
List of exercises 5 (finally, the last one). Deadline: 16 June 2023, 23:59.

We concentrate on the maximum principle for ODEs & parabolic PDEs and its applications.
Consider second order differential operator of the form:

L = − d2

dx2
+ g(x)

d

dx
+ h(x), x ∈ (a, b) ⊂ R.

We suppose u ∈ C2((a, b)) ∩ C([a, b]), g(x) and h(x) are bounded functions.

1. (One-dimensional maximum principles for h ̸≡ 0)

(a) Suppose that h ≥ 0 and max
x∈[a,b]

u(x) = M ≥ 0.

If Lu ≤ 0, then u can attain maximum M at some interior point c ∈ (a, b) only if u ≡ M .

(b) Suppose that h ≤ 0 and max
x∈[a,b]

u(x) = M ≤ 0.

If Lu ≤ 0, then u can attain maximum M at some interior point c ∈ (a, b) only if u ≡ M .

(c) Suppose that max
x∈[a,b]

u(x) = M = 0.

If Lu ≤ 0, then u can attain maximum M at some interior point c ∈ (a, b) only if u ≡ M .

Hint: It is helpful to start with simpler lemma (with strict inequalities)

Lemma 1. Suppose that h ≥ 0 and max
x∈[a,b]

u(x) = M ≥ 0.

If Lu < 0, then u can attain maximum M only at the endpoints a or b.

2. (One-dimensional Hopf lemma for h ̸≡ 0)

Suppose that h ≥ 0 and max
x∈[a,b]

u(x) = M ≥ 0.

If Lu ≤ 0, then:

(a) if u(a) = M , then either u′(a) < 0 or u ≡ M .

(b) if u(b) = M , then either u′(b) > 0 or u ≡ M .

3. (Comparison theorem for semilinear parabolic equations)

Consider a semilinear parabolic operator of the form

Su := ∂tu−∆u+ F (t, x, u,∇u), x ∈ RN , t > 0.

Assume that F is C1 jointly in all of its arguments.

Let u be a subsolution (Su ≤ 0) and v be a supersolution (Sv ≥ 0).
If u(0, x) ≤ v(0, x), then u(t, x) ≤ v(t, x).

4. (Boundedness of solution to diffusive Burgers’ equation)
Let u ∈ C2(R× (0, T ])∩C1(R× [0, T ]) be a solution to the one-dimensional diffusive Burgers’ equation{

∂tu = uux + uxx, in R× (0, T ],

u = u0, on R× {0}.

Prove that u is bounded.

In the class we mentioned the following problems. I put them here and if you are interested you can
think how to solve them.

1. Consider a one-dimensional boundary value problem (L > 0):{
−u′′ = eu, x ∈ [0, L],

u(0) = u(L) = 0.
(1)

Show that there exists L1 > 0 such that for all 0 < L < L1 there exists a positive solution (in (0, 1))
of (1), and for all L > L1 there does not exist a positive solution of (1).


