1. (Irreversibility) Let the solution of the Burgers equation

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0
$$

at $t=1$ be equal to:

$$
u(x, 1)= \begin{cases}1, & x<0 \tag{1}\\ 0, & x>0\end{cases}
$$

Construct infinitely-many different initial conditions $u(x, 0)$ (and draw them up to time $t=1$) such that at $t=1$ the solution coincides with (1).
2. Consider a scalar conservation law $(u \in \mathbb{R})$

$$
\begin{equation*}
u_{t}+(f(u))_{x}=0, \tag{2}
\end{equation*}
$$

and the following finite-difference approximation of it:

$$
\begin{equation*}
\frac{u_{n}^{k+1}-\frac{1}{2}\left(u_{n+1}^{k}+u_{n-1}^{k}\right)}{h}+\frac{f\left(u_{n+1}^{k}\right)-f\left(u_{n-1}^{k}\right)}{2 l}=0 . \tag{3}
\end{equation*}
$$

Here $u_{n}^{k}=u\left(x_{n}, t_{k}\right)$ is defined on the grid $x_{n}=n l, t_{k}=k h, l=\Delta x>0, h=\Delta t>0$ and $l \in \mathbb{Z}$, $k \in \mathbb{N} \cup\{0\}$. Let $u(x, 0)=u_{0}(x)$, and $u_{n}^{0}=u_{0}\left(x_{n}\right)$, and $M:=\left\|u_{0}\right\|_{\infty}$.
Prove that:

$$
\left|u_{n}^{k}\right| \leqslant M \quad \text { for all } n \in \mathbb{Z}, k \in \mathbb{N} \cup\{0\} .
$$

3. Write a computer program, modelling (2), using an explicit finite-difference scheme defined in (3).

Show the graphs of the solution $u(\cdot, t)$ for the following Riemann problems (at several subsequent time moments):

$$
\text { 1) } u(x, 0)=\left\{\begin{array}{ll}
0, & x<0, \\
1, & x>0 .
\end{array} \quad \text { 2) } u(x, 0)= \begin{cases}1, & x<0 \\
0, & x>0\end{cases}\right.
$$

Consider two cases for the flux function f :
a) $f(u)=2 u-u^{2}$;
b) $f(u)=\frac{u^{2}}{u^{2}+(1-u)^{2}}$.

Give a theoretical explanation to the observed results in all four cases (1a, 1b, 2a, 2b).
P.S. In the implementation of the numerical scheme remember to check that the CFL (Courant-Friedrichs-Lewy) condition is fulfilled: ${ }^{1}$

$$
\frac{A \cdot \Delta t}{\Delta x}<1
$$

where $A=\max _{u \in[0,1]}\left|f^{\prime}(u)\right|$.

[^0]
[^0]: ${ }^{1}$ This guarantees the convergence of the numerical scheme (3) to a solution of the original PDE (2).

