In this session let us concentrate on the systems of conservation laws $\left(U \in \mathbb{R}^{m}, m>1, F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}\right)$:

$$
\begin{equation*}
U_{t}+F(U)_{x}=0 \tag{1}
\end{equation*}
$$

with Riemann initial data ($U_{l}, U_{r} \in \mathbb{R}^{m}$ - fixed):

$$
U(x, 0)= \begin{cases}U_{l}, & x<0 \tag{2}\\ U_{r}, & x>0\end{cases}
$$

1. Consider a linear wave equation $w_{t t}-c^{2} w_{x x}=0$.

It can be rewritten in the form (1) for $U=\left(\begin{array}{ll}w_{x} & w_{t}\end{array}\right)^{T}$ as follows:

$$
U_{t}+A U_{x}=0, \quad U=\binom{v}{u} \quad A=\left(\begin{array}{cc}
0 & -1 \\
-c^{2} & 0
\end{array}\right)
$$

(a) Find eigenvalues and eigenvectors of A;
(b) Show that for $c \neq 0$ the system is strictly hyperbolic;
(c) Show that the system is linearly degenerate;
(d) Find explicit solution to (global) Riemann problem (2) for any $U_{l}, U_{r} \in \mathbb{R}^{m}$.
2. Consider a nonlinear wave equation $w_{t t}-\left(p\left(w_{x}\right)\right)_{x}=0$ with $p^{\prime}<0, p^{\prime \prime}>0$.

This model comes from gas dynamics, where p is the pressure and typically $p(w)=w^{-\gamma}$ for $\gamma \geq 1$.
It can be rewritten in the form (1) for $U=\left(\begin{array}{ll}w_{x} & w_{t}\end{array}\right)^{T}$ as follows:

$$
U_{t}+F(U)_{x}=0, \quad U=\binom{v}{u}, \quad F(U)=\binom{-u}{p(v)}, \quad D F(U)=\left(\begin{array}{cc}
0 & -1 \\
p^{\prime}(v) & 0
\end{array}\right) .
$$

(a) Find eigenvalues and eigenvectors of $D F(U)$;
(b) Show that if $p^{\prime} \neq 0$ the system is strictly hyperbolic;
(c) Show that if $p^{\prime \prime} \neq 0$ the system is genuinely nonlinear for each characteristic family;
(d) For fixed U_{l} find explicitly shock curves. Which part of them correspond to admissible shock waves (according to Lax admissibility criterion)? Draw 1 -shock and 2 -shock curves in (v, u)plane. Draw 1 -shock and 2 -shock waves in (x, t)-plane.
(e) For fixed U_{l} find explicitly rarefaction curves. Which part of them correspond to rarefaction waves? Draw 1-rarefaction and 2-rarefaction curves in (v, u)-plane. Draw 1-rarefaction and 2rarefaction waves in (x, t)-plane.
(f) Show that shock and rarefaction curves from items (d) and (e) divide the neighbourhood of U_{l} into 4 regions. Draw the solution to a (local) Riemann problem in (x, t)-plane considering U_{r} lies in one of these 4 regions.
(g*) Show that if

$$
\int_{v_{l}}^{\infty} \sqrt{-p^{\prime}(y)} d y=\infty
$$

then there exists a solution to a global Riemann problem, that is for any U_{l} and U_{r} (not necessarily sufficiently close to each other). Is it unique?

