List of exercises 2. Deadline: 7 April 2023, 23:59.

1. Find a Fourier series solution to the initial-boundary value problem $(t>0, x \in[a, b] \subset \mathbb{R})$:

$$
u_{t t}-c^{2} u_{x x}=0
$$

with initial conditions

$$
u(x, 0)=\varphi(x)=\left\{\begin{array}{ll}
x, & x \in[0, \pi / 2] \\
\pi-x, & x \in[\pi / 2, \pi]
\end{array}, \quad u_{t}(x, 0)=0,\right.
$$

and boundary conditions: $u(a, t)=u(b, t)=0$.
2. Assume that the vector field u is $\mathrm{C}_{t} \operatorname{Lip}_{x}$, and let $X(t, a)$ be a flow map, corresponding to particle trajectories under the flow of u, that is:

$$
\partial_{t} X(t, a)=u(t, X(t, a)), \quad X(0, a)=a \in \mathbb{R}^{d} .
$$

Consider a flow map as a map: $a \mapsto X(t, a)$ for some fixed $t>0$, and it's Jacobian:

$$
J(t, a):=\operatorname{det}\left(\nabla_{a} X\right)(t, a)=\sum_{\varepsilon_{1}, \ldots, \varepsilon_{d}=1}^{d} \varepsilon_{\varepsilon_{1}, \ldots, \varepsilon_{d}} \frac{\partial X_{i_{1}}}{\partial a_{1}}(t, a) \cdot \ldots \cdot \frac{\partial X_{i_{d}}}{\partial a_{d}}(t, a),
$$

where $\varepsilon_{\varepsilon_{1}, \ldots, \varepsilon_{d}}$ denotes the standard Levi-Civita symbol, that is

$$
\varepsilon_{\varepsilon_{1}, \ldots, \varepsilon_{d}}= \begin{cases}\operatorname{sign}(\sigma), & i_{n}=\sigma(n) \text { for all } n \in 1, \ldots, d \text { and some permutation } \sigma \in S_{d} \\ 0, & \text { otherwise } .\end{cases}
$$

Prove that

$$
\partial_{t} J(t, a)=J(t, a) \cdot \operatorname{div}(u)(t, X(t, a)) .
$$

3. Compute explicitly the unique entropy solution of Burgers equation:

$$
\begin{aligned}
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \\
& u(x, 0)=u_{0}(x)= \begin{cases}1, & x<-1, \\
0, & x \in[-1,0], \\
2, & x \in[0,1] \\
0, & x>1\end{cases}
\end{aligned}
$$

Draw a picture documenting your answer, being sure to illustrate what happens for all times $t>0$.

