List of exercises 1. Deadline: 24 March 2023, 23:59.

1. Consider a wave equation on $u(x, t)$:

$$
u_{t t}-c^{2} u_{x x}=0, \quad x \in \mathbb{R}, t \in \mathbb{R}_{+}
$$

Show that after the change of variables $\xi=x-c t$ and $\eta=x+c t$, the wave equation becomes

$$
v_{\xi \eta}=0,
$$

where $v(\xi, \eta)=u(x, t)$. As we have shown in the lecture this immediately leads to the following general form of the solution of a wave equation (as a sum of two travelling waves moving with opposite speeds c and $-c$ and having profiles f and g, respectively):

$$
u(x, t)=f(x-c t)+g(x+c t) .
$$

2. Consider the following initial value problem for the Burgers equation:

$$
\begin{aligned}
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \\
& u(x, 0)=u_{0}(x)= \begin{cases}1, & x<0 \\
1-x, & x \in[0,1] \\
0, & x>1\end{cases}
\end{aligned}
$$

a) Using method of characteristics show that there exists time T, where at least two characteristic lines intersect (thus we can not define a solution u at this point). Denote by T_{0} the first moment of time when some of the characteristics intersect. We will refer to such a situation as a "blow-up at time T_{0} ".
b) Calculate T_{0}.
c) Draw all the characteristic lines till time T_{0} in the (x, t)-plane.
3. Draw a solution of the Cauchy problem for the wave equation:

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& u(x, 0)=\varphi(x) \\
& u_{t}(x, 0)=\psi(x)
\end{aligned}
$$

for $\varphi \equiv 0$ and ψ depicted in figure on the right.
P.S. D'Alambert formula may help.
4. Consider a Cauchy problem for the inhomogeneous wave equation:

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=h(x, t) . \\
& u(x, 0)=\varphi(x) \\
& u_{t}(x, 0)=\psi(x)
\end{aligned}
$$

Derive that the solution $u\left(x_{0}, t_{0}\right)$ takes the form:

$$
u\left(x_{0}, t_{0}\right)=\frac{\varphi\left(x_{0}-c t_{0}\right)+\varphi\left(x_{0}+c t_{0}\right)}{2}+\frac{1}{2 c} \int_{x_{0}-c t_{0}}^{x_{0}+c t_{0}} \psi(s) d s+\frac{1}{2 c} \iint_{G} h(x, t) d x d t
$$

Here $G=\left\{(x, t): t \in\left(0, t_{0}\right)\right.$ and $\left.x_{0}+c\left(t-t_{0}\right)<x<x_{0}-c\left(t-t_{0}\right)\right\}$ is a triangular region (see figure). P.S. Integrate the equation over G and use the Green-Gauss theorem.

