We concentrate on the maximum principle for ODEs \& parabolic PDEs and its applications.
Consider second order differential operator of the form:

$$
L=-\frac{d^{2}}{d x^{2}}+g(x) \frac{d}{d x}+h(x), \quad x \in(a, b) \subset \mathbb{R}
$$

We suppose $u \in C^{2}((a, b)) \cap C([a, b]), g(x)$ and $h(x)$ are bounded functions.

1. (One-dimensional maximum principles for $h \not \equiv 0$)
(a) Suppose that $h \geq 0$ and $\max _{x \in[a, b]} u(x)=M \geq 0$.

If $L u \leq 0$, then u can attain maximum M at some interior point $c \in(a, b)$ only if $u \equiv M$.
(b) Suppose that $h \leq 0$ and $\max _{x \in[a, b]} u(x)=M \leq 0$.

If $L u \leq 0$, then u can attain maximum M at some interior point $c \in(a, b)$ only if $u \equiv M$.
(c) Suppose that $\max _{x \in[a, b]} u(x)=M=0$.

If $L u \leq 0$, then u can attain maximum M at some interior point $c \in(a, b)$ only if $u \equiv M$.
Hint: It is helpful to start with simpler lemma (with strict inequalities)
Lemma 1. Suppose that $h \geq 0$ and $\max _{x \in[a, b]} u(x)=M \geq 0$.
If $L u<0$, then u can attain maximum M only at the endpoints a or b.
2. (One-dimensional Hopf lemma for $h \not \equiv 0$)

Suppose that $h \geq 0$ and $\max _{x \in[a, b]} u(x)=M \geq 0$.
If $L u \leq 0$, then:
(a) if $u(a)=M$, then either $u^{\prime}(a)<0$ or $u \equiv M$.
(b) if $u(b)=M$, then either $u^{\prime}(b)>0$ or $u \equiv M$.
3. (Comparison theorem for semilinear parabolic equations)

Consider a semilinear parabolic operator of the form

$$
S u:=\partial_{t} u-\Delta u+F(t, x, u, \nabla u), \quad x \in \mathbb{R}^{N}, t>0
$$

Assume that F is C^{1} jointly in all of its arguments.
Let u be a subsolution $(S u \leq 0)$ and v be a supersolution $(S v \geq 0)$.
If $u(0, x) \leq v(0, x)$, then $u(t, x) \leq v(t, x)$.
4. (Boundedness of solution to diffusive Burgers' equation)

Let $u \in C^{2}(\mathbb{R} \times(0, T]) \cap C^{1}(\mathbb{R} \times[0, T])$ be a solution to the one-dimensional diffusive Burgers' equation

$$
\begin{cases}\partial_{t} u=u u_{x}+u_{x x}, & \text { in } \mathbb{R} \times(0, T] \\ u=u_{0}, & \text { on } \mathbb{R} \times\{0\}\end{cases}
$$

Prove that u is bounded.
In the class we mentioned the following problems. I put them here and if you are interested you can think how to solve them.

1. Consider a one-dimensional boundary value problem $(L>0)$:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=e^{u}, \quad x \in[0, L] \tag{1}\\
u(0)=u(L)=0
\end{array}\right.
$$

Show that there exists $L_{1}>0$ such that for all $0<L<L_{1}$ there exists a positive solution (in $(0,1)$) of (1), and for all $L>L_{1}$ there does not exist a positive solution of (1).

