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. Wave equation:

Questions for exam on the course:
“Shock waves in conservation laws and reaction-diffusion equations”

Last update: 03/06,/2023.

Part 1: Around wave equation.

“physical” derivation (balls
and springs).

Wave equation: derivation from general princi-
ples.

D’Alambert’s formula for 1D wave equation,
and well-posedness of Cauchy problem on real
line.

Inhomogeneous wave equation. Duhamel prin-
ciple.

Mixed initial-boundary value problem for wave
equation: existence and uniqueness of solution.

Mixed initial-boundary value problem for wave
equation: solution by a Fourier series.

Part 2: Conservation and balance laws.

Fluid flow: Eulerian vs. Lagrangian point of
view; flow map; incompressibility condition.

Fluid flow: scalar transport equation, conser-
vation of mass.

Scalar conservation law. Weak form of solution.
Rankine-Hugoniot condition.

Burgers equation: blow-up in finite time, ex-
plicit solutions to different Riemann problems,
multiplicity of solutions, definition of entropy
solution, irreversibility.

Scalar conservation law with convex flux func-
tion: various interpretations of entropy condi-
tion (Lax, Liu, vanishing viscosity).

Scalar conservation law with convex flux func-
tion: theorem on existence of entropy solu-
tion. Lemmas 1 and 2 describing properties for
discrete approximation (boundedness, entropy
condition).

Scalar conservation law with convex flux func-
tion: theorem on existence of entropy solution.
Lemmas 3, 4 and 5 describing properties for dis-
crete approximation (space and time estimates,
stability).
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Scalar conservation law with convex flux func-
tion: theorem on existence of entropy solution.
Lemma 6 on convergence and properties of the
limiting solution.

Scalar conservation law with convex flux func-
tion: theorem on existence of entropy solution.
Lemmas 7 and 8 on properties of the limiting
solution.

Scalar conservation law with convex flux func-
tion: uniqueness of entropy solution. General
plan of proof without technical details.

Scalar conservation law with convex flux func-
tion: uniqueness of entropy solution. Proof
that [¢2"| is bounded using the entropy con-
dition.

Scalar conservation law with convex flux func-
tion: solution to a Riemann problem for two
cases (u; < up and u; > uy).

Systems of conservation laws: weak solution,
Rankine-Hugoniot condition, notion of hyper-
bolic and strictly hyperbolic systems, examples.

Systems of conservation laws: notion of gen-
uinely nonlinear and linearly degenerate char-
acteristic family; simple waves. Theorem on
existence of k-rarefaction wave.

Systems of conservation laws: notion of shock
curves (Hugoniot locus). Theorem on structure
of shock waves (property (iii) without proof).
Notion of Lax admissibility criteria for shocks.

Systems of conservation laws: mnotion of k-
contact discontinuity. Theorem on linear de-
generacy (shock and rarefaction curves coin-
cide). Example (linear wave equation).

Systems of conservation laws: theorem on local
solvability of a Riemann problem for strictly
hyperbolic systems (each characteristic family
is genuinely nonlinear or linearly degenerate).

Systems of conservation laws:
criteria  (Lax, Liu, vanishing

entropy /entropy-flux).

entropy
viscosity,

Buckley-Leverett equation (with S-shaped flux
function): solution to a Riemann problem for
two cases (u; < u, and u; > uy).



Part 3: Intro to reaction-diffusion equations.
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Reaction-diffusion equations: probabilistic jus-
tification of laplacian, examples for nonlineari-
ties (FKPP, monostable, bistable, ignition) and
their interpretation in population dynamics.
Formulation of the initial-value problem.

Maximum principles for linear ODEs of the sec-
ond order with h = 0 (with proofs).

Various versions of the maximum principles for
linear ODEs of the second order without the
assumption that h = 0 (with proofs). Counter-
examples.

The idea of the “sliding method” on two exam-
ples.

Weak and strong maximum principle for lin-
ear parabolic PDEs for bounded domains with
Dirichlet boundary conditions (with proof).

Weak and strong maximum principle for lin-
ear parabolic PDEs for bounded domains with
Neumann/Robin boundary conditions (with
proof). Hopf lemma.

Notions of sub- and supersolution. Compari-
son theorems for parabolic PDEs (with proof).
Application on concrete examples.

Well-posedness of the scalar reaction-diffusion
equations (sketch of the proof for existence,
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proof of uniqueness and continuous dependence
on initial data).

Theorem on existence of traveling wave solu-
tions to scalar reaction-diffusion equation with
monostable (in particular, FKPP) nonlinearity.
“Dynamical” proof (phase plane method).

Theorem on existence of traveling wave so-
lutions to scalar reaction-diffusion equation
with bistable nonlinearity. “Dynamical” proof
(phase plane method).

Theorem on existence of traveling wave solu-
tions to scalar reaction-diffusion equation with
monostable nonlinearity. “PDE” proof.

Theorem on existence of traveling wave solu-
tions to scalar reaction-diffusion equation with
bistable nonlinearity. “PDE” proof.

“Hair-trigger” effect for FKPP equation (with
proof).

Theorem on invasion for reaction-diffusion

equation with bistable nonlinearity (with
proof).
Theorem on extinction for reaction-diffusion
equation with bistable nonlinearity (with
proof).

Principle of asymptotic speed of propagation
(Aronson—Wienberger theorem, with proof).



