In this session let's concentrate on the applications of the maximum principle for linear parabolic equations:

$$
\begin{equation*}
\partial_{t} u=\Delta u+b \cdot \nabla u+c u, \quad x \in \Omega \subset \mathbb{R}^{N}, t>0 . \tag{1}
\end{equation*}
$$

Here $b=b(t, x)$ and $c=c(t, x)$ are continuous bounded functions. The domain Ω is either a bounded connected open set or \mathbb{R}^{N}. Using the maximum principle, we obtained the comparison principle for the semilinear parabolic equations, e.g. reaction-diffusion equations ($f \in C^{1}$ in u):

$$
\begin{equation*}
\partial_{t} u=\Delta u+f(t, x, u) . \tag{2}
\end{equation*}
$$

Theorem 1 (Weak maximum principle). Let u be a subsolution of (1). If $u(0, x) \leq 0$, then $u(t, x) \leq 0$ for $t>0$.
Theorem 2 (Weak comparison principle). Let u be a subsolution of (2) and v be a supersolution of (2). If $u(0, x) \leq v(0, x)$, then $u(t, x) \leq v(t, x)$ for $t>0$.

Here are some problems to solve using these theorems:

1. (Uniqueness for semilinear problems)

Let $\Omega \subset \mathbb{R}^{N}$ be bounded, $f \in C^{1}(\mathbb{R})$, $u_{0} \in C^{0}(\bar{\Omega})$. Prove that the problem

$$
\begin{cases}\partial_{t} u=-\Delta u+f(u), & \text { in } D=\Omega \times(0, T] \\ u=u_{0}, & \text { on } \Omega \times\{0\} \\ u=0, & \text { on } \partial \Omega \times(0, T]\end{cases}
$$

has at most one solution $u \in C^{2}(D) \cap C^{1}(\bar{D})$.
2. (Upper bound on solution for linear problems)

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain, and $u(t, x)$ be the solution of the initial boundary value problem

$$
\begin{cases}u_{t}=\Delta u+b \cdot \nabla u+c(x) u, & \text { in } \Omega \times(0,+\infty), \\ u=u_{0}, & \text { on } \Omega \times\{0\}, \\ u=0, & \text { on } x \in \partial \Omega \times(0,+\infty)\end{cases}
$$

Assume that the function $c(x)$ is bounded, with $c(x) \leq M$ for all $x \in \Omega$. Prove that $u(t, x)$ satisfies

$$
|u(t, x)| \leq\left\|u_{0}\right\|_{L_{\infty}} e^{M t}, \quad \text { for all } t>0 \text { and } x \in \Omega .
$$

3. (Global solution vs. blow-up for reaction-diffusion equations)

Let u be a solution to the following reaction-diffusion equation

$$
\begin{cases}\partial_{t} u=\Delta u+u^{2}, & \text { in } D_{T}=\Omega \times(0, T], \\ u=u_{0}, & \text { on } \Omega \times\{0\}, \\ \frac{\partial u}{\partial n}=0, & \text { on } \partial \Omega \times(0, T] .\end{cases}
$$

Does the solution u blow-up in finite time?
4. (Asymptotics for the heat equation)

Let $\Omega=B_{1}(0) \subset \mathbb{R}^{N}$ and suppose $u \in C^{2}(\Omega \times(0,+\infty)) \cap C^{0}(\bar{\Omega} \times[0,+\infty))$ satisfies for some $M>0$:

$$
\begin{cases}\partial_{t} u=\Delta u, & \text { in } \Omega \times(0,+\infty), \\ |u| \leq M, & \text { on } \Omega \times\{0\} \\ u=0, & \text { on } x \in \partial \Omega \times(0,+\infty)\end{cases}
$$

Prove that $u(x, t) \rightarrow 0$ as $t \rightarrow \infty$ uniformly in x.
Hint: combine the functions $2-|x|^{2}$ and $e^{n t}$ and construct a supersolution to the heat equation with appropriate behavior at $+\infty$.

