 if x * 0. Of course, dim V. is the Morse index of .x;.

For r > 0, let

B( = (xER":Ix-I <sandIx+l S s);

then

OBr. = (xeB1:Ix I = eorlx+I = c).
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IfXeclBr.and Ix-I = E, then

(SIX I2) = <x , A_x > + 03(c)

XI) +
03(r)

I, /IX-Y

_ r2I C-I-2I<x , A_X >I + 03(E).

It follows that for small E, (I x - 0 for all x- E £Br. Similarly,
(I x+ I2;'2)' > 0 for x' E BB,, if c is small. Thus if N, = B and No = aB,
n { I x' I = E}, then (N,, No) is an index pair for M. We shall prove that

h(M1) = where p = dim V+. (23.26)

This shows that the Conley index carries the same information as the Morse
index whenever the latter is defined.

To prove (23.26). write

N, = {Ix I <E} x {IX'1 <E}.

No={Ix IE} x {Ix-I=E}.

and observe that

N1/No {xeB:Ix' 15 E}f{xEB:IX+I = E},

a ball of dimension (dim V+) modulo its boundary, or as is easily seen, a
pointed sphere of dimension (dim V,.). This gives (23.26).

5. In this final section we shall consider a system of reaction-diffusion
equations on a bounded domain f2 and show how to fit this situation into the
general development of the index theory which we have given in this chapter.

Thus consider the initial-boundary-value problem for the system of
reaction-diffusion equations:

tt, = DA it + f (it), (x, t) E SZ x R+.

bit = 0, (x, t)t=M x R.,

u(x, 0) = uo(X), X E 11.

Here u = (ut, u2, ... , u"), each u; = u,(x, t), and f2 is a bounded domain in R"
having smooth boundary, 8f . D = D(x) is a smooth poisitive diagonal n x n
matrix-valued function, f is a smooth function, and b is a diagonal Dirichlet
or Neumann boundary operator; i.e., for all i, u, = 0 on c' S2 x R, or
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du,/dn = 0 on Ufl x R+, i = 1, 2, ..., n, where n is the outward pointing
normal vector on M. The function uo is assumed to be of class C1. Finally,
we assume that the system admits arbitrarily large bounded invariant regions
(see Chapter 14, §B).

In order to be able to apply the index theory to this system of partial
differential equations, we can first write it as an evolution equation

u' = Au + f (u), u(0) = uo, (23.27)

where u belongs to the space F; namely, the intersection of the space C' and
the domain of A with the space of functions satisfying the boundary condi-
tions.

If I" is the Banach space of continuous curves, 7: R -> L2(11), endowed with
the compact-open topology, then we may define a continuous flow on r by
setting, for every a E R,

(y'a)(t)=y(a+t) for all teR, jer.

This is called the translation flow on r.
We assume E is an invariant region for (23.27) such that uo(x) E E for all

x e 0. Let O(u) be a smooth compactly supported function satisfying O(u) _- 1
in a neighborhood of L, and set F(u) = O(u)f(u). It is known that W2(Q) is
continuously and densely embedded in L2(S2), and in fact, this embedding is
compact; see [Am 2]. Set

M= {uaL2(l):u(x)eEa.e.inQ};

then (23.27) is equivalent to

u' = Au + F(u), u(0) = uo e M n W22. (23.28)

Also, if u is a solution, then u(t) E M n W2(fl) for all t > 0, and u satisfies the
integral equation

u(t) = e"'uo + J ds. (23.29)
0

Since u(t) E M n WZ (Q) for all t >: 0, it follows from (23.29), in view of the
well-known properties of analytic semigroups ([Am 2], cf. Chap. 14, §D or
[Mx]), that the following estimates hold for all t, s >_ 0:

it(t)11w,cn 5 CO + Duo

u(t) - u(s)11 L,in) S C(1 + Uuo11 w,tn))It - sly,
(23.30)

for some v, 0 < v < 1, where c and v are independent of uo, t, and s. Con-
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versely, if u(t) is a solution of (23.29) which satisfies (23.30), then it is not hard
to show that u(t) solves (23.28), cf. [HS 1, 2].

Now define X c I' as follows: Let 0 < v < 1, and set

X = {7 E T: 7(t) E W2 (Q), y(0) E M n W22(n), IIy(t) - 7(S)IIL,(m) C,Il - -SIT,
and 1170) II wan) < C, for all s, t E R. and for t z 0; and
7 solves (23.28) with initial condition y(0)}.

Here C, and C., depend on y but not on t.
Observe that the elements in X are solutions of (23.28) which have their

"past histories" attached. The following lemma is needed to prove that X
defines a local flow.

Lemma 23.33. The embedding X e T is compact; thus X is locally compact
subset of F.

Proof. Let C, > 0; we will show that the bounded subset B = X n
{y: Ily(t)Ilw=(n) < C), for all t e R} is compact in T. Since WZ(Q) is compactly
embedded in L2(Q), the Arzela-Ascoli theorem implies that B (closure in 17)
is a compact subset of F. To complete the proof, we show that B = B. For
this, observe first that the closed unit ball, (u e W2(! n): 1Iu1lw;in) <- 1), is
closed in L2(0). Now let y e B; then 3y e B with y -+ y in r, and by our
observation, we have

117(1)11 C and I1y(t) - y(s)IIL,in) s C;It - sl",

for t, s e R. Moreover, M being closed in L2()) implies y(0) a M. Since y
satisfies (23.29). y is a solution of (23.28), and this completes the proof. 0

From the local existence and uniqueness of solutions of (23.28), we con-
clude that (X n U) - [0, e) c X for every open set u c r and every e > 0.
Since our lemma implies that X is locally compact, we conclude that X is a
local flow in F.

We remark that the replacement of f by F, as described above, can be
avoided if we choose to work in a scale of Banach spaces rather than WZ(S2)
and L2(fZ); see [CZ] for details.

NOTES

The results in this chapter are due to Conley and arc all contained in his
important monograph [Cy 2]. In §A and §B. we have followed the somewhat
different approach given by Conley and Zhender [CZ]. The development in
this paper focuses upon the Morse decomposition. In §C, we have also followed
Conley in [Cy 2], but we have expanded the version given there. The elegant
development of the Morse inequalities as given in §B is also taken from [CZ].
The material in §D is taken both from [Cy 2] and [CZ]; in particular we
have followed [CZ] in §5 with certain minor modifications.



Chapter 24

Travelling Waves

The Conley index is a double-edged sword : if it is ever shown to be nontrivial,
then this implies the existence of an orbit which stays in the isolating neigh-
borhood for all time; in this sense it gives an existence theorem. On the other
hand, being a Morse-type index, it also carries stability information concern-
ing the isolated invariant set. In this chapter we shall illustrate both of these
properties for a special class of solutions of partial differential equations called
travelling waves.

Travelling waves make up an important class of solutions of both reaction-
diffusion equations and nonlinear hyperbolic equations with "viscosity."
They are solutions of the form u = u(x - cr), where c is a constant, the speed
of the wave. Many phenomena arising in various physical or biological con-
texts can be modelled by travelling waves; for example, shock waves, nerve
impulses, and various oscillatory chemical reactions. The nice mathematical
feature associated with such solutions is that the problem often reduces to
one in ordinary differential equations. Of course this is not meant to imply
that the problem becomes trivial. Indeed, the phase space is usually of
dimension n ? 3, and typical problems are to find orbits with certain
distinguished properties : ones that connect rest points, orbits homoclinic to
a point, periodic solutions, etc.

In §A, we shall consider the so-called "shock-structure" problem for hyper-
bolic systems of conservation laws. The problem concerns the existence of
an orbit of a flow in R" which connects two rest points. We have already
considered such a problem in a simple (scalar) case in Chapter 15, §C. Here
we shall study the higher-dimensional case with the aid of the Conley index.
It will become apparent that this is precisely the right tool for solving the
problem. In §13 we shall give the complete solution of the shock structure
problem for an interesting physical case; namely, magneto-hydrodynamic
shock waves of arbitrary strength, for gases with general equations of state.
In this case the problem becomes a global one in R6, and the novelty is in
the construction of the isolated invariant set. The next section deals with the
existence of a periodic travelling wave for the Nagumo equations. Here too
it is not at all obvious how to apply the Conley index since the construction
of an isolating neighborhood is difficult-one simply doesn't know where
to look for it. The technique is to construct a "singular" periodic orbit which
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is obtained by setting some parameters equal to zero. If the singular orbit is
contained in an isolating block, then the block persists under perturbation.
This shows one where (and how!) to build an isolating neighborhood. The
periodic orbit is obtained by using the continuation property. In §D, we
consider steady-state solutions of reaction-diffusion equations (travelling
waves of zero speed), and we study the stability of these solutions, now con-
sidered as "rest points" of the full time dependent partial differential equa-
tion. Here we shall use the Conley index as a Morse-type index in order to
obtain precise stability statements. This is done by using the continuation
theorem together with certain exact sequences of cohomology groups deter-
mined by the Morse decompositions of the associated isolated invariant sets.
We again make use of the gradient-like nature of the equations. The final sec-
tion illustrates how neatly linearization techniques can be used to obtain stabil-
ity (or rather, instability) results for solutions of reaction-diffusion equations.

§A. The Structure of Weak Shock Waves

We consider the hyperbolic genuinely nonlinear system of conservation laws
(cf. Chapter 15) in n dependent variables

u, + f (u). = 0, (x, t) E R x R. , (24.1)

where dfM, the Jacobian matrix of f at u, has real and distinct eigenvalues
i.1(u) < < with corresponding left and right eigenvcctors 1., r,,
i = 1, 2, ... , n. We let (u,, It,, s) denote a k-shock wave solution of (23.1);
i.e., a solution of the form

1u,, ifx-st<0,
U,, ifx - st > 0,

where the jump condition

S(U, - u,) = Put) - f(u).

as well as the entropy conditions

AI(u,) < ... < itk- 1(u,) < S < (U,) < ... < An(UJ),

(24.2)

(24.3)

A1(,I,) < ... < A ,,(U,) < S < 1k+1(U,) < ... < A .(U,), (24.4)

arc assumed to hold. The problem is to determine whether the shock-wave
"admits structure." Namely, whether or not the equation (with "viscosity"
added)

it, + f (u) = nexx, e > 0, (x, t) e R x R+ , (24.5)
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admits a travelling wave solution of the form

(24.6)

which tends to the given shock wave solution (u,, u,; s) as a - 0. If u as defined
by (24.6) is to be solution of (24.5), then u must satisfy the system of ordinary
differential equations

- sut + f (U)4 = utt,
x - St

This equation can be integrated oncc to give

- su + f (u) + C = u4, (24.7)

where C is a constant. Now if u(5) is to converge to the given shock wave as
e - 0, then we see that we must have

lim u,, lim u,. (24.8)

It follows that the left-hand side of (24.7) vanishes at both u, and u,. Hence
using u, we find C = sit, - f(u), and (24.7) becomes

ut = - s(u - u) + f (u) - f (u). (24.9)

Observe that (24.3) shows that u, is also a rest point of the system. If we use
the notation

V(u) = -s(u - u,) + f(u) - f(u1,

then our problem is to find a solution of the ordinary differential equation

ut = V(u), (24.10)

which satisfies the "boundary" conditions (24.8). That is, we are to find an
orbit of (24.10) which "connects" the rest points u, and u,; such a solution is
called a heteroclinic orbit.

There is an alternate topological way of expressing the fact that two rest
points are connected by an orbit; namely, we can say that the stable mani-
folds of one intersects the unstable manifold of the other. If this situation is

I Recall that the stable manifold of a point is the manifold composed of the totality of orbits
which tend to the point in positive time, the unstable manifold is defined similarly.
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to be "structurally stable" (i.e., remain true under small perturbations),
then the sum of the dimensions of the stable and unstable manifolds must
exceed that of the space. It is interesting that the entropy inequalities (24.4),
allow us to explicitly compute these dimensions.

The linearized equations at u, and u, are easily calculated from (24.10) and
turn out to be

y' = (- sl + dff)y,

where either u - u,, or u = u,. The number of positive cigenvalues of the
matrix - sl + df,,, gives the dimension of the unstable manifold at u, while
the number of negative eigcnvalues is the dimension of the stable manifold
at u. Now using (24.4) we find that the unstable manifold at u, has dimension
n - k + 1, and the stable manifold at u, has dimension k ; their sum is n + 1.
It seems reasonable to suspect that in this case the problem (24.8), (24.10) is
solvable, and we shall indeed show that this contention is correct. Before
doing this however we need the following two results. The first one is similar
to Theorem 22.33.

Theorem 24.1. Let V be a vector field in R" which admits an isolating neighbor-
hood N conyaining precisely two rest points x1 and x2. If h(S(N)) t h(x,)
v h(x2), then there is an orbit y of V in N which is different from x1 and x2. If
V is also gradient-like in N, then y connects x1 and x2.

Proof. If xl and x2 were the only complete orbits in N. then S(N). the maximal
invariant set in N would be x, and x2 ; whence by the addition formula
(Theorem 22.31) h(S(N)) = h(x,) v h(x2). If V is gradient-like in N, then
there is a function P such that V. VP > 0 in N`%(x,, x2). Since y is compact.
P achieves both its maximum and minimum on y. Since VP vanishes at these
points, they must be x, and x2 (in some order); thus y connects them. El

in certain contexts we cannot show that our equations are gradient-like
in the entire isolating neighborhood so this theorem is not directly applicable.
Thus we must rely on a somewhat different strategy (albeit in the same spirit
as above). Namely, we have the following theorem. (See Chapter 22, §B for
the definitions.)

Theorem 24.2. Let V he a vector field in R" which admits an isolating block B.
Assume that there is a hypersurface r separating B into two isolating blocks
B, and B2 and that r - h; n b2 . If h(S(B)) # h(S(B,)) v h(S(B2)) then there
is an orbit y of V whose (0-limit set is in B2 and whose x-limit limit set is in B,.
k f in addition each B, contains precisely one rest point xi, and V is gradient-like
in each Bi, then y runs from x, to x2.
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Proof. The hypothesis on the indices implies that there is an orbit y of V in
B which is not contained in either B,. Since B, n B2 = F. y crosses from B,
into B2 precisely once and has its x- and w-limit sets in the required B;'s. The
gradient-like nature of V forces the orbit to connect the two rest points in
the stated direction.

We return now to the shock-structure problem. It is convenient to con-
sider u, = uo as fixed and allow u, = u(p) to vary along the shock curve ; thus
we may assume p 5 0, p is sufficiently small, and uo = u(0), (see Chapter 17,
§B). We know that in addition to (24.4) the following conditions hold :

(i) u(p) = p[rk + u(p)], where rk = rk(uo),
(ii) u(p) = O(p).

(iii) s(p) = ).k + p12 + O(p2), where AA = 4010),
(iv) s(p)(u(p) - uo) = P "(A - f (uo)

Furthermore there is no loss in generality if we assume that uo = f(uo) = 0;
then (24.9) becomes

it, = -s(p)u + f(u), (24.11)

Using (iv) we see u = 0, and u = u(p) are rest points, while the simplicity of
ik together with (iii) shows that there is a ball around u = 0 such that for p
sufficiently small these are the only zeros of f (u) - s(p)u in this ball. In what
follows we shall restrict our attention to this ball and to these values of p.

Let v = (v1..... be coordinates relative to the basis (r,, ... , and
define v_ _ (v1....,v.- ), and v+ = (vk+ ,. Then (24.11) takes the
form

v'_ = A-(p)v- + 02(u),

r'k = Qk - s(p)) vk + 2Ikd2f0(v, v) + 03(r.), (24.12)

v+ = A, (p)v " + 02(v).

From the entropy inequalities (24.4) (with u, = uo and u, = u(p)), we see that
dfo - s(p)I, restricted to the span of r...... rk_ , has negative eigenvalues.
We may thus assume that A_(p) is (uniformly) negative definite for all small
p. Similarly, A+(p) can be assumed to be positive definite.

We change variables, w = p - 'v, and extend our decompositions by
replacing v t and vk by w± and wk, respectively. Using the relations

lkd2f(v,v)=(vk)2lkd2 f(rk,rk)+(IIv+II + 11v-i.;)IIv110(1)

= p2[(W''k)2 +
I V _

+
1,4.+

II)(w'I)O(1)],
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s(P) = Ak +
2

+ p20(1),

(24.12) becomes

»_ = A_w - + p02(w),

wA = zP[(Iv,)2 - wk] + P[(II IV- Ii IV- II) II w 1'1 0(1)] + P20300,

tt''} = A, tt'+ + p02(w). (24.13)

We shall now construct isolating blocks for these equations. For a given
e > 0 we define three closed sets in w-space by:

B = {w: Iw - I S c, I w+I 5 s, - 2 5 tvk

B1 = {WEB: wk < 2},

B2 = {we B: wk z i}.

Lemma 24.3. For sufficiently small p and sufficiently small a (e independent of
p), the sets B1, B21 and B are isolating blocks.

Proof. Note that if w e eB, then either I w s or I w +. (= a or else wk = - z
or Wk= .

On the setlw_I=r.,

(Iw_12),=2<IV _,A_w_ > +p0(l)< -ce2+p0(1)

for some constant c > 0. Clearly this derivative is negative for sufficiently
small p. Thus {(w _ I = e) = b -; similarly, {I w+ I = e} a b+. Next we have

K'k = PLtvk - Wk + (II tv+ II + 11w- II) II W 11 00) + P03(tv)]f 2
= P[tt'k - wk + Pe0(1)],

if - 5 vk 5 j and Itt'+ 12 < 2e, 1tt'_ 12 < 2e. Since p < 0, it is easy to check
that for c sufficiently small (independent of p), and p sufficiently small, that
IV,, 'will be negative for wk = , positive for wk = - 2, and negative for tvk = .

This completes the proof. 0

Now let S S2, and S denote the maximal invariant sets in B1, B2, and B.
respectively. We shall compute the indices of these sets. This is the main
content of the next lemma.
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Lemma 24.4.(a)h(S,)=h(S2)and h(S)
(b) b; n b- = B n (wk = 3 }.

Proof. From the last lemma we have

b; =B,a}vB,n{Iwk-1I=i},
K= Bz n (I1t°, I = F},

b, =B,n(Iw-I=E},

bz B2r'{k'-I =s}uBZn{Iwk - 1I=2
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b+

h =Bn(I'°-I=s}vBn (wk=i}

It is clear from this that (b) holds. Next, since the k-ball Dk is contractible
(i.e., has the homotopy type of a point),

h(S2) = [B2Ibi l (Dk x D"-k)I(Dk x S"-k-1) (Dn-krSn-k-1) x Dk

Similarly,

h(S1) = [B1/bl l - (Dk+1 x Dn-k-1)/(Dk41 X
S"..k-2) -, J;n-k-1

Finally to see that Bfb+ has trivial homotopy type, we note that b+ is
contractible in OB so that h(S) = 0. That is, the pair (B, b+) is homeomorphic
to Dk - ' x (D"-k+',J), where J is the boundary of the (n - k + 1)-cube
minus one of its faces. Thus D"-k+' can be deformed into J along the lines
of the standard projection 0 from an exterior point: see Figure 24.1. C]

J x-4(x)

Figure 24.1
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As a consequence of Lemma 24.4 and Theorem 24.2 we have the following
corollary.

Corollary 24.5. There is an orbit of (24.9) which has its w-limit set in B2 and its
a-limit set in B,.

Observe now that 0c- B, and by moving the hyperplane w,, = 2 closer to
0, if necessary, we may assume that u(p) is in B2. As we have remarked earlier,
these are the only rest points in B. We can now state our theorem.

Theorem 24.6. Let it, and u, be two states connected by a shock-wave solution
of the hyperbolic genuinely nonlinear system (24.1). If I u, - tt,I is sufficiently
small,2 then this shock has structure; i.e., the problem (24.8), (24.9) has a
solution.

Proof. In view of the last corollary and Lemma 24.4 it suffices to show that
V is gradient-like in each B,, i = 1, 2. We shall only give the details for B, ;
the assertion for B2 will follow by a symmetric argument.

The function we choose is

P(w)=<w-, A. w >+<w,..A,;v.,>+wk.

If we differentiate P along orbits and use the fact that A t are nonsingular
and that A.. are positive definite, we find

P(Kw)' ;2: c(I w- 12 + I w+ 12 + p t'k) + p(I W_ I + I11,- I)I wl 20(1),

where the constant c depends on A A2 , is well as on w - w,, in the middle
equation in (24.13). The error term includes the error term in all three
equations. Replacing s by a smaller one if necessary, we see that

('1Iw-12+111',12+p11'k)+peIwI2O(1)>0

for sufficiently small a and p. This completes the proof. 0

§B. The Structure of Magnetohydrodynamic Shock Waves

As another application of the Conley index, in particular of Theorem 24.1,
we will consider the structure problem for magnetohydrodynamic shock
waves of arbitrary strength. An essential difference between this problem
and the one considered in §A, is that in the latter we were able to explicitly
construct an isolating block. This was due to the fact that a (weak)k-shock

= In this generality, we know that only "weak" shocks exist; see Chapter 17, Theorem 17.11.
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singles out a specific direction. Namely, for lu, - u,i sufficiently small, we
know that it, is approximately in the direction of the r,, eigenvector at u,. In
the problem which we consider here, the rest points arc not close, the problem
is a global one, and we must construct isolating neighborhoods in a more
general way. Furthermore, there is the added complication of having four
rest points rather than two.

We shall write down the equations and refer the reader to [KL] for details
concerning their derivation. The problem is one in R6; namely let

it = (x,, x2, v1, y2, V. T) = (x. y, V. T) E R6,

where x, and y, are mechanical variables (velocity components), x2 and y2
are electromagnetic variables (components of the magnetic field), and V and
T denote thermodynamic variables, the specific volume and temperature.
respectively. Of course these latter two variables are to be positive.

Let A denote the 2 x 2 matrix

A = [o
1 -6

V],

where b is a positive constant. Q and P arc real-valued functions defined by

V2
Q = i<Ax, x) + I<Ay, y) + ex2 + 2 - JV + E - f(V, T),

P=Q, (24.14)

where E2, J, and E are constants and f(V, T) is the Helmholtz free energy
function satisfying

fv=p and fT=s,

where p and s denote the pressure and entropy, respectively. In addition the
internal energy e is obtained from the formula

e = f + Ts.

The dissipitative mechanisms are components of the "viscosity" vector

A = (p, v, lit, K),

where it, v, it,, and x denote viscosity, second viscosity, magnetic viscosity
and thermal conductivity, respectively; they are all taken to be positive
constants. We define the "viscosity matrix " B = B(T, A.) by

B = T- 1 diag(P, v, p, v, p 1, KT -' ).
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In these terms our differential equations take the form

Bu' = VP(u).

24. Travelling Waves

(24.15)

In [Gr] it is shown that the system admits (at most!) four rest points u;,
0:5 i:5 3 all of which are nondegenerate, with respective indices h(u;) = E3-`,
0 < i < 3. Furthermore, P(u,) < P(u,+ for i = 0, 1, and 2. The problem is
to show that there is an orbit of (24.15) running from u to u,, and also one
running from uz to u3. The transition uo -' u, is called the "slow" mhd
shock, and u2 - 113 is the "fast" mhd shock. Thus, we are to show that both
fast and slow mhd shocks, of arbitrary strength, have structure.

Note that if we differentiate P along orbits of (24.15) we get

P'=(VP,u')=(VP,B-'VP)>0

in V, T > 0, except at the critical points of P3. We thus have

Fact 1. The system (24.15) is gradient-like in the region V, T > 0.

Before proceeding further we must place the following (rather reasonable)
assumptions on the thermodynamic functions:

(Hg) p, e, and s are positive in V, 7' > 0.
(Hb) For fixedT > 0, p(V, T) -+ oo as V -+ 0.
(He) Given Vo, K > 0, there is a To > 0 such that if 0 < V 5 VO, and

Tz To, then e(V, T) > K.
(Hd) For 0 < V < Vo, s(V, T) -+ 0, uniformly in V as T --+ 0.
(He) Ifp=p(V.s),then pi, <0.p,,,>0,andps> 0.

A few comments are in order concerning these hypotheses. In (H,), p is
naturally positive, and e and s are only defined up to an additive constant;
thus there is no loss in generality to assume that they are positive. (Hb) is
equivalent to the fact that for T fixed, p -+ oo when the density tends to
infinity. (He) says that for bounded volume, the internal energy can be made
arbitrarily large for sufficiently high temperature. (Hd) is called Nernst's third
law of thermodynamics. It can be replaced by

(H;,) Ifs = s(V, T), then sv > 0 and ST > 0, and for fixed V > 0, s(V, T)
tends to a limit which is independent of V as T -+ 0.

Finally, we have had occasion to use (He) in Chapter 18, §A; pv < 0 is forced
upon us by thermodynamics, while the latter two inequalities are usually
referred to as Weyl's hypotheses.

3 P can be considered as a "generalized entropy."
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We can rewrite equations (24.15) as

Box' =Ax+g, Boy'=Ay,

P,V'=Z(xI+p1)+V-J+p(V,T),
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?T'= -Q + Ts = -(Q+f)+e, (24.16)

where Bo = diag(p, v), and E = (0, r). Using these we find if e # 0, then at the
rest points the following equations must hold:

V'=F1(V,T)= e2(V-62)-2+V-J+p(V,T)=0,

T' = F2(V, T) = Ic2(V - 62)-' - J V2 + JV - E + e(V, T) = 0.

Since dF,JcT = pr > 0, and 8F2/ T = eT > 0, it follows that Fl = 0 and
F2 = 0 are both graphs of functions T = T,( V), i = 1, 2. Using our hypotheses,
they can be depicted as in Figure 24.2, where u, is the projection of u, onto
V - T space, i = 1, 2, 3, 4.

Figure 24.2

Observe that the constant E appears in the expression for F2, but not in
F,. As E - + oo, both components of the curve F2 = 0 pull off of the respect-
ive components of F, = 0, so that we have

Fact 2. For sufficiently large E the equations (24.15) admit no rest points.

Now fix both the viscosity vector A and the constant E and define S' = S'
E) to be the set of points on complete bounded orbits of (24.15) contained

in V, T > 0. We then have the following proposition.

Proposition 24.7. S'(Al, E) is a bounded set, for each fixed i. and E.
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Proof. Observe that if on some bounded orbit V exceeded J. then V' > 0 at
that point so V -* x, on the orbit and thus the orbit is not in S'. Hence
V < Jon S'. We shall show that I x I + I 'I is bounded on S' in the next lemma.
Assuming this, it follows from (21.14) that (Q + f) is bounded on S'. Then
the equation T' = -(Q + f) + e, together with hypothesis (He) implies that
T is hounded on S'. E]

Lemma 24.8. I x I + I y1 is bounded on S' = S'(a., E).

Proof. Since V < J, we see that the matrix A is bounded. It follows easily
from this that x, say, can decrease at most exponentially on orbits in S'. Thus
by taking x(0) sufficiently large, x(t) cannot get arbitrarily small in a pre-
assigned time t. Hence given any x > 0, and to > 0, there is an M > 0 such
that on any orbit segment starting at a point xo, with Ixol > M, which has
time length to, either V sometimes exceeds J or Ix(t)I ? K, 0 < t 5 to.

Now let 0 = arctan(x2!x,), 0 = 0(mod 2n) on the positive x,-axis. A
straightforward calculation gives

0' a cos20 +
V I sin O cos 0 + sine 0 + E cos 0.[ V ( V l} /l V I X I

Now for I x I sufficiently large, say I x I >- K, we can find constants c, < 0, and
a > 0, such that 0' S c, < 0, if 10 1 < a; see Figure 24.3.

X2#

Figure 24.3

Thus if V 5 J and I x I > K, 0 - 00 5 c,t, so in the cone x2 5 cIxI2 (i.e.,
(OI < a), t < 2a!(-c,). That is, any orbit segment, on which V 5 J, and
I X I >- 7c, either stays out of the cone or else spends a time in the cone which is
bounded independently of the length of the orbit segment. Having crossed
out of the cone, it cannot re-enter it.

We choose K so large that CK2 >- 2(J +,u,), and let to = J + 2a/(-c,).
Then by what we have said above, we can find an M > 0 such that if Ixo I > M,
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then along the orbit segment starting at xo and running for a time length to,
either V sometimes exceeds J or Ix(t)I Z K, 0 5 t 5 to. But in S'. we know
that the former possibility cannot occur; hence Ix(t)I2 >- K2 >- 2(J + µ,)fc,
05t5to ,ifIX(0)I=IxoI>M.

We shall show IxI 5 M on S'. Suppose not; then there is an orbit in S'
which starts at x(0) = xo with IxoI > M, and hence by what we have just
shown, Ix(t)12 z K2 2(J + z1)/c, 0 S t 5 to. If the orbit segment is ever
in the cone, it gets out in time 2a/(-c,) and thus since to = J + 2x/(-c,),
x2(t)fc >- Ix(t)I2 z 2(J + u,)Ic for a time interval at least J. If the orbit
segment is always outside the cone, then x2(1)2 z cIx(t)I2 >- 2(J + p,) for a
time interval at least J; i.e., 'x2(t)2 >- J + p, for a time interval at least J.
Thus in every case, if Ix(0)I > M. then Zx2(t)2 >- J + p, for an interval of
time equal to J. Therefore,

/it V,=ix}+ )i+V+p-JZZx2
for a J-time interval; i.e., V' > 1 for a J-time interval. Thus, for some a,

J

+J
J soV(a+J)>J.

a

Such an orbit cannot lie in S'. Hence IxI 5 M (and similarly, I yI 5 M), on
S' This completes the proof. Q

We now shall construct the isolated invariant set. For this we let R denote
the set of rest points of (24.15). If it e R then T'(u) = 0 so - Q + Ts = 0:
whence at it, s = Q/T = P. Thus min sIR = min PI R is bounded away from
zero since R is a finite set. Using (Hd), we can find a neighborhood U of the
interval [0, J] in V - T space, and a real number K such that

min sIit >K>maxsIv. (24.17)

For fixed (A, E) let S = S(A, E) be the set of all points on complete orbits
of (24.15) contained in the set {u: V > 0, T > 0, P > K}.

Proposition 24.9. For each fixed (i., E), S(A, E) is an isolated invariant set and
the sets {S(A, E)} are related by continuation.

Proof. Fix the pair (A, E) and observe that S(A, E) e S'(A, E). Thus S(i., E) is a
bounded invariant set. If we can show that S(A, E) is also closed, then it will
be compact and thus isolated. Now in order to show that S(1., E) is closed it
suffices to show that it has no limit points on the sets {V = 0}, {T = 0}, or
(P = K}.

Suppose first that S = S(A, E) has a limit point in the set { V = 0). Then
there is a sequence {u;,} c S such that the V-coordinates converge to zero.
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Since these points lie on orbits in S, we can find a subsequence a {u;,}
whose V-coordinates tend to zero and moreover 0. From (24.16)
we have at u,,,

(24.18)
2 2

Since u E S, T S K for some K independent of n. If {T.} did not converge to
zero, then some subsequence of the T

would co along this sequence, thus violating
(24.18). It follows that there is a sequence .of points whose T coordinates
converge to zero and at which T' = 0. Since T' = -Q + Ts, we have
s = QT` = P, at these points. But these points have their (V, T) coordi-
nates eventually in U, so that s, and hence P, is less than a at these points-
they are therefore not in S. We see then that S has no limit points in either of
the sets V = 0 or T = 0.

Now suppose that S has a limit point in the set {P = IC}. At such a point,
the derivative of P along the orbit is well defined (since neither V nor T is
zero) and positive, since (24.17) shows that this point is obviously not a critical
point of P. Hence this point, as well as a neighborhood of it, leaves the set
P >- K as t decreases. Thus no points of S can lie in this neighborhood ; this
contradiction completes the proof that S is closed.

We have therefore proved that S = S(A, E) is compact for each (A, E). Let
N = N(A, E) be a bounded neighborhood of S(7., E); JO is compact and
S e int N. Thus N is an isolating neighborhood and S is the maximal in-
variant set in N. It follows that S is an isolated invariant set. Since it is obvious
that N is an isolating neighborhood for all nearby flows, the sets S(A, E) are
all related by continuation. This completes the proof of the proposition. 0

For large E, S(A, E) has no rest points of (24.15) (Fact 2), and thus using
the gradient-like nature of the flow (Fact 1), S(J., E) is empty for sufficiently
large E. It follows that h(S(., E)) = 0, for all E and all A.

Now choose a constant c such that P(u,) < c < P(u2), and define

So, =Sn{P<c}, S23=Sn{P>c}.

Then the sets Sa, and S23 are isolated invariant sets, and have index 0.
Moreover, {u0, u,} c Sol and {u2, u3} a S. Since

h(uo) v h(u,) = 1° v E` 0,

and similarly, h(u2) v h(u3) * 0, it follows from Theorem 24.1 that there
exists an orbit of (24.15) running from ua to u,, as well as one running from
u2 to u3. We have therefore proved the following theorem.

Theorem 24.10. Assume that hypotheses (H.HH,) hold, and that A has positive
entries. Then fast and slow mhd shocks of arbitrary strength have structure.



3C. Penodic i ravelling Waves 521

§C. Periodic Travelling Waves

The example which we shall discuss here concerns the Nagumo equations:

u,=w, v,=v'Xr+f(v)-u, E>0, (24.19)

and the problem is to find a periodic travelling wave solution. That is, we seek
a periodic solution of (24.19) which depends only on the variable c = x + 01.
The significant difference now from the previous examples is that here 0 is
not given ; we must deal with a one-parameter family of flows.

Our approach to the problem is based on the fact that we can assume E
is small so that t' changes more rapidly than u. The idea is to first consider a
limiting case where E = 0. so that the slow variable u doesn't change at all.
The effect of this is that we are able to consider a lower-dimensional system,
which however, depends on more parameters. We shall construct "singular "
orbits for the limiting system ; these will he contained in isolating blocks
which persist under perturbation to small E > 0. The isolating blocks will
be shown to have nontrivial index so that they contain complete orbits in
their interior. A continuation argument is needed to show that periodic
orbits indeed exist.

Let 5 = x + Or. then in this variable if prime denotes d/di;, (24.19) becomes

Ou'=a,, Or'=e"+f(c)-u.

If we let a = EJO, and w = c', the equations can be written as the following
first-ordcr system:

u' = 1V, V' = W. tic' = Ow + it - f M. (24.20)

We assume that f is a cubic polynomial ; f and its integral F are depicted in
Figure 24.4. We note that (24.20) admits the origin as the only rest point.

Now let's consider the limiting case s = 0. The equations become

u'=0, v,'=w, w'=OW +it -f(v), (24.21)

-u

Figure 24.4
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Figure 24.5

which has the rest point set {(u, v, w): w = 0, u = f(v)}. We now discuss the
pair of equations obtained from (24.21).

V, = w, w' = Ow + u - f (v), (24.22)

where both 0 and u will be thought of as parameters.
If 0 = 0, then these equations go over into the Hamiltonian system

with Hamiltonian

d = w, w = u - f (v) (24.23)

H(v, w) =
ti'z

+ F(v) - uv. (24.24)

For u = 0, they have the phase portrait depicted in Figure 24.5. Note that
there is a bounded orbit y which "begins" and "ends" at the hyperbolic
rest point (0, 0); such an orbit is called a homoclinic orbit. Now let u = u > 0
be chosen in such a way that the two maxima of F - i`m are the same (see
Figure 24.6); this is equivalent to saying that the positive and negative

v

Figure 24.6
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"humps" off - it have the same area. The phase portrait for equations
(24.23). (u = u), is given in Figure 24.7. Note that here too there are bounded
orbits, , and 2, which begin and end in hyperbolic rest points: i.e.. the so-
called heteroelinic orbits.

We next consider the equations (24.22), where 0 > 0. The Hamiltonian
(24.24) now increases along orbits; i.e., H' = Ow', and the phase portrait
can be drawn using the level curves of H. For example, if 0 is taken to be
small and positive, then the phase portrait of

v, = IV, w' = Ow + u - fl o")

is drawn in Figure 24.8, where 7, and y2 are the dotted lines.
Observe that if u > 0, the graphs off(r) - it can be portrayed as in Figure

24.9. That is, the "middle" graph is f(v) - i, the higher one is f(r) - u,
u < u and the lower one is f(v) - u, u > u. It follows easily that since If., < 0
in v > 0. that for small positive 0, there arc unique values u(0) and u(O) with
u(9) > u > u(0) such that for these values of u there arc homoclinic orbits

Figure 24.8
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f (V) - u

Figure 24.9
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y, and 72 which connect the two hyperbolic rest points and run in opposite
directions: these are depicted in Figure 24.10(a) and (b). Here the level curves
of H are the dotted lines, and the homoclinic orbits are as depicted.

Note that as 0 - 0, both u(0) and u(0) tend to it, and these phase portraits
tend to that of Figure 24.7. On the other hand as 0 increases, 01(0) increases
and u(0) decreases until there is a value 0 = 0* for which tu(0*) = 0. From
now on, we assume that 0 < 0 < 0*.

For these values of 0 we now consider the full set of equations (24.20).
With reference to Figure 24.11, we have portrayed the rest point set when
c = 0 by the cubic curve and the orbits yt and Y2 are the ones from Figure
24.10(a) and (b) lying in their respectively u-levels. The depicted dotted simple
closed curve is the "singular" periodic solution. Note that the portions in
the cubic have the "correct" direction; this follows from the equation
On' = ctn. The contention is that for small e > 0, there is a periodic orbit near
the singular one, which follows it around in the same direction. To show this,
we will build an isolating block around this singular orbit.

(a) u = u(0) > u
i

(b) u=u(0)<u
Figure 24.10
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Figure 24.11
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Consider first the right-hand vertical are in Figure 24.11. Since the critical
points for r. = 0 arc hyperbolic, it follows that we can build an isolating block
around this arc. Thus consider the tube with square cross-section around this
are, as shown in Figure 24.12(a); in Figure 24.12(b) is given a typical cross-
section, the projection on it = 0. The fact that the arrows are drawn correctly
in Figure 24.12(b), follows from a straightforward linearization argument.
Thus, if e > 0, the orbits cross vertically upward through the bottom and
top of the tube (since v > 0 so u' > 0), and on the "sides" of the tube, orbits
either strictly enter or strictly leave. A similar tube can be built around the
left-hand vertical arc.

We now consider the horizontal orbits. In order to sec how to construct
tubes around these, it is necessary to determine how the orbits near the un-
stable manifolds of the hyperbolic rest points behave for it values close to
0(0) and u(9). For example, if u is close to ii(O), then from Figure 24.10(a), we
see that the behavior can be depicted as in Figure 24.13. There is of course an
analogous picture if it is near y(O).

We call attention to the fact that the "singular" flows are stable under
perturbation, and in fact are "isolated." Thus it is quite reasonable to expect
that for small s > 0, there should be a periodic orbit near the singular one.

(b)

Figure 24.12
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Figure 24.13
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To build a tube around the "horizontal" arcs, we can consider Figure
24.14(a) (which is obtained from the last diagram). In this picture we show
face 4 of the right-hand tube, and in it the vertical cubic arc consisting of
points on the unstable manifold of the corresponding hyperbolic points at
each u level (Figure 24.12). The point at level 0(0) is carried into an entering
face of the left-hand tube, and the rest of the arc at that level is carried by the
flow in such a way that it stretches across this tube. In Figure 24.14(b) is
shown a cross section of the right-hand (horizontal) tube (abed). The "dots"
are all at level u(0). We can make this construction in such a way that orbits
(strictly) enter the sides c, c', a, and a', and (strictly) exit the sides b, b', d, and
d'. Of course, we must check those points which lie on the boundary of both
a vertical and horizontal tube; these can be a strict exit set for one tube and
a strict entrance set for another tube. Such points could give internal tan-
gencies for the union; cf. Figure 24.15. However, using Figures 24.12 and
24.13, we can check that such situations do not occur.

It follows that the union of the tubes is an isolating block B which has the
topological type of a solid torus T. Furthermore, by examining the diagrams
it is easy to see that the set of exit points, h', consists of two disjoint annuli
on the torus, see Figure 24.16(a). Let S denote the maximal invariant set in B.
In order to show that S is nonempty, it suffices to show that h(S) b (Theo-
rem 22.32). This is perhaps most easily done by showing that some cohomol-
ogy group of Bf h' is nonzero (recall that homotopic spaces have isomorphic

cubic curve cubic curve

(a)
(b)

Figure 24.14
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exit set for this tube

entrance sct for this tube

figure 24.15
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cohomology groups; see §D in Chapter 12). We shall in fact show that
HZ(B;-'h+) 0. To this end, recall that if A is a closed subset of a topological
space X, we have an exact sequence of cohomology groups (see Chapter 23.
§B, equation (23.16))

...-

Now if n > 1, H2(X,r1A) H2(X, A). In our case X is the solid torus, B,
and A is the disjoint union of two circles, A = S' S'. Now if n = 1, we
have the exact sequence

H'(X) H'(A) - H2(X jA).

Since B is homotopic to a circle, it follows that H'(X) = Z. Also (Chapter 12,
§D, 4C(vi)) H'(S' L S') =L ® Z. Since these latter two groups are nor
isomorphic, we conclude that H2(B/6`) = H2(X/A) # 0. This implies that
h(S) # 0.

-'I
(a)

(b)

Q E

(c)

(d) (c) (f )

Figure 24.16
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It is instructive to go a little further and actually compute the homotopy
type of B(b+. We can depict the two circles -i, and f2 on the boundary of T
in Figure 24.16(a). (y, is on the "outer" boundary. and Y2 is on the "inner"
one). We shall do the identification of b+ to a point in two steps. First we
collapse the inner circle to a point. P, obtaining a "pinched ball": (b). Then
up to hornotopy type, we obtain a pinched disk: (c). In order to collapse y,,
the boundary of this disk, we adjoin a cone over ;, : (d), where the point Q
now is identified with y,. In order to identify P and Q, we attach an arc a
between them: (e). Notice that we have E2 (the shaded part), together with
the arc a. Now if we move P up to the point Q, we finally obtain the desired
homotopy type: (f); namely, E2 v V; i.e., h(S) = E= V E'.

Now let y c- S. and note that orbits cannot turn around in B. i.e.. they have
positive angular velocity. Let D he a disk in B which is a surface of section
for the flow, i.e., the Poincare map T (the first return map; sec Chapter 12,
§A) is well defined on S r D. Let U be the set of points on D such that u e U
implies Tu e U. Then U is open relative to D. and U gets mapped into
D-,(D n 'B). Thus the degree of T is well defined on U (see Chapter 12, §A),
since B is a block.

Observe now that again since B is an isolating block, if we continue the
equations always maintaining a block throughout the deformation, then the
degree of the" continued " map T continues to be defined ; this follows from
the homotopy invariance of the degree. Note too that this degree stays
constant throughout the deformation. Thus in order to prove the existence
of a periodic travelling wave, it suffices to show that the degree of T is non-
zero, and to do this, we shall continue our equations to a system in which we
can make the computations; namely, to the van der Pol equations "crossed
with a repelling critical point."

We consider the deformation

u =a(v-a). c'=w, w' =k(1w+u-f(cp,

where 0 5 a 5 h, and k > 1. We recall that v = b is the smallest positive
root off; see Figure 24.4. If a = h and k is very large then we see that our
system continues to one in which w moves very quickly to the plane w = 0,
and in this plane, the equations go over into the van der Pol equations. The
corresponding set B continues to a neighborhood of the periodic orbit,
crossed with an interval, and the degree of the corresponding Poincare map
is nonzero (it is well known that the van der Pol equations admit a unique
attracting periodic orbit). The same is therefore true of Tiu, and thus our
original equations admit a periodic travelling wave. This completes the
proof. 0

We remark that one can use a similar technique to find a "homoclinic"
travelling wave for the Nagumo equations (24.19); that is a solution of
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(24.20) which tends to the rest point (0, 0. 0) as see [Ca 1. Ha 2].
We shall outline this approach.

As before, we first consider the limiting case c = 0: namely (24.22). For
O > 0. the equations are gradient-like, and have 1, 2. or 3 rest points, depend-
ing on u. Consider those u-values such that there are precisely three rest
points. Two of these are hyperbolic, and for some values of u and 0, these
rest points are connected by an orbit oft he corresponding equation. A "limit "
homoclinic orbit is found which consists of two arcs connecting the hyper-
bolic points, and two arcs contained in the critical point set ; w - 0, it
as before.

To find this "limit "homoclinic orbit, let u = 0, and find O = 0* such that
the flow looks like Figure 24.17(a). Now fix O = O*, and find it = u" such

(1

Figure 24.1?

1,

that the corresponding flow looks like Figure 24.17(h). At this point we can
see the "limiting" orbit in it, v, w space. with 0 = 0*: see Figure 24.18.

To show that this is a limit of homoclinic orbits as c 0, one has to con-
struct isolating blocks about the "limiting" orbit as see what happens as 0
varies about 0* and u varies about a*. An argument similar to the previous
one gives the desired result. We omit the details.

P.
c

Figure 24 IS
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We remark that this construction also works for the Fitz-Hugh-Nagumo
equations; see [Cy 1], for small e. We have seen in Chapter 14, §E, that
"small" initial data for these equations leads to solutions which tend to zero
as t - oo ; here we see that "big" solutions exist. This gives an example of
the existence of a "threshold" phenomenon.

§D. Stability of Steady-State Solutions

We propose to now use the Conley index as a Morse-type index in order to
obtain stability results. Thus we shall consider a scalar reaction-diffusion
equation

u,=uxx+ f(u), lxi<L, t > 0, (24.25)

in a single space variable. It will be especially convenient to consider this
equation as an ordinary differential equation, u' = A(u), in an appropriate
infinite-dimensional space. The rest points of this latter equation are just the
steady-state solutions of (24.25); i.e., solutions of

U" + f (u) = 0, lx < L, (24.26)

where prime denotes differentiation with respect to x.
For certain interesting nonlinear functions f, we shall show that solutions

of(24.26) are isolated rest points of (24.25). Under rather general homogeneous
boundary conditions, the system (24.25) is gradient-like, so that these rest
points are actually isolated invariant sets (Theorem 23.32). The index of the
rest points will be obtained either by continuation or by some other topolo-
logical technique such as computing it directly from an exact sequence of
cohomology groups. This will allow us to find the precise dimension of the
unstable manifolds of each of the steady-state solutions. Our techniques will
be sufficiently general so as to allow us to obtain, qualitatively at least, the
global picture of all solutions of (24.25), in certain cases.

We begin by considering (24.25) together with the homogeneous boundary
conditions in : > 0,

au(±L, r) - t) = 0. (24.27)

Here a and fi are constants, a2 + /32 = 1. If we let m be the functional

(u)(t) =
J

a
[zuu,,,, + F(u)) dx, (24.28)

L
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where F' = f, then differentiating (D with respect to t gives

L

0r = - (2uuxxe + Zuruxx + f(u)u,) dx
L

L

(2uxxu, + 2uruxx + f(u)u,) dx + IUU,x`LL - 2uxu,lLL

=
J

L [uuxx + f(u)]2 dx.
L
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The boundary terms vanish since au - flux = 0, so au, - flu,, = 0 at x = ± L.
Thus D, > 0 except on the solutions of (24.26); i.e., except at the "rest points"
of (24.25). This proves the following proposition:

Proposition 24.11. The equation (24.25) together with the boundary conditions
(24.27) is gradient-like with respect to the function 4y.

We now turn to the Dirichlet problem; i.e., we consider (24.25) together
with the boundary conditions

u(fL,t)=0, t>0. (24.29)

We take for f the cubic polynomial

f(u) = -u(u-a)(u- 1), 0<a< (24.30)

The steady-state solutions satisfy (24.26) together with the boundary condi-
tions

u(f L) = 0. (24.31)

We note that u = 0 is always (i.e., for all L), a steady-state solution.
In Chapter 13, §D, we showed that all of the nonconstant solutions of

(24.26), (24.31) can be depicted as in Figure 24.19. That is, if L > Lo, there
are precisely two such solutions, u1 and u2; if L < Lo there are no non-
constant solutions; while if L = Lo, there is precisely one, u, which is ob-
viously degenerate. If L < Lo, then u = 0 is easily seen to be stable, as can
be checked by linearization (see Chapter 11). Since the flow is gradient-like,
and the interval 0 < u 5 1 is an attracting region for solutions of (24.25),
(24.29) (by Corollary 14.8), we see that this zero solution is, in fact, a global
attractor for all solutions of the partial differential equation if L < Lo. In
what follows, we shall assume that L > Lo.
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Pi P2

Figure 24.19
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P

In this case, we let ul and u2 be two typical nonconstant solutions of(24.26),
(24.31), and we shall determine the dimensions of their unstable manifolds.
To this end we first compute their Conley indices. In order to show that the
theory of the last chapter is applicable, we must show that the local flow
determined by (24.25), (24.29) can be embedded in a flow. However, this is
precisely the content of part 5 of Chapter 23, §D.

With this technical point out of the way, we may proceed with our dis-
cussion. It will be convenient to reproduce the phase plane for (24.26);
see Figure 24.20.

Since L > Lo, there are exactly three steady-state solutions; namely u,
and u2 as depicted in Figure 24.20, and uo = 0. Let us now compute the
Conley indices of these solutions. We begin with u2, the "outcr"nonconstant
solution. The idea is to consider the nonlinear function f as a "parameter,"
and to use the invariance of the index under continuation. Thus referring to
Figure 24.21, we first deform f to the function J; by "pulling up the valley,"
as in (b), then "straighten out" fl, to obtainf2 and then in (c), we slidef2 to
the left to obtain f3, where f3(u) = -ku, with k a positive constant. These
deformations off (from (a) to (b), for example), can be carried out in such a
way as to ensure that the solution u2 continues to a corresponding solution
u2, where u2 is the "outer" solution corresponding to the phase plane where

Figure 24.20
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(a) (b)

Figure 24.21

(c )

-
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f is deformed to f,. A sufficient condition for this to hold is that throughout
the deformations, the solution u2 stays an isolated rest point, i.e., 112 does not
bifurcate. If p2 is close to A (Figure 23.20 it is not difficult to show this for
the corresponding solution u2. Namely, using (13.28), we can show that
T'(p2) stays positive throughout the deformation. But using a theorem which
we prove in the appendix to this chapter, we can show that when T'(p2) 0 0,
the corresponding solution u2 is nondegenerate in the sense that 0 is not in
the spectrum of the linearized operator about u2. This means that u2 can-
not bifurcate (Chapter 13, §A).

We see now that we have continued u2 to the zero solution of the equation

u,=uss-kit, jxj <L, t>0. (24.32)

with the same boundary data (24.29). From Theorem 14.19 we see that the
zero solution is a global attractor for all solutions of (24.32); thus its index is
E°. It follows then by the continuation theorem, Theorem 23.31, that h(u2)
= E°. On the other hand, since g(x) f'(u2(x)) is bounded, the linearized
operator Q = d2/dx2 + g, together with the boundary conditions (24.31) has
at most a finite number, say k, of positive eigenvalues (Theorem 11.3).

In the appendix, we show that since T'(p2) 0 (see Figure 24.19), 0 is not
in the spectrum of Q; i.e., it, is nondegenerate. It follows that lag has a k-
dimensional unstable manifold for some integer k -- 0. Thus h(u2) = Ek =
E°; whence k = 0 and thus u2 is an attractor. In a completely analogous
manner, we can show that u° is also a stable solution; this follows from the
deformation of f as given in Figure 24.22, whereby u° continues to the zero
solution of (24.25). (Alternatively, we can simply compute the spectrum of u°
by linearization.)

Figure 24.22
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We shall now show that h(u,) = V. In order to do this, we need the
following lemma, which itself is of independent interest.

Lemma 24.12. There exist solutions vo and v2 of (24.25), (24.29), which connect
u, to uo and it, to u2, respectively; i.e.,

lim vo(x, t) = it, (x), lim vo(x, t) = uo(x), and
fr - ff) f - a:

lira v2(x, () = u,(x), lim t:2(x, t) = u2(x),
f - on

uniformly for (x( < L.

Proof. We first note again that the interval {u : 0 < it < 1) attracts all solu-
tions in the sense that all solutions tend to this set as t -+ x ; this follows
from Corollary 14.8.

We now let

A = {uEC2((x( < L): u(± L) = Oand Hull. S 1}.

Then A is an attractor for the flow and obviously the rest points uo. u1, and
u2 arc in A. The set A being an attractor, implies that it is an isolated invariant
set ; let U be an isolating neighborhood of A. Let V e U be an isolating
neighborhood for the attractor u0, such that all points on c3V are entrance
points. Then B = cl(U',V) is an isolating neighborhood having only u, and

Figurc 24.23

B
U

u2 as rest points. Also (B, b) is an index pair in B, where b+ = e V and
BJb' has the homotopy type of a point, since V is contractible to a point.
Thus if S is the maximal invariant set in B, h(S) = 0. On the other hand,
h(u,) v h(u2) f 0 since h(u2) = 1;° (see Lemma 22.27). It follows from
Theorem 22.33, that there is a solution v2 connecting it, and u2, as asserted.
Similarly, we can find a solution v, which connects u, and u,,. This completes
the proof.
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Now it is easy to show that h(u,) = E'. The argument goes as follows.
First, from equation (23.25), we have the (long) exact sequence of cohomology
groups

Hk -' (h(S)) -+ H"(h(u2 )) -+ H&(h(u t )) - Hk(h(S)) - .. .

Since h(S) = 0 and h(u2) = E°, it follows that

Hk(h(ut)) = H'-t(h(ug)) =
10,

Z, k
1,k > 1.

Now as before h(u1) = E'" for some m > 0. The above calculation shows that
m = 1, and it follows that u, has a one-dimensional unstable manifold. It
is now possible to give the complete global picture of all solutions of (24.25),
(24.29). This is done schematically in Figure 24.24. Thus the unstable mani-
fold of u, has for its w-limit set the two solutions uo and u2, and one imagines
that all solutions not in this picture (i.e., the ones in the infinite-dimensional
space out of this "plane"), tend, as r -- x to the rest points in this "plane."
There are no other solutions.

u,

Figure 24.24

OP -
U2

-s -

We can actually go a little further and obtain some more explicit informa-
tion concerning the stable manifolds of the two attractors u° and u,. Thus
suppose that u(x, 0) = u(x), and u(± L) = 0. Let u(x, t) be the corresponding
solution of (24.25), (24.29) with this data. We claim that if u2(x) > u(x) > u,(x),
for all x with I x I < L, then (the datum) u lies in the stable manifold of u2,
while if 0 < u(x) < u,(x) for all x, jx I < L, then u lies in the stable manifold of
u° = 0. To see this, suppose, e.g., u(x) > u,(x), I x I < L. Then, by continuity,
u(x, t°)>u,(x), jxj <L, for some t°>0, and it follows that 8u(-L, t°)ivx>0
and du(L, t°)/Cx < 0. Thus if v2 is the solution defined in Lemma 24.12, then

v2(x, to - 1) < u(x, t°), jxj < L,
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for some t > 0. If w{x, t) = v,(x, t - 1), then w(x, to) < u(x, to). Therefore, by
the basic comparison theorem, Theorem 10.1, we have

w{x, t)<u(x,t), t> -to, Jxj < L.

But w(x, t) --+ u2(x) as t - x so that the same is true for u(x, t) since u(x, t) c
u2(x), again by Theorem 10.1. Thus u(x) lies in the stable manifold of 112.
Similarly, if 0 < u(x) < u2(x), I x I < L, then the corresponding solution
tends to zero as t + oc. We summarize these results in the following
theorem.

Theorem 24.13. Let f be defined by (24.30), and let I. > Lo. Then there are
exactly three steady-state solutions of (24.25), (24.29): 0. u1, and Ire (cf. Figure
24.19). 0 and u2 are stable, and u1 has a one-dimensional unstable manifold
which consists of orbits connecting u1 to each of the other rest points. All
solutions of the problem are depicted (qualitatively) in Figure 24.24. Initial data
u(x. 0) which satisfies u1(x) < u(x, 0) < u2(x) (resp. 0 < u(x, 0) < it, (x)) on
x I < L is in the stable manifold of u2 (resp. 0).

We turn now to a discussion of the Neumann problem for equation
(24.25). Here the continuation theorem is not directly applicable, and we
can use Morse decompositions and exact sequences of the corresponding
cohomology groups in order to compute indices.

Thus consider again equation (24.25), now with homogeneous Neumann
boundary conditions

u,( ± L. t) = 0. t > 0. (24.33)

We also consider the corresponding steady-state equation (24.26) with
boundary conditions

u'( ± L) = 0. (24.34)

To make the diagrams a bit simpler here, we take for f the cubic polynomial

f (u) = - u(u + b) (u - 1), 0> b > -1. (24.35)

Notice that the three roots off are always solutions of the steady-state
equations (24.26), (24.34). The equations (24.26) can be written as the first-
order system u' = v, v' = -f(u), and the phase plane is depicted in the
figure below. Nonconstant solutions which satisfy the boundary conditions
(24.34) correspond to orbit segments which "begin" and "end" on the it-axis
(v = 0), and take parameter length 2L to make the trip. Thus they correspond
to orbits which wind around the center (0. 0) in Figure 24.25. It is easy to
guess that as L increases, the number of solutions should also increase;
these solutions correspond to orbits which wrap around the center many
times. This is indeed the case, but we shall not prove this here; see [SW]. In
fact, the global bifurcation picture of all solutions is depicted in Figure 24.26.
The curves correspond to the "time" p -+ fl(p) (Figure 24.25), in analogy
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Figure 24.25
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to what have just seen for the Dirichlet problem. Thus, if L < L there are no
nonconstant solutions. The curve C1 corresponds to solutions whose total
angular rotation is n; there are two such and they are symmetric about the
u-axis; namely the positive solution p - 3(p), and the negative one /3(p) -+ p;
see Figure 24.25. Similarly the branch C2 denotes solutions whose total
angular rotation is 2n: p /1(p) - p and /3(p) p - /3(p). Continuing, we
find that C. consists of solutions whose total angular rotation is nn. It is
easy to check that solutions on C have precisely n nodal points (see Chapter
13, §C, Example).

Next, it is shown in [SW], that for each n, both branches of C. are smooth
curves with finite nonzero derivatives all along the curves, except at the
point L. Thus from the theorem in the appendix, each nonconstant solution
is nondegenerare in the sense that 0 is not in the spectrum of the correspond-
ing linearized operator. Finally, the numbers L correspond to those L for
which the spectrum of the operator d2/dx2 + f'(0) contains 0; these are the
bifurcation points, as we have seen in Chapter 13, §A, Example 1. They can
be computed explicitly, and one finds L = n2(2n + 1)2/4f'(0).

We shall calculate the dimensions of the unstable manifold of each steady-
state solution. First we consider the easy ones; namely, the three constant
solutions. By the method which we used for the Dirichlct problem, it is easy
to show that the solutions u = -b and u = 1 are always stable, and h(-b)
= h(1) = E°. Furthermore, by what we have said above, one can check that

Figure 24.26
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if L. < L < L"+, then the solution u = 0 has an (n + 1)-dimensional un-
stable manifold, and thus h(0) = E"+', L. < L < L"+ 1.

As shown in Chapter 13, §C, the nonconstant solutions bifurcate out of
0 when L crosses L. Thus let S" denote the maximal isolated invariant set
containing 0, and the two nonconstant solutions u, and u;, as its only rest
points (Figure 24.26). These solutions are isolated rest points of (24.25),
(24.33) and so from Theorem 23.32, they arc isolated invariant sets. Since u"
and u are bounded, the operators A' = d2/dx2 + f'(u.(x)), and A" = d2/dx2
+ f'(u"(x)) (together with the boundary conditions (24.34)) have, at most,
a finite number of positive eigenvalues (Theorem 11.3). Since u;,(x) = u;(- x),
we see that A' and A" have the same dimensional unstable manifold. Thus
h(u,',) = h(uZ).

Theorem 24.14. Let L" < L < L"+, ; then E", and the rest
points u;, u;; have n-dimensional unstable manifolds. Moreover each of these
rest points is connected to the rest point u 0 by a solution of (24.25), (24.33).

Proof. Since the system is gradient-like (Proposition 24.11), Morse decom-
positions of S. always exist (Chapter 23, §D,2). Let M;,, M;, M. denote the
Morse sets which contain, respectively, the rest points u'", a", 0 = u", and let
h;,, h", h" denote their respective indices. As before, we know that h', = h'
= E", for some k ; we shall show that k = n. Note that h(S") = E" and
h(u") = E"+ I

We claim first that there must be orbits in S. which connect critical points.
This follows from the addition formula for indices (Theorem 22.31); namely,
if such orbits didn't exist we would have E" = h(S") = h(u") v h(u.) v h(u;;)
= E"+' v Ek v Ek, which is impossible. Next, we claim that there cannot
be an orbit connecting u" and it.. This follows from the gradient-like nature
of the equations; namely,

4 (u.') = f {2ttn(x)un..(x) + F(u(x))) dxt

=
J

L

{ -
i

u;,(x) f (u;,(x)) + dx
L

_ JL {-2(u;(-x))f(u;(-x))+ F(u'(-x))}dx
L

IL

{
_,U,

2(x)J(u;;(x)) + dx

L

_ f { 2u;,(x)u,...(x) + F(u."(x))} dx
L

_ cb(un).
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Thus there must be an orbit connecting u" to one of W., u;. Suppose that u"
and u;, arc connected by an orbit. Then there is a solution u(x, t) such that,
say,

lim u(x, t) = 0, lim u(x, 1) = u;,(x).
1- - aU r- t nU

Hence if we define ty by v(x, t) = u(- x, t), then v is a solution and

lim v(x, t) = 0, lim v(x, t) = u;,(-x) = uA(x).
-m I-+aD

Thus it. and u" are also connected by an orbit (the proof is similar if the
orbit u runs from u;, to a").

We shall show that h(u') = E", assuming that the connecting orbits run
from u" to u;, and u';; then we shall show that this is the only case possible.
Thus, in the assumed case, we have the Morse decomposition of S. given by
(u;, L a"). From (23.25) we have the long exact sequence

H"(h(s")) H&(h(u')) + Hk(h(u,")) Hk+t(h(u")) ...,

or, since h(Sn) = E" and h(u") = E"',

.. .... - Hk(E") -. H"(h(ug)) + Hk(h(u,,)) - Hk t(En+ 1)

If k n, we have

0 - Hk(h(u.")) - 0.

so that Hk(h(u;)) = Hk(h(u")) = 0 for all k # n. Since h(u) = En for some p,
we seep = n.

If now the connecting orbits ran from u;, and u' to a", then (un, u;, a u;) is a
Morse decomposition of Sn. This gives the long exact sequence

Hk- 1(En) -. Hk- t(y"+ t) H(h(u')) + Hk(h(u")) Hk(E") -> .. .

If k = n + 2, we have

0 -+ Z H"+ z(h(u;,)) + H"+ 2(h(u")) -- 0, (24.36)

which gives the contradiction Z Hn+2(h(u;)). This com-
pletes the proof.

Concerning the Dirichlet problem again, we have the following theorem.

Theorem 24.15. Let f be a locally Lipschitzian function having a finite number
of zeros : 0 = a, < a2 < < a" = b, where

(i) f 0 'f(u) du > 0, and
(ii) f'(0) < 0, f'(b) < 0.
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Then if the number of steady-state solutions of (24.25), (24.29) is finite in each
connected component of the (graph of the) time map, there must be an even
number of nondegenerate, nonconstant ones, u, 112, ... , u2k, where u( - L) <

L), j = 1, ... , 2k - 1, and h(uodd) = E', h(u,,oo) = E°. The unstable
solutions U214 are connected to u2j and u2j . 2 by connecting orbits.

Note that the finiteness hypothesis is fulfilled if all but a finite number of
steady-state solutions are nondegenerate, or if there is a "generic-type"
hypothesis on the time map. For example, we could assume that the time
map is a Morse function; i.e., it has a finite number of critical points, all
nondegenerate. Thus each component of the time map has the form of
Figure 24.27 (here we consider solutions like those corresponding to points
p, which are not relative extrema but satisfy 7"(p) = 0 = T" (p) as being non-
degenerate since they don't bifurcate, even though 0 may be in the spectrum
of their linearization).

p = u(-L)
Figure 24.27

Proof. First observe that the hypotheses imply that the time map has the
qualitative form of a finite number of components of the form like that of
Figure 24.27. Thus the number of nondegenerate nonconstant steady-state
solutions must be even. We may assume that the time map looks like Figure
24.27; namely, we can work with each component separately.

We denote by u, and u2,. the solutions with the smallest and largest
derivative at -L; see Figure 24.27. As in the proof of Theorem 24.13, we
can show that u2m is an attractor and h(u2.) = E°. If L is very large, the
isolated invariant set containing u,, u2m, and is = 0 has index E°, and there
are orbits connecting 0 to both of the other critical points. As before, this
implies h(u,) = E' and that u, has a one-dimensional unstable manifold.
The proof is completed by the following lemma (together with Theorem
22.33, for the last sentence in the statement of the theorem).

Lemma 24.16:

(A) If h(uk) = EQ and h(uk+,) = E°, then q = p ± 1.
(B) If u is a nonnegatiee solution of (24.26), (24.31), then the dimension of

the unstable manifold of 5 is at most one.
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Proof. (A) Suppose that uk and uk+, bifurcate out of the degenerate rest point
u. Then they are the only rest points near a which are contained in an iso-
lating neighborhood N, and H(I(N)) = O. As in Lemma 24.12, uk and uk+, are
connected by an orbit, which we may assume, runs from uk to uk+,. Using
(23.25), we have to long exact sequence

-. H'-t(1(N))- H'-t(h(uk-t))-'H'(h(uk))- H'(I(N))-'...,

or

0-. Hr

It follows that H' " 1(E°) H'(!). But H'(E9) = Z if r = q, while H'-' (E°) _
Z if r = p + 1. Hence q = p + 1, and this proves (A).

(B) Consider the eigenvalue problem

v" + f'(u(x))v = AV, lxi < L, v(±L) = 0; (24.37)

we are to show that this problem has at most one positive eigenvalue.
If IV = it', then

w" + f'(u)w = 0.

Also, if A > 0, f'(u(x)) - ). < f'(u(x)), so by the elementary Sturm compari-
son theorem,' we know that between any two zeros of v, there must be a
zero of w. Since u is a nonnegative solution, it is easy to sec (from elementary
phase plane analysis), that w has precisely one zero in lx < L.

Now if v had a zero in I x I '< L then w would have to be zero twice in
this open interval. Thus v > 0 in x I < L. It follows that A must be the princi-
pal eigenvalue of (24.37) (see the discussion in Chapter 11, §A). This shows
that (24.37) has at most one positive eigenvalue, and completes the proof. 0

Notice that this theorem is not obtainable from purely topological
methods. For example, consider the time map in Figure 24.28. Here we see
that h(u4) = E°, so h(u3) = E`, and h(u,) = V. Thus it is topologically
consistent that h(u2) be either E° or V. The latter possibility is ruled out by
the last lemma.

We close this section by pointing out that our results here can be viewed
as a generalization to reaction-diffusion equations of a familiar technique
in ordinary differential equations. Thus in order to find the global "phase
portrait," it is necessary to first find all of the rest points, then to show that
they are nondegenerate, and then to compute the local flow near each rest

' If u' + pu - 0, t' . qv = 0. and p z q, then u has at least one zero between any two
zeros of v.
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L

Figurc 24.28
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P

point by linearization. In our case, the difficult computation of the spectrum
of the linearized equations is replaced by a topological technique, namely,
by computing the Conley index of the rest point. For the case of cubic f ;
e.g., J 'defined by (24.30), we can actually describe the precise global flow for
the Dirichlet problem by this technique; see Figure 24.24.

§E. Instability of Equilibrium Solutions
of the Neumann Problem

It is usually easier to prove the instability of a solution than to prove its
stability. Namely, in the former case one must only prove that one element
of the spectrum of the linearized operator lies in the right half-plane Re z > 0,
while in the latter case, the entire spectrum must be shown to lie in Re z < 0.
In this section we shall prove that steady-state solutions of the Neumann
problem for the Fitz-Hugh Nagumo equations are always unstable. We
shall then obtain the analogous result for a scalar equation in several space
variables which satisfies homogeneous Neumann boundary conditions.
Here it is required that the spatial domain be convex (or at least "nearly"
convex).

We begin with the Fitz-Hugh Nagumo Equations (see Chapter 14, §B)

v,=vxx+f(v)-u, u1=Sv-yu, IxI<L, t>0, (24.38)

with homogeneous Neumann boundary conditions

v,,(fL,t)=0, t>0. (24.39)

The steady-state solutions satisfy the equations

v"+f(v)-u=0, 6v-yu=0, jxj < L, (24.40)
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together with the boundary conditions

v(±L) = 0.

543

(24.41)

Here f is the cubic polynomial defined in (24.30). We can eliminate 11 from
(24.40), thereby obtaining the scalar problem

v" + P v) -
Sv

= 0, 0±0 = 0. (24.42)
7

We assume that bjy is so small that the cubic polynomial f(v) - 6v/y has
three real roots. 0, r, and s, where 0 < r < sj2. Let (v(x), &(x)/7) be a non-
constant solution of (24.40), (24.41); thus v satisfies (24.42), and u(x) =
Sv(x)/y. We shall prove that this steady-state solution is an unstable solution
of (24.38), (24.39). This will be done by showing that the corresponding
linearized operator contains an element in its spectrum which has positive
real part.

Theorem 24.17. Every nonconstant steady-state solution of (24.38), (24.39) is
unstable.

Proof. Consider the linearized equations for real A > 0,

Aw = w" + f'(v)w - z, Az = bw - yz, jx j < L, (24.43)

where w satisfies the boundary conditions (24.41). We assume that 2 + y
# 0; this will be verified later. Thus we can eliminate z from (24.43) thereby
obtaining

bw.?w=w"+f'(v)w-A
+

w'(±L)=0. (24.44)
i'

We denote by A(1.) the operator defined by

A(A)w = N" + (.r (L) A + y) w, w'(± L) = 0;

then (24.44) becomes, for A >- 0,

A(2)w = Aw, w'(± L) = 0. (24.45)

We shall show that there is a solution w *- 0 of this equation with A > 0.
To this end, first note that (from invariant regions), the potential, f'(v)
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+ y), is uniformly bounded, independently of ;. z 0. Thus let µ(7.)
and v(A) denote the sup of the spectrum of the operator A(A) with homogenc.
ous Neumann and Dirichict boundary conditions, respectively (cf. Chap. 11,
§A). Then from the elementary Sturm comparison theorem, we have

14) > V(;). (24.46)

(In fact, if p 5 v, then letting q be the potential q = /"(v) - b;'(. + y), we
would have q - v S q - p so that the principal eigenfunction 0 correspond-
ing to ru has a zero in I xI < L. This is impossible since 0 is of one sign by
Theorem 11.10.) Moreover, since v(x) is a nonconstant solution of (24.42),
we know that u'(x) 0 0. Since

(ti )" + f'(v)v' - v' = 0, v '(±L) = 0,

we sec that v' is an cigenvcctor of A(0) with homogeneous Dirichlet boundary
conditions corresponding to the eigenvalue A = 0. It follows that v(0) >- 0,
so that (24.46) gives

/1(0) > 0. (24.47)

Next, from the results in. Chapter 11, §A, we know that MA) has a varia-
tional characterization, namely

f1(A) = sup <A(i)w, w>.
a H',

1

Moreover, /4(i.) is a continuous function of ). (Theorem 11.7), and /1(A) is
always an eigenvalue of A(A) (Theorem 11.4).

Now if IJ w IIL, = 1, and w(± L) = 0, then

rL

J
tV2

IV"sV + - f'(u)w2 - J - 2_
!. L LA +_Y

f f. 1

I (1ti,)2 + Cr
C2

N,2

1.

SC, + C2 -C,

where c is independent of A. It follows that MA) is bounded from above,
uniformly in A. Thus there exists a Z > 0 such that p(d) = A (see the figure
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below), and so there is a 0 satisfying

A(i )K, = ft(.t )tiv = Xw, L) = 0.

545

It follows that the linearized operator contains a positive element in its
spectrum; namely 1, so that the solution (a(x), 6tjx)17) is unstable. This con-
cludes the proof, since )I + y > 0.

We turn now to the case of a scalar equation in several space variables.
Here too we shall prove that nonconstant equilibrium solutions of the
Neumann problem are unstable.

y=x

y>=C

11(0) = N(A)

i

Figure 24.29

A

Consider the equation

u, = Au + f (u), (x, t) r= 0 x R,, (24.48)

together with the homogeneous Neumann boundary conditions

du _

do
0 on .Q x R. , (24.49)

where n is the outward pointing normal on Al. Here i2 is a smooth bounded
domain in R and A denotes the n-dimensional Laplacian. The function f
is assumed to be of class C. The corresponding equilibrium (steady-state)
solutions satisfy

du
Au + f (u) = 0, x e S2,

do
= 0 on dig. (24.50)
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If u is an equilibrium solution, we consider the corresponding eigenvalue
problem

Lv + f'(u)L = ;.v on i2; d = 0 on e ft (24.51)

Using the results in Chapter 11, §A, we know that the principal eigenvalue,
A. of (24.50) is given by (Theorem 11.4)

1 = sup {-IVwI2 + f'(u)w2} dx.

Ixl,,-
Let

1(w) = f { - I Vwl2 + f'(u)w2} dx;
n

if we can find an "admissible" w for which 1(w) > 0, then, of course, Al > 0
and u is unstable. Thus for example, if u is an equilibrium solution and

$f'(u(x))dx > 0.
n

then 1(1) > 0 and u is unstable. A much deeper result is given by the following
theorem.

Theorem 24.18. Let S1 be a convex subset of R", n z 1. Then any nonconstant
equilibrium solution of (24.48), (24.49) is unstable.

Proof. Suppose first that n >- 2. Let u be a nonconstant equilibrium solution.
Then au/axi - u, satisfies the equation

Au; + f'(u)u1 = 0.

If we multiply this equation by u,, integrate over Q, and apply the divergence
theorem, we find

du;

an 'dn

so that

1(u1) _ - J V11
dA

(24.52)
=1 acl do
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If we show that for some i,

1(u,) >- 0, it, * 0, (24.53)

then A 1 >- 0. Now, if A, = 0, then 1(u,.,) = 0 and u; is the principal cigcn-
function of the operator 0 + f'(u) satisfying (24.49); see Theorem 11.4, Part
1. But u, = du/dn at some point on 3Q, and so u, = 0 at this point. But this is
not possible, according to Lemma 24.19 below.

We establish (24.53) by proving that

Vu(x) -
d(Vu(x)) < 0

do
(24.54)

at each x E 00. If we replace x by a - x + b, a, b E Rn, this does not affect the
sign of (24.54), so we may assume that 0 E 3Q, and we shall prove (24.54) at
x = 0. Suppose that xn = g(x 1, ... , xn - ) is a convex function which describes
(10 near x = 0 and that at 0 the - xn axis is in the outward normal direction
to !Q; thus x = 0 is a minimum point for g. and g,,,(0) = 0, 1 < i:5 n - 1.
Then since un(0) = r?u(0)(8n = 0, we have

a a
e,U

Vu(0) Vu(0) Y, u.(0) ` (0)
on i - 1 ex.

n- 1

u,..(0) u,.' r^(0).
i - l

(24.55)

Near x = 0, the condition du/dn = 0, can be written in these coordinates
as

n-1

lj"Q' g(x))gx,(x) - ujx, g(x)) = 0.! t

where . = (x 1, ... , xn Differentiating this with respect to x), l < j < n
- 1, gives at x = 0

-1
ux1(0)gx,,r,(0) - 0.

i=l

since g.,,(0) = 0, 1 < i S n - 1. Substituting in (24.55) we get

-1

Vu(0) n Vu(0) gx,.j(0)ux,(0)u..'(0) < 0,
i.1- I
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by the convexity of g. Thus proves the theorem if n >- 2. If n = 1, we have
1(dufdx) = 0 and dufdx = 0 on 852, so a similar argument gives A, > 0.

We prove the following lemma which was used in the proof of the last
theorem.

Lemma 24.19. Consider the operator

L = A + c(x) in 52,

where i2 is a bounded domain in R" with M smooth, and c is a continuous
fianction on ..0. if tb is the principal eigenfionction of L with homogeneous Neu-
mann boundary conditions, then 0 * 0 in 0.

Proof. Let l be the principal eigenvalue associated to 4i. We may assume
0 ; 0 in Q. Choose a constant k < 0 such that k + c(x) - A < 0 in f. Then

Lq5+(k-i.)Q5=ko < 0 in Q,

and the coefficient of 0 on the left side is c(x) + k - A < 0. Thus the strong
maximum principle, Theorem 8.6, shows that if 4' has a minimum on 852, then
d41dn < 0 at that point. This is impossible so ¢ < 0 on ii52 and the proof is
complete. O

The next theorem places a restriction on f but no restriction on the
domain 0.

Theorem 24.20. Let it be a equilibrium solution of (24.48). (24.49).
If f" is of one sign on the range of it, then is is unstable.

Proof. Let's suppose f "(u(x)) > 0 for all x e a and let m = min{ u(x) : x E
We shall show that 1(u - m) > 0.

Since is z m on 0, then if u(9) = in, for g e Q, we have Au(.?) 0 so
f(m) = f(u()) < 0. If it = m occurs only on c3Q, then the proof that f(m) 5 0
is a bit more difficult; we postpone it till later.
Now

1(u - c) = i { - !Vu!' + f'(u)(u - m)2} dx
n

= J {uf (u) + f'(u) (it - m)2} dx

_ {(u - m)f(u) + f'(it)(u - nt)2) dx

= J (u - m) { f (u) + f'(u)(u - in)) dx.
n
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But since f" > 0, we have

0 >- 1(m) > f (u) + f'(u)(u - in)
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and hence 1(u - c) > 0.
The proof is completed by proving that f(m) < 0 even if in is achieved

by it only at r e Q. To do this we shall show that Au Z 0 at r. We let s
denote a local coordinate system on t?S2 near r, where s = 0 corresponds to
the points on M. We also let t denote the normal direction to can near
Y ; thus (s, t) is a local coordinate system near.?. We choose the parametriza-
tions in such a way that i corresponds to s = 0 = t. u will be considered as
a function of s and t; u = u(s, 1).

Now x is a critical point of u since u, = 0 when t = 0, and in is a minimum
for u on s = 0. Thus the hessian matrix is well defined at 4 in this coordinate
system. From (24.49) it follows that u,, = 0 at s = t = 0. Furthermore,

u(o t) = u(o 0) + 1`"(0,
0)`2

+ 0(t3).
2

and (with a slight abuse of notation),

u(S, 0) = u(0, 0) + u51(0, 0)(s, s) + 0(1 S I')

This shows that u,t(0, 0) Z 0 and the matrix u (0, 0) is positive semi-
definitive at (0, 0). It follows that Au > 0 at Y and then ((m) = f (u(.r))
= - Au(Y) 5 0, as desired. 0

§F. Appendix: A Criterion for Nondegeneracy

We consider here the nondcgcneracy problem for solutions of the equation

u"+f(u)=0, JxJ < L, (Al)

subject to homogeneous boundary conditions of the form

au(- L) + flu'(- L) = 0 = au(L) - flu'(L). (A2)

As usual, we write (A 1) as the first-order system

u' = u, u' = -f(u). (A3)

If L1 denotes the line ow + flu = 0, and L2 the line au - fit) = 0, we assume
that there is a solution u(x, p) of (A2), (A3) with u(o, p) = p. Let T(p) be the
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"time" (x-parameter length) of this orbit going from L, to L2. It is obvious
that p) bifurcates if and only if T is not monotone in a neighborhood of
p. The purpose of this section is to prove the following strengthening of this
remark.

Theorem Al. With the above notation, suppose that T'(p) # 0, and that the
orbit cuts each Li transversally; i.e., that both

ow( - T(p), P) + J1v'( - T(P), p) 0 0, (A4)
and

av(T(p), p) - flv'(T(p), p) # 0.

Then the solution u(-, p) of (Al) and (A2) is nondegenerate in the strong sense
that 0 is not in the spectrum of the linearized operator about p).

Proof. Differentiating (Al) with respect to x and p gives the two equations

up + f'(u)u, = 0 and v" + f'(u)v = 0.

Since u,(0, p) = 1, and v(0, p) = 0, it follows easily that v and u, are linearly
independent. Thus any solution w satisfying

w" +.f'(u)w = 0, IxI < T(p),

and the boundary conditions (A2) with L = T(p), can be written in the form

w = C, up + C2 v.

Our goal is to show w = 0. Now using (A2), we get the equations

aup(- T p) + flu;(- T, p) - [av(- T, p) + Qv(- T, p)] T'(p) = 0,

and

aun(T p) - fu,(T, p) + [av(T, p) - fu(T, p)] T'(p) = 0,

where T = T(p). Now

0 = aw(- T) + flw'(-T) = a[C,up(-T) + C2v(-T)]

+ JJ[C1u,(-T) + C2v'(-T)]

= C1[au,(- T) + flu,(-T)]
+ C2 [av( - T) + J3v'( - T)]

= C,[a,v(-T) + #,v'(-T)]T'(p)

+ Jlv'(-T)]

_ (C1 T'(p) + C2)[av(-T) + pv'(-T)].
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Thus from (A4),

C1T"(p) + C2 = 0. (A5)

Similarly, using the equation aw(T) - 0, gives

C, T'(p) - C2 = 0. (A6)

Hence since T'(p-) # 0, (A5) and (A6) yield C, = C2 = 0, so that w =- 0, as
asserted. E]

Nom

The material in §A is taken from Conley-Smollcr [CS 2]. Other proofs have
been given by Conlon [Cn], Foy [Fo], and Mock [Mk]. Related papers
are [CS 1-5], where more general "viscosity" matrices are considered. In
particular, there can exist positive definite self adjoint matrices B for which
no connecting orbit exists for Bti = V(u), where u e R2. Such matrices B arc
also "bad" for the viscosity method; see Smoller and Taylor, [ST]. The
structure problem for mhd shocks is taken from Conley-Smoller [CS 6].
The important fundamental work upon which this development is based
was done by Germain [Gr], who demonstrated the gradient-like nature of
the equations, and proved that there are at most four rest points. He was
also able to show that fast mhd shocks have structure. See the books [An],
[Du], and [KL], where this structure problem is discussed. The results in
§B have been extended by Conlcy-Smoller [CS 8], and more generally by
Hesaraaki [Hki], to the case where some viscosity parameters arc zero. The
existence of a periodic travelling wave for the Nagumo equations is taken
from Conley's paper [Cy 1]; sec also Hastings [Ha 1, 2], for a different
approach. In Gardner-Smoller [GS], these ideas have been extended to
predator. prey equations. For related work, see Carpenter [Ca 1, 2], and
Chuch [Ch]. The material in §D is taken from Conley-Smoller [CS 12, 13].
Theorem 24.15 appears here for the first time. In [CS 13], it is shown how to
"continue" one boundary value problem to another. Here one sees some
rather interesting Morse theoretic-type "cancellation" phenomena in an
infinite-dimensional context. An extension of the results in §D to the Fitz-
Hugh-Nagumo equations can be found in [CS 14]. Theorem 24.17 is due to
Bardos-Smoller; see [BS], where a more general result is proved; see also
Bardos - Matano-Smollcr [BMS] for an extension to systems in several
space variables. For related work, see the papers of Chafee and Infante, [Cf]
and [CI].
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For other applications of the Conley index see Conlcy and Gardner,
[CG] and Conlcy and Zhender [CZ]. Theorems 24.18 and 24.20 are due to
Castcn-Holland [CaH]. If f2 is not convex, there may exist nonconstant
stable equilibria, see Matano [Mo], and also Hale and Vegas [HV] for the
beginnings of a theory. The nondegeneracy theorem in the appendix is
adapted from Smoller-Tromba-Wasscrman [STW].



Chapter 25

Recent Results

In this chapter we shall present a summary of what could be considered as
some of the most significant results which have appeared since the appear-
ance of the original edition of this book. Of course, limitations of space (and
time!) forces us to give only statements of major results, and very brief out-
lines of some of their proofs. This chapter will be divided into four sections,
the first two corresponding to Parts II and III of the text, and the last two
related to Part IV of the text. The numbered references correspond to the new
reference list given at the end of this chapter.

SECTION I. Reaction-Diffusion Equations

§A. Stability of the Fitz-Hugh-Nagumo Travelling Pulse

The Fitz-High-Nagumo equations were considered in Chapter 14. §B. They
can be written in the form

III = uXX + f(u) - w, w. = e(u - Yw), (25.1)

where .f(u) = u(u - a)(1 - u). 0 < a < 2. and 1 > e > 0. A travelling wave
solution for (25.1) is a function of the single variable = x - cr; i.e.,

w(i )) satisfies

-cu' = u" + f(u) - w, -cw' = e(u - Yw) (' = (25.2)

A " travelling pulse" ("homoclinic" orbit), is a travelling wave which satisfies
(u(;), w(S)) - (0, 0) as S -+ ±x. The existence of such a solution for some
value of c, fore < 1, has been proved in [Ca 1, Cy 1, [28, 37]]. The point of
taking a small is that we can consider the singularly perturbed equations
(25.2), with e = 0, and the pulse is constructed by piecing together certain
solutions of the reduced system; see Chapter 24, §C. It is an open question as
to whether a travelling pulse exists for large e.

We discuss the stability of U6 in the space of bounded uniformly continu-
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ous functions BC(R) with the sup-norm topology. Thus, UU is called stable if
there is a S > 0 such that if t)
which satisfies

t)) is any solution of (25.1),

11 U( + k1, 0) - U6(S)II

there is a k2 for which

< b for some ki,

lim 11 U( + k2, t) - UAOII. = 0.
I-00

Thus, if a solution to (25.1) starts near some translate of the travelling wave,
it tends to some other translate as t -+ oo. Here is the stability theorem of
Jones [33, 34]:

Theorem I.I. If r is sufficiently small, UU(.) is stable.

A standard method for determining stability is to use linearization tech-
niques (cf. Chapter 11, §B). If we linearize (25.1) about we obtain the
operator

L (P) = (P" + cp' + f'(u,)P - r p, r
r cr' + OP - 'r) J' E BC(R). (25.3)

Note that 0 lies in a(L) (the spectrum of L), because a translate of a
travelling wave is again a travelling wave. The linearized criterion for stabil-
ity is that both of the following hold:

(i) a(L)'\ {0} a ().: Re A < a) for some a < 0.
(ii) 0 is a simple eigenvalue.

Evans [13] has laid the foundation for studying the (nonlinear) stability of
travelling waves in this set-up. In [13, 14] he showed that if (i) and (ii) hold,
then U, is (nonlinearly) stable; thus the theorem holds if (i) and (ii) arc valid,
and we now discuss some ideas in the proofs of (i) and (ii).

a(L) consists of two parts: the eigenvalues of finite multiplicity, and the
essential spectrum, ae(L). It is shown that a,(L) lies in a half-plane N =
(A: Re A < a) for some a < 0; this essentially follows from proving that the
system (25.1) is stable at (0, 0). In [13, IV] Evans defined an analytic function
D(A) on C\N whose zeros are the eigenvalues of L, and the order of whose
zero is the algebraic multiplicity of the cigenvaluc. D(.) is used to approxi-
mately locate the eigenvalues of L; these lie close to the eigenvalues for a
certain reduced system associated with some parts of the singular travelling
wave (e = 0). Thus the only danger to stability comes for the eigenvalues near
zero. However, there can be at most two such eigenvalues; this follows from
a computation of the degree of D in a small circle about 0 (cf. Chapter 12, §A).
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Since D is analytic, the degree measures the number of zeros inside the circle,
and it is proved that this degree is two. Since zero is an cigcnvaluc, the other
eigenvalue must be real, and the proof is completed by showing that it is, in
fact, negative. This is done by showing: (i) D(A) < 0 for A large and real; and
(ii) D'(0) < 0. The latter inequality is proved by studying how the unstable
manifold of the travelling wave equation "sweeps across" the stable mani-
fold as c varies through the wave speed c, the speed at which the pulse
solution exists. Thus, important stability information is obtained by studying
how the underlying wave varies as a function of the wave speed.

We turn now to a brief discussion of the function D.

We first write (L - 21) (r) = 0 as the first-order system

p' q,

q' _ -cq + f'(u,))p + r,
r.

_ -(E/c)p + [( + Ei')/c]r,

(25.4)

which we abbreviate as z' = Az, z = (p, q, r) e C3. It is not difficult to show
that (25.4) has a one-dimensional set of bounded solutions; this follows from
studying the asymptotic system; i.e., the system (25.4) with u, replaced by 0.
Let this solution space be spanned by %(A, ). C(A, ) is the only candidate (up
to scalar multiples) for an eigcnfunction; A e CAN is an eigenvalue if and only
if C (A, S) is bounded as - oc.

To test the boundness of as -. oo, we consider the adjoins equation to
(25.4)

z'' = Bz', B = -A*. (25.5)

It is trivial to check that if z' satisfies (25.5), and z satisfies (25.4), then z' z
(scalar product in C3) is constant. Let q(A, ) be the unique (up to scalar
multiple) solution of (25.5) which is bounded as - oo. For -. oo, q is
normal to the stable manifold for the asymptotic system related to (25.4).
Thus S is bounded as c -+ oo if and only if (A, ) - 1(A, ) -e 0 as S -' 0C.. But
as D(A) = C - n is independent of , it follows that A is an eigenvalue if and only
if D(A) = 0. Since both s and r can be chosen to be analytic in A for each , it
follows that D(A) is analytic and its zeros in CAN are eigenvalues. The proof
consists of showing that in C\N, D has only one zero (at 0) and this zero is
simple.

§B. Symmetry-Breaking

In this section we discuss the bifurcation of symmetric (radial) solutions of
semilinear elliptic equations into asymmetric ones. This problem differs from
the usually encountered bifurcation results (cf. Chapter 13) in several ways.
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Namely, we are not bifurcating from a "constant" solution; moreover, we
are not bifurcating from a "simple eigenvalue" (cf. Chapter 13, §A), and
finally, we have the problem of showing that we actually bifurcate to an
asymmetric solution. This last problem consists of two parts: first we must
show that the kernel of the linearized operator contains an asymmetric cic-
ment, and then we must show that bifurcation to an asymmetric solution
actually occurs. The tool for handling this last problem is the Conley index.

The equations considered here are of the form

Au(x) + f(u(x)) = 0, x c- DR, (25.6)

together with the boundary conditions

au(x) - /f du(x)fdn = 0, x E CDR. (25.7)

Here DR is an n-ball of radius R, a and f are constants with a2 + #,I = 1,
and f is a real-valued C'-function. Note that (25.6) is invariant under the
orthogonal group O(n); i.e., for any g e O(n) and any x E DR,

(Au)(9x) + f(u(gx)) = A(u o 9)(x) + f(u(gx)).

This motivates us to consider radial solutions of (25.6) (i.e., solutions of the
form u = u(r), r = IxI), as the "symmetric" solutions, since they possess
maximal symmetry; i.e., they are the only ones invariant under the full group
O(n). The nonradial solutions will be termed "asymmetric solutions."

Radial solutions of (25.6) satisfy the ordinary differential equation

u"+u-lu'+f(u)=0, 0 < r < R ('=d/dr), (25.8)
r

together with the boundary conditions

u'(0) = 0 = au(R) - flu'(R). (25.9)

The condition u'(0) = 0 is necessary in order that u be differentiable at r = 0.
Rewriting (25.8) as a first-order system gives

U, = v, v' = - n 1

V - f(u), (25.10)
r

and we shall consider orbits of (25.10) satisfying the initial conditions

u(0)=p>0, c(0)=0. (25.11)

The corresponding solution will be denoted by (u(r, p), v(r, p)), r >- 0, and p
will be taken as the bifurcation parameter.
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Solutions of (25.9), (25.10) will be allowed to undergo many sign changes.
Thus if

00 = Tan'' (#/a), -n < 00 < 0,

and k is a fixed nonnegative integer, we define the function p i - T(p) by the
condition

0(T(p), p) = 00 - kn, (25.12)

where 0(r, p) = Tan-'(v(r, p)ju(r, p)). If (25.12) holds we say that u(-, p) lies
in the kth nodal class. Note that since p is allowed to vary, this allows the radii
T(p) of the balls to also vary.

If we linearize (6) about a given radial solution u(-, p), we obtain

Aw + f'(u(r, p))w = 0, r < T(p), (25.13)

aw(r) - fi dw(r)/dn = 0, r = T(p). (25.14)

An easy application of the implicit function theorem shows that a necessary
condition for u(-, p) to be a "bifurcation point" is that the equations (25.13).
(25.14) admit a solution w # 0. Using the fact that any function on an n-ball
admits a spherical harmonic decomposition [29], we may write

w(r, 0) _ av(r)mv(0), r = lxi, 0 e S"-', (25.15)
x-o

where (DI, a E,,r, the Nth-eigenspace of the Laplacian on S"', corresponding
to the Nth-eigenvaluc A,,. As is well known [29],

),v= -N(N+n-2), dimEv=(N+,,-2)(n+N2)
lv.

J ` (25.16)

Furthermore, each summand in (25.15) lies in the kernel of the linearized
operator, and using (25.15) in (25.13), we find that each aN satisfies the equa-
tion

aK+nr la;,+If'(u(r,p))+rZ)a.,=0, 0<r<T(p), (25.17)

together with the boundary conditions

aav(T(p)) - flaN(T(p)) = 0, N > 0,

a,; (T(p)) = 0,

a;(T(p)) = 0.

N > 0, (25.18)
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Now if the symmetry breaks on p), the necessarily a # 0 for some
N > 0 (see [8]). We thus say that:

(a) the symmetry breaks infinitesimally on p), provided that aN # 0
for some N > 0; and

(b) the symmetry breaks on p) if u(-, p) bifurcates into an asymmetric
solution.

In order to obtain symmetry-breaking results, we shall reduce the problem
to one in finite dimensions via a Lyapunov-Schmidt reduction (cf. pp. 175-
176). This will allow us to use a finite-dimensional version of the Conley
Index Theory. In particular, we enrich this invariant by using the group
structure, present from symmetry considerations, to obtain an equivariant
Conley index. This equivariant Conley index is used to prove a general bifur-
cation theorem which can be applied to the symmetry-breaking problem for
semilinear elliptic equations.

The framework can be described as follows. Let Bo and B, be Banach
spaces, and let H be a Hilbert space, where B, a Bo e H and the inclusions
are all assumed to be continuous. Let I = [A A2] be an interval in R and
suppose that M: B, x I Bo is a smooth, gradient operator and that there
exists a smooth curve {u2: A E I} e B, satisfying

M(u,i, A) = 0, A e I. (25.19)

For i = 1, 2, denote by P, the (closed) vector space spanned by

{v e B, : A,)u = pu, p >_ 0);

Pj is called the peigenspace of (uA,, A;). We first assume that the following
conditions hold:

dM, = A1) is nonsingular for i = 1, 2, (25.20)
and

dim P, # dim P2. (25.21)

The question we ask is: Does there exist k, A, < A < A2, such that (u2, A) is
a bifurcation point for (25.19)? Notice that in the finite-dimensional case (i.e.,
B, and BO have finite dimensions), the Conley indices satisfy h(u2,) # h(u22)
so Conley's Continuation Theorem (Theorem 23.31) implies that our ques-
tion has an affirmative answer.

More generally, suppose that G is a compact Lie group acting on H with
Bo and B, invariant under G, and that M is cquivariant with respect to G in
the sense that

M(gu, A) = gM(u, A), VgEG, uEBt, AEI. (25.22)

Then the set of solutions of M = 0 also admits a G-action. If {(u2, A): A e I}
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is a smooth curve of invariant solutions (i.e., symmetric solutions) under G (in
the sense that gu,, = u,,, dg E G, A E 1), we ask the question as to whether the
symmetry breaks along this curve; i.e., under what conditions does there exist
bifurcation from this curve of invariant solutions to noninvariant (asymmet-
ric) solutions?

In order to describe an approach to this problem, we first note that (25.22)
implies that for all g e G, v e B,, and each 2,

).)gv = 2)v.

If now V denotes the eigenspace of A) corresponding to a given
eigenvalue p, then if w e V, we have that gw e V for all g e G. Indccd,

so that
2)w = µw implies 2)w = pgw,

A)gw = ).)gw = Ngw,

since gu, = u,,, so gw E V. Thus if To is the operator on V defined by TAv = gv,
then the mapping g -> TQ defines a representation of G. In the language of
representation theory, we say that V is a representation of G. It follows that
for each fixed A, the peigenspace of d,,M(u,,, i.) defines a representation of G.
This motivates us to replace condition (25.21) by the statement

P, is not isomorphic to P2 as a representation of G. (25.21)6

Now we ask this question: Suppose that (25.19), (25.20), and (25.21)6 hold;
does this imply that bifurcation occurs? Observe that condition (25.21)6 is
considerably weaker than (25.21). Indeed, it is possible that (25.21)G holds
even though P, and P2 are isomorphic vector spaces.

We will consider such questions from the Conley index point of view. This
requires that we extend these ideas to the equivariant case. Moreover, the
hypotheses (25.19), (25.20), and (25.21), or (25.21)6 does not directly imply, in
the infinite-dimensional case, that there is a change in Conley index at 2, and
22. Thus we shall pass to a (global) equivariant Lyapunov-Schmidt reduc-
tion, which will enable us to prove a general bifurcation theorem which
answers affirmatively the above questions. This theorem then will be applied
to the symmetry-breaking problem for semilinear elliptic equations defined
on n-balls. Finally, we shall mention several related results, and also show
how to clarify some subtle points in Chapter 24.

§C. A Bifurcation Theorem

We shall now describe a general bifurcation theorem. Our technique will be
to reduce the problem, via a Lyapunov--Schmidt reduction, to one in finite
dimensions, where we can apply Conley index techniques.
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In order not to complicate the descriptions, we shall first describe a
Lyapunov-Schmidt reduction in the nonequivariant case; the modifications
necessary to extend our techniques to the equivariant case will be discussed
in the next section.

Let B, c Bo a H, where Bo, and B, are Banach spaces, 11 is a Hilbert
space, and the embeddings are assumed to be continuous. (In applications,
we often take B, = Co(D"), Bo = C(D"), and H = L2(D"), where D" is an
n-ball centered at 0.) Let M be a smooth mapping

M : B, x 1 - BO, 1 = [i., , A2 ] c R,

and assume that there is a family (ua: A E 1) a B depending smoothly on A,
which satisfies (25.19). For ease in notation, let

dMa = A).

Definition. The peigenspace P,, of dMa is the closed subvector space generated
by the set

{v a BI: dM,,c = pv for some p z 0).

Pa is thus sccn to be the space generated by those eigenvectors of dMa corre-
sponding to nonnegative eigenvalues.

If we replace u by u + u;., then with a slight abuse of notation, we write
(25.19) as

M(0, )) = 0, A e 1. (25.23)

For any c > 0, let Pa,t be the pcigcnspacc of d,11a + el. We assume that there
is a fixed e > 0 such that

dim Pa,< < ac, VA a 1. (25.24)

We now state the main result in this section.

Theorem 1.2. Let M be a gradient operator for each A e 1, and assume that M
satisfies (25.23) and (25.24). If

dMa, and dMa2 are nonsingular, (25.25)

and

Pa, is not isomorphic to Pat, (25.26)

then there is a A0, A, < 20 < A2, for which (0, A0) is a bifurcation point for
M (O' ).) = 0.
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Notice that since PA c P,,,, condition (25.24) implies that dim P. < oo,
i = 1, 2; thus (25.26) means that dim PA, # dim PA,. We have stated (25.26) in
this slightly awkward way in anticipation of the results in the next section
where this theorem will be extended to the equivariant case.

Proof. Since M is a gradient for each A e 1, it follows that dMA is symmetric
and so has real cigenvalues. Then (25.24) implies that the eigenvectors of
dMA corresponding to eigenvalues greater than -c lie in a finite-dimensional
space. Thus there is a finite-dimensional space EA a B, such that

(dMAe, e) S -cle12, be a E,,.

(Here the norm and inner product are those in H.) By continuity, there is an
open interval JA about n such that

e) 5 -2 Iei2, du E JA, de E EA.

A finite number of the intervals Ja, cover I. Thus let

E n EA. nPA, nPx?;a
then L a B, has finite codimension. Note that EA = P,, n B,; thus

s \1
E= nP.,-,, n Pa, n P;-, n B, = U PA", U PA, L P).: l n B, = F' n B, ,

-t -t
so that E is a closed subspace of B, of finite codimension and PA, U P. c F.
Now if A e 1, then A E Jzk for some k, I 5 k 5 s, and if e e F1 n B, = E,
e e Eg; so (dMA e, e) < -(e/2fle12. Thus dM,, restricted to F' n B, is uni-
formly negative definite.

Next, write
H = F F and since F e B1,

Bo= (BonF1)®F.

B, = (B1 n F1) ®F.

We can now describe our Lyapunov-Schmidt reduction. Thus for h e B,,
write h = (x, y), x e F1, y E F. Then

M(h, A) = M(x. y, A) = (u(x, y, A), v(x, y, A)),

where u e F' and v e F. Since M(0, 0, J.) = 0, we have u(0, 0, A) = 0. We
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claim that u, = 0, A), defined on F= n B1, is an isomorphism. First, if
ux = 0, for some # 0, then as ux is strictly negative definite, the inequality
0 > yields a contradiction. Next, an easy calculation shows that us is
symmetric. Finally, if 4 e H, we have

(ux(2 ), R2 FF

:9 2IX2SI2,

where n2 = projection onto F. Thus the spectrum of u,, is uniformly bounded
away from zero. It follows from these three observations that ux(0, 0, A) is
indeed an isomorphism. Therefore the implicit function theorem implies that
the equation u(x, y, J.) = 0 can be solved for x = x(y, A) in a neighborhood of
(0, 0, A) of the form UA x 0., where UA is a neighborhood of (0, 0) and 69, is a
neighborhood of A in 1. By compactness, a finite number of the CA cover I, say
C,,, ... , CZk. Therefore we have a unique solution x = x(y, A) on a neighbor-
hood U x 61 _ fl U;,, x U!=t CAS of (0, 0, A). Now define

00,, %!) = v(x(y, 2), y, 2);

this is our global Lyapunov-Schmidt reduction.

Lemma 1.3. Fix i. e I and consider the ordinary differential equation

Y. = OY(s), A).

Then this equation is gradient-like.

Proof. If ty(x, y) is Lyapunov function for M, then

(Y, A) = kx(Y, 2), 2)

is easily seen to be a Lyapunov function for (25.27).

Lemma 1.4. P(d b(o,A,)) is isomorphic to PA,, i = 1, 2.

(25.27)

We omit the somewhat technical proof of this result; see [53] for the
details.

We can now finish the proof of the theorem. To this end, note first that
solutions of M = 0 correspond in a one-one way to solutions of = 0. It is
easy to check that (25.24) implies that d4to,A,t is nonsingular for i = 1, 2. It
follows that the Conley indices for the rest points (0, A,) of the equations
(25.27) satisfy h(0, Eli) # h(0, 12). Thus if ' is any neighborhood of 0 (in the
finite-dimensional space), then 0 cannot be the maximal invariant set in 1"
for each A e 1. Thus there is a point A(Y') E I for which 0 is not the maximal
invariant set in' for the equations y, = 0(y(s),1(y'')). The maximal invariant
set in Y,' for this equation must then contain a point y 0 0. The gradient-like
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nature of the equation forces the a- and w-limit sets of y to differ. Hence the
equation admits another rest point in Y'', different from 0. Now let the neigh-
borhoods V shrink to 0. The ).(V)'s have a convergent subsequence ).; ).0,

and (0, A0) is easily seen to be a bifurcation point for qS(y, ).) = 0 (so A, <
) 0 < . 2), and hence for M = 0.

§D. Equivariant Conley Index

We now show how to extend the Conley index ideas to the case where there
is a group acting on the space. This will give us a finer index invariant which
will prove quite useful in applications to symmetry-breaking problems.
Again let B0 and B, be Banach spaces, let H be a Hilbert space, and assume
B, a Bo ,= H, where the embeddings arc continuous. Let I = [11, A2] be an
interval in R, and let M be a smooth mapping M: B1 x I -* B0. We again
consider solutions of the equation M(u, ).) = 0.

We now assume the existence of a compact Lie group G acting on H with
B. and B, invariant (so gu a B1 and gv e B. for all g e G, u e B1, v e BO). We
further assume that M is equivariant with respect to G, in the sense that for
all u e B1, Ac I, g G, we have

M(gu, A) = gM(u, A).

Let (u;,, A) be a smooth curve of invariant (symmetric) solutions of M = 0;
thus

M(ux, ).) = 0, VA a 1, (25.28)

and guy = ux for all g e G and all ). e 1. Now, as discussed above, each
peigenspace PA is a representation of G. Since G is compact, it follows by the
Pctcr-Weyl theorem [29], that each PA is a sum of finite-dimensional irre-
ducible representations. (A representation V of G is called irreducible if V has
no proper, closed invariant (under all operators Ta, g e G) subspaces.)

Again write dM1 = A), and as before, we assume that there is an
c > 0 such that peigenspaces PA., of dMx + cl satisfy (25.24).

Theorem 1:.5. Let M be a gradient operator for each A e 1, and assume that M
satisfies (25.24) and (25.28). If

dM2. and dM22 are nonsingular, (25.29)

and fori=1,2

Pay contains k; copies of a fixed irreducible
representation of G, where k, # k2, (25.30)

then there is a i, AI < ). < i.2, such that (ux, A) is a bifurcation point for M = 0.
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The theorem is proved by extending the Conley index to the equivariant
case, obtaining a G-Conley index hG(-). This puts more structure on the
Conley index and thus makes it more useful. For example, it is possible to
have h(11) = h(12) but hG(11) # hG(12). Thus we can prove bifurcation theo-
rems using the G-Conlcy index hG, while no such statement is possible using
the (usual) Conley index, h. Also, in the finite-dimensional case, (as in the
nonequivariant case), at a nondegenerate critical point 1, the Conley index of
I reduces to the Morse index of I, i.e., we have an equivariant homotopy
equivalence

h(1) D(V)/S(V).

Here V is the peigenspace of I and D(V) (resp. S(V)), denotes the unit
ball (resp. unit sphere) in V. Now at distinct parameter values Al # A2,
we can have dim V1 = dim V2 and thus h(I1, A1) = h(12, ) 2). But if G = O(n)
(for example), and V1 # V. as representations of O(n), then 7.1) #
ho(,,)(12, i.2). It is thus of some interest to extend the Conley index to the
equivariant case, and such an extension will now be outlined.

Let X be a metric space, and G a compact Lie group. Suppose that iji is a
G-flow (or local flow, in which case R is to be replaced by R+) on X. i.e.,

ijl: (R x G) x X - X,

is continuous, and satisfies Vx e X, Vg1, g2 e G, VtI, t2 E R,

0(0,e,x)=x (e=id.in G),

and

0 (t1, 91, 02, 92, 0 = 0(t1 + t2, 9192, x).

If g = e, 0,(x) __ t/i(t, e, x) defines a flow on X, and if t = 0, (s induces an
action of G on X by

gx = 00, g, x).

Let X/G denote the orbit space of X with respect to G, i.e., X/G is the set
of orbits in X under G. Thus, we define an equivalence relation on X by
x - y if y = gx for some g e G; then X/G is the set of equivalence classes. Let
n: X - X/G be the canonical projection. We put the quotient topology on
X/G, i.e., A e X/G is open if n-'(A) is open in X. Then if (N1, N2) is an index
pair in X/G, (n-' (N1), rr-' (N2)) is an index pair in X. Moreover, if (N1, N2) is
a G-invariant index pair in X, then (n(N1 ), n(N2)) is an index pair in X/G. If
I is a G-invariant set in X, and I is also an isolated invariant set for the flow
ii then n(1) is an isolated invariant set for the induced flow on X/G, and we
define h(;(1), the G-Conley index of I, to be the equivalent homotopy type of
the pointed space

hG(I) = rr-'(Nt)/n-'(N2),
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where (N1, N2) is an index pair for rt(I). [Two spaces X and Y are said to be
of the same equivariant homotopy type with respect to G if they arc homotopy
equivalent, and the group action commutes with all of the relevant maps. In
other words there exist maps f : X - Y and h: Y - X, such that f o h and
h of are homotopic to the identity through equivariant maps, i.e., maps
which commute with the group action. It is also not too hard to show that
there is an induced flow on X/G given by [x] - t = [x - t] and if 1IG is an
isolated invariant set for the flow on X/G, and (Ni, No) is an index pair for
I/G, then (7r-'(91), ir-1(No)) is a G-invariant index pair for I.]

Let (N1, No) and (N1, No) be G-invariant index pairs for I X. Then there
exist equivariant maps f and h (i.e., maps which commute with the G-action),
satisfying

f : (N, /No, No) - (N1/No, No),

h: (N1/No, No) - (N1INo, No).

such that both h o f and f o h arc cquivariantly homotopic to the identity
map; i.e., the pointed spaces (N1/No, No) and (N1/No, No) are of the same
equivariant homotopy type. We can thus unambiguously define the G-
invariant Conlcy index of I be to be this equivariant homotopy type. Note
that this definition reduces to the usual one when G is the trivial group. The
definition given here is richer, since as the relevant spaces admit a group
action, we can distinguish indices which have the same homotopy type as
pointed spaces, but are not of the same homotopy type as pointed G-spaces.

Definition. If dM2 is nonsingular for some A e 1, the reduced G-index of u2,
h'(ux, A), is the equivariant homotopy type of the pointed G-spacc:

hc(u2, A) = D(PA)IS(PA). (25.31)

Note that in the finite-dimensional case, this definition agrees with the
cquivariant formulation of the Conley index as given above. We now have

Theorem 1.6. With M as defined above (satisfying (24.24) and (25.28)), assume
that M is a gradient for each i, a 1. Suppose that

dMl, is nonsingular for i = 1, 2, (25.32)

and
hc(u,,, A,) * hc(uxj,;2) (25.33)

(i.e., are not of the same homotopy type). Then there exists a A, A < i < i.2,
such that (uA, i.) is a bifurcation point.

The theorem is proved in exactly the same way as in the nonequivariant
case (Theorem 1.2). Next, we have the following theorem which is applicable to
a wide class of groups G; we only give the statement for G = O(n); (see [53]).
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Theorem 1.7. If G = O(n) and V and W are representations of O(n), then
the pointed 0(n)-spaces D(V)/S(V), D(W)/S(W) are equivariantly homotopy
equivalent if and only if V is isomorphic to W as O(n) representations.

Since ho,,,)(u,t,, A) = D(P,i)/S(PA,), we see that Theorems 1.5 and 1.6 arc
equivalent. The importance of Theorem 1.7 lies in the fact that one can verify
(25.33) via a study of the linearized equations; this will be demonstrated in
the next section.

§E. Application to Semilinear Elliptic Equations

In this section we shall apply the general bifurcation theorem of the last
section, to study the symmetry-breaking problem for solutions of the semi-
linear elliptic equation

1u(X) + f(u(x)) = 0, X E DR, (25.34)

with boundary conditions

au(x) - 11 du(x)/du = 0, x e ODR. (25.35)

Here DR denotes an n-ball of radius R, f is a smooth function, a2
and d/dn denotes differentiation in the radial direction.

The function f is assumed to satisfy the following assumptions:
There exist points b < 0 < y such that

+p2=1

(H t) f(y) = 0, f'(),) < 0,

(H2) F(y) > F(u) if b < u < y (here F' = f and F(0) = 0),

(H) (H3) F(b) = F(y).

(H4) if f(b) = 0, then f'(b) < 0,

(Hs) uf(u) + 2(F(y) - F(u)) > 0 if b < u < y.

We refer the reader to [52] for a discussion of these conditions, and merely
point out that (H2) and (Hs) both hold if uf(u) > 0 for u e (b, y)/{0}; for
example, if f(u) = u(1 - u), then (H) holds.

For equation (25.33), the relevant symmetry group is G = O(n), i.e.. O(n) is
the largest group which leaves (25.34) invariant. Solutions of (25.34) which
possess this maximal symmetry are the radial solutions-any nonradial (i.e.,
asymmetric) solution is called a symmetry-breaking solution.

In order to illustrate how representation theory is used in this problem, we
first discuss some results in [52]. Thus it was shown that there is a r > 0 such
that the interval (y - a, y) lies in the domain of T; cf. §13. For p c- (y - a, y),
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consider the linearized operator

L'(w) = iw + p))w, lxi < T(p),

567

where

w E mo = {0 e C2(IxI < T(P)): ac(x) - fl db(x)/dn = 0, lxi = T(P)}.

Since any function on the ball has a spherical harmonic decomposition, we
may write

w(r, 0) _ a,(r)tt (0), 0 5 r 5 T(p), 0 e S°-',

"zo

where S"-' denotes the unit sphere in R" and d'N e E,,. This leads to the
following decomposition of L' as a direct sum:

LP =® L,

where each L. is defined for 0 e OP by

LfO=0"+ r 0'+(fI(u(',P))+rZJ 0<r<T(P)

Now it was proved in [52] that there exists a sequence qN I,/ such that for
large N, say N >- No, LP has positive spectrum; i.e., there exist positive
numbers ;vi, j '... , j4',, and nontrivial functions aN e d , j = 1, 2, ... , kN,
such that

L A ` a j
N

= N j
N

a f
N

, j = 1 ,2 , . . . ,k ? , .

Under the additional hypothesis that f is analytic (this assumption is needed
only if k > 1, where k denotes the nodal class of radial solutions), we may
assume that each radial solution q,) is nondegenerate in the sense that
0 sp(L'K). Furthermore, one may assume that Lj has positive spectra if
M > N. Using the fact that the .IN's decrease monotically, it is not difficult to
show that whenever L has a positive cigenvalue, the same is true for each
operator Li,, M < N, sec [52]. It follows that the peigenspace of each

q,,) is a representation of 0(n) of the form

kNEN®...$k,El ED koEo,

where each kj is a nonnegative integer, j = 0, ..., N. Therefore the dimension
of the peigenspacc of q,,) is

dim qN)) = kNIN + + k,1, + ko.
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Thus it is a-priori possible that dim qN)) = dim qN+, )); i.e.,

+ko=k.4+1 lN+t +ko,

so that the corresponding pcigcnspaces, PN, PN+, of u(-, q,!) and qN+,)
are isomorphic. That is, the homotopy type of the corresponding pointed
spaces satisfy

D(PN)/S(PN) D(PN,. t)/S(Pv+t )

Thus if we do not take account of the group structure we cannot apply
Theorem 1.2. Thus, in this case, we cannot use the ordinary (i.e., non-
equivariant) Conley index to prove that bifurcation occurs-there is no
index change at u(-, qN) and qN+, ). On the other hand, Pv and PN+1 differ
as representations of 0(n), because PN contains no copies of Thus
Theorem 1.5 is applicable and shows that for each N >- No, there is a point
PN, qv < PN < q.v+,, for which pN) is a bifurcation point. Now as was
shown in [51], under the given hypotheses on f, for p near y, no radial
bifurcation is possible on p) if T'(p) # 0, and since that T'(p) > 0 if p is
near y [51], it follows that for all sufficiently large N the symmetry breaks on

pN). We thus have the following theorem:

Theorem 1.8. Let f satisfy hypotheses (H) and let k be a given integer represent-
ing a fixed nodal class of radial solutions of (25.33), (25.34). Assume that f is
analytic if k > 1. Then there exists a sequence of points PN I y such that the
symmetry breaks on each radial solution pN).

Concluding Remarks

The question of structure of the set of bifurcating assymetric solutions is not
fully resolved. We merely mention that at each symmetry-breaking bifurca-
tion point there bifurcates out a family of O(n - 1)-invariant solutions; i.e.,
axisymmetric solutions. Moreover, one can prove that there are (degenerate)
radial solutions for which there also bifurcates out (possibly among others),
distinct solutions having symmetry groups (at least) 0(p) x 0(n - p), where
0(p) and 6(n - p) are n x n orthogonal matrices of the forms

O(P) =
CO l0)' O(n - p) = I 0 0)1

respectively; for a proof see [52].
Next we point out an interesting technical difficulty arising in studying the

symmetry-breaking problem for solutions of (25.33), (25.34). Namely, since p
is taken as a parameter, the radius R of the ball on which the radial solution
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p) is defined, changes with p; i.e., R = T(p). The space

1(0, p) e C2(0, T(p)) x R.: a%(x) - pddn) 0, IxI = T(p)l,

on which our bifurcation is presumed to occur, is not in the form of a product
space B x A where B is a Banach space and A is the parameter space. If we
change variables, writing y = x/R, then (25.33) and (25.34) become

Au(y) + R2f(u(y)) = 0, lyl s I,
au(y) - PR du(y)ldn = 0, IYI = 1.

Thus, if a# = 0 (i.e., Dirichlet or Neumann boundary conditions), then the
parameter R does not appear in the boundary conditions, and we have the
desired product structure. However, if up # 0, then we lose the product
structure. This problem is overcome by showing that the space

du l{(u.#)eC2(0.1) x R+:au(y)-fi7.du(y)
n=01lyI= I}

forms a vector bundle over R., and is thus locally a product space. However,
this local product structure is sufficient for doing bifurcation theory; for
details see [53].

We remark that the Lyapunov-Schmidt reduction to the peigenspaee, as
described Section II, is a good framework on which the application of the
Conley Index Theory to reaction-diffusion equations should be performed.
In particular, the development in Chapter 24, §D, should be redone in this
setting.

Finally, we wish to mention the celebrated Gidas- Ni-Nircnbcrg theorem
(26], which states that positive solutions of the Dirichlct problem for (25.34)
on n-balls, which vanish on the boundary (or positive solutions of the
Dirichlet problem for (25.34) in all of R" which vanish at infinity), must be
radially symmetric; i.e., they must be functions only of r = IxI. This remark-
able theorem is proved using a device due to Alexandroff, of moving parallel
planes to a critical position, and then showing that the solution is symmetric
about the critical plane; see [26].

SECTION II. Theory of Shock Waves

§A. Compensated Compactness

As we have discussed in Chapter 19, §B, a major obstacle in solving nonlinear
partial differential equations is to obtain a-priori estimates on approximating
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sequences, in order to obtain convergence of a subsequence to a solution.
Such methods rely on compactness results, and for nonlinear equations the
desired csimtates can be quite difficult to obtain. This is in sharp contrast to
the case of linear equations, where "weak convergence" often suffices to
prove existence theorems. This "lack of compactness" for nonlinear prob-
lems has restricted the use of weak convergence to linear equations. How-
ever, a deeper analysis can render such techniques useful for certain nonlinear
problems, and this is the essence of the method of compensated compactness.

For example, a typical result is the following. Suppose:

(a) (u,, v,,) tends weakly to (u', v') in L2(f2), i = 1, ..., N;
(b) {div u _ Y"_ I cu,',/6x; } is bounded in L2(fl); and
(c) curl v is bounded in L2(fl)", ([curl LUA],j = cvj,/ex,); then

N N

E u'v,', -' u'U' in -9'.
I ! !.1

(Note that uov,', does not converge strongly to u'v', in general; hence the term
"compensated" compactness.)

We shall show here how the method can be used to obtain global existence
theorems for certain systems of pairs of conservation laws. For these equa-
tions the technique yields convergence via the method of vanishing viscosity,
as well as convergence of certain difference approximations. The analysis is
based on viewpoint which takes into consideration averaging techniques to-
gether with the weak topology.

We begin the discussion with a brief review of some standard function-
al-analytic results on weak convergence, cf. [Ru 3]. First, if B is a Banach
space, and B' its dual, we define the weak topology on B as that generated by
the family of seminorms p,,., x' e B', where p,,.(x) = I(x', x)I, x E B. If B' is
separable, then on bounded sets of B this topology is mctrizable, and x -+ x
weakly in B means (x', x') -+ (x, x'), Vx' a if. The weak * topology on B' is
that defined by the seminorms q., x e B, given by I(x, x')I, x' e B'. As
before, if B is separable, x;, converges weak * to x' means that (y, (y, x')
for all y e B. The topology determined by the norm on the unit ball in B' is
compact in the weak * topology. Moreover, closed convex sets are weakly
closed, and convex functions which are strongly lower semicontinuous, are
weakly lower semicontinuous, as follows from the Hahn-Banach theorem.

We now consider specific spaces:

(a) L"(Q), 1 5 p :!r. oo; and
(b) M(S2), the space of Radon measures on an open set f2 in R".

Recall that L°(Q)' = L°'(i2) where 1/p + lip' = 1 (1 < p < oo), and that if f
is a bounded sequence in Lp(S2), and I < p < oo, then there is a subsequence
f,, converging weakly to f ; i.e., f n f,.0 -+ Info for all 4' e LP (n); for p = oc
a subsequence converges weak * to f. LI(i2) is isometrically embedded in
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M,,(S2) = ,measures of finite total mass} = Cb(t2)% where Cb(t2) is the space of
bounded continuous functions with the sup-norm topology. If f;, is bounded
in L' (a), it has a subscqucncc.f which converges weak * to a measure It. in
the sense that - <p. ¢> for all ¢ E Cb(t2). The space of measures M(Q)
is not it Banach space, but for each compact set K c Q, if CA(92) = CA
denotes the space of continuous functions on i2 with support in K (with the
sup-norm topology). then M(fl) is a subspace of C;; and so comes equipped
with the weak * topology. If we extract subsegences which converge weak *,
we mean that we have a bounded sequence in each C and that the sub-
sequence converges weak * in C;; for a countable family of compacta x whose
union is Q. An example of a weakly converging sequence is given by oscillat-
ing periodic functions. Thus, let yi , ... , yk be independent vectors in R". and
Y 0,y,: 0 S 0i c 1, Vi';. If F(x. y) is a bounded continuous function
on 4 x R`, which is Y-periodic (F(x, y - v) = F(x, y), j = I__ , k), then as
n :. the sequence f (x) = F(x, nx) converges weak * in L°(t2) to j. where
j, (x) _ [1i(meas Y)] Jr F(x, y) dy. This shows why the weak * limit of O(j)
is not 0(f,.) for nonaffinc 0.

The following result is useful to compare limits for different functions:

Proposition I1.1. Let K he a hounded set in RN, and let it. be a sequence of
functions from Q to R-v satisfying:

(i) u - it in L`(t2)x weak *; and
(ii) e K a.c.

Then

(iii) u(x) lies in cony K. the closed convex hull of K. a.e.

Conversely, if it satisfies (iii), there exists a sequence it. satisfying (i) and (ii).

If (i) and (ii) hold, then since cony K is the intersection of half-spaces
containing K. and L(u j > 0 implies L(u) ? 0 a.e., for affine L, we easily show
(iii). Conversely, to construct u, one first considers the case where u is a step
function and uses a construction as in the above example in each set where is
is constant.

A more precise analysis of the oscillations of a sequence u,, can be given if
one knows all weak * limits. This leads us to the "generalized functions" of
Young [62]. Thus, to each function it,, in !.'(S2)k we associate a Radon mea-
sure it. on Q x R& defined by

<It,,, F> =
I

F(x, dx, (25.36)
- t

where F(x, i.) is continuous with compact support in x. Working with the p,,
instead of it,, leads to the following basic result:
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Theorem 11.2. Let K he a bounded set in R'k and suppose {u } is a sequence in
L"(S2}" with u (x) e K a.e., for each n. Let p be defined by (25.36). Then there
is a subsequence {p ,} converging weak * to a measure p, in the sense that for
each continuous F, having compact support in x

<p, F) = lim
J

F(x, um(x)) dx. (25.37)

Moreover,
p z 0, sp

n

t(u) C fl x K, (25.38)

and if F(x, J.) = G(x), G continuous with compact support, then

<p, F) = f dx. (25.39)
na

Conversely, if p is a measure satisfying (25.38) and (25.39), there exists a
sequence u,. in LK'(S2)k satisfying (25.37), with ur(x) e K a.e.

Such a measure p will be called a "generalized function."

Corollary 11.3. Under the hypotheses of the theorem, there exists a measurable
family vx of probability measures on Rk satisfying

spt(v,,) e K a.e., (25.40)

<p, F) =
J

having com

<vx, F(x, )) dx,for all continuous junctions F
n
pact support in x, (25.41)

and

for each qS E C(Rk). 0(ur) converges in L'°(f) weak * to a
function 0 satisfying >1i(x) = <vx, 0) a.e. (25.42)

Proof (Outline). The existence of p follows from our quoted results
concerning M(( x R'k), and the corollary follows from measure-theoretic
results. The vx can actually be constructed as follows. First extract a sub-
sequence u,,, satisfying flu.) -+ p in L' weak *, for every polynomial P
with rational coefficients. Since IIP(u.)II < max{IP(x): x e K}, we have
Ip(x)l 5 max { I P(x): x e 9) a.e., and these inequalities are all true outside a
set of measure zero. For such x, the map P -, p(x) is linear and defines a
unique probability measure vx supported in K. Approximating continuous
functions by polynomials completes the proof of the corollary.

It is important to know when no oscillations occur on some subset of D.
this is related to the fact that vx is a Dirac measure, as the following result
shows:
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Theorem II.4. Let A c i2; then u,, - u in Lf,,(A)k for all p < oo if and only if
each o, is a Dirac measure for x c -!Q (then u, = 6.,., a.e.).

Proof. um -> u1 strongly in LP (A) if u,, - uj weakly and (uj)2
L'(A) weak . This latter is equivalent to spt(u,) c uj(x) a.e. in A. (]

We turn now to the case where we have some information on the dcriva-
tives of it.. We assume the following:

it. u weakly in L2(l)P, (25.43)

a jk c?ui/cxk lies in a compact subset of H,' (S2), i = 1, ... , q. (25.44)
j. A

Here the afjk are real constants, each u is real-valued, and H,;,' (S2) denotes the
space of distributions of the form fo + E j c3f,/cxj, where each f E L 10C' (Q).
(Recall that bounded sets in L o,(S2) are relatively compact in Ht (i2), and
that if 0, converges strongly in L' (i2), then 8 ,/ixj converges strongly in
Him (t2).) We define the following characteristic sets:

A = {i. E RP: 35 E R"`%{0}: 0, i = 1, ..., q

{(A)eRP

)

V= x(RN {0}):aj,A, k=0,i=j.
k JJJJJ

Here is the basic result of compensated compactness; the proof can be found
in [55].

Theorem 115. Let Q be a quadratic form on RP satisfying

Q(A) z 0, VA E A, (25.45)

and assume that (25.43), and (25.44) hold. If

it weak * in M(f2), (25.46)

then
p z Q(u) in M(il). (25.47)

Corollary 11.6. Suppose Q is a quadratic form on RP satisfying

Q(A) = 0, VA E A, (25.48)

and suppose u satisfies (25.43) and (25.44). Then

Q(u) in M(il). (25.49)
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Proof. Equation (25.43) implies is a bounded sequence in L'(S2). Thus
we can find a subsequence u,,, satisfying Q(u,.) - 0 in M(O). Applying the
theorem to ±Q, we see 0 = Q(u).

EXAMPLE. Suppose 0 is an open subset of the (x, t)-plane. Assume vv, con-
verges to v' weak * in Lm(f2), 1 < j < 4, and that both

aV., aU,2, av,3, aU.

T + ax and at + ax

lie in compact subsets of H,-« (fl). Then v A v - vv v converges to v1 v4 - v2v3
weak * in L'(Q), since A = {(i.', A2, A3, A4): A'A4 - A2)3 = 0}.

Now let us apply these ideas to systems of conservation laws

u, + flu). = 0, (25.50)

where is is an m-vector. Assume that the system is hyperbolic. As in Part III
of the text, we only consider solutions which satisfy the entropy conditions.
We will find solutions of (25.50) via the viscosity method (cf. Chapter 25, §C).
Thus consider the perturbed system

du, af(u,) _ a2 u,

T + ax - E Ox2 ' E > 0, (25.51)

and assume that we have a sequence is, = u,. of solutions satisfying

u is bounded in L''(Q)P and eu" is bounded in L2(f2)P, (25.52)
TX

for some open set S2 c R x R4. As discussed in Chapter 20, §B, the entropy
conditions are

U,+F,S0,

where U is convex, and
dUdf=dF.

From (20.18), we have

02
U(u.) - e U"(u,,, u.). (25.53)

a
_

Our goal is to use (25.53) in the context of (25.44) (indeed, to use an infinite
number of them). Now by (25.53), and are bounded in L"'(S2),
and since c,, 02 A this term converges
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strongly to zero in H1 (f2). On the other hand, the term is only
bounded in L' (Q), and we need the following lemma [43] to obtain the
desired compactness in H,o (S2).

Lemma 11.7. Let Q be open in R", and suppose f E 9.' satisfies f is bounded in
W,,-'(!(I)' for some p > 2, and f, = g + h,, where g lies in a compact subset of
H,« (i2), and h is in a bounded subset of M(0). Then.f ties in a compact subset
of ti10C (S2).

Having this lemma, we can find a subsequence u;, which by Theorem 11.2
gives a generalized function defined by a family v = v,,,, of probability
measures on R. Next, we apply the above example with v, = U, (up), v2 =
F, (u4), v = v., = F2(u;,). where (U;, F;), i = 1, 2, are both entropy-
pairs. Using Corollary 11.3, together with the last example, we see that for
almost all (x, r) E 12

<v, U1F2 - U2FI) = <v, UI)<v, F2 > - <v, U2)<v, FI), (25.54)

where v = v,,.,. We now characterize such probability measures v and prove
that this equation is satisfied only by Dirac measures. If m = 1, this can be
done since any U is an entropy. One shows that spt(v) lies in an interval in
which f is affine, so this interval is a point if, say, f is convex; see Tartar [55].

In the case m = 2, the entropies are not easily constructed, as they satisfy
linear second-order hyperbolic equations. We now turn to a study of these
equations. Using the basis of cigcnvectors of f'(p) (p a point in 0), we have

F'(a)rj(a) = ).j(a)U'(a)rj(a), j = 1, .. ., m.

If in = 2, we can go over to Riemann-invariant coordinates; i.e., w; is a j-
Riemann invariant if w; (a)rj(a) = 0, for all a (see Chapter 20, §A). We as-
sume that these functions define a global nonsingular coordinate transforma-
tion. Then (25.41) becomes

OF au (IF 1U

8w, __ i.2 =ew2
0,

0 12
- AIaw,

0'

and one finds solutions of the form (see [Lx 4])

[AoU k(%v,,w2)=ek"+ Ak,
-+olk2l

r
1

Fk(w,,w2)=ek,v, IBo+

B,
k.+o

k2
>

' t'tp IW: t) + W(X) E t.2A).

IkI-.co.
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(A similar family exists upon permuting the roles of w, and w2 as well as A,
and )2.)

Now suppose v satisfies (25.54), and let R be the smallest rectangle IV-
containing spt(v). The main technical result is that if w, < w, (or

a2 < w2 ), then each vertical (resp. horizontal) side of R contains a point
where ai.2/cw, = 0 (resp. c1;.,/0w2 = 0). This yields the following result (cf.
Lemma 20.2):

Theorem 11.8. If both characteristic fields are everywhere genuinely nonlinear
(a) ,/aw2 # 0, aA2/aw, = 0), then v is a Dirac measure.

A somewhat finer analysis yields

Theorem II.9. If both characteristic fields are genuinely nonlinear off a curve
w2 = O(w, ), where 0 is strictly monotone, then v is a Diract measure.

As an example (see DiPerna [11]), consider the p-system (Chapter 17, §A)

V9 - u, = 0, u, + p(v) = 0, p' < 0. (25.55)

The characteristic fields are genuinely nonlinear if p" > 0. The last result
applies if p" has at most one zero, as u being constant is equivalent to w2 -
IV, being constant. Of course, this development is based on (25.52). Using
invariant regions (cf. Chapter 14, §B), one proves the L'° estimate in (25.52)
(the other part of (25.52) is not difficult to prove, in general), in the case of
nonlinear elasticity; namely, when p'(v) < 0 if v < vo, and p' > 0 if v > vo.
This proves the existence of a global bounded, entropy solution by the viscos-
ity method, provided that the data is bounded, and no vacuum is present.

These methods have been extended by DiPerna [12], to the case of
isentropic gas dynamics: the p-system with p(v) = k2/v', where y = 1 + 2/n,
n e Z.., n z 3, for the case of smooth, bounded initial data.

DiPerna [12] has also shown how the method of compensated compact-
ness can be used to demonstrate the convergence of certain finite difference
approximations to systems of conservation laws. These methods have been
extended by Ding Xiaxi, Chen Guigiang, and Luo Peizhu in a series of papers
[9].

§B. Stability of Shock Waves

In this section we shall discuss the recent results concerning the nonlinear
stability of travelling waves (i.e., viscous shock waves, see Chapter 24, §§A, B),
for systems of viscous conservation laws of the form

it, + f(u). = (B(u)u,,)., x E Rt, t > 0, (25.56)
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where u = u(x, t) is an n-vector, f is a smooth vector-valued function, and
B(u) is a smooth it x n matrix. To (25.56) there is associated the system of
conservation laws

u, + f(u)" = 0. (25.57)

We assume that this latter system is hyperbolic, and that each characteristic
field is either genuinely nonlinear, or linearly degenerate, see Chapter 17, §B.
As in Chapter 24, if (u,, u,, s) denotes a shock-wave solution of (25.57), then
if Iu, - u,l is small, the system (25.56) admits a travelling-wave solution
u(x, t) = 0(4f), = x - st, with 0(-oo) = u,, 0(oo) = u,. The goal is to show
that these solutions (properly translated, see below), are attractors for (25.56)
in the sense that if the initial-data for (25.56) is "close" to (a certain trans-
late of) 0, then the corresponding solution of (25.56) tends to 0 as t -+ oo.
Thus the study of viscous shock waves for equations of the form (25.56), (such
as the compressible Navier-Stokes equations), can often be replaced by the
study of shock waves for inviscid equations (25.57), (such as the compressible
Euler equations).

We now turn to a more precise statement of the result, together with an
indication of the proof; see Liu's memoir [38] for complete details. We con-
sider k-shock-wave solutions qk(x - skt) of (25.56), k = pl,... , p,, 1 5 p, <

< p, < it, and we assume that these can be superimposed, i.e., for some
constant states l 0, a,_., a,,

0,,,(x) = ,,,,(-co) 0_- u,, 1; and 0P,(-oo) = ao.

(25.58)

We denote the linear superposition if these waves by

Y 0i(x - Sit) =- ao + j [0P,(x - spit) - u;-1], (25.59)
tcP j-1

P = (pi,,..., p,1}. Of course if 1 > 1, this is not an exact solution of (25.56),
but it may be regarded as an asymptotic solution, as we shall see. Now
consider initial data u(x, 0) for (25.56) which has the same limiting states at
±oo; namely, u(ec, 0) = a,, u(-cc;, 0) = ao, or equivalently

u(x, 0) = u(x) + 10,(x), u(±oo) = 0. (25.60)
ieP

The main result is that the solution of (25.56) with data (25.60), approaches
the sum of the 0,, i e P, properly translated by an amount x,; i.e.,

lim sup u(x, t) - E ,(x + xi - s,t)I = 0. (25.61)
I-,Y, xc2 ff ieP
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This is the strong stability statement for the viscous shock waves. The trans-

lations x,, can be a-priori determined from the perturbation u, using the
"conservation of mass" principle. This can be seen as follows. First, (25.56)

implies that
rm

Cu(X, t) - O,(X - sit) dx =
J

u(x) dx, t z 0.
-oo IEP m

Now any translate of ¢, yields a net flow of mass parallel to q,(oo) -
Oi(-oc) = i1i - u`i_, in the sense that for i e P

f [Y'i(x + x, - sit) - Oi(x - sit)] dx = xi(ut - ui - t)

It follows from these last two equations that

[ux.f t) - O;(x + x; - Sit) dx = f- u(x) dx - xi(ui - u;_1).
icP J D icP

(25.62)

Using (25.62), we see that the convergence in (25.61) does not imply conver-
gence in the integral sense if P # 11, 2, ... , n}, since for the general perturba-
tion i , the first term on the right-hand side of (25.62) is a general n-vector,
while the second term lies in the i-dimensional subspace of R" spanned by
the (u, - ui _ 1), i = 1, ... , 1. If P = { 1, ... , n}, convergence in the integral
sense can be proved since x, could be determined by setting the right-hand
side of (25.62) equal to zero, because the vectors (u, - 01-1 ). i = 1, ... , n, are
linearly independent (for weak shocks), and hence the left-hand side is zero
for all t > 0. If P s { 1, ... , n}, as would be the case if one is studying the
stability of a single shock wave, the right-hand side of (25.62) is nonzero, in
general, for any choice of x,'s. Thus from (25.61), and (25.62), it can be shown
that the perturbation u(x), in addition to translating the qi must also give rise
to waves which decay pointwise, but carry a finite amount of mass. Such
waves are called diffusion waves of complementary families, i f P. An i-
diffusion wave with base state uo (i.e., this diffusion wave is constructed near
the constant state uo and takes values along the ith-rarefaction-wave curve
through uo), can be shown to carry a net flow of mass parallel to r,(ua) as
t - oo (the n, are the right-eigenvectors off'). In this case, i 0 P, and the base
states are

uo=uj ifpj <i<pJ+,, j=0,1,...,I; Pt+t=n.

Thus the right-hand side of (25.62) will be a linear combination of the ri(uo),
i 0 P, so there exist constants ai, i 0 P, such that

U(x) dx = Z x,(u, - u', _ t) + E a,r,(uo). (25.63)
-0 1EP ifP
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It is this equation which determines the translations x;, i c P, as well as the
strengths x;, i 0 P, of the diffusion waves since the vectors (iy - u; ), i E P,
and the r;(uo), i 0 P. form a basis in R" (if the shocks are weak).

For systems of conservation laws (25.57). the behavior of shock waves,
linearly degenerate waves, and nonlinear diffusion waves (N-waves) is well
understood [Lu 4]. Aside from the fact that one is discontinuous and the
other is continuous, shock waves for (25.57) and viscous shock waves for
(25.56) have essentially the same shape; the results given here show that both
arc nonlincarly stable. The analysis is based on the study of diffusion waves
for (25.56), and the technique combines both the characteristic and energy
methods and requires a deep understanding of the diffusion waves. The linear
diffusion waves for (25.56) arc governed, qualitatively, by solutions of the
linear "heat" equation

it, + GU; = Euxx, u E R, (25.64)

which behaves quite differently from the corresponding linear waves for
(25.57), which are governed qualitatively by solutions of the linear wave
equation

u, + cux = 0. u e R. (25.65)

Similarly, nonlinear diffusion waves for (25.56), governed qualitatively by
Burgers equation,

U, + Uux = suxx, U E R. (25.66)

differ greatly from the corresponding N-waves for (25.57) which are governed
qualitatively by the inviscid Burgers equation

u, + uux = 0. (25.67)

One usually studies system (25.56) with the view that it is an accurate
approximation of (25.57) when the viscosity matrix B(u) is small. Since
the aforementioned differences between the wave behaviors for (25.56) and
(25.57) hold independent of the strength of viscosity, the large time behavior
of waves for (25.56), which is of great physical interest, can be accurately
replaced by solutions of (25.57) only on the level of shock waves, and not on
the level of diffusion waves, even if the viscosity is small.

As is well known (cf. Chapter 16, §C), the combination of nonlinear effects,
together with the entropy condition, forces waves of each genuinely non-
linear characteristic family to combine and cancel. Thus, even though (25.57)
is a hyperbolic system, it is also dissipative and admits diffusion waves; i.e.,
N-waves. For each genuinely nonlinear field, the system (25.56) carries non-
linear diffusion waves, the construction of which arc based on the diffusion
waves for (25.66). For this one assume that for all u under consideration, we
have

r,(u)`B(u)r;(u) = ar(u) > 0: 125.68)
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i.e., the diffusion matrix B(u) has positive diagonal elements with respect to
the basis of right eigcnvcctors of f'(u). Many physical systems, such as the
compressible Navier-Stokes equations, satisfy (25.68).

The main theorem concerning the nonlinear stability of viscous shock
waves is the following:

Theorem 11.10. Assume that (25.57) is hyperbolic, that each characteristic field
is either genuinely nonlinear or linearly degenerate, that f(u) admits eigen-
vectors r,(u). i = 1, ... , n, and that the viscosity matrix B(u) of (25.56) satisfies

B(u) = (ri (uY, ... , r(u)')B(u)(ri (u), . , r,,(u)) > 0, (25.69)

(i.e., B is positive definite), for each u under consideration. Then weak viscous
shock waves for (25.56) are nonlinearly stable in the following sense: Suppose
we are given viscous shock waves of (25.56),

O1(x-sit), i e P = {Pi'...,Pc}, 1:5Pi <P2 <...<pi sn,

corresponding to the pith characteristic field, where Op,(-o0) = u,_ glp,(oa) =
u,, i = 1, ... ,1. Then the solution of (25.56) with initial data (25.60) exists and
tends to the translated shock waves in the sense of (25.61), provided that the
viscous shock waves 0p,, i = 1, ... ,1, are sufficiently weak, that the perturba-
tion u is sufficiently small in Lam', and that u(x) -+ 0 sufficiently rapidly as jxI -,
x. The constants x,, i = 1_., 1, are uniquely determined by (25.63).

The proof of this theorem can be divided into three steps. First, one studies
some intrinsic geometric properties of viscous shock waves and diffusion
waves. In particular, it can be shown that viscous shock waves are compres-
sive (this is the main reason that they are stable), while diffusion waves are
either compressive or weakly expansive. Second, by considering linear hyper-
bolic waves, the solution u can be decomposed as a sum of shock waves 0,,
i e P, diffusion waves with strengths a,, i 0 P, a linear hyperbolic wave,
and a remainder term u* which carries a net flow of zero mass; i.e.,
I-. ti*(x, t) dx = 0. This last equation is crucial as it allows one to work with
the antiderivative v of u*. Finally, by introducing a new characteristic-energy
method, one can obtain the desired stability estimates for v.

The assumption that b(u) is positive-definite is not needed for the discus-
sion of diffusion waves; for these (25.68) suffices. The compressible Navicr-
Stokes equations satisfy (25.68) but not (25.69). However, using some special
features of the compressible Navier-Stokes equations, the ideas in the proof
can be extended to this system as well (cf. [39]).

We remark that Liu's theory is based upon his important discovery that a
general perturbation of a given viscous shock profile not only produces a
phase shift in the profile, but also introduces diffusion waves (linear or non-
linear) in the transversal wave directions. We remark that Liu's approach
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applies only to a special class of initial perturbations which satisfy the con-
dition that the initial difference between the perturbations and the viscous
shock profile has the same asymptotic behavior as that of the linear hyper-
bolic wave as JxI r (constructed by Liu in [38]), which has an algebraic
decay rate as 1xj . x., In particular, initial compact perturbations of the
viscous shock profile are excluded by Liu's theory. Recently. Szepessy and
Xin (Nonlinear Stability of Viscous Shock Waves, Arch. Ra(. Mech. Anal.
122. 11993). 55- 103), observed the following fact: namely, a general perturba-
tion of a given shock wave produces not only a phase shift in the profile
and diffusion waves in the transversal wave directions, hut also produces
resonant diffusion waves in the shock wave due to wave interactions. The
effects on shock waves due to self-interactions of transversal diffusion waves
is realized through a coupled diffusion wave. Based on this observation.
Szepcssy and Xin proved that a viscous shock profile is asymptotically non-
linear stable for general perturbations; for details, see the above paper.

The study of the stability of the viscous shock wave for a scalar equation
was first considered in [Hf 2] and, more generally, in [35]. For systems,
the papers [27] and [35] study this problem under the restrictive condition
f U(x) dx = 0: this assumption precludes the existence of diffusion waves.

Finally, the stability of rarefaction waves for systems of conservation laws
has been considered by Liu and Xin; see [40].

§C. Miscellaneous Results

In this section we shall mention several recent results, without going into
as much detail as in the last sections; the interested reader can consult the
quoted references in order to find a more complete discussion.

A major source of research has been in studying systems of conservation
laws of the form (25.57) which arc either weakly hyperbolic (i.e., the eigen-
values of J"(u) are real, but not necessarily distinct), or which have the prop-
erty that some characteristic fields are neither genuinely nonlinear nor lin-
early degenerate. These systems are of interest because they arise in certain
applied problems, such as oil reservoir simulation, viscoclasticity, and multi-
phase flow. These systems are also of mathematical interest as they raise
interesting questions of well-posedness, structure of solutions, and admissi-
bility criteria for weak solutions. A good general reference to these problems
can be found in the collection of articles [36]. In [56], Temple studies a class
of equations, coming from enhanced oil recovery problems, which exhibits a
new phenomena; namely, the eigenvalues off' degenerate with a (oi) normal
form at certain eigenvalues of the unknowns. Glimm's analysis (cf. Chapter
19) does not apply since the degeneracy leads to oscillations and hence to
unbounded variation for any numerical method based on solutions of the
Ricmann problem. New techniques are developed in [56] to prove existence
of a solution. In [57, 58] Temple presents an existence theory for systems of
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conservation laws which have coinciding shock- and rarefaction-wave
curves; such systems arise in the study of gas dynamics, oil reservoir simula-
tion, nonlinear motion of elastic strings, and multicomponent chromato-
graphy. In [59] some conservative finite difference schemes are proved to
converge for certain such systems.

Next, in [61] Temple proves that for any 2 x 2 system of conservation
laws, outside of the class of systems with coinciding shock and rarefaction
curves (in particular, including the p-system, cf. Chapter 17, §A), no L'-
contractive metric exists. It follows that for such systems the usual semigroup
methods are doomed to failure.

The problem of decay of solutions of systems of conservation laws with a
rate independent of the support of the initial data is central to the issue of
uniqueness and continuous dependence of the solutions on the data. In [60]
Temple proves that for systems of two conservation laws one has an estimate
of the form

11 U(, t)II. s F `
Iu(,o)IL,

,

where F(5) -+ 0 as 5 > cc; specifically, (log 5)-112. This is the first
decay result with a rate independent of the support of the data, and it
immediately implies the stability of the constant state in L', Previous decay
results, e.g., [DP 2, 4, GL, Lu 3, 4], give decay with a rate only in the case of
compactly supported data. Moreover, these decay estimates are in the total-
variation norm, and easy examples show that the total variation does not
decay at a rate depending only on the L'-norm of the data.

We mention a result in [30] in which it is shown that for the compressible
Navicr-Stokes equations, smoothing of initial discontinuities must occur for
the velocity and energy but cannot occur for the density; cf. footnote 2 of
Chapter 15.

Finally, there has been much interest lately in the study of detonation
waves for combustible gases; i.e., the equations of a reactive gas flow. In
Lagrangian coordinates, these take the form

v,-ux=0,
u, + P. = (pt;-IUX)x,

(e + u2/2), + (pu)x = (pv- t uux)x + (;.v-'T,).,,

z, = Dzxx - O(T)z,

where v, p, it, "T, and e denote the usual "gas dynamic" variables (cf. Chapter
18), z is the mass fraction of unburned gas, 4 denotes the reaction rate, and A,
p, D denote, respectively, heat conduction, viscosity, and species-diffusion
coefficients. The last equation governs the mass fraction of the unburned gas.
In [22] Gardner proves an existence theorem for strong and weak detonation
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waves for explicit ranges of A, p, and D. The problem reduces to finding an
orbit of an associated system of four ordinary differential equations which
connects two distinct critical points. The proof uses topological methods,
including the Conley index.

SECTION III. Conley Index Theory

§A. The Connection Index

Suppose that a flow is generated by a parametrized system of differential
equations

x' = f(x, 0), x c- R", 0o s 0 s 01, (25.70)

where f depends continuously on 0. If we append the equation 0' = 0 to this
system, the equations generate a flow on X = R" x [80, 01 ], for which each
slice 0 = const. is invariant. Given any subset S of X, let Se denote those
points in S whose last coordinate equals 0.

A homotopy invariant for the augmented equations can be defined as
follows. Suppose that S, S', and S" are invariant sets in X such that Se, Sa, and
Sa are isolated invariant sets with respect to (25.70), for each 0 E [81, 02], and
the following hold:

(i) S' U S" c S;
(ii) S' n S" _ 0; and

(iii) So 0=0,or 0=02.
Then (S, S', S") is called a connection triple. A homotopy invariant, called the
connection index, denoted by h(S, S', S") can be defined for connection triples;
a complete definition, together with the relevant theorem, and examples is
given in [CG, CS 11]. We content ourselves here with giving a somewhat
imprecise, though instructive, description of this invariant. Let N e X be a
compact neighborhood of S such that S(N8) = Se (S(N8) denotes the maximal
invariant set in Ne), 01 5 0 s 82. Let N2 be a subset of N such that (Ne, No)
is an index pair for S9 (cf. Chapter 23, §A), and let N2 be N2 together with the
closure of all orbit segments in Ne, and Ne2 which tend to Se, and Sa,, respec-
tively, in negative time. The connection index, h = h(S, S', S"), is defined to be
[N/N2], the homotopy type of the quotient space N/N2. (This is not strictly
correct since Sa. a N/N2, i = 1, 2, so (N, N2) is not an index pair, as defined
in Chapter 23, §A. The problem is remedied by suitably modifying the equa-
tion 0' = 0 in neighborhoods of Se, and Si.) It turns out that [N/N2] for the
modified equations is the same as [N/N2]; thus [N/N2] gives the "correct"
homotopy type, but for a different set of equations.

This index depends only on the connection triple, and is invariant under
continuation. Roughly speaking, h measures a change in the way solutions in
the "unstable manifold" of SS leave NB, when 0 = 01 and 82. Thus, if (N/N2)
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is an index pair for some 0, (Re, Ns) is an index pair for S,. At 0 = O,, i = 1, 2,
Re also consists of points in the unstable manifold of Se,, i = 1, 2, which lie
in the exit set. Thus h measures a change in the way the unstable manifold of
S' leaves N at 0 = 0, and 0 = 02. The modifications mentioned earlier in
the 0' equation are such as to make this picture correct. If the index is
"nontrivial" in a sense defined below, then the unstable manifold sweeps
across S" as 0 varies from 0, to 02, and thus at some 0 e (00, 0, ), there is a
connection from Ss to Ss. In particular, the following theorem holds; see
[CS 11]:

Theorem 111.0. Suppose S = S' u S". Then h(S, S', S") = (V A h') v h" where
h' = h(S'), and h" = h(S").

If the index can be computed, and shown to differ from (V A h') v h"
(i.e., to be "nontrivial "), then it follows that S' u S" S; hence there exists a
0 e (0 02) for which SS u SB $ Se. If, for example, the flow is gradient-like in
Se, it follows that Se contains an orbit connecting S' to S".

Finally, consider the product system

x' = f (X, 0),

a=0,
q, = q2,

q'2 = q1.

The q-equations are linear, with a saddle at the origin. It follows (see [CS 11])
that if (S, S', S") is a connection-triple for the (x, 0) equations, then (S, S', S")
is a connection triple for the product system, where S, S', S" are, respectively,
S, S', S" augmented with two zeros for the q-components. Moreover,
h(S, S', k) = V A h(S, S', S").

We shall illustrate these ideas with a simple two-dimensional example.
Consider the system

IV' = z, z' = -Oz + c(w), (25.71)

where c(w) is qualitatively a cubic with roots 0 < r, < r2; suppose too that
c.'(0) < 0 and c'(r2) < 0. The critical points of (25.71) are y,, = (0, 0), y, =
(r,, 0), y2 = (r2, 0). Depending on the value of 0. the rest point y, can be a
stable or unstable node, or a spiral or a center, while yo and V2 arc always
saddles; thus h(y0) = E` = h(72)-

If 0 = 0 (25.71) is a Hamiltonian system with "energy" H = z2,/'2 + C(w),
(C' = c), and H' = 0. If 0 # 0 (25.71) is gradient-like as H is now a Lyapunov
function, since H' = - 0z2. The phase portrait of (25.71) consists of the level
curves of H when 0 = 0. For 0 # 0, a rough description of the phase plane
can be obtained from the 0 = 0 case and the fact that H' S 0; a typical case
is indicated in the figure below. In particular, if 101 is sufficiently large, there
are no solutions which connect yo to h, say for 101 = O.
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Note that if a solution is to connect yo at -oo to v2 at +x, it must be that
w' = z > 0 along this orbit. We thus consider the region M bounded by
the dotted lines in the above diagrams. The curved edges of M are solution
curves of (25.71) when 0 = 0. It is easy to check that M is an isolating neigh-
borhood for (25.71) for every 0; namely, if 0 # 0, every orbit through OM is
transverse to OM; if 0 = 0 solutions in the curved boundaries eventually
leave M. Note, too, that for every 0, there are three components along CM
where solution curves (eventually) leave M in positive time. In the cases
101 = 0,, these are the heavy lines in M. For each 0, let Me denote these
subsets of CM.

From these remarks, it follows that if we define

S' = {yo) X [-0t, 01], S" = {Sr2) x [-01, 01],

S = S(M x [-0 01]),

then (S, S', S") is a connection triple for the equations (25.71), appended with
0' = 0. Also, if N = M x [ - 01, 01 ], then the set N2 as defined above
consists of each of the sets (Me, 0) together with the closure of the unstable
manifolds of yo when 0 = ± 01. Since these manifolds connect different com-
ponents of Me, 0 = t 0, , it follows that N2 is a connected set and is, in fact,
contractible to a point; thus h = [N/NZ] = 0.

Suppose now that S' u S" = S and, in particular, that there is no orbit
running from Yo to y'2 for any 0. It would then follow from the above theorem
that h = (E' A V) V E' = E2 v V. Since this is not true, we have Sa u
Sa Se for some 0. Also, since w' = z > 0 along nonconstant solutions in Ss,
it follows that the nonconstant solution in S. must be a connecting orbit.

Finally, consider the product system

z' = w, q, = 92,

W _ -Ow - c(u), q'2 = qt.
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Let

Al = M x {(91, q2): IgjI 1, 2}, i. _ (yj, 0, 0), i = 0, 1, 2,

_ {Yo} x [-e Bt], S" = {i2} x [-01, 91 S = S(M x 91, et]);

then (S', S', k) is a connection triple for the product flow with K(9, 9', k) =
Tt(S, S', S") A E' = 0 A E' = V. Since this is a different homotopy type
than (E' A h(S') v h(S") = (E2 A E') V EZ = E3 v E2, it follows that the
connection index of (S, SS', S") is also "nontrivial."

The existence of travelling waves for both competition and predator-prey
type reaction diffusion systems is proved by this method; see [CG] and [19].

§B. Conley's Connection Matrix

An important question for dynamical systems with rest points is whether one
can prove the existence of heteroclinic orbits. On a more general level, one
can investigate whether, given a collection of invariant sets, does there exist
connecting orbits between them? Conley introduced an algebraic object
called the connection matrix which is designed to study such questions. The
ideas involved are generalizations of earlier techniques based on the Conley
index which allowed one to prove the existence of connections between
attractor-repellor pairs [Cy 2]. The simplest description of the connection
matrix is that it organizes the information provided by the homology
(or cohomology) groups of the Conley indices associated to the isolated
invariant sets. It consists of a collection of homomorphisms between the
homology groups of the Conley indices of the sets in a Morse decomposition
of a flow (cf. Chapter 23, §A). The maps are determined by the Morse-theo-
retic relations in the flow, and they contain information about the connecting
orbits between the Morse sets. In its present form, the connection matrix can
be applied to many interesting problems even by someone having little or no
training in algebraic topology. In this section we briefly describe the connec-
tion matrix on a somewhat elementary level.

We assume the general set-up of Chapter 23; in particular, X is a locally
compact Hausdorff space, (x, t) -> x - t is a local flow on X, and, as usual, h(S)
denotes the Conley index of the isolated invariant set S. Now, dealing with
the homotopy equivalence classes of topological spaces is often quite difficult.
Thus to simplify matters, we shall only consider the homology of the pointed
topological spaces h(S). In particular, we shall restrict our attention to the
singular homology groups with Z2 coefficients. Thus given S, we shall study
the algebraic object Z2) = H,(N11No; Z2) H,(Nl, No; Z2), where
(N1, No) is an index pair for S (cf. Chapter 23). The important fact is that
H,(NI, No; Z2) = No; Z2)} : n = 0, 1, 2, ... }, where each HJN1, No;
Z2) is a vector space over Z2. Thus H.(NI, No; Z2) is an infinite collection of
vector spaces over Z2, indexed by the nonnegative integers. In most applica-
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tions only a finite number of these are nontrivial. The following proposition
describes H,(h(S); Z2) in the case that S is a hyperbolic critical point or a
periodic orbit; see [Cy 2]:

Proposition III.I.

(A) Let S be a hyperbolic critical point with exactly k eigenvalues having
positive real parts; then

Z2)
Z2, if n=k,

1 0, otherwise.

(B) Let S be a hyperbolic periodic orbit (i.e., no Floquet exponent has zero
real part), with Poincare map 0. Assume do has real positive eigen-
values, exactly k of which are greater than one. Then

Hn(h(S);
IZ2, if n=kork+l,

Z2) xx
1 0, otherwise.

In applications, one is often given a complicated isolated invariant set
S, whose structure one wishes to determine. To do so, one needs to decom-
pose S into smaller sets, and then prove the existence or nonexistence of
connecting orbits. Given two isolated invariant sets, S, and S2, we define the
set of connections from S, to S2 as (cf. Chapter 22, §B)

C(S1, S2) = (x: a(x) C S,, w(x) C S2}.

Let (P, >) be finite set with a partial order relation >, satisfying:

(i) i > i never holds if i e P; and
(ii) ifi>jandj>k,then 1>k,fori,j,kinP.

Definition 111.2 (cf. Definition 23.1). A Morse decomposition of S is a finite
collection M(S) = {M(i): i e (P, >)} of compact invariant sets in S indexed
by P such that if x e S, then either x e M(i) or x e C(M(i), M(j)) where i > j.

The sets M(i) are called Morse sets, and are isolated invariant sets; cf.
Chapter 23, §A. To simplify the notation, we write H(i) = H,(h(M(i)); Z2)
and H (i) = H (h(M(i)); Z2). We can now define the connection matrix.

Let S be an isolated invariant set and let M(S) = {M(i): i e (P, >)} be a
Morse decomposition of S. Let A = (A0], i, j e P, be a matrix whose entries
AU are matrices over Z2.

Definition 111.3. A: Q,EPH(i) -+ ©,,rH(i) is a connection matrix if the fol-
lowing hold:
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(a) AY = 0 if i < j (0 is the zero matrix).
(b) A is a boundary map; i.e., A2 = 0 and A;; = 0 except possibly as a

map from to
(c) Let A. = A1Q II,,(i) and let ker A,,; Im A,,; then II,,A

ieP
H,,(h(S): Z2).

Theorem 111.4 (cf. [ 19, 20, 41 ] ). Given S and M(S), there always exists a con-
nection matrix.

Of course, connection matrices need not be unique. Moreover, the defini-
tion of connection matrix as given here is weaker than that of Franzosa [19],
the difference being that we do not specify the isomorphism between H,A and

Z2), whereas Franzosa does. This implies that the set of matrices
satisfying our conditions may be larger than his; however, for most simple
examples this is not the case.

The most important property of the connection matrix is the following
result:

Proposition HIS. Let i < j and assume that there is no k such that i < k < j;
then if A,, 5E 0 it follows that C(M(j), M(i)) # 0.

This means that in certain circumstances, a nonzero entry in A implies
that a connection exists.

We consider next an example. Let S be an isolated invariant set with
Morse decomposition M(S) = {M(i): i = 0, 1, ..., N}. Assume too that we
have the following information for the homologies of the Morse sets:

Z2, if n = 2i, 2i + 1,

0, otherwise,

Z2, if n = 2N,

0, otherwise,

H,,(N + 1) = 0 for all n,

Z2)
Z2, if n = 0,

0, otherwise.

05i<N,

Then one can show C(M(i), M(i - 1)) # ¢ for i = 1, ..., N. Rather than give
a proof for the general case, which might obscure the simplicity of this appli-
cation of the connection matrix, we shall only consider the case N = 2.

Thus we are looking at A: o Ii(i) - ©o H(i), and since H,,(3) = 0 for all
n, we need only consider A: o H (i) -' ©o H (i). Similarly, ignoring

H(i) = 0, we have that A maps

HO(0) O H,(0) ® H2(l) ® HAD ® H4(2)
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into itself. From (a) in Definition 111.3, if i S j, then A,1 = 0; for example,
Aoo: Ha(0) ® H1(0) -+ Ho(0) ® H1(0) can be written as

Ho(O) H1(0)

HO(0) 0 0
Aoo = H1(0) 0

Now consider A02: H,(2) t!n(0) ( H,(0); by (b) in Definition 111.3, A02 =
0; similarly applying 111.3(b) to the maps

A01 : H2(1) ® H3(1) - H0(0) ® H,(0),

and

A12: H4(2) H2(1) (D 113(1),

gives

=
0 0 0

A01
01

and A12 = 11,

where * denotes an unknown entry. Thus

Ho(0) HI(0) H2(l) H3(l) H4(2)

HO(0) 0 0 0 0 0

H1(0) 0 0 * 0 0

H2(1) 0 0 0 0 0

H3(1) 0 0 0 0 *
114(2) 0 0 0 0 0

Finally, we use (c) in Definition 111.3. Since HA = H*(h(.S); Z2), it must be
that dim 11A = 1; i.e., dim ker A = rank A + 1. But, clearly, dim ker A >: 3;
so rank A = 2 and thus both * entries equal 1. In particular, C(M(l), M(0)
and C(Af (2), M(l)) are nonempty by Proposition III.5.

We end this section by describing some other applications of the connec-
tion matrix. In [45] Reineck studies the qualitative behavior of solutions to
2-species ecological models, and he determines the connection matrices re-
lated to the various possible phase portraits. He also obtains results on a
3-species system modeling two predators and one prey. Mischaikow [42]
classifies travelling wave solutions for systems of reaction-diffusion equa-
tions of the form u, = Du,,. + VF(u) where D is a positive diagonal matrix;
these results can be extended to obtain results on homoclinic orbits for the
Hamiltonian system, u' = v, t,' = -VF(u), as well as results on heteroclinic
orbits for the related system, u' = v, v' = Ov - VF(u). Finally, Franzosa
[19, 20] gives a complete rigorous development of the Connection Matrix
Theory.
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§C. Miscellaneous Results

We describe some extensions of the Conley index which have appeared in the
recent literature-no attempt is made to go into any detail.

In [46, 47] Rybakowski develops the Conley index theory for semi-
flows on metric spaces. The isolated invariant set S is still assumed to be
compact, but index pairs consist of closed, admissible sets. A set N is called
admissible if:

(a) for every sequence {x"} c N, and every sequence {t"} c R+, where
t - oc and x [0, t"] 9t N, the sequence {x" - t"} is precompact; and

(b) given x e N and x - t defined for all t e [0, wx); if xs < co, then
x- [0,wx)c N.

This theory is applied to nonlinear Dirichlet boundary-value problems to
obtain orbits which connect equilibria; see [48]. In [49] Rybakowski and
Zehnder obtain generalized Morse "inequalities" in this setting (cf. Theorem
23.21). The Conley index has been applied by Conley and Zehnder [5] to
study maps which arise in celestial mechanics, and to prove a certain conjec-
ture of Arnold; see also [16, 17, 18), for related results.

Next, in [50], Salamon gives a slightly different approach to the Conley
index theory; also in [3], Benci finds an alternate, in some ways even simplier
approach, to the Conley index theory. Finally, in [17], Floer proves an
extension of the important Continuation Theorem (Theorem 23.31) and gives
some applications.

SECTION IV. Stability of Travelling Waves-
A Topological Approach

§A. Introduction

As we have seen in Chapter 24, nonlinear parabolic systems of the form

u, = Dux, + flu, ux), (25.72)

with u e R" and x e Rt admit a physically important class of self-similar wave
solutions, u(x, t) = where = x - 6t, which satisfy an associated sys-
tem of ordinary differential equations

-9V' = DV" + flu, us). (25.73)

A typical problem is to locate solutions of (25.73) which tend to limits VV as
- oo. A central issue is to determine when such solutions are asymptoti-

cally stable. We shall consider them as steady states of

u, = Du44 + flu, ui), (25.74)
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the equation obtained from (25.72) under the change of variables (x, t)
t). In this section, some recently developed geometric tools for analyzing

the stability of such solutions will be described.
To begin with, we say that a travelling wave V(i;) is a stable solution of

(25.74) in a prescribed norm II - I(, if there exists S > 0 so that, whenever
0) - S, there is a k e R for which IIu(g, t) - V(g + k)II - 0 as

t - +cc. The choice of norm can be a crucial issue. For reaction-diffusion
systems the sup norm usually suffices while for other types of problems, such
as viscous shock profiles and periodic travelling waves, weighted norms are
more appropriate. The choice of norm turns out to be closely associated
with the properties of the spectrum a(L) of the linear operator L defined by
linearizing (25.74) about V(i:),

Lp = Dp" + (0 + b(h)p, (25.75)

(where d2 f(V(0, V'(.)) and d, f(V(S), and its asso-
ciated cigcnvaluc problem

Lp = Ap. (25.76)

Since the spatial domain is unbounded, L can have both point spectrum,
a,(L), and essential spectrum, v,(L), either of which can cause instability.
Typically for many reaction-diffusion systems (e.g., scalar reaction-- diffusion
equations (24.25), where f is as in (24.30)), there is a /3 < 0 such that

Re A < p for all A e a ,(L); (25.77)

for viscous shock profiles and periodic waves, the essential spectrum is al-
ways tangent to the imaginary axis. Each case has its own subtleties. In order
to better appreciate this, we mention two well-known theorems.

Theorem I (Weyl's Lemma). Let L , be the constant coefficient operators ob-
tained from L by setting a = a, b = b, where a±, b, are the limiting values
of b(S) at S = ±co; then a(L_) v a(L+) divides C into components, and
the component containing Re i. > 0 is free from essential spectrum.

Since the operators L i have constant cocHicients, their spectra, and,
hence, aa(L) are easily computed (see §B).

Theorem 2 (Linearized Stability). Suppose that L is a sectorial operator
and that a ,(L) satisfies (25.77) for some /3 < 0. If, in addition, a,(L)\{0} e
Re i. < 0} and A = 0 is a simple eigenvalue of L, then V(;) is (nonlinearly)
stable; more precisely, for some c, M > 0 and k e R, we have that

:9
MIIVO-u(,0)1Ixe-",

(For a proof, see, e.g., Bates and Jones [2].) The latter result draws upon
the theory of analytic semigroups and is therefore widely applicable. Regard-
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ing its application, the difficult part is to verify the conditions concerning the
point spectrum of L; this usually depends sensitively upon the internal struc-
ture of the wave. In the result of Jones [15] for the Fitz-Hugh-Nagumo
system (which we discussed above in Section 1, §A), an approach to this
question was developed drawing upon some general geometric methods in
dynamical systems. Some of the constructions, however, are tied to the
specific form and dimensionality of the Fitz-Hugh-Nagumo equations. In
the next section, we shall describe some geometric machinery for finding the
location and the multiplicies of the eigenvalues of L. The techniques are
motivated by Jones' original insights, and are quite general. There arc two
important constructions in the theory:

An analytic function D(i.) with domain C\a,(L) whose roots (counting
order) coincide with the eigcnvalucs of L (counting algebraic multiplic-
ity).
A complex vector bundle cfi'(K), where K is a simple closed curve in C
with K n a(L) = 0.

Together they provide a vehicle for counting eigenvalues of L interior to K.
In regard to checking the hypotheses of Theorem IV.2, it is frequently possi-
ble to bound the modulus 1i.1 of any unstable cigcnvaluc a-priori; hence K is
usually chosen to be a curve enclosing d = 0, which has a sufficiently large
portion of Re k z 0 in its interior. A key ingredient in both the construction
and the application of 6(K) and D(A) is the flow induced by the linearized
equations on the space CPi° -', of complex lines in C", or, more generally, the
Grassmannian Gk(CI) of k-planes in C". We call the associated flow the
projectivized flow; it will be described in some detail in the next section. We
shall show how these very general tools are used to determine the stability of
travelling waves for a wide class of parabolic systems.

§B. The Search for 6p(L)

B.I. Preliminaries

We first write the linearized equations (25.75) as a first-order system:

p'=9,
q' = D-`[-(9 + (Al -

or, in abbreviated form, as
Y' = A)Y, (25.78)

where Y = (p, q) a C", N = 2n, and A(S, A) is the appropriate N x N
coefficient matrix. Since the underlying wave V(4) tends to limits at ±x, the
matrices a) have limits A,,Q) as - ±oo.
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Definition IV.1. f) c C has consistent splitting if there exists k such that A ±(A)
both have k eigenvalucs with positive real part and N - k eigenvalucs with
negative real part for all i. E Q.

We remark that for bistable diffusive waves (solutions of the parabolic
systems which tend at ±x to stable rest points of the system), there exists S
with consistent splitting containing Re A > 0; in these cases it is easily seen
that k = N!2 = n. We also point out that the curves in C where A, Q) have
pure imaginary eigenvalues define the boundary of the essential spectrum of
L; in fact, ac(L) is contained in the region to the left of the union of these
curves.

B.2. The Evans Function

If 11 has consistent splitting, then it is not difficult to see that, for each A E Q,
there exist k independent solutions Y(g, A), 1 < i < k, which decay to zero as
ti -cc, and N - k independent solutions Y,(;, J.), k + I < i < N, which
decay to zero as S + x. (A rigorous construction is given in the next
section.) In view of the hypcrbolicity of At(;.). A is an eigenvalue of L if and
only if (25.76) possesses a nontrivial solution which decays to zero at both
-x and +cc. Hence the span of either set satisfies half of the conditions at

required of cigcnfunctions. Clearly, both conditions are satisfied if and
only if these two subspaces intersect nontrivially. This suggests introducing
the N-form

A) = i.) A Y2(4, A) n ... A Yv(4, A)

Clearly, ri vanishes for all S if and only if A is an eigenvalue; furthermore, we
have by Abel's formula that

>7' = trace A(S, ).)q.

Definition IV.2. The Evans function D(;.) is

D(.) = e-fatrace A(s.A)dspj(4,
). ).

This function was introduced by Evans [13] for equations arising in
neurophysiology; the above definition was given in [1], where the following
properties of D(i.) were proved:

1. D(1.) is analytic in 1, for J. e S2;
2. D(i.) is independent of 5; and
3. the order of the root of D(i.) at i. = A0 equals the algebraic multiplicity

of At, as an eigenvaluc of L.

Property 3 was proved in [1] by a complicated perturbation procedure. A
simpler. more direct argument can be found in [25].
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B.3. The Augmented Unstable Bundle

25. Recent Results

The previous construction has a geometric flavor in that it specifies how the
eigenvalucs of L are determined by the intersection of certain distinguished
subspaces of solutions of (25.78), namely

Y_ A) = span{ Y, A), ..., A)),

A) = span( YN(t, A)).

This connection with geometry can be carried substantially further, as we
shall now see.

The set A) is a family of k-dimensional subspaces of C" which
depends continuously on the parameters A); in other words, it has the
structure of a complex k-plane bundle over the base space R x ). It will be
convenient to compactify the base space by reparametrizing with a param-
eter z e [- 1, 1], namely

1 I+z
2kln 1 -z

We can then express (25.78) as an equivalent, augmented, autonomous sys-
tem of the form

Y' = A(:, Y,

T = k(1 - z2),
(25.79)

where A(z, A) is obtained from i.) by rcparamctrization by t. If k > 0 is
not too large and if the wave decays exponentially to Vf at _ ±cc, then

A) is a C' function.
The "compactified" system (25.79) is very useful for constructing sub-

spaces of solutions of (25.78) having specified behavior at = ±cc. The idea
is to apply the stable/unstablc manifold theorem to the rest points of (25.79),
namely (0, ± 1). More precisely, since A±(A) have consistent splitting for
A e a there exist k-dimensional (resp. (N - k)-dimensional) subspaces U_(;.)
(resp. S3(A)) associated with the portion of the spectra of A +(A) with positive
(resp. negative) real part. The rest point (0, -1) of (25.79) is therefore hyper-
bolic with a k (complex) + I (real) dimensional unstable subspace (the real
unstable direction is the r direction). The stable manifold theorem (cf. Chap-
ter 12. §C) provides a (2k + l)-(real)-dimensional manifold W" of solutions of
(25.79) which tend to (0, -1) in backward time. By the linear structure of the
Y-componcnts, W" n C' x {z} is a k-dimensional vector space. Define Y_ by

Y(z,A)=W"nC"x {z};

then Y_(z, A) tends to the unstable subspace U_(A) of A_(A) as T -. -1 in the
topology of GA(C'). We have therefore constructed a k-plane bundle over the
base space [-1, 1) x Q.



lB. The Search for ap(L) 595

The key idea is to compactify the base space by somehow tracking the
behavior of Y_(z, A) as T -+ + 1. In general, it is not always possible to charac-
terize this limit; however, we have the following result [1]:

Lemma IV.3. If 2 E i2\op(L), then Y_(z, A) tends to U+(2) in the Grassmannian
Gk(C')as z-++1.

The situation is depicted in Figure 25.1. This shows that for A, as in the
lemma, Y- (T, A) forms a k-plane bundle over [-1, 1] x (A).

r=-1 U

Figure 25.1

Let K be a simple closed curve in i2 with K n op(L) = 0. We assert that
the "twisting" of the fibers Y_(T, 2) for (T, A) E [-1, 13 x K determines the
number of eigenvalues of L interior to K. More precisely, let 8'(K) be the
bundle n: e(K) - B over the base space

B={-1}xK°u[-1,1]xKu{+1}xK°,

where K° is the interior of K, and the total space O(K) is defined by

U- (A) for z = -1, ). E K°,

n-' (r, ).) = Y_(T, A) for T E [- 1, 1], A E K,

U+(A) for T=+ 1, A E K°.
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By the defining property of Y_ at r = -1, together with the above lemma
concerning the behavior of Y_ at (1) x K, it follows that 8(K) is a bundle. In
particular, the fibers match up continuously where the caps (± 1) x K° arc
glued onto the sides [-1, 1] x K of the base space. The resulting bundle is

called the argumented unstable bundle.
The above construction provides us with a bundle over a 2-sphere B. If K°

does not contain eigenvalues of L this bundle is easily seen to be trivial; in
that case, Y_(1, A) is defined and continuous for all A on, and inside, K, so that
8(K) is a retract of a bundle over the (contradictible) solid ball. Thus the
eigenvalue count of L inside K is related to the extent to which 8(K) differs
from a trivial bundle. This is measured by a topological invariant, an integer
c 1(8(K)) associated with the bundle, called the first Chern number of 8(K).
The following theorem, whose proof can be found in [1], makes this state-
ment precise:

Theorem IV.4. Suppose that K e C2\aP(L); then the following three quantities
are equal:

1. cl(E(K))
2. The winding number of the curve D(K) with respect to the origin.
3. The number of eigenvalues of L interior to K counting algebraic

multiplicities.

We shall give only a brief account of how this theorem is proved, since the
topological details do not figure prominently in the applications. The base
space B is expressed as a union of hemisphere B_ v B+, where B_ is the left
cap together with the sides of B, and B+ is the right cap. Trivializations for
the restriction of 8(K) to each hemisphere are constructed from Y_ and U_
(for B_) and U. (for B+). The "clutching function" of 8(K) is the map fE from
the equator, B_ n B, into the invertible k x k matrices which relates two
bases for the fibers determined by the two trivializations. This map represents
a class in ir1(Gl(k, Q. This group is isomorphic to the integers for every k,
and it turns out that if a suitable generator is selected, [ fE] can be equated
with the first Chern number of 8(K) (see Husemoller [31]). An analysis of the
behavior of the section Y_ as r -> + 1 reveals that the Evans function D(A) =
g(..) det fE, where g(A) is a nonvanishing analytic function. The proof can be
completed because det* is an isomorphism it, of the invertible k x k matrices
to that of the nonzero complex numbers.

We finally remark that if K contains ). = 0 in its interior and if K contains
a sufficiently large portion of Re A z 0, then c,(8(K)) = 1 implies that the
hypotheses of Theorem IV.2 are satisfied, so that the underlying wave is
stable. It therefore is appropriate to call c, (9(K)) the stability index.

B.4. Projectivized Flows and Grassmannians

In order to determine 8(K) and to compute c,(E(K)) we require some appa-
ratus for studying the global behavior of the vector space Y_(I, A). A useful
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tool in this regard is the Grassmannian Gk(C') of k-planes in C", topologized
so that two elements in Gk(CI) are close whenever they have bases which are
close to the Euclidean topology. Given a linear system Y' = A Y, with Y e C',
there is an associated flow on GL(C'v) which we denote by f' = A,,(Y), where
Y is the generic point in GR(C") and Ak is a vector field in the tangent space
to the Grassmannian which is induced by A. The latter system is called the
projectivized flow; its solutions are obtained from the linear flow by forming
the span of k independent solutions. The special case when k = 1 is of par-
ticular importance; here G, (C") = CP" -' is complex projective space, the
space of complex lines in C'.

An important observation that will be used repeatedly is that a k-dimen-
sional eigenspace E of A is invariant under A, and thus E is a critical point of
Ak. Furthermore, if A is hyperbolic with k (resp. N - k) eigenvalues with
positive (resp. negative) real part, and if E is the cigcnspacc associated
with the unstable eigenvalues, then E is an attracting rest point for the
projectivized flow on Gk(C'V). This is most easily visualized in the case of a
saddle in R2. as depicted in Figure 25.2. Rays through the origin behave
under the linear flow as indicated in the middle figure after being identified to
points on S'; identification of antipodal points in S' yields the projectivized
flow on RP'. In regard to the asymptotic matrices A.().) of A), the unsta-
ble subspaces U:(;.) are attractors for the flow At(A) induced on G,k(C") and
the stable subspaces St(A) are repellers for the induced flow on Gx_,k(Cx)
If we now projectivize the augmented system (25.79), the flow on Gk(C") x
[-1, 1],

Y' = A,,(-r, )., Y),

T' = k(1 - T2),
(25.80)

is qualitatively as depicted in Figure 25.3; i.e., Y is an orbit of (25.80) which
connects the rest point (U- (A), -1) to (U*(A), + 1), provided, of course, that
i. 0 ap(L).

U

RP'S'R2

Figure 25.2
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In this manner one obtains a continuous map b: B - G,r(C"), called the
classifying map of S(K). The specification of the map 0 is equivalent to the
specification of the bundle, and, in particular, c, (8(K)) is determined by the
homotopy type of m.

§C. Applications to Fast-Slow Systems

C.I. General Remarks

The stability index is well suited to singular perturbations problems, wherein
the underlying equations have a small parameter c such as a diffusion
coefficient tending to zero or, in the study of weak viscous shock profiles, the
shock strength. In such situations, the phase space for the underlying wave
can be decomposed into manifolds of slowly varying solutions away from
which solutions behave on a rapid time scale. This structure is inherited by
the linearized equations. In terms of the augmented unstable bundle, it is
manifested as a Whitney sum decomposition,

S(K, c) = QQ 81(K, e)
1-i

of lower-dimensional subbundles whose fibers are determined by the spans of
certain distinguished solutions which exhibit behavior on one of the charac-
teristic time scales. A crucial property of c, is that it is additive on the
summands in a Whitney sum,

1

C' (if(K, c)) = ± ct(,f1(K, c)). (25.81)

A second crucial property of c, is that it is topological so that the stability
index is invariant under homotopies of the equations which preserve the
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bundle. This suggests that, in order to compute ct of the summands, we allow
the small parameter c to tend to zero and compute the limits aS';R(K) of each
of the perturbed summands. In practice, the reduced summands occur as
the augmented unstable bundles for certain (formal) reduced eigenvalue
problems obtained directly from the equations in which c has been set equal
to zero. (In a singular perturbation problem, there can be several distinct
reduced systems, depending on the scaling of the equations that is being
used.) The reduced eigenvalue problems arc typically much simpler than the
perturbed problem; in particular, it is frequently possible to perform an
eigenvalue count directly via Sturm-Liouville theory. By Theorem IV.I, this
can be used to compute the first Chern number of the reduced summands,
and also by homotopy invariance, this gives the Chern numbers of the per-
turbed summands. Finally, from (25.81) this information translates into a
statement about ct(, (K, s)).

C.2. Geometric Singular Perturbation Theory

Problems with fast-slow dynamics have a convenient expression in terms of
invariant manifolds. In an appropriate scaling involving the small parameter
e, the (nonlinear) travelling wave equations can be expressed in the form

x' = G(x, e), (25.82)

where G(x, 0) admits a manifold ..!!o of rest points. Since (25.82) is the first-
order reduction of a sccond-ordcr system (25.73), it is usually the case that the
dimension of this manifold is even, say dim W. = 2r, with 1 < r < n. Under
certain conditions, Fenichel [15] proved the existence of an invariant mani-
fold ..#', of (25.82) for small a near ..H0. The main condition for determining
when ..if perturbs smoothly is called normal hyperbolicity. which requires
that the eigenvalues p associated with eigenvectors of dG(x, 0), for x e .,110,
which are transverse to the tangent space T.,-#o satisfy I Re pI > J3, for some

> 0, and all x in some compact subset of ,.11,,. Typically, .#o is a graph over
the show subspace; in other words, the state vector x = (xs, XF) splits into a
2r-dimcnsional slow subspace xs and the remaining components xF are given
as a function XF = y(xs) on the slow components. Fenichel's theorem also
provides equations for the perturbed flow on ..W,.

.is = PsG(xs, y(xs), 0) + 0(E), (25.83)

where P. is projection on the slow subspace and the independent variable
has been resealed to s = e-2r;. It is frequently the case that the reduced
problem (25.83) at - = 0 can be explicitly analyzed, and that the travelling
waves occur as a transverse intersection of invariant manifolds of rest points
(in the old scaling) inside 4o. The persistence of such connections for
e > 0 follows immediately from Fenichel's theorem and transversality. This
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provides an efficient machinery for producing travelling wave solutions of the

perturbed problem.
This viewpoint is also useful in studying the linearized problem,

Y' = A(T, c) Y,

T' = ck(1 - T2).
(25.84)

In most situations, the domain Q in which A±(A, e) have consistent splitting
contains the set {Re A z 0}, in which case k = n = N/2. Note that
A(T, 0, e) = dG(x(T), e) so that, by normal hyperbolicity, A(r, 0, e) has 2r slow
eigenvalucs (i.e., G(e)), and p,r - 2r fast cigcnvalues (i.e., It follows that
the n eigenvalues of Af(T, 0, e) with positive real part split into r slow
eigenvalues and n - r fast cigcnvalues. It turns out that this splitting
frequently persists for all ). in the unstable half-plane. This suggests that
Whitney sum decompositions of f(K, e) can be found of the form

9(K, e) = Bs(K, e) ED 4(K, c),

where 9s is r-dimcnsional and &F is (n - r)-dimcnsional. The fast summand is
determined by considering the projectivized flow on

(25.85)
T'=ek(1-TZ).

Note that at c = 0, T appears as a parameter in the equations. Since A(T, A, 0)
has it - r fast eigenvalues of positive real part, it follows from our remarks in
the previous section that this matrix admits an (n - r)-dimensional subspace
UF(T, A, 0), which is an attracting rest point of (25.85) when e = 0 for each
fixed r or, equivalently, (UF(T, A, 0), r), - 1 S T S 1, is an attractor for the
parametrized flow. Since attractors perturb to nearby flows, it follows that
(25.85) admits an attractor (YF(T, A, 0), T), -1 <_ r 5 1, for small e > 0. By
construction, YF(T, A, s) remains near the fast unstable subspace of A(r, i., a);
in particular, this is true at T = ± 1. Thus, no solution in YF(T, A, e) forms an
cigenfunction; in other words, YF is an orbit of (25.85) connecting
UF( - 1, A, e) to UF( + 1, A, e), and it can therefore be used to construct a fast
subbundle &F of 8 by the usual capping procedure:

UF(T, A, e) for r = -1, A E K°,

7r -t (T, A) = YF(T, A, e) for -1 S T < 1, A E K,

L UF(T, for T = + I, A E K.

Since the fast-slow splitting is valid for all A in compact subsets of f , it
follows that the connection YF from OF to OF exists for all ). E K v K°; it
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therefore follows that dF(K, e) is trivial, so that

c' (9F(K, e)) = 0.

601

Evidently, all the action in this setting is in the slow summand 8s(K, e).
In order to define Ss we decompose C" into fast and slow components,
Y = (Ys, YF) where Ys lies in the 2r-dimensional slow subspace, and YF =
r(z, )., e) Y. for an appropriate matrix r. When e = 0, the set of vectors
(Ys, rys) forms a 2r-dimensional subspace S0(T, ..) for each z e [-1, 1]. If we
consider the projectivized flow induced by (25.84) on CP"-' x [-1, 1],

Y'=A1(Y,z,),e),

T' = rk(1 - r2),
(25.86)

it follows that (S (T, ).). T), T e [-1. 1], forms a normally hyperbolic manifold
of rest points of (25.86) at e = 0. Fenichcl's theorem [15] then implies that
(25.86) admits a smooth invariant manifold (S,(r, ).), T), for T e [-1, 1] and
small e > 0. The flow on this manifold is given (with a rescaled independent
variable) by the projectivization on CP'-' of

Ys = As(T, A, e) Ys,

r' = k(1 - t2), (25.87)

As = (T, A, e) = PsA(T, )., e)(Ys, r(T, A, e)Y5).

In many applications, r = 2 so that (25.87) can be analyzed by Sturm-
Liouville theory. Assuming that the spectrum Is of (25.87) is known at e = 0,
the curve K is chosen in the usual manner so that K c R\Es. It then follows,
that for A e K and small e > 0, an r-dimensional subbundle ds(K, e) of 8(K, e)
can be defined by the usual capping procedure, so that

d'(K, e) = d'F(K, e) ®Bs(K, e);

by previous remarks,

c1(8(K, e)) = cl(ds(K, e))

= number of eigenvalues of Is inside K.

C.3. Application to a Phase-Field Model

We briefly sketch the implementation of the methods of the previous section
to the stability analysis of travelling wave solutions of the equation

ii, = e4 Ae3 B G'2u/GY2 + f(u),
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where f(u) is a qualitative bistable cubic with stable roots at u = 0, 1; (sec [4]
for a discussion of the physical origins of the model). Although the stability
index was described in the context of second-order systems, the constructions
and proofs of the main theorems in [1] easily generalize to this type of
higher-order equation; see [25].

The travelling wave equations can be written as:

U, = SU2,

U'2 = cU3,

U3 = U4, (25.88)

U4 = US,

uy = us,

u6 = -Aus - BU3 - 0U2 = I(ul),

where _ (x - Ot)fc and "prime" = More compactly, we write (25.88)
as

x' = G(x, r.),

where x = (ut, .... u6). Clearly x splits into fast components xF =
(u3, u4, us, u(,) and slow components xS = (ut, u2). The slow manifold i7 at
c = 0 is defined by

XF = )'(xs) = (-OB-'u2 - B-'fl(ut),0,0,0),

which is easily seen to be normally hyperbolic. The slow flow (25.83) (with
s = c/c) is

tit = u2,

Bti2 = - 0u2 - f(ut) + 010,
(25.89)

which is just the travelling wave system for the scalar, bistable reaction-
diffusion equation. Existence of the wave connecting u = 0 to u = I follows
by appending 0' = 0 in the usual manner to obtain transversality.

In order to implement the linearized stability analysis we need to check (in
the notation of the previous section) that A*(d, e) have consistent splitting in
fl = { Re ). > #} for some R < 0. It is easily seen that there is a 3/- 3 splitting
for Re ). > max(f '(0), f'(1)} = fi for all sufficiently small c, so that d'(K, c) is
three-dimensional, for all appropriate K c fl. Thus, if pt(A, e) are the cigcn-
values of A,($., c), then

Rep; >0 U= 1, 2, 3) and Re pt <0 for i = 4, 5, 6.

Furthermore, for ). in compact subsets of S2 the fast-slow splitting of Y =
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(YS, YF) is Ys = (Y1, Y2) and YF = (Y3, ..., Y(,) so that r = 2. Thus, the eigen-
values of A ; satisfy

Rep = 0(l) for i = 1,2,5,6,

Re p, = 0(e) for i = 3, 4.

We can therefore expect a fast-slow decomposition 6s ® 9F of cfi' with
dim Ss = 1 and dim tf. = 2. The general analysis of the fast summand via the
projectivized flow (25.85) on G2(C6) is applicable here, showing that TF(K, e)
exists and that c,(4'F(K, c)) = 0 for all sufficiently small a.

We next need to define the slow summand 8s. The general prescription in
Section C.2 for passing from the full system (25.86) to the reduced linearized
system (25.87) is applicable here. In fact, a simple computation shows that
(25.87), at t = 0, is just

Y,=Y2,

BY2 = -0Y2 - f'(uR(t))Yi.
(25.90)

where uR is the connecting solution of (25.89) at a = 0. This problem is just
the linearization of (25.89). The stability of uR was proved in [FM]; it follows
from this that for Re A > 0, the only eigenvalue of (25.89) in the unstable
half-plane is at A = 0 and that this eigenvalue is simple. Hence, if K is any
simple closed curve in fl containing A = 0 in its interior, 65(K, e), and hence
6'(K, a), can be defined, and

ct(8(K, r)) = c1(6's(K, e)) = 1

for all sufficiently small r. This proves the (nonlinear) stability of the wave.
We remark that related work on stability of travelling waves, from a

different point of view, for systems of two equations having small diffusion in
one equation, can be found in [44], and the references therein.
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fixed point theorem 126. 136 137,
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with viscosity 241. 261
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Cauchy- Kowalewski theorem

36, 37
Cauchy problem 1, 114
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characteristic

backward 928

33.

curve 241, 243, 293, 299. 323.
324

equation 15 6 17, 43, 284, 288.
392

form 34
matrix 34, 32
rectangle 23. 24

surface 15. 6 112, 28, 34. 35, 36
37, 38. 39, 43, 44

value 111:

Chern number 596, 529
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clutching function 596
co-boundary map Lb3

operator 1.63

coefficient group 158
cohomology
Alexander 164
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cohomology (continued)
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module 164
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open topology 458
operator 107, 120, 121, 122, 123,
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functions 215
theorems 83. 93, 94, 103, 112. 193,
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2452
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connccting orbit 502. 509, 538, 539,
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theorem 426
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connection matrix 586
conservation law 239.2 253 3041

305, 306, 369, 392. 394, 95, 441
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contact discontinuity 244. LL 335,

347. 353. 354. 355. 36 6
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invariant under 452, 4 72, 478 500
532

method 20
related by 450. 451, 460, 461, 500,

519. 5211
theorem 448 456, 521, 558

contractable space 513 5 5
contracting re ctangle 193. 226, 227,

228,222
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corner point 204,205, 206, 202

creation operator 63

critical point 127, 146. 147, 148, 151
154 155. 188, 448 452, 453, 454,
503, 529. 533 538

degenerate 448, 453, 538

non-degenerate 146, 141148, 152,

153, 154, 52, 453 454.. 503, 516,
533, 538

repelling 528
(see also rest point)

critical value 127, US

decay theorem 245
degenerate

critical point 448. 453 538
solution 537, 5.41)

degree
of a mapping 126 129, 130, 131.

141, 160 441 448, 528
theory 128, 178, 181
(sec also Brouwer degree.

Leray-Schauder degree)
differential 16&
derivative

Frechet L62

higher 121

of a map 15g
diagonal 1O
diamond 380.412
diffeomorphism L5fi
diffusion wave 528
Dirac delta function 46

measure 572, 523
Dirichlet

boundary conditions % 98. 99,
100, 104. 113, 114. 177, 226, 530,
543, 5_45

problem 177, 188, 531, 537, 539,
541

discontinuous solution 241 _246
distinguished point 451
distribution 45. 46, 47, 49, 51, 52,

63, 65
convergence of 415

convolution of 48
derivative of 42
Fourier transformation of 49, 63
product with function 48
solution 42
support of 46
tempered 51

divergence theorem L32
domain
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of attraction 1514 (see also pp.
535-536)

of dependence 19, 21, 43. 44
of influence 211

ecology equations 193, 218, 221,
230-235 (see also population
dynamics)

cigenvalue
principal 110. 111. 1 l2 123. 541
simple 12

elementary neighborhood 550
elliptic

equation 47, LA 65 83 90 95
46

operator 66, 71.73 75. 96, 106.
107. 108. 124

regularity 76, 98. 103
energy

inequalities 44 432
integral 23. 26 24
method 22. 26. 426. 444
surface 481

enthalpy 322
entropy

condition 251. 269. 286, 298. 301,
303. 304, 305, 308, 397. 401. 416
425, 508.514

generalized 397-403, 42.1
inequalities 252. 261. 26-5. 266. 228.

293, 302. 391. 401, 402. 414, 510,
511(see also shock conditions,
[.ax shock condition, shock
inequalities)

solution 266-301, 281, 291, 295, 526
epsilon approximation 141, 14-1
equation of state 239. 3
equilibrium solution 99. 120. 121.542.

544. 545. 546. S4f (see also
steady-state solution, time-
independent solution)

equivariant Conley index 5S
equivariant operator 563
equivariant homotopy type 565
estimate

Agmon. Douglis, Nirenberg 26
interior 25
Schauder 23

evolutionary system 254-261
Euler-Poincar characteristic 160

Evans function 593ff
exact sequence 157. 165, 492. 502,

508. 527, 534 536,. 531
exit set 45-1

exterior differentiation 138. 132
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face L58

Ficld-Noyes equations 210
filtration 48.2 4852 492, 493, 502
finite difference

approximation 267, 275, 279, 281,
304. 345

method 23 224 26S
scheme 281.345
(see also Chapter 19)

first-return map 138, 528
Fitz-Hugh-Nagumo equations 209,

227, 229, 530, 542, 553.522 (see also
Nagumo equations)

flow 458, 952 (see also gradient flow,
gradient-like flow)

Fourier
inversion formula 40. 41. 54 (see

also inversion formula)
transform 40. 45. 49. 60. 63. li4

front shock 307, 33 3318, 312
curve 3114

J=stable system 203.202
fundamental solution 52. 53. 55. 58.

60. 63

G-Conlcy index 564
Giirdings inequality 192
gas dynamics equations 5, 390, 391,

414, 42S. 426
Eulerian coordinates 240, 255. 264
isentropic 426. 435. 444
isentropic with viscosity 435
Lagrangian coordinates 239, 264
with thermal conductivity 256
with viscosity 256

genuinely nonlinear
characteristic field 324, 325, 327,

328, 330, 331, 335, 3361 337, 338
339. 3.41

system of equations 368, 391, 394,
395, 508, 514

Glimm
difference scheme 391, 402, 376, 3.80.

(see also Chapter L91
functionals Al

global attractor 2211

glucing spaces 453,423
gradient

equation 502, 510, 511, 514, 529.
531, 538, 154

flow 154, 448, 426
function 592
system 398. 399, 427, 452, 502,
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gradient-like
flow 468, 471, 476, 477, 502. 510
vector field 222

Grassmanian 592, 526
Gronwall's incquality 118 119 120,

198,411442
group representation 552
growth limitation 232.235
growth-rate functions 218

Hahn-Banach theorem 5211

Hamilton Jacobi theory 265
heat equation 16. 78. 125

maximum principle 22
Heaviside function 42
Helmholz free energy 514
heteroclinic orbit 509, 523
Hodgkin-Huxley equations 208. 242
Holmgrcn

method 33. 34. 265. 282. 4Th
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orbit 522, 524, 529, 552
travelling wave 55:5
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group 157,159
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homotopically equivalent to 161. 162,
165, 451. 472, 486, 490. 492
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index 472-477
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invariant 127. 16(1
inverse 162
theory 1611-163
type 161, 477. 451, 481, 486, 491,

513 28, 534
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of maps 452
of spaces 475, 426

Hopf bifurcation 177. 191
horizontal segment 884, 82
Hugoniot

curve 340, 344
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equation 39, 507, 508, 514
operator 41 42743, 44
rest point 522. 52-5 526, 524
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system of conservation laws 507,
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implicit function theorem 1, 67. 170,
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initial-boundary-value problem 219.
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set 153. 448, 452 (see also maximal
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inversion formula 40 50 (see also
Fourier inversion formula)

irreducible representation 563
irreversible

process 2$
solution 26L 262.. 263
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iscntropic gas dynamics

equations 240. 306, 322, 333, 361,
391, 403
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457, 460, 461, 464, 465, 469, 476,
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isothermal gas dynamics
equations 317, 346, 347., 414

jump condition 248. 252 253 254
329, 343, 347, 348, 416, 5518 (set,
also Rankine-Hugoniot
condition)

kinetic equations 193
Krein- Rutman theorem 106.,

12--15
K-simple eigcnvalue 178, 179. 120
k-shock wave 261

Laplace
equation 15 4.65
operator 78. 95, 108

Lax shock condition 261 (see also
shock conditions, shock
inequalities, entropy inequalities)

Leray-Schauder
degree 139-146. 448
index 143. 144

linearization 452, 455, 525. 5311 533,
540, 541

linearized
equations 118. 151, 452, 455, 458,

543
operator Q66 174, 533.542, 544 55I
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stability thcorcm 106 120 121, 521

linearly
degenerate characteristic field 333,

334, 335, 337, 338, 339.
stable solution L76
unstable solution 17.6

local now 478, 480, 481 ,, 493.494. 502.
503, 506, 532

two-sided 4811

local section 462, 462
logistic nonlinearity 5
lower solution 93, 95 96. 100. 101.

104, 105
lumped parameter assumption 222
Lyapunov-Schmidt method 175, 518.
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manifold lit
mathematical ecology 230-115 (see

also population dynamics)
maximal

invariant set 449, 450.451, 457.
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460, 46L 465, 477, 500, 503, 512.
520, 534 (see also isolated
invariant set)

solution 98
vector field 214 219 220 229,

234
maximum principle 541

elliptic equations 64.65-70,75.78.
79, 93. 97, 105 (see also strong
maximum principle)

parabolic equations 78 79 83-90,
93 94, 101. 212 3_0 305, 442 (sec'
also strong maximum principle)

mesh curve 380. 381, 382

minimal
solution 98
vector field 214, 229.

Morse
decomposition 478. 479-486, 493.

494.5 506.508 536 538 539
582

filtration (see filtration)
function 147, 148. 156, 54D
index 146. 150. 151. 152, 153, 155,

447, 4-8._451, 452, 455, 503. 504,
5L 508. 5M (see also topological
Morse index)

inequalities 155. 156, 492, 493, 511¢
lemma 148, 149, LI
sets 479, 480.503.5$1
theory 146- I Sh

Morse-like inequalities 4e22

Nagumo equations 507. 521. 528
(see also Fitz-Hugh-

Nagumo equations)
Neumann

boundary conditions 113, 193,'194,
219, 222, 225, 226, 230, 530, 536,
542, 543, 545, 50

problem 544
nodal

point 537
properties 121

nondegenerate
critical point 452, 453, 454, 503,

533
solution 533, 548, 549-5,54

nonlinear wave equation 2411

non-characteristic surface 34 5, 37,
38. 43.44

no-retraction theorem 136
normal vector 69
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normalized eigenvectors 328, 336
nunstable solution 1.4Q (see also

stable solution)
n-cell 155 155
N-wave 266,291,222

omega limit set 225, 459, 510, 511, J4
one

-point pointed space 165
shock curve 3,1).,15.

shock wave 312

orbit 448, 459, 476, 521
connecting 476
periodic 502
singular 5112

space 554

outward pointing normal vector 69

parabolic
equation 47, 78, 83, 90, 93, 95. 105.

106. LL4
operator 78, 83. 84
system 255.427444

partition of unity 61. 140
pcigcnspacc 558,E
period 453

fundamental 452
periodic

orbit 449. 524, 525
point 452

Peter Weyl theorem 563
phase field model 6111

physically relevant solution 25
piston problem 3
Poincarc

inequality 30, 31, L12
map 138.528

pointed
space 162. 451. 453, 454. 472, 473.

476. 482 (see also one-point
pointed space)

sphere 163, 454
polynomial mapping 6Q
polytropic gas dynamics 306, 346.

355, 361, 362
population dynamics 99, 193. 215

(see also mathematical ecology)
positively invariant sets 451.482.484,

488, 489, 496, 497, 498, 444
precompact set 19I
predator-prey equations 218. 231.

232, 233, 543 5 4 7. 554
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principal
eigcnfunction 99. 104. 110, 111,

1 113
eigenvalue 110, 111, 112. 123. 541.

545. 542
part of an operator 3 36

product parametrization 494. 435
projection 550
projectivized flow 592, 596.597, 61]1

250. 306, 321, 322,p-system 211, 249
390, 39F17-30, 431

propagation speed 211

pull-back map 132

quasi-
convex function 200. 202. 204. 205.

206.2112
linear system 239

quotient
map 162
space 162, 4411

rank of a group 159, 492
Rankine - Hugoniot condition 248,

252, 264 (see also jump condition)
rapidly decreasing function 42
rarefaction shock wave 252. 264. 308,

331, 414, 416
rarcfaction wave 245. 302, 309, 317.

320. 322, 353. 355, 359, 369, 370
409. 4109 417. 421, 422 (see also
simple wave)

centered 321. 417

curve 310. 311. 312. 318, 336. 369.
4114

reaction -diffusion equations 91, 106,
192, 212, 479,,48 1, 504, 508, 530,
553. "Al

reduced G-index 5115
regularization 62
regular

point 122
value 127 131, L33

representation 559
resource limitation 193, 231
rest point 100, 06, 192, 459 468, 507

5311 (see also critical point)
nondegenerate 151. 153 503. 516,

538. 541
rest state 140
Riemann

invariant 211. 321, 322. 323, 325,
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353 370, 371, 392 - 397. 404, 406.
409, 415, 425, 575
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346-358, 361, 368 369. 370 373.
374 fl 2L 32 04 AM

Sard's theorem 127, 128t 132. 148
Schauder

estimates 73. 98. 103. 441, 441
fixed point theorem 141

second law of thermodynamics
Seidenberg-Tarski theorem 60. 61.

fi}
semialgebraic set 60. 51
shave 474. 475. 426
sheaf 460
shock

adiabatic
conditions 261, 331, 358. 402, 416

(see also Lax shock condition)
curves 330. 336, 338. 343. 344. 348,

369.404.405
inequalities 259-261, 331. 336

338 - 346. 348. 349. 416
speed 245, 303, 332, 40.4 (see also

speed of discontinuity)
strength 516. 520
structure 507, 508. 511, 514, 5211

shock-tube problem 244 254, 264,
316. 317

shock wave 7.244.261,391.302.303.
305, 317, 320. 327, 362, 335, 347,
355, 357, 364 367 369 370, 3_77_
402, 412. 414, 421. 507. 514

fast mhd 516, 520, 554
magnetohydrodynamic 507, 508,

514. 5_.4
slow mhd 516, 5211
viscous 576, 577, 579

simple wave 320, 322. 323. 327. 347,
352, 353, 357, 3fi4 (see also
rarefaction wave)

centered 324. 325, 327. 335, 355.
3-52

curve 363
simplex 158
singular

flow 525
orbit 521

periodic solution 524
smash product 454
solution
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curve 448, 456.
operator 11 11.8

space estimate 272
specific
energy 2}2
volume 232

speed of

discontinuity 241
propagation 211
travelling wave 507, 508

spherical harmonic decomposition 552
squeeze 474.475

amount of 475
stable

manifold 151.55 510. 534. 51k
manifold theorem L1
solution 100. 103. 105. 106. 120

121.533 536.5 5.54 (see also
nunstablc solution)

stability
condition
estimate
theorem

state 3211

268
274
113

steady-state solution 64. 95. 99. 5
531, 536, 540. 542 (sec' also
equilibrium solution, time-
independent solution)

strength of wave 370. 402
strong deformation retract 446, 467,

42
strong maximum principle

elliptic equations 64.65-70,75.93
95, 97. 125 (see also maximum
principle)

parabolic equations 79, 83, 93. 994
11.1 (see also maximum principle)

strongly elliptic operator 107. LOH
strongly positive operator 122. 121
structurally stable set 510
sum of pointed spaces 162, 453 M.

456 (see also wedge of spaces)
symbiosis equations 221. 231, 232.

2L
symmetric solution 556.566
symmetry breaking 535, Ch L §l8

tempered distribution 51
Fourier transform of 51

test function 51
thermal conductivity coefficient 256.

515
threshold phenomenon 330
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time
estimate 223
map 540, 549

time-independent solution 12 (see
also equilibrium solution, steady-
state solution)

topological Morse index 429 (see also
Morse index)

translation flow 505
travelling wave 507. 508. 5514

homoclinic 528
periodic 521. 528
solution 258. 259. 40.2

turbulence 24?
two

shock curve 3(12
shock wave 342

uniformly
elliptic condition 22
elliptic operator Z, 73. Z
parabolic condition 84
parabolic operator 125

universal covering space 550, 551
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manifold 509. 5510. 526. 530. 533,
534. 536, 537, 538, 549

solution 540.547-549
upper solution 93. 95. 96. 100 101,

103, 104. L(15
upward vertical segment 84, 87, 89
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390

vanishing viscosity 430.
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method 257. 258, 26& 265, 304. 30.5
parameters 554
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wave
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weak
derivative 45. 46. tit
law of large numbers 329
solution 75. 115. 245, 146
topology 520.
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weakly hyperbolic system 255
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Weyl's lemma 531
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