In this session let's concentrate on the applications of the maximum principle for ODEs with second order differential operators of the form:

$$
L=-\frac{d^{2}}{d x^{2}}+g(x) \frac{d}{d x}+h(x), \quad x \in(a, b) \subset \mathbb{R}
$$

Here $g(x)$ and $h(x)$ are bounded functions.
Theorem 1 (maximum principle). Let $h \equiv 0$ and $L u \leq 0$. Then if there exists $c \in(a, b)$ such that $u(c)=\max u(x)$ for $x \in[a, b]$, then $u \equiv \max u(x)$.

1. Does the differential operator L defined on the interval $[a, b] \subset \mathbb{R}$ provide a maximum principle? That is: if for $u \in C^{2}[a, b] \cap C^{0}(a, b)$ we have $L u \leq 0$, then maximum of u on $[a, b]$ is obtained on the boundary (either at $x=a$ or at $x=b$).
a) $L=-\frac{d^{2}}{d x^{2}}-1 ;$
b) $\quad L=-\frac{d^{2}}{d x^{2}}+1$.

An important application of (different forms of) maximum principle is the following comparison principle for sub and supersolutions.
Theorem 2. Let $f \in C^{1}((a, b) \times \mathbb{R})$, and let u be a subsolution and v be a supersolution, that is:

$$
L u \leq f(x, u) ; \quad L v \geq f(x, u)
$$

Then if $u(x) \leq v(x)$ for all $x \in[a, b]$, and there exists $c \in(a, b)$ such that $u(c)=v(c)$, then $u \equiv v$.
In other words, a sub-solution and a super-solution can not touch at a point: either $u \equiv v$ or $u<v$. This "untouchability" of a sub-solution and a super-solution is very helpful. See problems 2 and 3 (and the so-called sliding method).
2. Consider the boundary-value problem:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=e^{u}, \quad 0<x<L \tag{1}\\
u(0)=u(L)=0
\end{array}\right.
$$

Prove that if L is sufficiently big, there does not exist a non-negative solution to this boundary-value problem. Proceed by the following steps:
(a) Write a problem in terms of function $w=u+\varepsilon$:

$$
\left\{\begin{array}{l}
-w^{\prime \prime}=e^{-\varepsilon} e^{w}, \quad 0<x<L \tag{2}\\
w(0)=\varepsilon, \quad w(L)=\varepsilon .
\end{array}\right.
$$

(b) Show that functions $v_{\lambda}(x)=\lambda \sin (\pi x / L)$ satisfy

$$
\left\{\begin{array}{l}
-v_{\lambda}^{\prime \prime}=\frac{\pi^{2}}{L^{2}} v_{\lambda}, \tag{3}\\
v_{\lambda}(0)=0, \quad v_{\lambda}(L)=0
\end{array}\right.
$$

(c) Show that for big enough $L>0$ and small enough $\lambda>0$ the solution w of the problem (2) is a supersolution of the problem (3).
(d) (Sliding method) Start increasing $\lambda>0$ and consider the first value λ_{0} such that the graphs of w and v_{λ} touch each other. Come to a contradiction.
(e*) Show that there exists $L_{1}>0$ so that non-negative solution of problem (1) exists for all $0<L<L_{1}$ and does not exist for all $L>L_{1}$.
3. Using sliding method from the previous exercise, prove that the solution u of the boundary value problem:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}-c u^{\prime}=f(u), \\
u(-L)=1, \quad u(L)=0 .
\end{array} \quad-L<x<L,\right.
$$

is unique.
Read more material about different kinds of maximum principle on the web-page on Miles Wheeler Course "Theory of Partial Differential Equations"

