“Shock waves in conservation laws and reaction-diffusion equations”

List of exercises 1. Deadline: 24 March 2023, 23:59.

1. Consider a wave equation on u(z,t):
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Show that after the change of variables ¢ = x —ct and n = z + ct, the
wave equation becomes

”én = 0,

where v(§,n) = u(x,t). As we have shown in the lecture this imme-
diately leads to the following general form of the solution of a wave
equation (as a sum of two travelling waves moving with opposite
speeds ¢ and —c and having profiles f and g, respectively):

u(z,t) = f(x —ct) + gz + ct).

2. Consider the following initial value problem for the Burgers equation:
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a) Using method of characteristics show that there exists time T, where at least two characteristic
lines intersect (thus we can not define a solution u at this point). Denote by Tj the first moment
of time when some of the characteristics intersect. We will refer to such a situation as a “blow-up
at time Tj”.

b) Calculate Tp.

c¢) Draw all the characteristic lines till time Tp in the (z,t)-plane.

3. Draw a solution of the Cauchy problem for the wave equation:
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for ¢ = 0 and v depicted in figure on the right.
P.S. D’Alambert formula may help.
4. Consider a Cauchy problem for the inhomogeneous wave equation: LA TR
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Derive that the solution u(xg,tg) takes the form:
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Here G = {(x,t) : t € (0,t9) and zg + c(t —tg) < = < xg — c(t —tp)} is a triangular region (see figure).

P.S. Integrate the equation over G and use the Green-Gauss theorem.



