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Preface to the Second Edition

It is a testament to the vitality of the field of conservation laws that five years after
the original publication of this work it has become necessary to prepare a consider-
ably revised and expanded second edition. A new chapter has been added, recounting
the exciting recent developments on the vanishing viscosity method; and numerous
new sections have been incorporated in preexisting chapters, to introduce newly de-
rived results or present older material, omitted in the first edition, whose relevance
and importance has been underscored by current trends in research. This includes
recent work by the author, which has not been published elsewhere. In addition, a
substantial portion of the original text has been revamped so as to streamline the
exposition, enrich the collection of examples, and improve the notation. The intro-
duction has been revised to reflect these changes. The bibliography has been updated
and expanded as well, now comprising over one thousand titles.

Twenty-five years ago, it might have been feasible to compose a treatise survey-
ing the entire area; however, the explosive development of the subject over the past
three decades has rendered such a goal unattainable. Thus, even though this work
has encyclopedic ambitions, striving to present a panoramic view of the terrain, cer-
tain noteworthy features have been sketched very roughly or have been passed over
altogether. Fortunately, a number of textbooks and specialized monographs treating
some of these subjects in depth are now available. However, additional focused sur-
veys are needed in order to compile a detailed map of the entire field.
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Introduction

The seeds of continuum physics were planted with the works of the natural philoso-
phers of the eighteenth century, most notably Euler; by the mid-nineteenth century,
the trees were fully grown and ready to yield fruit. It was in this environment that
the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems
in divergence form, commonly called “hyperbolic conservation laws”; and these two
subjects have been traveling hand in hand over the past one hundred and fifty years.
This book aims at presenting the theory of hyperbolic conservation laws from the
standpoint of its genetic relation to continuum physics. Even though research is still
marching at a brisk pace, both fields have attained by now the degree of maturity that
would warrant the writing of such an exposition.

In the realm of continuum physics, material bodies are realized as continuous me-
dia, and so-called “extensive quantities”, such as mass, momentum and energy, are
monitored through the fields of their densities, which are related by balance laws and
constitutive equations. A self-contained, though skeletal, introduction to this branch
of classical physics is presented in Chapter II. The reader may flesh it out with the
help of a specialized text on the subject.

In its primal formulation, the typical balance law stipulates that the time rate of
change in the amount of an extensive quantity stored inside any subdomain of the
body is balanced by the rate of flux of this quantity through the boundary of the sub-
domain together with the rate of its production inside the subdomain. In the absence
of production, a balanced extensive quantity is conserved. The special feature that
renders continuum physics amenable to analytical treatment is that, under quite nat-
ural assumptions, statements of gross balance, as above, reduce to field equations,
i.e., partial differential equations in divergence form.

The collection of balance laws in force demarcates and identifies particular con-
tinuum theories, such as mechanics, thermomechanics, electrodynamics, and so on.
In the context of a continuum theory, constitutive equations encode the material prop-
erties of the medium, for example heat-conducting viscous fluid, elastic solid, elastic
dielectric, etc. The coupling of these constitutive relations with the field equations
gives birth to closed systems of partial differential equations, dubbed “balance laws”
or “conservation laws”, from which the equilibrium state or motion of the continuous
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medium is to be determined. Historically, the vast majority of noteworthy partial dif-
ferential equations were generated through that process. The central thesis of this
book is that the umbilical cord joining continuum physics with the theory of partial
differential equations should not be severed, as it is still carrying nourishment in both
directions.

Systems of balance laws may be elliptic, typically in statics; hyperbolic, in dy-
namics, for media with “elastic” response; mixed elliptic-hyperbolic, in statics or dy-
namics, when the medium undergoes phase transitions; parabolic or mixed parabolic-
hyperbolic, in the presence of viscosity, heat conductivity or other diffusive mecha-
nisms. Accordingly, the basic notions shall be introduced, in Chapter I, at a level of
generality that would encompass all of the above possibilities. Nevertheless, since
the subject of this work is hyperbolic conservation laws, the discussion will eventu-
ally focus on such systems, beginning with Chapter III.

Solutions to hyperbolic conservation laws may be visualized as propagating
waves. When the system is nonlinear, the profiles of compression waves get pro-
gressively steeper and eventually break, generating jump discontinuities which prop-
agate on as shocks. Hence, inevitably, the theory has to deal with weak solutions.
This difficulty is compounded further by the fact that, in the context of weak so-
lutions, uniqueness is lost. It thus becomes necessary to devise proper criteria for
singling out admissible weak solutions. Continuum physics naturally induces such
admissibility criteria through the Second Law of thermodynamics. These may be in-
corporated in the analytical theory, either directly, by stipulating outright that admis-
sible solutions should satisfy “entropy” inequalities, or indirectly, by equipping the
system with a minute amount of diffusion, which has negligible effect on smooth
solutions but reacts stiffly in the presence of shocks, weeding out those that are
not thermodynamically admissible. The notions of “entropy” and “vanishing dif-
fusion”, which will play a central role throughout the book, are first introduced in
Chapters III and IV.

From the standpoint of analysis, a very elegant, definitive theory is available
for the case of scalar conservation laws, in one or several space dimensions, which
is presented in detail in Chapter VI. By contrast, systems of conservation laws in
several space dimensions are still terra incognita, as the analysis is currently facing
insurmountable obstacles. The limited results derived thus far, pertaining to local
existence and stability of smooth or piecewise smooth solutions, underscore the im-
portance of the special structure of the field equations of continuum physics and the
stabilizing role of the Second Law of thermodynamics. These issues are discussed in
Chapter V.

Beginning with Chapter VII, the focus of the investigation is fixed on systems of
conservation laws in one-space dimension. In that setting, the theory has a number
of special features that are of great help to the analyst, so major progress has been
achieved.

Chapter VIII provides a systematic exposition of the properties of shocks. In par-
ticular, various shock admissibility criteria are introduced, compared and contrasted.
Admissible shocks are then combined, in Chapter IX, with another class of particular
solutions, called centered rarefaction waves, to synthesize wave fans that solve the
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classical Riemann problem. Solutions of the Riemann problem may in turn be em-
ployed as building blocks for constructing solutions to the Cauchy problem, in the
class BV of functions of bounded variation. Two construction methods based on this
approach will be presented here: The random choice scheme, in Chapter XIII, and a
front tracking algorithm, in Chapter XIV. Uniqueness and stability of these solutions
will also be established.

Chapter XV outlines an alternative construction of BV solutions to the Cauchy
problem, for general strictly hyperbolic systems of conservation laws, by the method
of vanishing viscosity.

The above construction methods generally apply when the initial data have suf-
ficiently small total variation. This restriction seems to be generally necessary be-
cause, in certain systems, when the initial data are “large” even weak solutions to the
Cauchy problem may blow up in finite time. Whether such catastrophes may occur
to solutions of the field equations of continuum physics is at present a major open
problem. For a limited class of systems, which however contains several important
representatives, solutions with large initial data can be constructed by means of the
functional analytic method of compensated compactness. This approach, which rests
on the notions of measure-valued solution and the Young measure, will be outlined in
Chapter XVI.

There are other interesting properties of weak solutions, beyond existence and
uniqueness. In Chapter X, the notion of characteristic is extended from classical to
weak solutions and is employed for obtaining a very precise description of regularity
and long time behavior of solutions to scalar conservation laws, in Chapter XI, as
well as to systems of two conservation laws, in Chapter XII.

In order to highlight the fundamental ideas, the discussion proceeds from the
general to the particular, notwithstanding the clear pedagogical merits of the reverse
course. Even so, under proper guidance, the book may also serve as a text. With that
in mind, the pace of the proofs is purposely uneven: slow for the basic, elementary
propositions that may provide material for an introductory course; faster for the more
advanced technical results that are addressed to the experienced analyst. Even though
the various parts of this work fit together to form an integral entity, readers may select
a number of independent itineraries through the book. Thus, those principally inter-
ested in the conceptual foundations of the theory of hyperbolic conservation laws, in
connection to continuum physics, need go through Chapters I-V only. Chapter VI,
on the scalar conservation law, may be read virtually independently of the rest. Stu-
dents intending to study solutions as compositions of interacting elementary waves
may begin with Chapters VII-IX and then either continue on to Chapters X-XII or
else pass directly to Chapter XIII and/or Chapter XIV. Similarly, Chapter XV relies
solely on Chapters VII and VIII. Finally, only Chapter VII is needed as a prerequisite
for the functional analytic approach expounded in Chapter XVI.

Certain topics are perhaps discussed in excessive detail, as they are of spe-
cial interest to the author; and a number of results are published here for the first
time. On the other hand, several important aspects of the theory are barely touched
upon, or are only sketched very briefly. They include the classical theory of tran-
sonic flow in gas dynamics, which is currently undergoing a major revival, the newly
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developed stability theory of multi-space dimensional shocks and boundary condi-
tions, the derivation of the balance laws of continuum physics from the kinetic theory
of gases, and the study of phase transitions. Each one of these areas would warrant
the writing of a specialized monograph. The most conspicuous absence is a discus-
sion of numerics, which, beyond its practical applications, also provides valuable
insight to the theory. Fortunately, a number of texts on the numerical analysis of
hyperbolic conservation laws have recently appeared and may fill this gap.
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I

Balance Laws

The ambient space for the balance law will be IRk , with typical point X . In the
applications to continuum physics, IRk will stand for physical space, of dimension
one, two or three, in the context of statics; and for space-time, of dimension two,
three or four, in the context of dynamics.

The generic balance law will be introduced through its primal formulation, as
a postulate that the production of an extensive quantity in any domain is balanced
by a flux through the boundary; it will then be reduced to a field equation. It is
this reduction that renders continuum physics mathematically tractable. It will be
shown that the divergence form of the field equation is preserved under change of
coordinates, and that the balance law, in its original form, may be retrieved from the
field equation.

The field equations for a system of balance laws will be combined with constitu-
tive equations, relating the flux and production density with a state vector, to obtain
a closed quasilinear first order system of partial differential equations in divergence
form.

It will be shown that symmetrizable systems of balance laws are endowed with
companion balance laws which are automatically satisfied by smooth solutions,
though not necessarily by weak solutions. The issue of admissibility of weak so-
lutions will be raised.

Solutions will be considered with shock fronts or weak fronts, in which the state
vector field or its derivatives experience jump discontinuities across a manifold of
codimension one.

The theory of BV functions, which provide the natural setting for solutions with
shock fronts, will be surveyed and the geometric structure of BV solutions will be
described.

Highly oscillatory weak solutions will be constructed, and a first indication of
the stabilizing role of admissibility conditions will be presented.

The setting being Euclidean space, it will be expedient to employ matrix notation
at the expense of obscuring the tensorial nature of the fields. The symbol IMr×s will
denote throughout the vector space of r × s matrices and IRr shall be identified with
IMr×1. Other standard notation to be used here includes Sr−1 for the unit sphere in
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IRr and Bρ(X) for the ball of radius ρ centered at X . In particular, Bρ will stand for
Bρ(0).

1.1 Formulation of the Balance Law

Let X be an open subset of IRk . A proper domain in X is any open bounded subset
of X , with Lipschitz boundary. A balance law on X postulates that the production of
a (scalar) “extensive” quantity in any proper domain D is balanced by the flux of this
quantity through the boundary ∂D of D.

The salient feature of an extensive quantity is that both its production and its
flux are additive over disjoint subsets. Thus, the production in the proper domain D
is given by the value P(D) of a (signed) Radon measure P on X . Similarly, with
every proper domain D is associated a countably additive set function QD , defined
on Borel subsets of ∂D, such that the flux in or out of D through any Borel subset C
of ∂D is given by QD(C). Hence, the balance law simply states

(1.1.1) QD(∂D) = P(D),

for every proper domain D in X .
It will be assumed throughout that the set function QD is absolutely continuous

with respect to the (k − 1)-dimensional Hausdorff measure Hk−1, and hence with
any proper domain D in X is associated a density flux function qD ∈ L1(∂D) such
that

(1.1.2) QD(C) =
∫
C

qD(X)dHk−1(X),

for every Borel subset C of ∂D.
Borel subsets C of ∂D are oriented by means of the exterior unit normal N to D,

at points of C. The fundamental postulate in the theory of balance laws is that the flux
depends solely on the surface and its orientation, i.e., if C is at the same time a Borel
subset of the boundaries of two distinct proper domains D1 and D2 , sharing the same
exterior normal on C, then QD1(C) = QD2(C), and thereby qD1(X) = qD2(X), for
almost all (with respect to Hk−1) X ∈ C.

1.2 Reduction to Field Equations

At first glance, the notion of a balance law, as introduced in Section 1.1, appears
too general to be of any use. It turns out, however, that the balancing requirement
(1.1.1) induces severe restrictions on density flux functions. Namely, the value of qD
at X ∈ ∂D may depend on D solely through the exterior normal N at X , and the
dependence is “linear”. This renders the balance law quite concrete, reducing it to a
field equation.
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1.2.1 Theorem. Consider the balance law (1.1.1) on X where P is a signed Radon
measure and the QD are induced, through (1.1.2), by density flux functions qD that
are bounded, |qD(X)| ≤ C, for any X ∈ ∂D and all proper domains D. Then,
(i) With each N ∈ Sk−1 is associated a bounded measurable function aN on X , with
the following property: Let D be any proper domain in X and suppose X is some
point on ∂D where the exterior unit normal to D exists and is N. Assume further that
X is a Lebesgue point of qD , relative to Hk−1, and that the upper derivate of |P| at
X, with respect to Lebesgue measure, is finite. Then

(1.2.1) qD(X) = aN (X).

(ii) There exists a vector field A ∈ L∞
(
X ; IM1×k

)
such that, for any fixed N ∈ Sk−1,

(1.2.2) aN (X) = A(X)N , a.e. on X .

(iii) The function A satisfies the field equation

(1.2.3) divA = P,

in the sense of distributions on X .

Proof. Fix any N ∈ Sk−1 and then take any hyperplane C, of codimension one,
with normal N and nonempty intersection with X . Consider any proper domain D
such that Hk−1 (C ∩ ∂D) > 0 and define aN (X) = qD(X) for X ∈ C ∩ ∂D. By
virtue of our assumptions on flux density functions, the values of aN do not depend
essentially on the particular domain D used for its construction. We thus end up with
a well-defined, bounded, Hk−1-measurable function aN on C∩X . For normalization,
we require

(1.2.4) aN (X) = lim
r↓0

1

Hk−1 (C ∩ Br (X))

∫
C∩Br (X)

aN (Y )dHk−1(Y ),

for any X ∈ C ∩X for which the limit on the right-hand side exists. By repeating the
above construction for every hyperplane with normal N , we define aN on all of X .

In order to study the properties of aN , we fix N ∈ Sk−1, together with a hyper-
plane C with normal N , and a ball B in X , centered at some point on C ∩X . We then
apply the balance law to cylindrical domains

(1.2.5) D =
⋃

−δ<τ<ε
Aτ , Aτ = {X : X − τN ∈ C ∩ B} ,

where δ and ε are small nonnegative numbers. This yields

(1.2.6)
∫
Aε

aN (X)d Hk−1(X)+
∫

A−δ
a−N (X)d Hk−1(X) = P(D)+ O(δ)+ O(ε),

where the terms O(δ) and O(ε) account for the contribution of the flux through the
lateral boundary of the cylindrical domain. Setting δ = 0 and letting ε ↓ 0, we
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derive from (1.2.6) an estimate which, applied to all balls B, implies that, as τ ↓ 0,
aN (X + τN ) → −a−N (X), in L∞ (C ∩ X ) weak∗. Similarly, setting ε = 0 and
letting δ ↓ 0, we deduce that, as τ ↑ 0, a−N (X + τN ) → −aN (X), again in
L∞ (C ∩ X ) weak∗. In particular, this implies that aN is Lebesgue measurable on X .

Returning to (1.2.6), and now letting both δ ↓ 0 and ε ↓ 0, we conclude that
a−N (X) = −aN (X), for almost all (with respect to Hk−1) X ∈ C ∩ X , unless C
belongs to the (at most) countable family of exceptional hyperplanes with normal N
for which |P|(C ∩ X ) > 0.

To show (1.2.1), consider any proper domain D in X and fix any X ∈ ∂D where
the exterior unit normal is N and the tangential hyperplane is C. Assume, further,
that X is a Lebesgue point of qD and that the upper derivate of |P| at X , with respect
to Lebesgue measure, is finite. For r positive and small, write the balance law, first
for the domain D ∩ Br (X), then for the semiball {Y ∈ Br (X) : (Y − X) · N < 0};
see Fig. 1.2.1.

Fig. 1.2.1

Subtracting the resulting two equations yields

(1.2.7)
∫

∂D∩Br (X)

qD(Y )dHk−1(Y )−
∫

C∩Br (X)

aN (Y )dHk−1(Y ) = o
(
rk−1).

Dividing (1.2.7) by rk−1, letting r ↓ 0, and recalling (1.2.4), we arrive at (1.2.1),
thus establishing assertion (i) of the theorem.

We will verify (1.2.2) by employing the celebrated Cauchy tetrahedron argu-
ment. We introduce the standard orthonormal basis {Eα : α = 1, · · · , k} in IRk and
assemble the m-row vector field A ∈ L∞

(
X ; IM1×k

)
with components aEα :

(1.2.8) A(X) = [aE1(X), · · · , aEk (X)
]
.
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Fix any N ∈ Sk−1 with nonzero components Nα (the argument has to be slightly
modified when some of the Nα vanish), and take any X ∈ X with the following
properties: X is a Lebesgue point of the k + 1 functions aE1 , · · · , aEk and aN ; the
upper derivate of |P| at X , with respect to Lebesgue measure, is finite. For r positive
and small, consider the simplex1

(1.2.9) D = {Y : (Yα − Xα) sgn Nα > −r, α = 1, · · · , k; (Y − X) · N < r} .
Notice that ∂D consists of one face C with exterior normal N and k faces Cα , for
α = 1, · · · , k,with respective exterior normals (−sgn Nα)Eα . Furthermore, we have
Hk−1(Cα) = |Nα|Hk−1(C). We select r so that none of the faces of D lies on an
exceptional hyperplane. The balance law for D then reads

(1.2.10)
∫
C

aN dHk−1 −
k∑

α=1

(sgn Nα)

∫
Cα

aEαdHk−1 = P(D).

Upon dividing (1.2.10) by Hk−1(C) and then letting r ↓ 0 along properly selected
sequences arrives at

(1.2.11) aN (X) =
k∑

α=1

aEα (X)Nα = A(X)N ,

which establishes (1.2.2).
It remains to show (1.2.3). For Lipschitz continuous A, (1.2.3) follows directly

by applying the divergence theorem to the balance law. In the general case where A
is merely in L∞, we resort to mollification. We fix any test function ψ ∈ C∞0 (IRk)

with total mass one, supported in the unit ball, we rescale it by ε,

(1.2.12) ψε(X) = ε−kψ
(
ε−1 X

)
,

and employ it to mollify, in the customary fashion, P and A on the set Xε ⊂ X of
points whose distance from X c exceeds ε:

(1.2.13) pε = ψε ∗ P, Aε = ψε ∗ A.

For any hypercube D ⊂ Xε , we apply the divergence theorem to the smooth field
Aε and use Fubini’s theorem to get

(1.2.14)
∫
D

divAε(X)d X =
∫
∂D

Aε(X)N (X)dHk−1(X)

=
∫
∂D

∫
IRk

ψε(Y )A(X − Y )N (X)dY dHk−1(X)

=
∫

IRk

ψε(Y )
∫

∂DY

A(Z)N (Z)dHk−1(Z)dY,

1 The Cauchy tetrahedron argument derives its name from the special case k = 3.
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where DY denotes the Y -translate of D, that is DY = {X : X − Y ∈ D}. By virtue of
the balance law,

(1.2.15)
∫

∂DY

A(Z)N (Z)dHk−1(Z) =
∫

∂DY

aN (Z)dHk−1(Z) = P(DY ),

for almost all Y in the ball {Y : |Y | < ε}. Hence (1.2.14) gives

(1.2.16)
∫
D

divAε(X)d X =
∫

IRk

ψε(Y )P(DY )dY =
∫
D

pε(X)d X,

whence we infer

(1.2.17) divAε(X) = pε(X), X ∈ Xε .

Letting ε ↓ 0 yields (1.2.3), in the sense of distributions on X . This completes the
proof.

In the following section we shall see that the course followed in the proof of
the above theorem can be reversed: Departing from the field equation (1.2.3), one
may retrieve the flux density functions qD and thereby restore the balance law in its
original form (1.1.1).

1.3 Change of Coordinates and a Trace Theorem

The divergence form of the field equations of balance laws is preserved under coor-
dinate changes, so long as the fields transform according to appropriate rules. In fact,
this even holds when the flux fields are merely locally integrable.

1.3.1 Theorem. Let X be an open subset of IRk and assume that functions
A ∈ L1

loc

(
X ; IM1×k

)
and P ∈M(X ) satisfy the field equation

(1.3.1) divA = P,

in the sense of distributions on X . Consider any bilipschitz homeomorphism X∗ of
X to a subset X ∗ of IRk, with Jacobian matrix

(1.3.2) J = ∂X∗

∂X

such that

(1.3.3) det J ≥ a > 0, a.e. on X .

Then, A∗ ∈ L1
loc

(
X ∗; IM1×k

)
and P∗ ∈M (X ∗) defined by
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(1.3.4) A∗ ◦ X∗ = (det J )−1 AJ�,

(1.3.5) 〈P∗, ϕ∗〉 = 〈P, ϕ〉, where ϕ = ϕ∗ ◦ X∗,

satisfy the field equation

(1.3.6) divA∗ = P∗,

in the sense of distributions on X ∗.

Proof. It follows from (1.3.1) that

(1.3.7)
∫
X

A gradϕ d X + 〈P, ϕ〉 = 0,

for any Lipschitz function ϕ with compact support in X , since one can always con-
struct a sequence {ϕm} of test functions in C∞0 (X ), supported in a compact subset of
X , such that, as m → ∞, ϕm → ϕ, uniformly, and gradϕm → gradϕ, boundedly
almost everywhere on X .

Given any test function ϕ∗ ∈ C∞0 (X ∗), consider the Lipschitz function ϕ =
ϕ∗ ◦ X∗, with compact support in X . Notice that gradϕ = J�gradϕ∗. Furthermore,
d X∗ = (det J )d X . By virtue of these and (1.3.4), (1.3.5), we can write (1.3.7) as

(1.3.8)
∫
X ∗

A∗gradϕ∗d X∗ + 〈P∗, ϕ∗〉 = 0,

which establishes (1.3.6). The proof is complete.

1.3.2 Remark. In the special, yet common, situation where the measure P is induced
by a production density field p ∈ L1

loc (X ), (1.3.5) implies that P∗ is also induced
by a production density field p∗ ∈ L1

loc (X ∗), given by

(1.3.9) p∗ ◦ X∗ = (det J )−1 p.

Even though in general the field A is only defined almost everywhere on an open
subset of IRk , it turns out that the field equation induces a modicum of regularity,
manifesting itself in trace theorems, which will allow us to identify the flux through
surfaces of codimension one, and thus retrieve the balance law in its original form.
We begin with planar surfaces.

1.3.3 Lemma. Assume A ∈ L∞
(
K; IM1×k

)
and P ∈ M (K) satisfy (1.3.1), in the

sense of distributions, on a cylindrical domain K = B × (α, β), where B is a ball
in IRk−1. Let Ek denote the k-base vector in IRk and set X = (Y, t), with Y ∈ B
and t ∈ (α, β). Then, after modifying, if necessary, A on a set of measure zero, the
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function a(Y, t) = A(Y, t)Ek acquires the following properties: One-sided limits
a(·, τ±) in L∞(B) weak∗ exist, for any τ ∈ (α, β), and can be determined by

(1.3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(Y, τ−) = ess lim
t↑τ A(Y, t)Ek = lim

ε↓0

1

ε

τ∫
τ−ε

A(Y, t)Ekdt,

a(Y, τ+) = ess lim
t↓τ A(Y, t)Ek = lim

ε↓0

1

ε

τ+ε∫
τ

A(Y, t)Ekdt,

where the limits are taken in L∞(B) weak∗. Furthermore, for any τ ∈ (α, β) and
any Lipschitz continuous function ϕ with compact support in K,

(1.3.11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
B

a(Y, τ−)ϕ(Y, τ )dY =
∫

B×(α,τ )
A(X) gradϕ(X) d X + 〈P, ϕ〉B×(α,τ ) ,

−
∫
B

a(Y, τ+)ϕ(Y, τ )dY =
∫

B×(τ,β)
A(X) gradϕ(X) d X + 〈P, ϕ〉B×(τ,β) .

Thus, a(·, τ−) = a(·, τ+) = a(·, τ ), unless τ belongs to the (at most) countable set
of points with |P|(B×{τ }) > 0. In particular, when P is absolutely continuous with
respect to Lebesgue measure, the function τ �→ a(·, τ ) is continuous on (α, β), in
the weak∗ topology of L∞(B).
Proof. Fix ε positive and small. If r is the radius of B, let Bε denote the ball in IRk−1

with the same center as B and radius r − ε. As in the proof of Theorem 1.2.1, we
mollify A and P on Bε× (α+ε, β−ε) through (1.2.13). The resulting smooth fields
Aε and pε satisfy (1.2.17). We also set aε(Y, t) = Aε(Y, t)Ek .

We multiply (1.2.17) by any Lipschitz function ϕ on IRk−1, with compact support
in Bε, and integrate the resulting equation over Bε × (r, s), α + ε < r < s < β − ε.
After an integration by parts, this yields

(1.3.12)
∫
Bε

aε(Y, s)ϕ(Y )dY −
∫
Bε

aε(Y, r)ϕ(Y )dY

=
s∫

r

∫
Bε

{Aε(Y, t) Πk gradϕ(Y )+ pε(Y, t)ϕ(Y )} dY dt,

where Πk denotes the projection of IRk to IRk−1. It follows that the total variation of
the function t �→ ∫

Bε

aε(Y, t)ϕ(Y )dY , over the interval (α + ε, β − ε), is bounded,

uniformly in ε > 0. Therefore, starting out from some countable family {ϕ�} of
test functions, with compact support in B, which is dense in L1(B), we may invoke
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Helly’s theorem in conjunction with a diagonal argument to extract a sequence {εm},
with εm → 0 as m →∞, and identify a countable subset G of (α, β), such that, for
any � = 1, 2 · · ·, the sequence {∫

B
aεm (Y, t)ϕ�(Y )dY } converges, as m → ∞, for all

t ∈ (α, β)\G, and the limit function has bounded variation over (α, β). The resulting
limit functions, for all �, may be collectively represented as

∫
B

a(Y, t)ϕ�(Y )dY , for

some function t �→ a(·, t) taking values in L∞(B). Clearly, a(Y, t) = A(Y, t)Ek ,
a.e. in K. Thus, a does not depend on the particular sequence {εm} employed for its
construction, and (1.3.10) holds for any τ ∈ (α, β).

Given any τ ∈ (α, β) and any Lipschitz function ϕ with compact support in K,
we multiply (1.2.17) by ϕ and integrate the resulting equation over Bε × (α + ε, s),
where s ∈ (α + ε, τ )\G. After an integration by parts, this yields

(1.3.13)
∫
Bε

aε(Y, s)ϕ(Y, s)dY

=
∫

Bε×(a+ε,s)

[
Aε(X) gradϕ(X)+ pε(X)ϕ(X)

]
d X.

In (1.3.13) we first let ε ↓ 0 and then s ↑ τ thus arriving at (1.3.11)1 . The proof of
(1.3.11)2 is similar.

When P is absolutely continuous with respect to Lebesgue measure, (1.3.12)
implies that the family of functions t �→ ∫

Bε

aε(Y, t)ϕ�(Y )dY , parametrized by ε, is

actually equicontinuous, and hence
∫
B

a(Y, t)ϕ�(Y )dY is continuous on (α, β), for

� = 1, 2, · · ·. Thus, t �→ a(· ; t) is continuous on (α, β), in L∞(B) weak∗. This
completes the proof.

The k-coordinate direction was singled out, in the above proposition, just for
convenience. Analogous continuity properties are clearly enjoyed by AEα , in the di-
rection of any base vector Eα , and indeed by AN , in the direction of any N ∈ Sk−1.
Thus, departing from the field equation (1.2.3), one may retrieve the flux density
functions aN , for planar surfaces, encountered in Theorem 1.2.1. The following
proposition demonstrates that even the flux density functions qD , for general proper
domains D, may be retrieved by the same procedure.

1.3.4 Theorem. Assume that A ∈ L∞
(
X ; IM1×k

)
and P ∈M(X ) satisfy (1.3.1), in

the sense of distributions, on an open subset X of IRk. Then, with any proper domain
D in X is associated a bounded Hk−1-measurable function qD on ∂D such that
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(1.3.14)
∫
∂D

qD(X)ϕ(X)dHk−1(X)

=
∫
D

A(X) gradϕ(X) d X + 〈P, ϕ〉D ,

for any Lipschitz continuous function ϕ on IRk, with compact support in X .

Proof. Consider the cylindrical domain K∗ = {X∗ = (Y, t) : Y ∈ B, t ∈ (−1, 1)},
where B is the unit ball in IRk−1. Fix any proper domain D in X .

Since D is a Lipschitz domain, with any point X̄ ∈ ∂D is associated a bilipschitz
homeomorphism X from K∗ to some open subset K of X such that X (0) = X̄ ,
X (B × (−1, 0)) = D ∩K and X (B × {0}) = ∂D ∪K.

Consider the inverse map X∗ of X , with Jacobian matrix J , given by (1.3.2) and
satisfying (1.3.3). Construct A∗ ∈ L∞(K∗; IM1×k), by (1.3.4), and P∗ ∈ M(K∗),
by (1.3.5), which will satisfy (1.3.6) on K∗, in the sense of distributions.

We now apply Lemma 1.3.3 to identify the function a∗(Y, t) on K∗ , which is
equal to A∗(Y, t)Ek , a.e on K∗, and by (1.3.10) satisfies

(1.3.15) a∗(Y, 0−) = ess lim
t↑0

A∗(Y, t)Ek = lim
ε↓0

1

ε

0∫
−ε

A∗(Y, t)Ekdt.

We fix any Lipschitz continuous function ϕ on IRk , with compact support in K,
and let ϕ∗ = ϕ ◦ X , for X∗ ∈ K∗. By virtue of (1.3.11),

(1.3.16)
∫
B

a∗(Y, 0−)ϕ∗(Y, 0)dY

=
∫

B×(−1,0)

A∗(X∗) gradϕ∗(X∗) d X∗ + 〈P∗, ϕ∗〉B×(−1,0) .

We employ the homeomorphism X∗ in order to transform (1.3.16) into an equation
on X . Using that gradϕ = J�gradϕ∗ and recalling (1.3.4) and (1.3.5), we may
rewrite (1.3.16) as

(1.3.17)
∫

∂D∩K
qD(X)ϕ(X)dHk−1(X)

=
∫
D

A(X) gradϕ(X) d X + 〈P, ϕ〉D ,

where we have set
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(1.3.18) qD = dY

dHk−1
a∗ ◦ X∗ = det J

E�k J N
a∗ ◦ X∗,

with N denoting the exterior unit normal to D.
Equation (1.3.17) establishes (1.3.14) albeit only for ϕ with compact support in

K. It should be noted, however, that the right-hand side of (1.3.17) does not depend
on the homeomorphism X∗ and thus the values of qD on ∂D∩K are intrinsically de-
fined, independently of the particular construction employed above. Hence, one may
easily pass from (1.3.17) to (1.3.14), for arbitrary Lipschitz continuous functions ϕ
with compact support in X , by a straightforward partition of unity argument. This
completes the proof.

The reader can find, in the literature cited in Section 1.10, more refined versions
of the above proposition, in which A is assumed to be merely locally integrable or
even just a measure, as well as alternative methods of proof. For instance, in a more
abstract approach, the existence of qD follows directly by showing that the right-
hand side of (1.3.14) can be realized as a bounded linear functional on L1(∂D).
The drawback of this, functional analytic, demonstration is that it does not provide
any clues on how the qD may be computed from A. In the opposite direction, one
may impose slightly more stringent regularity conditions on D and then derive a
representation of qD , in terms of A, which is more explicit and does not require
passing through (1.3.4), (1.3.5) and (1.3.18), as is done here.

1.4 Systems of Balance Laws

We consider the situation where n distinct balance laws, with production measures
induced by production density fields, act simultaneously in X , and collect their field
equations (1.2.3) into the system

(1.4.1) divA(X) = P(X),

where now A is a n×k-matrix field and P is a n-column vector field. The divergence
operator acts on the row vectors of A, yielding as divA a n-column vector field.

We assume that the state of the medium is described by a state vector field U ,
taking values in an open subset O of IRn , which determines the flux density field A
and the production density field P at the point X ∈ X by constitutive equations

(1.4.2) A(X) = G(U (X), X), P(X) = Π(U (X), X),

where G and Π are given smooth functions defined on O × X and taking values in
IMn×k and IRn , respectively.

Combining (1.4.1) with (1.4.2) yields

(1.4.3) div G(U (X), X) = Π(U (X), X),
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that is a (formally) closed quasilinear first order system of partial differential equa-
tions from which the state vector field is to be determined. Any equation of the form
(1.4.3) will henceforth be called a system of balance laws, if n ≥ 2, or a scalar
balance law when n = 1. In the special case where there is no production, Π ≡ 0,
(1.4.3) will be called a system of conservation laws, if n ≥ 2, or a scalar conser-
vation law when n = 1. This terminology is not quite standard: In lieu of “system
of balance laws” certain authors favor the term “system of conservation laws with
source”. When G and Π do not depend explicitly on X , the system of balance laws
is called homogeneous.

Notice that when coordinates are stretched in the vicinity of some fixed point
X̄ ∈ X , i.e., X = X̄ + εY , then, as ε ↓ 0, the system of balance laws (1.4.3)
reduces to a homogeneous system of conservation laws with respect to the Y variable.
This is why local properties of solutions of general systems of balance laws may
be investigated, without loss of generality, in the simpler setting of homogeneous
systems of conservation laws.

A Lipschitz continuous field U that satisfies (1.4.3) almost everwhere on X will
be called a classical solution. A measurable field U that satisfies (1.4.3) in the sense
of distributions, i.e., G(U (X), X) and Π(U (X), X) are locally integrable and

(1.4.4)
∫
X
[G(U (X), X) gradϕ(X)+ ϕ(X)Π(U (X), X)]d X = 0,

for any test function ϕ ∈ C∞0 (X ), is a weak solution. Any weak solution which is
Lipschitz continuous is necessarily a classical solution.

1.4.1 Notation. For α = 1, · · · , k, Gα(U, X) will denote the α-th column vector of
the matrix G(U, X).

1.4.2 Notation. Henceforth, D will denote the differential with respect to the U vari-
able. When used in conjunction with matrix notations, D shall be regarded as a row
operation: D = [∂/∂U 1, · · · , ∂/∂U n

]
.

1.5 Companion Balance Laws

Consider a system (1.4.3) of balance laws on an open subset X of IRk , resulting from
combining the field equation (1.4.1) with constitutive relations (1.4.2). A smooth
function Q, defined on O ×X and taking values in IM1×k , is called a companion of
G if there is a smooth function B, defined on O × X and taking values in IRn , such
that, for all U ∈ O and X ∈ X ,

(1.5.1) DQα(U, X) = B(U, X)�DGα(U, X), α = 1, · · · , k.

The relevance of (1.5.1) stems from the observation that any classical solution U
of the system of balance laws (1.4.3) is automatically also a (classical) solution of
the companion balance law
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(1.5.2) div Q(U (X), X) = h(U (X), X),

with

(1.5.3) h(U, X) = B(U, X)�Π(U, X)+∇ · Q(U, X)− B(U, X)�∇ · G(U, X).

In (1.5.3) ∇· denotes divergence with respect to X , holding U fixed—as opposed to
div, which treats U as a function of X .

One determines the companion balance laws (1.5.2) of a given system of balance
laws (1.4.3) by identifying the integrating factors B that render the right-hand side
of (1.5.1) a gradient of a function of U . The relevant integrability condition is

(1.5.4) DB(U, X)�DGα(U, X) = DGα(U, X)�DB(U, X), α = 1, · · · , k,

for all U ∈ O and X ∈ X . Clearly, one can satisfy (1.5.4) by employing any B
that does not depend on U ; in that case, however, the resulting companion balance
law (1.5.2) is just a trivial linear combination of the equations of the original system
(1.4.3). For nontrivial B, which vary with U , (1.5.4) imposes 1

2 n(n − 1)k conditions
on the n unknown components of B. Thus, when n = 1 and k is arbitrary one may use
any (scalar-valued) function B. When n = 2 and k = 2, (1.5.4) reduces to a system
of two equations in two unknowns from which a family of B may presumably be
determined. In all other cases, however, (1.5.4) is formally overdetermined and the
existence of nontrivial companion balance laws should not be generally expected.
Nevertheless, as we shall see in Chapter III, the systems of balance laws of continuum
physics are endowed with natural companion balance laws.

The system of balance laws (1.4.3) is called symmetric when the n × n matrices
DGα(U, X), α = 1, · · · , k, are symmetric, for any U ∈ O and X ∈ X ; say O is
simply connected and

(1.5.5) G(U, X)� = D�(U, X)�,

for some smooth function �, defined on O × X and taking values in IM1×k . In that
case one may satisfy (1.5.4) by taking B(U, X) ≡ U , which induces the companion

(1.5.6) Q(U, X) = U�G(U, X)− �(U, X).

Conversely, if (1.5.1) holds for some B with the property that, for every fixed
X ∈ X , B(· , X) maps diffeomorphically O to some open subset O∗ of IRn , then
the change U∗ = B(U, X) of state vector reduces (1.4.3) to the equivalent system of
balance laws

(1.5.7) div G∗(U∗(X), X) = Π∗(U∗(X), X),

with

(1.5.8) G∗(U∗, X) = G(B−1(U∗, X), X), Π∗(U∗, X) = Π(B−1(U∗, X), X),

which is symmetric. Indeed, upon setting



14 I Balance Laws

(1.5.9) Q∗(U∗, X) = Q(B−1(U∗, X), X),

(1.5.10) �∗(U∗, X) = U∗�G∗(U∗, X)− Q∗(U∗, X),

it follows from (1.5.1) that

(1.5.11) G∗(U∗, X)� = D�∗(U∗, X)�.

We have thus demonstrated that a system of balance laws is endowed with nontrivial
companion balance laws if and only if it is symmetrizable.

We shall see that the presence of companion balance laws has major implica-
tions on the theory of systems of balance laws arising in physics. Quite often, in
order to simplify the analysis, it becomes necessary to make simplifying physical
assumptions that truncate the system of balance laws while simultaneously trimming
proportionately the size of the state vector. Such truncations cannot be performed
arbitrarily without destroying the mathematical structure of the system, which goes
hand in hand with its relevance to physics. For a canonical truncation, it is neces-
sary to operate on (or at least think in terms of) the symmetrical form (1.5.7) of the
system, and adhere to the rule that dropping the i-th balance law should be paired
with “freezing” (i.e. assigning fixed values to) the i-th component U∗i of the special
state vector U∗. Then, the resulting truncated system will still be symmetric and will
inherit the companion

(1.5.12) Q̂ = Q∗ −
∑

U∗i G∗i ,

where the summation runs over all i for which the i-balance law has been eliminated
and U∗i has been frozen. G∗i denotes the i-th row vector of G.

Despite (1.5.1), and in contrast to the behavior of classical solutions, weak solu-
tions of (1.4.3) need not satisfy (1.5.2). Nevertheless, one of the tenets of the theory
of systems of balance laws is that admissible weak solutions should at least satisfy
the inequality

(1.5.13) div Q(U (X), X) ≤ h(U (X), X),

in the sense of distributions, for a designated family of companions. Relating this
postulate to the Second Law of thermodynamics and investigating its implications
on stability of weak solutions are among the principal objectives of this book.

Notice that an inequality (1.5.13), holding in the sense of distributions, can al-
ways be turned into an equality by subtracting from the right-hand side some non-
negative measure M,

(1.5.14) div Q(U (X), X) = h(U (X), X)−M,

and may thus be realized, by virtue of Theorem 1.3.4, as the field equation of a
balance law.
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1.6 Weak and Shock Fronts

The regularity of solutions of a system of balance laws will depend on the nature
of the constitutive functions. The focus will be on solutions with “fronts”, that is
singularities assembled on manifolds of codimension one. To get acquainted with
this sort of solutions, we consider here two kinds of fronts in a particularly simple
setting.

In what follows, F will be a smooth (k − 1)-dimensional manifold, embedded
in the open subset X of IRk , with orientation induced by the unit normal field N .
U will be a (generally weak) solution of the system of balance laws (1.4.3) on X
which is continuously differentiable on X \F , but is allowed to be singular on F . In
particular, (1.4.3) holds for any X ∈ X \F . See Fig. 1.6.1.

−

+

Fig. 1.6.1

First we consider the case where F is a weak front, that is, U is Lipschitz con-
tinuous on X and as one approaches F from either side the gradient of U attains
distinct limits grad−U , grad+U . Thus grad U experiences a jump

[[
grad U

]] =
grad+U −grad−U across F . Since U is continuous, tangential derivatives of U can-
not jump across F and hence

[[
grad U

]] = [[∂U/∂N ]]⊗N , where [[∂U/∂N ]] denotes
the jump of the normal derivative ∂U/∂N across F . Therefore, taking the jump of
(1.4.3) across F at any point X ∈ F yields the following condition on [[∂U/∂N ]]:

(1.6.1) D[G(U (X), X)N ]
[[
∂U

∂N

]]
= 0.

Next we assume F is a shock front, that is, as one approaches F from either side,
U attains distinct limits U−,U+ and thus experiences a jump [[U ]] = U+−U− across
F . Both U− and U+ are continuous functions on F . Since U is a (weak) solution of
(1.4.3), we may write (1.4.4) for any ϕ ∈ C∞0 (X ). In (1.4.4) integration over X may
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be replaced with integration over X \F . Since U is C1 on X \F , we may integrate
by parts in (1.4.4). Using that ϕ has compact support in X and that (1.4.3) holds for
any X ∈ X \F , we get

(1.6.2)
∫
F
ϕ(X)[G(U+, X)− G(U−, X)]N dHk−1(X) = 0,

whence we deduce that the following jump condition must be satisfied at every point
X of the shock front F :

(1.6.3) [G(U+, X)− G(U−, X)]N = 0.

Notice that (1.6.3) may be rewritten in the form

(1.6.4)

{∫ 1

0
D[G(τU+ + (1− τ)U−, X)N ]dτ

}
[[U ]] = 0.

Comparing (1.6.4) with (1.6.1) we conclude that weak fronts may be regarded as
shock fronts with “infinitesimal” strength: |[[U ]]| vanishingly small.

With each U ∈ O and X ∈ X we associate the variety

(1.6.5) V(U, X) =
{
(N , V ) ∈ Sk−1 × IRn : D[G(U, X)N ]V = 0

}
.

The number of weak fronts and shock fronts of small strength that may be sustained
by solutions of (1.4.3) will depend on the size of V . In the extreme case where, for all
(U, X), the projection of V(U, X) onto IRn contains only the vector V = 0, (1.4.3)
is called elliptic. Thus a system of balance laws is elliptic if and only if it cannot
sustain any weak fronts or shock fronts of small strength. The opposite extreme to
ellipticity, where V attains the maximal possible size, is hyperbolicity, which will be
introduced in Chapter III.

1.7 Survey of the Theory of BV Functions

In this section we shall get acquainted with BV functions, in which discontinuities
assemble on manifolds of codimension one, and thus provide the natural setting for
solutions of systems of balance laws with shock fronts. Comprehensive treatment of
the theory of BV functions can be found in the references cited in Section 1.10, so
only properties relevant to our purposes will be listed here, without proofs.

1.7.1 Definition. A scalar function v is of locally bounded variation on an open
subset X of IRk if v ∈ L1

loc(X ) and grad v is a (IRk-valued) Radon measure M on
X , i.e.,

(1.7.1) −
∫
X
v div
(X)d X =

∫
X

(X)dM(X),
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for any test function 
 ∈ C∞0 (X ; IM1×k). When v ∈ L1(X ) and M is finite, v is a
function of bounded variation on X , with total variation

(1.7.2) T VX v = |M|(X ) = sup
|
(X)|=1

∫
X

v(X) div
(X) d X.

The set of functions of bounded variation and locally bounded variation on X will
be denoted by BV (X ) and BVloc(X ), respectively.

Clearly, the Sobolev space W 1,1(X ), of L1(X ) functions with derivatives in
L1(X ), is contained in BV (X ); and W 1,1

loc (X ) is contained in BVloc(X ).
The following proposition provides a useful criterion for testing whether a given

function has bounded variation:

1.7.2 Theorem. Let {Eα , α = 1, · · · , k} denote the standard orthonormal basis of
IRk. If v ∈ BVloc(X ), then

(1.7.3) lim sup
h↓0

1

h

∫
Y
|v(X + hEα)− v(X)|d X = |Mα|(Y) , α = 1, · · · , k,

for any open bounded set Y with Y ⊂ X . Conversely, if v ∈ L1
loc(X ) and the left-

hand side of (1.7.3) is finite for every Y as above, then v ∈ BVloc(X ).

As a corollary, the above proposition yields the following result on compactness:

1.7.3 Theorem. Any sequence {v�} in BVloc(X ), such that ‖v�‖L1(Y) and T VYv� are
uniformly bounded on every open bounded Y ⊂ X , contains a subsequence which
converges in L1

loc(X ), as well as almost everywhere on X , to some function v in
BVloc(X ), with T VYv ≤ lim inf�→∞ T VYv� .

Functions of bounded variation are endowed with fine geometric structure, as
described in

1.7.4 Theorem. The domain X of any v ∈ BVloc(X ) is the union of three, pairwise
disjoint, subsets C,J , and I with the following properties:

(a) C is the set of points of approximate continuity of v, i.e., with each X̄ ∈ C is
associated v0 ∈ IR such that

(1.7.4) lim
r↓0

1

rk

∫
Br (X̄)

|v(X)− v0|d X = 0.

(b) J is the set of points of approximate jump discontinuity of v, i.e., with each
X̄ ∈ J are associated N in Sk−1 and distinct v− , v+ in IR such that
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(1.7.5) lim
r↓0

1

rk

∫
B±r (X̄)

|v(X)− v±|d X = 0,

where B±r (X̄) denote the semiballs Br (X̄) ∩ {X : (X − X̄) · N
>
< 0}. Moreover,

J is countably rectifiable, i.e. it is essentially covered by the countable union of
C1 (k − 1)-dimensional manifolds {Fi } embedded in IRk: Hk−1(J \⋃Fi ) = 0.
Furthermore, when X̄ ∈ J ∩ Fi then N is normal on Fi at X̄ .
(c) I is the set of irregular points of v; its (k − 1)-dimensional Hausdorff measure
is zero: Hk−1(I) = 0.

Up to this point, the identity of a BV function is unaffected by modifying its val-
ues on any set of (k-dimensional Lebesgue) measure zero, i.e., BVloc(X ) is actually a
space of equivalence classes of functions, specified only up to a set of measure zero.
However, when dealing with the finer behavior of these functions, it is expedient to
designate a canonical representative of each equivalence class, with values specified
up to a set of (k − 1)-dimensional Hausdorff measure zero. This will be effected in
the following way.

Suppose g is a continuous function on IR and let v ∈ BVloc(X ). With reference
to the notation of Theorem 1.7.4, the normalized composition g̃ ◦ v of g and v is
defined by

(1.7.6) g̃ ◦ v(X) =

⎧⎪⎪⎨⎪⎪⎩
g(v0), if X ∈ C∫ 1

0
g(τv− + (1− τ)v+)dτ, if X ∈ J

and arbitrarily on the set I of irregular points, whose (k− 1)-dimensional Hausdorff
measure is zero. In particular, one may normalize v itself:

(1.7.7) ṽ(X) =
⎧⎨⎩
v0 , if X ∈ C

1
2 (v− + v+), if X ∈ J .

Thus every point of C becomes a Lebesgue point.
The appropriateness of the above normalization is indicated by the following

generalization of the classical chain rule:

1.7.5 Theorem. Assume g is continuously differentiable on IR, with derivative Dg,
and let v ∈ BVloc(X )∩ L∞(X ). Then g ◦ v ∈ BVloc(X )∩ L∞(X ). The normalized
function ˜Dg ◦ v is locally integrable with respect to the measure M = grad v and

(1.7.8) grad (g ◦ v) = ( ˜Dg ◦ v) grad v

in the sense

(1.7.9) −
∫
X

g(v(X)) div
(X) d X =
∫
X
( ˜Dg ◦ v)(X)
(X)dM(X),

for any test function 
 ∈ C∞0 (X ; IM1×k).
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Next we review certain important geometric properties of a class of sets in IRk

that are intimately related to the theory of BV functions.

1.7.6 Definition. A subset D of IRk has (locally) finite perimeter when its indicator
function χD has (locally) bounded variation on IRk .

Let us apply Theorem 1.7.4 to the indicator function χD of a set D with lo-
cally finite perimeter. Clearly, the set C of points of approximate continuity of χD
is the union of the sets of density points of D and Rk\D. The complement of C,
i.e., the set of X in IRk that are not points of density of either D or Rk\D, consti-
tutes the measure theoretic boundary ∂D of D. It can be shown that D has finite
perimeter if and only if Hk−1(∂D) < ∞, and its perimeter may be measured by
T VIRkχD or by Hk−1(∂D). The set of points of approximate jump discontinuity of
χD is called the reduced boundary of D and is denoted by ∂∗D. By Theorem 1.7.4,
∂∗D ⊂ ∂D,Hk−1(∂D\∂∗D) = 0, and ∂∗D is covered by the countable union of
C1 (k − 1)-dimensional manifolds. Moreover, the vector N ∈ Sk−1 associated with
each point X of ∂∗D may naturally be interpreted as the measure theoretic outward
normal to D at X . Sets with Lipschitz boundary have finite perimeter. In fact, the
entire theory of balance laws may be reformulated by considering as proper domains
sets that are not necessarily Lipschitz, as postulated in Section 1.1, but merely have
finite perimeter.

1.7.7 Definition. Assume D has finite perimeter and let v ∈ BVloc(IRk). v has inward
and outward traces v− and v+ at the point X̄ of the reduced boundary ∂∗D of D,
where the outward normal is N , if

(1.7.10) lim
r↓0

1

rk

∫
B±r

|v(X)− v±|d X = 0.

It can be shown that the traces v± are defined for almost all (with respect to
Hk−1) points of ∂∗D and are locally integrable on ∂∗D. Furthermore, the following
version of the Gauss-Green theorem holds:

1.7.8 Theorem. Assume v ∈ BV (IRk) so M = grad v is a finite measure. Consider
any bounded set D of finite perimeter, with set of density points D∗ and reduced
boundary ∂∗D. Then

(1.7.11) M(D∗) =
∫
∂∗D

v+NdHk−1.

Furthermore, for any Borel subset F of ∂D,

(1.7.12) M(F) =
∫
F
(v− − v+)NdHk−1.
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In particular, the set J of points of approximate jump discontinuity of any
v ∈ BVloc(IRk) may be covered by the countable union of oriented surfaces and
so (1.7.12) will hold for any measurable subset F of J .

For v ∈ BV (X ), the measure M = grad v may be decomposed into the sum
of three mutually singular measures: its continuous part, which is absolutely con-
tinuous with respect to k-dimensional Lebesgue measure; its jump part, which is
concentrated on the set J of points of approximate jump discontinuity of v; and its
Cantor part. In particular, the Cantor part of the measure of any Borel subset of X
with finite (k − 1)-dimensional Hausdorff measure vanishes.

1.7.9 Definition. v ∈ BV (X ) is a special function of bounded variation, namely
v ∈ SBV (X ), if the Cantor part of the measure grad v vanishes.

It turns out that SBV (X ) is a proper subspace of BV (X ) and it properly contains
W 1,1(X ).

For k = 1, the theory of BV functions is intimately related with the classical
theory of functions of bounded variation. Assume v is a BV function on a (bounded
or unbounded) interval (a, b) ⊂ (−∞,∞). Let ṽ be the normalized form of v. Then

(1.7.13) T V(a,b)v = sup
�−1∑
j=1

|ṽ(x j+1)− ṽ(x j )|,

where the supremum is taken over all (finite) meshes a < x1 < x2 < · · · < x� < b.
Furthermore, (classical) one-sided limits ṽ(x±) exist at every x ∈ (a, b) and are
both equal to ṽ(x), except possibly on a countable set of points. When k = 1, the
compactness Theorem 1.7.3 reduces to the classical Helly theorem.

Any v ∈ SBV (a, b) is the sum of an absolutely continuous function and an (at
most) countable sum of step functions. Accordingly, the measure grad v is the sum
of the pointwise derivative v′ of v, which exists almost everywhere on (a, b), and
the (at most) countable sum of weighted Dirac masses, located at the points of jump
discontinuity of v and weighted by the jump.

A vector-valued function U is of (locally) bounded variation on X when each
one of its components has (locally) bounded variation on X ; and its total variation
T VXU is the sum of the total variations of its components. All of the discussions,
above, for scalar-valued functions, and in particular the assertions of Theorems 1.7.2,
1.7.3, 1.7.4, 1.7.5 and 1.7.8, generalize immediately to (and will be used below for)
vector-valued functions of bounded variation.

1.8 BV Solutions of Systems of Balance Laws

We consider here weak solutions U ∈ L∞(X ) of the system (1.4.3) of balance laws,
which are in BVloc(X ). In that case, by virtue of Theorem 1.7.5, the function G ◦U
is also in BVloc(X )∩ L∞(X ) and (1.4.3) is satisfied as an equality of measures. The
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first task is to examine the local form of (1.4.3), in the light of Theorems 1.7.4, 1.7.5,
and 1.7.8.

1.8.1 Theorem. A function U ∈ BVloc(X )∩ L∞(X ) is a weak solution of the system
(1.4.3) of balance laws if and only if (a) the measure equality

(1.8.1) [DG(Ũ (X), X) , grad U (X)] + ∇ · G(Ũ (X), X) = Π(Ũ (X), X)

holds on the set C of points of approximate continuity of U; and (b) the jump condi-
tion

(1.8.2) [G(U+, X)− G(U−, X)]N = 0

is satisfied for almost all (with respect to Hk−1) X on the set J of points of approxi-
mate jump discontinuity of U, with normal vector N and one-sided limits U−,U+ .

Proof. In (1.8.1) and in (1.8.6), (1.8.7), below, the symbol ∇· denotes divergence
with respect to X , holding U fixed—as opposed to div which treats U as a function
of X . Let M denote the measure defined by the left-hand side of (1.4.3). On C, M
reduces to the measure on the left-hand side of (1.8.1), by virtue of Theorem 1.7.5.
Recalling the Definition 1.7.7 of trace and the characterization of one-sided limits in
Theorem 1.7.4, we deduce (G ◦U )± = G ◦U± at every point of J . Thus, if F is any
Borel subset of J , then by account of the remark following the proof of Theorem
1.7.8,

(1.8.3) M(F) =
∫
F
[G(U−, X)− G(U+, X)]NdHk−1.

Therefore, M = Π in the sense of measures if and only if (1.8.1) and (1.8.2) hold.
This completes the proof.

Consequently, the set of points of approximate jump discontinuity of a BV solu-
tion is the countable union of shock fronts.

As we saw in Section 1.5, when G has a companion Q, the companion balance
law (1.5.2) is automatically satisfied by any classical solution of (1.4.3). The follow-
ing proposition describes the situation in the context of BV weak solutions.

1.8.2 Theorem. Assume the system of balance laws (1.4.3) is endowed with a com-
panion balance law (1.5.2). Let U ∈ BVloc(X ) ∩ L∞(X ) be a weak solution of
(1.4.3). Then the measure

(1.8.4) N = div Q(U (X), X)− h(U (X), X)

is concentrated on the set J of points of approximate jump discontinuity of U and
the inequality (1.5.13) will be satisfied in the sense of measures if and only if

(1.8.5) [Q(U+, X)− Q(U−, X)]N ≥ 0
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holds for almost all (with respect to Hk−1) X ∈ J .

Proof. By virtue of Theorem 1.7.5, we may write (1.4.3) and (1.8.4) as

(1.8.6) [ ˜DG ◦U , grad U ] + ∇ · G −Π = 0,

(1.8.7) N = [ ˜DQ ◦U , grad U ] + ∇ · Q − h.

By account of (1.7.6), if X is in the set C of points of approximate continuity of
U ,

(1.8.8) ˜DG ◦U (X) = DG(Ũ (X), X), ˜DQ ◦U (X) = DQ(Ũ (X), X).

Combining (1.8.6), (1.8.7), (1.8.8) and using (1.5.1), (1.5.3), we deduce that N van-
ishes on C.

From the Definition 1.7.7 of trace and the characterization of one-sided limits in
Theorem 1.7.4, we infer (Q ◦ U )± = Q ◦ U± . If F is a bounded Borel subset of
J , we apply (1.7.12), keeping in mind the remark following the proof of Theorem
1.7.8. This yields

(1.8.9) N (F) =
∫
F
[Q(U−, X)− Q(U+, X)]NdHk−1.

Therefore, N ≤ 0 if and only if (1.8.5) holds. This completes the proof.

1.9 Rapid Oscillations and the Stabilizing Effect of Companion
Balance Laws

Consider a homogeneous system of conservation laws

(1.9.1) div G(U (X)) = 0

and assume that

(1.9.2) [G(W )− G(V )]N = 0

holds for some states V,W in O and N ∈ Sk−1. Then one may construct highly
oscillatory weak solutions of (1.9.1) on IRk by the following procedure: Consider
any finite family of parallel (k− 1)-dimensional hyperplanes, all of them orthogonal
to N , and define a function U on IRk which is constant on each slab confined between
adjacent hyperplanes, taking the values V and W in alternating order. It is clear that
U is a weak solution of (1.9.1), by virtue of (1.9.2) and Theorem 1.8.1.

One may thus construct a sequence of solutions that converges in L∞ weak∗
to some U of the form U (X) = ρ(X · N )V + [1 − ρ(X · N )]W , where ρ is any
measurable function from IR to [0, 1]. It is clear that, in general, such U will not be a
solution of (1.9.1), unless G(·)N happens to be affine along the straight line segment
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in IRn that connects V to W . This type of instability distinguishes systems that may
support shock fronts from elliptic systems that cannot.

Assume now G is equipped with a companion Q and [Q(W ) − Q(V )]N �= 0.
Notice that imposing the admissibility condition div Q(U ) ≤ 0 would rule out the
oscillating solutions constructed above, because, by virtue of Theorem 1.8.2, it would
not allow to have jumps both from V to W and from W to V , in the direction N .
Consequently, inequalities (1.5.13) seem to play a stabilizing role. To what extent
this stabilizing is effective will be a major issue for discussion in the book.

1.10 Notes

The principles of the theory of balance laws were conceived in the process of lay-
ing down the foundations of elasticity, in the 1820’s. Theorem 1.2.1 has a long and
celebrated history. The crucial discovery that the flux density is necessarily a linear
function of the exterior normal was made by Cauchy [1,2]. The argument that the
flux density through a surface may depend on the surface solely through its exterior
normal is attributed to Hamel and to Noll [2]. The proof here borrows ideas from
Ziemer [1]. With regard to the issue of retrieving the balance law from its field equa-
tion, which is addressed by Theorem 1.3.4, Chen and Frid [1,5,6] have developed a
comprehensive theory of divergence measure fields which employs a fairly explicit
construction of the trace, under the additional mild technical assumption that the sur-
face may be foliated. For further developments of this approach, see Chen [9,10],
Chen and Frid [8,9] and Chen and Torres [1]. An alternative, less explicit, functional
analytic approach is found in Anzelotti [1].

The observation that systems of balance laws are endowed with nontrivial com-
panions if and only if they are symmetrizable, is due to Godunov [1,2,3], and to
Friedrichs and Lax [1]; see also Boillat [1] and Ruggeri and Strumia [1]. For a discus-
sion of proper truncations of systems of balance laws arising in physics, see Boillat
and Ruggeri [1].

In one space dimension, weak fronts are first encountered in the acoustic research
of Euler while shock fronts were introduced by Stokes [1]. Fronts in several space
dimensions were first studied by Christoffel [1]. The classical reference is Hadamard
[1]. For a historical account of the early development of the subject, with emphasis
on the contributions of Riemann and Christoffel, see Hölder [1]. The connection
between shock fronts and phase transitions will not be pursued here. For references
to this active area of research see Section 8.7.

Comprehensive expositions of the theory of BV functions can be found in the
treatise of Federer [1], the monographs of Giusti [1], and Ambrosio, Fusco and Pal-
lara [1], and the texts of Evans and Gariepy [1] and Ziemer [2]. Theorems 1.7.5 and
1.7.8 are taken from Volpert [1]. The theory of special functions of bounded variation
is elaborated in Ambrosio, Fusco and Pallara [1].

An insightful discussion of the issues raised in Section 1.9 is found in DiPerna
[10]. These questions will be elucidated by the presentation of the method of com-
pensated compactness, in Chapter XVI.



II

Introduction to Continuum Physics

In continuum physics, material bodies are modeled as continuous media whose mo-
tion and equilibrium is governed by balance laws and constitutive relations.

The list of balance laws identifies the theory, for example mechanics, thermome-
chanics, electrodynamics, etc. The referential (Lagrangian) and the spatial (Eulerian)
formulation of the typical balance law will be presented. The balance laws of mass,
momentum, energy, and the Clausius-Duhem inequality, which demarcate contin-
uum thermomechanics, will be recorded.

The type of constitutive relation encodes the nature of material response. The
constitutive equations of thermoelasticity and thermoviscoelasticity will be intro-
duced. Restrictions imposed by the Second Law of thermodynamics, the principle of
material frame indifference, and material symmetry will be discussed.

2.1 Bodies and Motions

The ambient space is IRm , of dimension one, two or three. Two copies of IRm shall
be employed, one for the reference space, the other for the physical space. A body
is identified by a reference configuration, namely an open subset B of the reference
space. Points of B will be called particles. The typical particle will be denoted by x
and time will be denoted by t .

A placement of the body is a bilipschitz homeomorphism of its reference con-
figuration B to some open subset of the physical space. A motion of the body over
the time interval (t1, t2) is a Lipschitz map χ of B × (t1, t2) to IRm whose restric-
tion to each fixed t in (t1, t2) is a placement. Thus, for fixed x ∈ B and t ∈ (t1, t2),
χ(x, t) specifies the position in physical space of the particle x at time t ; for fixed
t ∈ (t1, t2), the map χ(·, t) : B → IRm yields the placement of the body at time t ;
finally, for fixed x ∈ B, the curve χ(x, ·) : (t1, t2)→ IRm describes the trajectory of
the particle x in physical space. See Fig. 2.1.1.

The reference configuration generally renders an abstract representation of the
body. In practice, however, one often identifies the reference space with the physical
space and employs as reference configuration an actual placement of the body, by
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Fig. 2.1.1

identifying material particles with the point in physical space that they happen to
occupy in that particular placement.

The aim of continuum physics is to monitor the evolution of various fields as-
sociated with the body, such as density, stress, temperature, etc. In the referential or
Lagrangian description, one follows the evolution of fields along particle trajecto-
ries, while in the spatial or Eulerian description one monitors the evolution of fields
at fixed position in space. The motion allows one to pass from one formulation to
the other. For example, considering some illustrative field w, we write w = f (x, t)
for its referential description and w = φ(χ, t) for its spatial description. The motion
relates f and φ by φ(χ(x, t), t) = f (x, t), for x ∈ B, t ∈ (t1, t2).

Either formulation has its relative merits, so both will be used here. Thus, in
order to keep proper accounting, three symbols should be needed for each field, one
to identify it, one for its referential description, and one for its spatial description
(w, f, and φ in the example, above). However, in order to control the proliferation
of symbols and make the physical interpretation of the equations transparent, the
standard notational convention is to employ the single identifying symbol of the
field for all three purposes. To prevent ambiguity in the notation of derivatives, the
following rules will apply: Partial differentiation with respect to t will be denoted by
an overdot in the referential description and by a t-subscript in the spatial description.
Gradient, differential and divergence1 will be denoted by Grad, ∇ and Div, with
respect to the material variable x , and by grad, d and div, with respect to the spatial
variable χ . Thus, referring again to the typical field w with referential description
w = f (x, t) and spatial description w = φ(χ, t), ẇ will denote ∂ f/∂t , wt will
denote ∂φ/∂t , Gradw will denote gradx f , and gradw will denote gradχφ. This

1 For consistency with matrix notations, gradients will be realized as m-column vectors and
differentials will be m-row vectors, namely the transpose of gradients. As in Chapter I, the
divergence operator will be acting on row vectors.
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notation may appear confusing at first but the student of the subject soon learns to
use it efficiently and correctly.

The motion χ induces two important kinematical fields, namely the velocity

(2.1.1) v = χ̇ ,

in L∞(B × (t1, t2); IRm), and the deformation gradient, which, its name notwith-
standing, is the differential of the motion:

(2.1.2) F = ∇χ,
in L∞(B×(t1, t2); IMm×m). In accordance with the definition of placement, we shall
be assuming

(2.1.3) det F ≥ a > 0 a.e.

These fields allow one to pass from spatial to material derivatives; for example, as-
suming w is a Lipschitz field,

(2.1.4) ẇ = wt + (dw)v,

(2.1.5) Gradw = F�gradw, ∇w = (dw)F.

By virtue of the polar decomposition theorem, the local deformation of the
medium, expressed by the deformation gradient F , may be realized as the composi-
tion of a pure stretching and a rotation:

(2.1.6) F = RU,

where the symmetric, positive definite matrix

(2.1.7) U = (F�F)1/2

is called the right stretch tensor and the proper orthogonal matrix R is called the
rotation tensor.

Turning to the rate of change of deformation, we introduce the referential and
spatial velocity gradients (which are actually differentials):

(2.1.8) Ḟ = ∇v, L = dv.

L is decomposed into the sum of the symmetric stretching tensor D and the skew-
symmetric spin tensor W :

(2.1.9) L = D +W, D = 1
2 (L + L�), W = 1

2 (L − L�).

The axial vector ω = curl v of W is the vorticity.
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The class of Lipschitz continuous motions allows for shocks but is not sufficiently
broad to also encompass motions involving cavitation in elasticity, vortices in hydro-
dynamics, vacuum in gas dynamics, etc. Even so, we shall continue to develop the
theory under the assumption that motions are Lipschitz continuous, deferring con-
siderations of generalization until such need arises.

2.2 Balance Laws in Continuum Physics

Consider a motion χ of a body with reference configuration B ⊂ IRm , over a time
interval (t1, t2). The typical balance law of continuum physics postulates that the
change over any time interval in the amount of a certain extensive quantity stored in
any part of the body is balanced by a flux through the boundary and a production in
the interior during that time interval. With space and time fused into space-time, the
above statement yields a balance law of the type considered in Chapter I, ultimately
reducing to a field equation of the form (1.2.3).

To adapt to the present setting the notation of Chapter I, we take space-time
IRm+1 as the ambient space IRk , and set X = B×(t1, t2), X = (x, t). With reference
to (1.4.1), we decompose the flux density field A into a n × m matrix-valued spatial
part 
 and a IRn-valued temporal part �, namely A = [−
,�]. In the notation
introduced in the previous section, (1.4.1) now takes the form

(2.2.1) �̇ = Div
 + P.

This is the referential field equation for the typical balance law of continuum physics.
The field � is the density of the balanced quantity; 
 is the flux density field through
material surfaces; and P is the production density.

The corresponding spatial field equation may be derived by appealing to Theorem
1.3.1. The map X∗ that carries (x, t) to (χ(x, t), t) is a bilipschitz homeomorphism
of X to some subset X ∗ of IRm+1, with Jacobian matrix (cf. (1.3.2), (2.1.1), and
(2.1.2)):

(2.2.2) J =
[

F v

0 1

]
.

Notice that (1.3.3) is satisfied by virtue of (2.1.3). Theorem 1.3.1 and Re-
mark 1.3.2 now imply that if � ∈ L1

loc (X ; IRn), 
 ∈ L1
loc

(
X ; IMn×k

)
and

P ∈ L1
loc (X ; IRn), then (2.2.1) holds in the sense of distributions on X if and only

if

(2.2.3) �∗t + div(�∗v�) = div
∗ + P∗
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as distributions on X ∗, where �∗ ∈ L1
loc(X ∗; IRn),
∗ ∈ L1

loc(X ∗; IMn×m) and
P∗ ∈ L1

loc(X ∗, IRn) are defined by

(2.2.4) �∗ = (det F)−1�, 
∗ = (det F)−1
F�, P∗ = (det F)−1 P.

It has thus been established that the referential (Lagrangian) field equations
(2.2.1) and the spatial (Eulerian) field equations (2.2.3) of the balance laws of con-
tinuum physics are related by (2.2.4) and are equivalent within the function class of
fields considered here.

In anticipation of the forthcoming discussion of material symmetry, it is useful
to investigate how the fields �,
 and �∗, 
∗ transform under isochoric changes of
the reference configuration of the body, induced by a bilipschitz homeomorphism x̄
of B to some subset B̄ of another reference space IRm , with Jacobian matrix

(2.2.5) H = ∂ x̄

∂x
, det H = 1,

. .

.

o
−1

Fig. 2.2.1

see Figure 2.2.1. By virtue of Theorem 1.3.1, the Lagrangian field equation (2.2.1)
on B will transform into an equation of exactly the same form on B̄, with fields �̄
and 
̄ related to � and 
 by

(2.2.6) �̄ = �, 
̄ = 
H�.

In the corresponding Eulerian field equations, the fields �̄∗ and 
̄∗ are obtained
through (2.2.4): �̄∗ = (det F̄)−1�̄ and 
̄∗ = (det F̄)−1
̄ F̄�, where F̄ denotes the
deformation gradient relative to the new reference configuration B̄. By the chain rule,
F̄ = F H−1 and so
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(2.2.7) �̄∗ = �∗, 
̄∗ = 
∗,

i.e., as was to be expected, the spatial fields are not affected by changing the reference
configuration of the body.

In continuum physics, theories are identified by means of the list of balance laws
that apply in their context. The illustrative example of thermomechanics will be pre-
sented in the next section. It should be noted, however, that in addition to balance
laws with physical content there are others that simply express useful, purely kine-
matic properties. Equation (2.1.8), Ḟ = ∇v, which expresses the compatibility be-
tween the fields F and v, provides an example in that direction.

At first reading, one may skip the remainder of this section, which deals with a
special topic for future use, and pass directly to the next Section 2.3.

In what follows, we derive, for m = 3, a set of kinematic balance laws whose
referential form is quite complicated and yet whose spatial form is very simple or
even trivial. This will demonstrate the usefulness of switching from the Lagrangian
to the Eulerian formulation and vice versa.

A smooth function ϕ on IM3×3 is called a null Lagrangian if the Euler-Lagrange
equation

(2.2.8) Div
[
∂Fϕ(F)

] = 0,

associated with the functional
∫
ϕ(F)dx , holds for every smooth deformation gradi-

ent field F . Any null Lagrangian ϕ admits a representation as an affine function

(2.2.9) ϕ(F) = tr(AF)+ tr(B F∗)+ α det F + β

of F itself, its determinant det F , and its cofactor matrix F∗ = (det F)F−1 =
(∂F det F)�.

By combining (2.2.8) with Ḟ = ∇v, one deduces that if ϕ is any null Lan-
grangian (2.2.9), then the conservation law

(2.2.10) ϕ̇(F) = Div
[
v�∂Fϕ(F)

]
holds for any smooth motion with deformation gradient F and velocity v.

The aim here is to show that, for any null Lagrangian (2.2.9), the “quasi-static”
conservation law (2.2.8) as well as the “kinematic” conservation law (2.2.10) actually
hold even for motions that are merely Lipschitz continuous, i.e.

(2.2.11) Div
(
∂F F

) = 0,

(2.2.12) Div
(
∂F F∗

) = 0,

(2.2.13) Div
(
∂F det F

) = 0,

(2.2.14) Ḟ = Div
(
v�∂F F

)
,
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(2.2.15) Ḟ∗ = Div
(
v�∂F F∗

)
,

(2.2.16) ˙det F = Div
(
v�∂F det F

)
,

for any bounded measurable deformation gradient field F and velocity field v.
Clearly, (2.2.11) is obvious and (2.2.14) is just an alternative way of writing the

familiar Ḟ = ∇v. Furthermore, since

(2.2.17)
∂F∗αi

∂Fjβ
=

3∑
k=1

3∑
γ=1

εi jkεαβγ Fkγ ,

where εi jk and εαβγ are the standard permutation symbols, (2.2.12) follows from the
observation that ∂Fkγ /∂xβ = ∂2χk/∂xβ∂xγ is symmetric in (β, γ ) while εαβγ is
skew-symmetric in (β, γ ).

To see (2.2.13), consider the trivial balance law (2.2.3), with �∗ = 0, 
∗ = I ,
P∗ = 0, and write its Langrangian form (2.2.1), where by account of (2.2.4), � = 0,

 = (det F)(F�)−1 = (F∗)� = ∂ det F/∂F , P = 0. Similarly, (2.2.16) is the
Lagrangian form (2.2.1) of the trivial balance law (2.2.3), with �∗ = 1, 
∗ = v�,
and P∗ = 0. Indeed, in that case (2.2.4) yields � = det F , 
 = (det F)(F−1v)� =
(F∗v)� = v�(∂ det F/∂F), and P = 0.

It remains to verify (2.2.15). We begin with the simple conservation law

(2.2.18) (F−1)t = (dx)t = dxt = −d(F−1v),

in Eulerian coordinates, and derive its Lagrangian form (2.2.1), through (2.2.4). Thus
� = (det F)F−1 = F∗, while the flux 
, in components form, reads

(2.2.19) 
αiβ =
3∑

j=1

(det F)
[

F−1
β j F−1

αi − F−1
α j F−1

βi

]
v j .

The quantity in brackets vanishes when α = β and/or i = j ; otherwise, it represents
a minor of the matrix F−1 and thus is equal to det F−1 multiplied by the correspond-
ing entry of the matrix (F−1)−1 = F . Hence, recalling (2.2.17),

(2.2.20) (det F)
[

F−1
β j F−1

αi − F−1
α j F−1

βi

]
=

3∑
k=1

3∑
γ=1

εi jkεαβγ Fkγ = ∂F∗αi

∂Fjβ
,

and this establishes (2.2.15).

2.3 The Balance Laws of Continuum Thermomechanics

Continuum thermomechanics, which will serve as a representative model throughout
this work, is demarcated by the balance laws of mass, linear momentum, angular
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momentum, energy, and entropy whose referential and spatial field equations will
now be introduced.

In the balance law of mass, there is neither flux nor production so the referential
and spatial field equations read

(2.3.1) ρ̇0 = 0,

(2.3.2) ρt + div(ρv�) = 0,

where ρ0 is the reference density and ρ is the density associated with the motion,
related through

(2.3.3) ρ = ρ0(det F)−1.

Note that (2.3.1) implies that the value of the reference density associated with a
particle does not vary with time: ρ0 = ρ0(x).

In the balance law of linear momentum, the production is induced by the body
force (per unit mass) vector b, with values in IRm , while the flux is represented by a
stress tensor taking values in IMm×m . The referential and spatial field equations read

(2.3.4) (ρ0v)
· = Div S + ρ0b,

(2.3.5) (ρv)t + div(ρvv�) = div T + ρb,

where S denotes the Piola-Kirchhoff stress and T denotes the Cauchy stress, related
by

(2.3.6) T = (det F)−1SF�.

For any unit vector ν, the value of Sν at (x, t) yields the stress (force per unit area)
vector transmitted at the particle x and time t across a material surface with normal
ν; while the value of T ν at (χ, t) gives the stress vector transmitted at the point χ in
space and time t across a spatial surface with normal ν.

In the balance law of angular momentum, production and flux are the moments
about the origin of the production and flux involved in the balance of linear momen-
tum. Consequently, the referential field equation is

(2.3.7) (χ ∧ ρ0v)
· = Div(χ ∧ S)+ χ ∧ ρ0b,

where ∧ denotes cross product. Under the assumption that ρ0v, S and ρ0b are in L1
loc

while the motion χ is Lipschitz continuous, we may use (2.3.4), (2.1.1) and (2.1.2)
to reduce (2.3.7) into

(2.3.8) SF� = F S�.

Similarly, the spatial field equation of the balance of angular momentum reduces, by
virtue of (2.3.5), to the statement that the Cauchy stress tensor is symmetric:
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(2.3.9) T� = T .

There is no need to perform that calculation since (2.3.9) also follows directly from
(2.3.6) and (2.3.8).

In the balance law of energy, the energy density is the sum of the (specific)
internal energy (per unit mass) ε and kinetic energy. The production is the sum of
the rate of work of the body force and the heat supply (per unit mass) r . Finally,
the flux is the sum of the rate of work of the stress tensor and the heat flux. The
referential and spatial field equations thus read

(2.3.10) (ρ0ε + 1
2ρ0|v|2)· = Div(v�S + Q�)+ ρ0v

�b + ρ0r,

(2.3.11) (ρε+ 1
2ρ|v|2)t + div[(ρε+ 1

2ρ|v|2)v�] = div(v�T +q�)+ρv�b+ρr,

where the referential and spatial heat flux vectors Q and q, with values in IRm , are
related by

(2.3.12) q = (det F)−1 F Q.

Finally, the balance law of entropy is expressed by the Clausius-Duhem inequal-
ity

(2.3.13) (ρ0s)· ≥ Div

(
1

θ
Q�
)
+ ρ0

r

θ
,

(2.3.14) (ρs)t + div(ρsv�) ≥ div

(
1

θ
q�
)
+ ρ

r

θ
,

in its referential and spatial form, respectively. The symbol s stands for (specific)
entropy and θ denotes the (absolute) temperature. Thus, the entropy flux is just the
heat flux divided by temperature. The term r

θ
represents the external entropy supply

(per unit mass), induced by the heat supply r . However, the fact that (2.3.13) and
(2.3.14) are mere inequalities rather than equalities signifies that there may be addi-
tional internal entropy production, which is not specified a priori in the context of
this theory, apart from being constrained to be nonnegative. This last condition is dic-
tated by (and in fact expresses) the Second Law of thermodynamics. As a nonnegative
distribution, the internal entropy production is necessarily a measure N . Adding N
to the right-hand side, turns the Clausius-Duhem inequality into an equality which,
by virtue of Theorem 1.3.3, is the field equation of a balance law.

The motion together with the entropy (or temperature) field constitute a thermo-
dynamic process. The fields of internal energy, stress, heat flux, and temperature (or
entropy) are determined from the thermodynamic process by means of constitutive
relations that characterize the material response of the body. In particular, the con-
stitutive equation for the stress is required to satisfy identically the balance law of
angular momentum as expressed by (2.3.8) or (2.3.9). Representative material classes
will be introduced in the following Sections, 2.5 and 2.6.
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The field equations of the balance laws of mass, linear momentum and energy,
coupled with the constitutive relations, render a closed system of evolution equations
that should determine the thermodynamic process from assigned body force field b,
heat supply field r , boundary conditions, and initial conditions.

The remaining balance law of entropy plays a markedly different role. The
Clausius-Duhem inequality (2.3.13) or (2.3.14) is regarded as a criterion of ther-
modynamic admissibility for thermodynamic processes that already comply with the
balance laws of mass, momentum and energy. In this regard, smooth thermodynamic
processes are treated differently from thermodynamic processes with discontinuities.

It is a tenet of continuum thermodynamics that the constitutive relations should
be constrained by the requirement that any smooth thermodynamic process that bal-
ances mass, momentum and energy must be automatically thermodynamically ad-
missible. To implement this requisite, the first step is to derive from the Clausius-
Duhem inequality the dissipation inequality

(2.3.15) ρ0ε̇ − ρ0θ ṡ − tr(SḞ�)− 1

θ
Q · G ≤ 0,

(2.3.16) ρε̇ − ρθ ṡ − tr(T D)− 1

θ
q · g ≤ 0,

in Lagrangian or Eulerian form, respectively, which does not involve the extrane-
ously assigned body force and heat supply. The new symbols G and g appearing in
(2.3.15) and (2.3.16) denote the temperature gradient:

(2.3.17) G = Grad θ, g = grad θ, G = F�g.

To establish (2.3.15), one first eliminates the body force b between the field equa-
tions (2.3.1), (2.3.4) and (2.3.10) of the balance laws of mass, linear momentum and
energy to get

(2.3.18) ρ0ε̇ = tr(SḞ�)+ Div Q� + ρ0r,

and then eliminates the heat supply r between the above equation and the Clausius-
Duhem inequality (2.3.13). Similarly, (2.3.16) is obtained by combining (2.3.2),
(2.3.5) and (2.3.11) with (2.3.14) in order to eliminate b and r . Of course, (2.3.15)
and (2.3.16) are equivalent: either one implies the other by virtue of (2.3.3), (2.3.6),
(2.3.17), (2.1.9) and (2.3.9). In the above calculations it is crucial that the underly-
ing thermodynamic process is assumed smooth, because this allows us to apply the
classical product rule of differentiation on terms like |v|2, v�S, θ−1 Q etc., which in-
duces substantial cancelation. It should be emphasized that the dissipation inequal-
ities (2.3.15) and (2.3.16) are generally meaningless for thermodynamic processes
with discontinuities.

The constitutive equations are required to satisfy identically the dissipation in-
equality (2.3.15) or (2.3.16), which will guarantee that any smooth thermodynamic
process that balances mass, momentum and energy is automatically thermodynam-
ically admissible. The implementation of this requisite for specific material classes
will be demonstrated in the following Sections 2.5 and 2.6.
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Beyond taking care of smooth thermodynamic processes, as above, the Clausius-
Duhem inequality is charged with the additional responsibility of certifying the ther-
modynamic admissibility of discontinuous processes. This is a central issue, with
many facets, which will surface repeatedly in the remainder of the book.

When dealing with continuous media with complex structure, e.g. mixtures of
different materials, it becomes necessary to replace the Clausius-Duhem inequality
with a more general entropy inequality in which the entropy flux is no longer taken
a priori as heat flux divided by temperature but is instead specified by an individual
constitutive relation. It turns out, however, that in the context of thermoelastic or
thermoviscoelastic media, which are the main concern of this work, the requirement
that such an inequality must hold identically for any smooth thermodynamic process
that balances mass, momentum and energy implies in particular that entropy flux is
necessarily heat flux divided by temperature, so that we fall back to the classical
Clausius-Duhem inequality.

To prepare the ground for forthcoming investigation of material symmetry, it is
necessary to discuss the law of transformation of the fields involved in the balance
laws when the reference configuration undergoes a change induced by an isochoric
bilipshitz homeomorphism x̄ , with unimodular Jacobian matrix H (2.2.5); see Fig.
2.2.1. The deformation gradient F and the stretching tensor D (cf. (2.1.9)) will trans-
form into new fields F̄ and D̄:

(2.3.19) F̄ = F H−1, D̄ = D.

The reference density ρ0 , internal energy ε, Piola-Kirchhoff stress S, entropy s, tem-
perature θ , referential heat flux vector Q, density ρ, Cauchy stress T , and spatial
heat flux vector q, involved in the balance laws, will also transform into new fields
ρ̄0, ε̄, S̄, s̄, θ̄ , Q̄, ρ̄, T̄ , and q̄ according to the rule (2.2.6) or (2.2.7), namely,

(2.3.20) ρ̄0 = ρ0, ε̄ = ε, S̄ = SH�, s̄ = s, θ̄ = θ, Q̄ = H Q,

(2.3.21) ρ̄ = ρ, T̄ = T, q̄ = q.

Also the referential and spatial temperature gradients G and g will transform into Ḡ
and ḡ with

(2.3.22) Ḡ = (H−1)�G, ḡ = g.

2.4 Material Frame Indifference

The body force and heat supply are usually induced by external factors and are as-
signed in advance, while the fields of internal energy, stress, entropy and heat flux
are determined by the thermodynamic process. Motions may influence these fields in
as much as they deform the body: Rigid motions, which do not change the distance
between particles, should have no effect on internal energy, temperature or referen-
tial heat flux and should affect the stress tensor in a manner that the resulting stress



36 II Introduction to Continuum Physics

vector, observed from a frame attached to the moving body, looks fixed. This re-
quirement is postulated by the fundamental principle of material frame indifference
which will now be stated with precision.

Consider any two thermodynamic processes (χ, s) and (χ#, s#) of the body such
that the entropy fields coincide, s# = s, while the motions differ by a rigid (time
dependent) rotation2:

(2.4.1) χ#(x, t) = O(t)χ(x, t), x ∈ B, t ∈ (t1, t2),

(2.4.2) O�(t)O(t) = O(t)O�(t) = I, det O(t) = 1, t ∈ (t1, t2).

Note that the fields of deformation gradient F, F#, spatial velocity gradient L , L#

and stretching tensor D, D# (cf. (2.1.8), (2.1.9)) of the two processes (χ, s), (χ#, s#)

are related by

(2.4.3) F# = O F, L# = O L O� + Ȯ O�, D# = O DO�.

Let (ε, S, θ, Q) and (ε#, S#, θ#, Q#) denote the fields for internal energy, Piola-
Kirchhoff stress, temperature and referential heat flux associated with the processes
(χ, s) and (χ#, s#). The principle of material frame indifference postulates:

(2.4.4) ε# = ε, S# = O S, θ# = θ, Q# = Q.

From (2.4.4), (2.3.17) and (2.4.3) it follows that the referential and spatial tempera-
ture gradients G,G# and g, g# of the two processes are related by

(2.4.5) G# = G, g# = Og.

Furthermore, from (2.3.6), (2.3.12) and (2.4.3) we deduce the following relations
between the Cauchy stress tensors T, T # and the spatial heat flux vectors q, q# of the
two processes:

(2.4.6) T # = OT O�, q# = Oq.

The principle of material frame indifference should be reflected in the constitu-
tive relations of continuous media, irrespectively of the nature of material response.
Illustrative examples will be considered in the following two sections.

2.5 Thermoelasticity

In the framework of continuum thermomechanics, a thermoelastic medium is identi-
fied by the constitutive assumption that, for any fixed particle x and any motion, the

2 An alternative, albeit equivalent, realization of this setting is to visualize a single thermo-
dynamic process monitored by two observers attached to individual coordinate frames that
rotate relative to each other. When adopting that approach, certain authors are allowing for
reflections, in addition to proper rotations.
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value of the internal energy ε, the Piola-Kirchhoff stress S, the temperature θ , and
the referential heat flux vector Q, at x and time t , is determined solely by the value
at (x, t) of the deformation gradient F , the entropy s, and the temperature gradient
G, through constitutive equations

(2.5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̂(F, s,G),

S = Ŝ(F, s,G),

θ = θ̂ (F, s,G),

Q = Q̂(F, s,G),

where ε̂, Ŝ, θ̂ , Q̂ are smooth functions defined on the subset of IMm×m × IR × IRm

with det F > 0. Moreover, θ̂ (F, s,G) > 0. When the thermoelastic medium is
homogeneous, the same functions ε̂, Ŝ, θ̂ , Q̂ and the same value ρ0 of the reference
density apply to all particles x ∈ B.

The Cauchy stress T and the spatial heat flux q are also determined by consti-
tutive equations of the same form, which may be derived from (2.5.1) and (2.3.6),
(2.3.12). When employing the spatial description of the motion, it is natural to sub-
stitute on the list (2.5.1) the constitutive equations of T and q for the constitutive
equations of S and Q; also on the list (F, s,G) of the state variables to replace
the referential temperature gradient G with the spatial temperature gradient g (cf.
(2.3.17)).

The above constitutive equations will have to comply with the conditions stip-
ulated earlier. To begin with, as postulated in Section 2.3, every smooth thermody-
namic process that balances mass, momentum and energy must satisfy identically
the Clausius-Duhem inequality (2.3.13) or, equivalently, the dissipation inequality
(2.3.15). Substituting from (2.5.1) into (2.3.15) yields

(2.5.2) tr[(ρ0∂F ε̂ − Ŝ)Ḟ�] + ρ0(∂s ε̂ − θ̂ )ṡ + ρ0∂G ε̂ Ġ − θ̂−1 Q̂ · G ≤ 0.

It is clear that by suitably controlling the body force b and the heat supply r one
may construct smooth processes which balance mass, momentum and energy and
attain at some point (x, t) arbitrarily prescribed values for F, s,G, Ḟ, ṡ, Ġ, subject
only to the constraint det F > 0. Hence (2.5.2) cannot hold identically unless the
constitutive relations (2.5.1) are of the following special form:

(2.5.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̂(F, s),

S = ρ0∂F ε̂(F, s),

θ = ∂s ε̂(F, s),

Q = Q̂(F, s,G),
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(2.5.4) Q̂(F, s,G) · G ≥ 0.

Thus the internal energy may depend on the deformation gradient and on the entropy
but not on the temperature gradient. The constitutive equations for stress and tem-
perature are induced by the constitutive equation of internal energy, through caloric
relations, and are likewise independent of the temperature gradient. Only the heat
flux may depend on the temperature gradient, subject to the condition (2.5.4) which
implies that heat always flows from the hotter to the colder part of the body.

Another requirement on constitutive relations is that they observe the principle
of material frame indifference, formulated in Section 2.4. By combining (2.4.4) and
(2.4.3)1 with (2.5.3), we deduce that the functions ε̂ and Q̂ must satisfy the condi-
tions

(2.5.5) ε̂(O F, s) = ε̂(F, s), Q̂(O F, s,G) = Q̂(F, s,G),

for all proper orthogonal matrices O . A simple calculation verifies that when (2.5.5)
hold, then the remaining conditions in (2.4.4) will be automatically satisfied, by
virtue of (2.5.3)2 and (2.5.3)3 .

To see the implications of (2.5.5), we apply it with O = R�, where R is the
rotation tensor in (2.1.6), to deduce

(2.5.6) ε̂(F, s) = ε̂(U, s), Q̂(F, s,G) = Q̂(U, s,G).

It is clear that, conversely, if (2.5.6) hold then (2.5.5) will be satisfied for any proper
orthogonal matrix O . Consequently, the principle of material frame indifference is
completely encoded in the statement (2.5.6) that the internal energy and the referen-
tial heat flux vector may depend on the deformation gradient F solely through the
right stretch tensor U .

When the spatial description of motion is to be employed, the constitutive equa-
tion for the Cauchy stress

(2.5.7) T = ρ∂F ε̂(F, s)F�,

which follows from (2.3.6), (2.3.3) and (2.5.3)2 , will satisfy the principle of material
frame indifference (2.4.6)1 so long as (2.5.6) hold. For the constitutive equation of
the spatial heat flux vector

(2.5.8) q = q̂(F, s, g),

the principle of material frame indifference requires (recall (2.4.6)2, (2.4.3)1 and
(2.4.5)2):

(2.5.9) q̂(O F, s, Og) = Oq̂(F, s, g),

for all proper orthogonal matrices O .
The final general requirement on constitutive relations is that the Piola-Kirchhoff

stress satisfy (2.3.8), for the balance of angular momentum. This imposes no addi-
tional restrictions, however, because a simple calculation reveals that once (2.5.5)1
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holds, S computed through (2.5.3)2 will automatically satisfy (2.3.8). Thus in ther-
moelasticity, material frame indifference implies balance of angular momentum.

The constitutive equations undergo further reduction when the medium is en-
dowed with material symmetry. Recall from Section 2.3 that when the reference
configuration of the body is changed by means of an isochoric bilipschitz homeo-
morphism x̄ with unimodular Jacobian matrix H (2.2.5), then the fields transform
according to the rules (2.3.19), (2.3.20), (2.3.21) and (2.3.22). It follows, in partic-
ular, that any medium that is thermoelastic relative to the original reference config-
uration will stay so relative to the new one, as well, even though the constitutive
functions will generally change. Any isochoric transformation of the reference con-
figuration that leaves invariant all constitutive functions manifests material symmetry
of the medium. Consider any such transformation and let H be its Jacobian matrix.
By virtue of (2.3.19)1 , (2.3.20)2 and (2.5.3)1 , the constitutive function ε̂ of the in-
ternal energy will remain invariant, provided

(2.5.10) ε̂(F H−1, s) = ε̂(F, s).

A simple calculation verifies that when (2.5.10) holds the constitutive functions for
S and θ determined through (2.5.3)2 and (2.5.3)3 satisfy automatically the invariance
requirements for that same H . The remaining constitutive equation, for the heat flux
vector, will be treated for convenience in its spatial description (2.5.8). By account
of (2.3.19)1 , (2.3.22)2 and (2.3.21)3 , q̂ will remain invariant if

(2.5.11) q̂(F H−1, s, g) = q̂(F, s, g).

It is clear that the set of matrices H with determinant one for which (2.5.10)
and (2.5.11) hold forms a subgroup G of the special linear group SL(m), called the
symmetry group of the medium. In certain media, G may contain only the identity
matrix I in which case material symmetry is minimal. When G is nontrivial, it dic-
tates through (2.5.10) and (2.5.11) conditions on the constitutive functions of the
medium.

Maximal material symmetry is attained when G ≡ SL(m). In that case the
medium is a thermoelastic fluid. Applying (2.5.10) and (2.5.11) with selected ma-
trix H = (det F)−1/m F ∈ SL(m), we deduce that ε̂ and q̂ may depend on F solely
through its determinant or, equivalently by virtue of (2.3.3), through the density ρ:

(2.5.12) ε = ε̃(ρ, s), q = q̃(ρ, s, g).

The Cauchy stress may then be obtained from (2.5.7) and the temperature from
(2.5.3)3 . The calculation gives

(2.5.13) T = −pI,

(2.5.14) p = ρ2∂ρε̃(ρ, s), θ = ∂s ε̃(ρ, s).

The constitutive function q̃ in (2.5.12) must also satisfy the requirement (2.5.9) of
material frame indifference which now assumes the simple form
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(2.5.15) q̃(ρ, s, Og) = Oq̃(ρ, s, g),

for all proper orthogonal matrices O . The final reduction of q̃ that satisfies (2.5.15) is

(2.5.16) q = κ(ρ, s, |g|)g,
where κ is a scalar-valued function. We have thus shown that in a thermoelastic
fluid the internal energy depends solely on density and entropy. The Cauchy stress
is a hydrostatic pressure, likewise depending only on density and entropy. The heat
flux obeys Fourier’s law with thermal conductivity κ which may vary with density,
entropy and the magnitude of the heat flux.

The simplest classical example of a thermoelastic fluid is the polytropic gas,
which is determined by Boyle’s law

(2.5.17) p = Rρθ,

combined with the constitutive assumption that internal energy is proportional to
temperature:

(2.5.18) ε = cθ.

In (2.5.17), R is the universal gas constant divided by the molecular weight of the
gas, and c in (2.5.18) is the specific heat. The constant γ = 1+ R/c is the adiabatic
exponent. The classical kinetic theory predicts γ = 1+ 2/n, where n is the number
of degrees of freedom of the gas molecule.

Combining (2.5.17) and (2.5.18) with (2.5.13) and (2.5.14), one easily deduces
that the constitutive relations for the polytropic gas, in normalized units, read

(2.5.19) ε = cργ−1e
s
c , p = Rργ e

s
c , θ = ργ−1e

s
c .

An isotropic thermoelastic solid is a thermoelastic material with symmetry group
G the proper orthogonal group SO(m). In that case, to obtain the reduced form of the
internal energy function ε̂ we combine (2.5.10) with (2.5.6)1 . Recalling (2.1.7) we
conclude that

(2.5.20) ε̂(OU O�, s) = ε̂(U, s),

for any proper orthogonal matrix O . In particular, we apply (2.5.20) for the proper
orthogonal matrices O that diagonalize the symmetric matrix U : OU O� = �.
This establishes that, in consequence of material frame indifference and material
symmetry, the internal energy of an isotropic thermoelastic solid may depend on
F solely as a symmetric function of the eigenvalues of the right stretch tensor U .
Equivalently,

(2.5.21) ε = ε̃(J1, · · · , Jm, s),

where (J1, · · · , Jm) are invariants of U . In particular, when m = 3, one may employ
J1 = |F |2, J2 = |F∗|2 and J3 = det F , where F∗ is the cofactor matrix of F . The
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reduced form of the Cauchy stress for the isotopic thermoelastic solid, computed
from (2.5.21) and (2.5.7), is recorded in the references cited in Section 2.9.

In an alternative, albeit equivalent, formulation of thermoelasticity, one regards
the temperature θ , rather than the entropy s, as a state variable and writes a consti-
tutive equation for s rather than for θ . In that case it is also expedient to monitor the
Helmholtz free energy

(2.5.22) ψ = ε − θs

in the place of the internal energy ε. One thus starts out with consititutive equations

(2.5.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ = ψ̄(F, θ,G),

S = S̄(F, θ,G),

s = s̄(F, θ,G),

Q = Q̄(F, θ,G),

in the place of (2.5.1). The requirement that all smooth thermodynamic processes
that balance mass, momentum and energy must satisfy identically the dissipation
inequality (2.3.15) reduces (2.5.23) to

(2.5.24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ = ψ̄(F, θ),

S = ρ0∂F ψ̄(F, θ),

s = −∂θ ψ̄(F, θ),

Q = Q̄(F, θ,G),

(2.5.25) Q̄(F, θ,G) · G ≥ 0,

which are the analogs of (2.5.3), (2.5.4). The principle of material frame indiffer-
ence and the presence of material symmetry further reduce the above constitutive
equations. In particular, ψ̄ satisfies the same conditions as ε̂, above.

We conclude the discussion of thermoelasticity with remarks on special thermo-
dynamic processes. A process is called adiabatic if the heat flux Q vanishes identi-
cally; it is called isothermal when the temperature field θ is constant; and it is called
isentropic if the entropy field s is constant. Note that (2.5.25) implies Q̄(F, θ, 0) = 0
so, in particular, all isothermal processes are adiabatic. Materials that are poor con-
ductors of heat are commonly modeled as nonconductors of heat, characterized by
the constitutive assumption Q̂ ≡ 0. Thus every thermodynamic process of a noncon-
ductor is adiabatic.

In an isentropic process, the entropy is set equal to a constant, s ≡ s̄; the consti-
tutive relations for the temperature and the heat flux are discarded and those for the
internal energy and the stress are restricted to s = s̄:
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(2.5.26)

⎧⎨⎩ ε = ε̂(F, s̄),

S = ρ0∂F ε̂(F, s̄).

The motion is determined solely by the balance laws of mass and momentum. In
practice this simplifying assumption is made when it is judged that entropy fluctu-
ations have insignificant effect. Later on we shall encounter situations where this is
indeed the case. One should keep in mind, however, that, strictly speaking, an isen-
tropic process cannot be sustained unless the heat supply r is regulated in such a
manner that the ensuing motion together with the constant entropy field satisfy the
balance law of energy.

In particular, in an isentropic process for a polytropic ideal gas, s = s̄, (2.5.19)
yields

(2.5.27) ε = κ

γ − 1
ργ−1, p = κργ .

Isentropic thermoelasticity rests solely on the balance laws of mass and momen-
tum and this may leave the impression that it is a mechanical, rather than a ther-
momechanical, theory. In fact the constitutive relations (2.5.19) suggest that isen-
tropic thermoelasticity is isomorphic to a mechanical theory called hyperelasticity.
It should be noted, however, that isentropic thermoelasticity inherits from thermo-
dynamics the Second Law under the following guise: Assuming that the process is
adiabatic as well as isentropic and combining the balance law of energy (2.3.10) with
the Clausius-Duhem inequality (2.3.13) yields

(2.5.28) (ρ0ε + 1
2ρ0|v|2)· ≤ Div(v�S)+ ρ0v

�b.

The Eulerian form of this inequality is

(2.5.29) (ρε + 1
2ρ|v|2)t + div[(ρε + 1

2ρ|v|2)v�] ≤ div(v�T )+ ρv�b.

The above inequalities play in isentropic thermoelasticity the role played by the
Clausius-Duhem inequality (2.3.13), (2.3.14) in general thermoelasticity: For smooth
motions, they hold identically, as equalities3, by virtue of (2.3.4) and (2.5.26). By
contrast, in the context of motions that are merely Lipschitz continuous, they are
extra conditions serving as the test of thermodynamic admissibility of the motion.

In isothermal thermoelasticity, θ is set equal to a constant θ̂ , the heat supply r is
regulated to balance the energy equation, and the motion is determined solely by the
balance laws of mass and momentum. The only constitutive equations needed are

(2.5.30)

⎧⎨⎩ψ = ψ̄(F, θ̂ ),

S = ρ0∂F ψ̄(F, θ̂ ),

3 In particular, this implies that smooth isentropic processes may be sustained with r = 0,
that is without supplying or extracting any amount of heat.
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namely the analogs of (2.5.26). The implications of the Second Law of thermo-
dynamics are seen, as before, by combining (2.3.10) with (2.3.13), assuming now
θ = θ̂ =constant. This yields

(2.5.31) (ρ0ψ + 1
2ρ0|v|2). ≤ Div(v�S)+ ρ0v

�b,

which should be compared to (2.5.28). We conclude that isothermal and isentropic
thermoelasticity are essentially isomorphic, with the Helmholtz free energy at con-
stant temperature, in the former, playing the role of internal energy, at constant en-
tropy, in the latter.

In an isothermal process θ = θ̂ for a polytropic ideal gas, (2.5.17) implies

(2.5.32) p = νρ ,

where ν = Rθ̂ .

2.6 Thermoviscoelasticity

We now consider an extension of thermoelasticity, which encompasses materials
with internal dissipation induced by viscosity of the rate type. The internal energy ε,
the Piola-Kirchhoff stress S, the temperature θ , and the referential heat flux vector
Q may now depend not only on the deformation gradient F , the entropy s and the
temperature gradient G, as in (2.5.1), but also on the time rate Ḟ of the deformation
gradient:

(2.6.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̂(F, Ḟ, s,G),

S = Ŝ(F, Ḟ, s,G),

θ = θ̂ (F, Ḟ, s,G),

Q = Q̂(F, Ḟ, s,G).

As stipulated in Section 2.3, every smooth thermodynamic process that bal-
ances mass, momentum and energy must satisfy identically the dissipation inequality
(2.3.15). Substituting from (2.6.1) into (2.3.15) yields
(2.6.2)

tr[(ρ0∂F ε̂ − Ŝ)Ḟ�] + tr(ρ0∂Ḟ ε̂ F̈�)+ ρ0(∂s ε̂ − θ̂ )ṡ + ρ0∂G ε̂Ġ − θ̂−1 Q̂ · G ≤ 0.

By suitably controlling the body force b and heat supply r , one may construct smooth
processes that balance mass, momentum and energy and attain at some point (x, t)
arbitrarily prescribed values for F, Ḟ, s,G, F̈, ṡ, Ġ, subject only to the constraint
det F > 0. Consequently, the inequality (2.6.2) cannot hold identically unless the
constitutive function in (2.6.1) have the following special form:
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(2.6.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̂(F, s),

S = ρ0∂F ε̂(F, s)+ Z(F, Ḟ, s,G),

θ = ∂s ε̂(F, s),

Q = Q̂(F, Ḟ, s,G),

(2.6.4) tr[Z(F, Ḟ, s,G)Ḟ�] + 1

θ̂ (F, s)
Q̂(F, Ḟ, s,G) · G ≥ 0.

Comparing (2.6.3) with (2.5.3) we observe that, again, the internal energy, which
may depend solely on the deformation gradient and the entropy, determines the con-
stitutive equation for the temperature by the same caloric equation of state. On the
other hand, the constitutive equation for the stress now includes the additional term
Z which contributes the viscous effect and induces internal dissipation manifested in
(2.6.4).

The constitutive functions must be reduced further to comply with the principle
of material frame indifference, postulated in Section 3.4. In particular, frame indif-
ference imposes to internal energy the same condition (2.5.5)1 as in thermoelasticity,
and the resulting reduction is, of course, the same:

(2.6.5) ε̂(F, s) = ε̂(U, s),

where U denotes the right stretch tensor (2.1.7). Furthermore, when (2.6.5) holds
the constitutive equation for the temperature, derived through (2.6.3)3 , and the term
ρ0∂F ε̂(F, s), in the constitutive equation for the stress, will be automatically frame
indifferent. It remains to investigate the implications of frame indifference on Z and
on the heat flux. Since the analysis will focus eventually on thermoviscoelastic fluids,
it will be expedient to switch at this point from S and Q to T and q; also to replace,
on the list (F, Ḟ, s,G) of state variables, Ḟ with L (cf. (2.1.8)) and G with g (cf.
(2.3.17)). We thus write

(2.6.6) T = ρ∂F ε̂(F, s)F� + Ẑ(F, L , s, g),

(2.6.7) q = q̂(F, L , s, g).

Recalling (2.4.3) and (2.4.5), we deduce that the principle of material frame indiffer-
ence requires

(2.6.8)

⎧⎨⎩ Ẑ(O F, O L O� + Ȯ O�, s, Og) = O Ẑ(F, L , s, g)O�

q̂(O F, O L O� + Ȯ O�, s, Og) = Oq̂(F, L , s, g),

for any proper orthogonal matrix O . In particular, for any fixed state (F, L , s, g)
with spin W (cf. (2.1.9)), we may pick O(t) = exp(−tW ), in which case O(0) = I,
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Ȯ(0) = −W . It then follows from (2.6.8) that Ẑ and q̂ may depend on L solely
through its symmetric part D and hence (2.6.6) and (2.6.7) may be written as

(2.6.9) T = ρ∂F ε̂(F, s)F� + Ẑ(F, D, s, g),

(2.6.10) q = q̂(F, D, s, g),

with Ẑ and q̂ such that

(2.6.11)

⎧⎨⎩ Ẑ(O F, O DO�, s, Og) = O Ẑ(F, D, s, g)O�

q̂(O F, O DO�, s, Og) = Oq̂(F, D, s, g),

for all proper orthogonal matrices O .
For the balance law of angular momentum (2.3.9) to be satisfied, Ẑ must also be

symmetric: Ẑ� = Ẑ . Notice that in that case the dissipation inequality (2.6.4) may
be rewritten in the form

(2.6.12) tr [Ẑ(F, D, s, g)D] + 1

θ̂ (F, s)
q̂(F, D, s, g) · g ≥ 0.

Further reduction of the constitutive functions obtains when the medium is en-
dowed with material symmetry. As in Section 2.5, we introduce here the symmetry
group G of the material, namely the subgroup of SL(m) formed by the Jacobian
matrices H of those isochoric transformations x̄ of the reference configuration that
leave all constitutive functions invariant. The rules of transformation of the fields un-
der change of the reference configuration are recorded in (2.3.19), (2.3.20), (2.3.21)
and (2.3.22). Thus, G is the set of all H ∈ SL(m) with the property

(2.6.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε̂(F H−1, s) = ε̂(F, s),

Ẑ(F H−1, D, s, g) = Ẑ(F, D, s, g),

q̂(F H−1, D, s, g) = q̂(F, D, s, g).

The material will be called a thermoviscoelastic fluid when G ≡ SL(m). In that
case, applying (2.6.13) with H = (det F)−1/m F ∈ SL(m), we conclude that ε̂, Ẑ ,
and q̂ may depend on F solely through its determinant or, equivalently, through the
density ρ. Therefore, the constitutive equations of the thermoviscoelastic fluid reduce
to

(2.6.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̃(ρ, s),

T = −pI + Z̃(ρ, D, s, g),

p = ρ2∂ρε̃(ρ, s), θ = ∂s ε̃(ρ, s),

q = q̃(ρ, D, s, g).
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For frame indifference, Z̃ and q̃ should still satisfy, for any proper orthogonal matrix
O , the conditions

(2.6.15)

⎧⎨⎩ Z̃(ρ, O DO�, s, Og) = O Z̃(ρ, D, s, g)O�,

q̃(ρ, O DO�, s, Og) = Oq̃(ρ, D, s, g),

which follow from (2.6.11). It is possible to write down explicitly the form of the
most general functions Z̃ and q̃ that conform with (2.6.15). Here, it will suffice to
record the most general constitutive relations, for m= 3, that are compatible with
(2.6.15) and are linear in (D, g), namely

(2.6.16) T = −p(ρ, s)I + λ(ρ, s)(trD)I + 2µ(ρ, s)D,

(2.6.17) q = κ(ρ, s)g,

which identify the compressible, heat conducting Newtonian fluid.
The bulk viscosity λ + 2

3µ, shear viscosity µ and thermal conductivity κ of a
Newtonian fluid are constrained by the inequality (2.6.12), which here reduces to

(2.6.18) λ(ρ, s)(trD)2 + 2µ(ρ, s)trD2 + κ(ρ, s)

θ̃(ρ, s)
|g|2 ≥ 0.

This inequality will hold for arbitrary D and g if and only if

(2.6.19) µ(ρ, s) ≥ 0, 3λ(ρ, s)+ 2µ(ρ, s) ≥ 0, κ(ρ, s) ≥ 0.

For actual dissipation, at least one of µ, 3λ+ 2µ and κ should be strictly positive.

2.7 Incompressibility

Many fluids, and even certain solids, such as rubber, may be stretched or sheared
with relative ease, while exhibiting disproportionately high stiffness when subjected
to deformations that would change their volume. Continuum physics treats such ma-
terials as incapable of sustaining any volume change, so that the density ρ stays
constant along particle trajectories. The incompressibility condition

(2.7.1) det F = 1, trD = div v� = 0,

in Lagrangian or Eulerian coordinates, is then appended to the system of balance
laws, as a kinematic constraint. In return, the stress tensor is decomposed into two
parts:

(2.7.2) S = −p(F−1)� + Ŝ, T = −pI + T̂ ,

where Ŝ or T̂ , called the extra stress, is determined, as before, by the thermodynamic
process, through constitutive equations, while the other term, which represents a hy-
drostatic pressure, is not specified by a constitutive relation but is to be determined,
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together with the thermodynamic process, by solving the system of balance laws of
mass, momentum and energy, subject to the kinematic constraint (2.7.1).

The salient property of the hydrostatic pressure is that it produces no work under
isochoric deformations. To motivate (2.7.2) by means of the Second Law of thermo-
dynamics, let us consider an incompressible thermoelastic material with constitutive
equations for ε, θ and Q as in (2.5.1), but only defined for F with det F = 1, and
S unspecified. The dissipation inequality again implies (2.5.2) with Ŝ replaced by
S, ∂F ε̂ replaced by the tangential derivative ∂τF ε̂ on the manifold det F = 1, and Ḟ
constrained to lie on the subspace

(2.7.3) tr[(F−1)� Ḟ�] = tr[(F∗)� Ḟ�] = tr[(∂F det F)Ḟ�] = ˙det F = 0.

Therefore, tr[(ρ0∂
τ
F ε̂ − S)Ḟ�] ≤ 0 for all Ḟ satisfying (2.7.3) if and only if

(2.7.4) S = −p(F−1)� + ρ0∂
τ
F ε̂(F, s),

for some scalar p.
In incompressible Newtonian fluids, the stress is still given by (2.6.16), where,

however, ρ is constant and p(ρ, s) is replaced by the undetermined hydrostatic pres-
sure p. When the incompressible fluid is inviscid, the entire stress tensor is subsumed
by the undetermined hydrostatic pressure.

2.8 Relaxation

The state variables of continuum physics, introduced in the previous sections, repre-
sent statistical averages of certain physical quantities, such as velocity, translational
kinetic energy, rotational kinetic energy, chemical energy etc., associated with the
molecules of the material. These quantities evolve and eventually settle, or “relax”, to
states in local equilibrium, characterized by equipartition of energy and other condi-
tions dictated by the laws of statistical physics. The constitutive relations of thermoe-
lasticity and thermoviscoelasticity, considered in earlier sections, are relevant so long
as local equilibrium is attained in a time scale much shorter than the time scale of
the gross motion of the material body. In the opposite case where the relaxation time
is of the same order of magnitude as the time scale of the motion, relaxation mecha-
nisms must be accounted for even within the framework of continuum physics. This
is done by introducing additional, internal state variables, measuring the deviation
from local equilibrium. The states in local equilibrium span a manifold embedded
in the extended state space. The internal state variables satisfy special constitutive
relations, in the form of balance laws with dissipative source terms that act to drive
the state vector towards local equilibrium.

An enormous variety of relaxation theories are discussed in the literature; the
reader may catch a glimpse of their common underlying structure through the fol-
lowing example.

We consider a continuous medium that does not conduct heat and whose isen-
tropic response is governed by constitutive relations
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(2.8.1) ε = ε̂(F,Σ),

(2.8.2) S = P(F)+ ρ0Σ,

for the internal energy and the Piola-Kirchhoff stress, where Σ is an internal variable
taking values in IMm×m and satisfying a balance law of the form

(2.8.3) ρ0Σ̇ = 1

τ
[Π(Σ)− F].

Thus, the material exhibits instantaneous elastic response, embodied in the term
P(F), combined with viscous response induced by relaxation of Σ . The positive
constant τ is called the relaxation time.

The postulate that any smooth motion of the medium that balances linear mo-
mentum (2.3.4) must satisfy identically the entropy inequality (2.5.28) yields

(2.8.4) S = ρ0∂F ε̂(F,Σ),

(2.8.5) tr
[
∂Σ ε̂(F,Σ)Σ̇

�] ≤ 0.

Upon combining (2.8.4) and (2.8.5) with (2.8.2) and (2.8.3), we deduce

(2.8.6) ε = σ(F)+ tr(ΣF�)+ h(Σ),

(2.8.7) P(F) = ρ0∂Fσ(F), Π(Σ) = −∂Σh(Σ).

When h is strictly convex, the source term in (2.8.3) is dissipative and acts to
drive Σ towards local equilibrium Σ = H(F), where H is the inverse function of
Π . Π−1 exists since −Π is strictly monotone, namely,

(2.8.8) tr{[Π(Σ)−Π(Σ̄)][Σ − Σ̄]�} < 0, for any Σ �= Σ̄.

In local equilibrium the medium responds like an elastic material with internal energy

(2.8.9) ε = ε̃(F) = σ(F)+ tr[H(F)F�] + h(H(F))

and Piola-Kirchhoff stress

(2.8.10) S = P(F)+ ρ0 H(F) = ρ0∂F ε̃(F).

2.9 Notes

The venerable field of Continuum Physics has been enjoying a resurgence, concomi-
tant with the rise of interest in the behavior of materials with nonlinear response. The
encyclopedic works of Truesdell and Toupin [1] and Truesdell and Noll [1] contain
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reliable historical information as well as massive bibliographies and may serve as
excellent guides for following the development of the subject from its inception, in
the 18th century, to the mid 1960’s. The text by Gurtin [1] provides a clear, elemen-
tary introduction to the area. A more advanced treatment, with copious references,
is found in the book of Silhavy [1]. The text by Müller [2] is an excellent presenta-
tion of thermodynamics from the perspective of modern continuum physics. Other
good sources, emphasizing elasticity theory, are the books of Ciarlet [1], Hanyga
[1], Marsden and Hughes [1] and Wang and Truesdell [1]. The recent monograph
by Antman [3] contains a wealth of material on the theory of elastic strings, rods,
shells and three-dimensional bodies, with emphasis on the qualitative analysis of the
governing balance laws. On the equivalence of the referential (Lagrangian) and spa-
tial (Eulerian) description of the field equations for the balance laws of Continuum
Physics, see Dafermos [17] and Wagner [2,3]. It would be useful to know whether
this holds under more general assumptions on the motion than Lipschitz continuity.
For instance, when the medium is a thermoelastic gas, it is natural to allow regions of
vacuum in the placement of the body. In such a region the density vanishes and the
specific volume (determinant of the deformation gradient) becomes infinitely large.
For particular results in that direction, see Wagner [2].

The kinematic balance laws (2.2.15) and (2.2.16) were first derived by Qin[1],
in the context of smooth motions, by direct calculation. It is interesting that, as we
see here, they are valid when the motions are merely Lipschitz continuous and in
fact, as shown by Demoulini, Stuart and Tzavaras [2], even under slightly weaker
hypotheses. The connection to null Lagrangians was first pointed out in this last
reference. For a detailed treatment of null Lagrangians, see Ball, Currie and Olver
[1]. See also Wagner [3].

The field equations for the balance laws considered here were originally derived
by Euler [1,2], for mass, Cauchy [3,4], for linear and angular momentum, and Kirch-
hoff [1], for energy. The Clausius-Duhem inequality was postulated by Clausius [1],
for the adiabatic case; the entropy flux term was introduced by Duhem [1] and the en-
tropy production term was added by Truesdell and Toupin [1]. More general entropy
inequalities were first considered by Müller [1].

The postulate that constitutive equations should be reduced so that the Clausius-
Duhem inequality be satisfied automatically by smooth thermodynamic processes
that balance mass, momentum and energy was first stated as a general principle by
Coleman and Noll [1]. The examples presented here were adapted from Coleman
and Noll [1], for thermoelasticity, and Coleman and Mizel [1], for thermoviscoelas-
ticity. Coleman and Gurtin [1] have developed a general theory of thermoviscoelastic
materials with internal state variables, of which the example presented in Section 2.8
is a special case. Constitutive relations of this type were first considered by Maxwell
[1]. A detailed discussion of relaxation phenomena in gas dynamics is found in the
book by Vincenti and Kruger [1].

The use of frame indifference and material symmetry to reduce constitutive equa-
tions originated in the works of Cauchy [4] and Poisson [2]. In the ensuing century,
this program was implemented (mostly correctly but occasionally incorrectly) by
many authors, for a host of special constitutive equations. In particular, the work
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of the Cosserats [1], Rivlin and Ericksen [1], and others in the 1940’s and 1950’s
contributed to the clarification of the concepts. The principle of material frame in-
difference and the definition of the symmetry group were ultimately postulated with
generality and mathematical precision by Noll [1].



III

Hyperbolic Systems of Balance Laws

The ambient space for the system of balance laws, introduced in Chapter I, will be
visualized here as space-time, and the central notion of hyperbolicity in the time di-
rection will be motivated and defined. Companions to the flux, considered in Section
1.5, will now be realized as entropy-entropy flux pairs.

Numerous examples will be presented of hyperbolic systems of balance laws
arising in continuum physics.

3.1 Hyperbolicity

Returning to the setting of Chapter I, we visualize IRk as IRm × IR, where IRm , with
m = k − 1, is “space” with typical point x , and IR is “time” with typical value
t , so X = (x, t). We write ∂t for ∂/∂Xk and ∂α for ∂/∂Xα , α = 1, . . . ,m. We
retain the symbol div to denote divergence with respect to the x-variable in IRm . As
in earlier chapters, in matrix operations div will be acting on row vectors. We also
recall the Notation 1.4.2, which will remain in force throughout this work: D denotes
the differential [∂/∂U 1, . . . , ∂/∂U n], regarded as a row operation.

We denote Gk by H , reassign the symbol G to denote the n × m matrix with
column vectors (G1, . . . ,Gm), and rewrite the system of balance laws (1.4.3) in the
form

(3.1.1) ∂t H(U (x, t), x, t)+ div G(U (x, t), x, t) = Π(U (x, t), x, t).

3.1.1 Definition. The system of balance laws (3.1.1) is called hyperbolic in the t-
direction if, for any fixed U ∈ O, (x, t) ∈ X and ν ∈ Sm−1, the n × n matrix
DH(U, x, t) is nonsingular and the eigenvalue problem

(3.1.2)

[
m∑
α=1

ναDGα(U, x, t)− λDH(U, x, t)

]
R = 0
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has real eigenvalues λ1(ν;U, x, t), · · · , λn(ν;U, x, t), called characteristic speeds,
and n linearly independent eigenvectors R1(ν;U, x, t), · · · , Rn(ν;U, x, t).

A class of great importance are the symmetric hyperbolic systems of balance
laws (3.1.1), in which, for any U ∈ O and (x, t) ∈ X , the n × n matrices
DGα(U, x, t), α = 1, · · · ,m, are symmetric and DH(U, x, t) is symmetric positive
definite.

The definition of hyperbolicity may be naturally interpreted in terms of the no-
tion of fronts, introduced in Section 1.6. A front F of the system of balance laws
(3.1.1) may be visualized as a one-parameter family of m−1 dimensional manifolds
in IRm , parametrized by t , i.e., as a surface propagating in space. In that context,
if we renormalize the normal N on F so that N = (ν,−s) with ν ∈ Sm−1, then
the wave will be propagating in the direction ν with speed s. Therefore, comparing
(3.1.2) with (1.6.1) we conclude that a system of n balance laws is hyperbolic if
and only if n distinct weak waves can propagate in any spatial direction. The eigen-
values of (3.1.2) will determine the speed of propagation of these waves while the
corresponding eigenvectors will specify the direction of their amplitude.

When F is a shock front, (1.6.3) may be written in the current notation as

(3.1.3) −s[H(U+, x, t)− H(U−, x, t)] + [G(U+, x, t)− G(U−, x, t)]ν = 0,

which is called the Rankine-Hugoniot jump condition. By virtue of Theorem 1.8.1,
this condition should hold at every point of approximate jump discontinuity of any
function U of class BVloc that satisfies the system (3.1.1) in the sense of measures.

It is clear that hyperbolicity is preserved under any change U∗ = U∗(U, x, t) of
state vector with U∗(·, x, t) a diffeomorphism for every fixed (x, t) ∈ X . In particu-
lar, since DH(U, x, t) is nonsingular, we may employ, locally at least, H as the new
state vector. Thus, without essential loss of generality, one may limit the investigation
to hyperbolic systems of balance laws that have the special form

(3.1.4) ∂tU (x, t)+ div G(U (x, t), x, t) = Π(U (x, t), x, t).

For simplicity and convenience, we shall regard henceforth the special form (3.1.4) as
canonical. The reader should keep in mind, however, that when dealing with systems
of balance laws arising in continuum physics it may be advantageous to keep the state
vector naturally provided, even at the expense of having to face the more complicated
form (3.1.1) rather than the canonical form (3.1.4).

3.2 Entropy-Entropy Flux Pairs

Assume that the system of balance laws (1.4.3), which we now write in the form
(3.1.1), is endowed with a companion balance law (1.5.2). We set Qk ≡ η, reassign
Q to denote the m-row vector (Q1, . . . , Qm) and recast (1.5.2) in the new notation:

(3.2.1) ∂tη(U (x, t), x, t)+ div Q(U (x, t), x, t) = h(U (x, t), x, t).
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As we shall see in Section 3.3, in the applications to continuum physics, companion
balance laws of the form (3.2.1) are intimately related with the Second Law of ther-
modynamics. For that reason, η is called an entropy for the system (3.1.1) of balance
laws and Q is called the entropy flux associated with η.

Equation (1.5.1), for α = k, should now be written as

(3.2.2) Dη(U, x, t) = B(U, x, t)�DH(U, x, t).

Assume the system is in canonical form (3.1.4) so that (3.2.2) reduces to Dη = B�.
Then (1.5.1) and the integrability condition (1.5.4) become

(3.2.3) DQα(U, x, t) = Dη(U, x, t)DGα(U, x, t), α = 1, · · · ,m,

(3.2.4) D2η(U, x, t)DGα(U, x, t) = DGα(U, x, t)�D2η(U, x, t), α = 1, · · · ,m.

Notice that (3.2.4) imposes 1
2 n(n − 1)m conditions on the single unknown func-

tion η. Therefore, as already noted in Section 1.5, the problem of determining a
nontrivial entropy-entropy flux pair for (3.1.1) is formally overdetermined, unless
either n = 1 and m is arbitrary, or n = 2 and m = 1. However, when the system is
symmetric, we may satisfy (3.2.4) with η = 1

2 |U |2. Conversely, if (3.2.4) holds and
η(U, x, t) is uniformly convex in U , then the change U∗ = Dη(U, x, t)� of state
vector renders the system symmetric. Thus, systems of balance laws in canonical
form (3.1.4) that are endowed with a convex entropy are necessarily hyperbolic.

An interesting, alternative form of the integrability condition obtains by project-
ing (3.2.4) in the direction of an arbitrary ν ∈ Sm−1 and then multiplying the result-
ing equation from the left by R j (ν;U, x, t)� and from the right by Rk(ν;U, x, t),
with j �= k. So long as λ j (ν;U, x, t) �= λk(ν;U, x, t), this calculation yields

(3.2.5) R j (ν;U, x, t)�D2η(U, x, t)Rk(ν;U, x, t) = 0, j �= k.

Moreover, (3.2.5) holds even when λ j (ν;U, x, t) = λk(ν;U, x, t), provided that
one selects the eigenvectors R j (ν;U, x, t) and Rk(ν;U, x, t) judiciously in the
eigenspace of this multiple eigenvalue.

Notice that (3.2.5) imposes on η 1
2 n(n−1) conditions for each fixed ν, and hence

a total of 1
2 n(n − 1)m conditions for m linearly independent—and thereby all—ν in

Sm−1. A notable exception occurs for systems in which the Jacobian matrices of the
components of their fluxes commute:

(3.2.6)
DGα(U, x, t)DGβ(U, x, t) = DGβ(U, x, t)DGα(U, x, t), α, β = 1, . . . ,m.

Indeed, in that case the Ri (ν;U, x, t) do not vary with ν and hence (3.2.5) represents
just 1

2 n(n − 1) conditions on η. We will revisit this very special class of systems in
Section 6.10.

The issue of the overdeterminacy of (3.2.5), in one spatial dimension, will be
examined in depth in Section 7.4.
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3.3 Examples of Hyperbolic Systems of Balance Laws

Out of a host of hyperbolic systems of balance laws in continuum physics, only
a small sample will be presented here. They will serve as beacons for guiding the
development of the general theory.

3.3.1 The scalar balance law:
The single balance law (n = 1)

(3.3.1) ∂t u(x, t)+ div G(u(x, t), x, t) = �(u(x, t), x, t)

is always hyperbolic. Any function η(u, x, t) may serve as entropy, with associated
entropy flux and entropy production computed by

(3.3.2) Q =
∫ u ∂η

∂u

∂G

∂u
du,

(3.3.3) h =
m∑
α=1

[
∂η

∂u

∂Gα

∂xα
− ∂Qα

∂xα

]
+�

∂η

∂u
+ ∂η

∂t
.

Equation (3.3.1), the corresponding homogeneous scalar conservation law, and
especially their one-space dimensional (m = 1) versions will serve extensively as
models for developing the theory of general systems.

3.3.2 Thermoelastic nonconductors of heat:
The theory of thermoelastic media was discussed in Chapter II. Here we shall employ
the referential (Lagrangian) description so the fields will be functions of (x, t). For
consistency with the notation of the present chapter, we shall use ∂t to denote material
time derivative (in lieu of the overdot employed in Chapter II) and ∂α to denote partial
derivative with respect to the α-component xα of x . For definiteness, we assume
the physical space has dimension m = 3. We also adopt the standard summation
convention: repeated indices are summed over the range 1,2,3.

The constitutive equations are recorded in Section 2.5. Since there is no longer
danger of confusion, we may simplify the notation by dropping the “hat” from the
symbols of the constitutive functions. Also for simplicity we assume that the medium
is homogeneous, with reference density ρ0 = 1.

As explained in Chapter II, a thermodynamic process is determined by a motion
χ and an entropy field s. In order to cast the field equations of the balance laws
into a first order system of the form (3.1.1), we monitor χ through its derivatives
(2.1.1), (2.1.2) and thus work with the state vector U = (F, v, s), taking values in
IR13. In that case we must append to the balance laws of linear momentum (2.3.4)
and energy (2.3.10) the compatibility condition (2.1.8)1. Consequently, our system
of balance laws reads
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(3.3.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t Fiα − ∂αvi = 0, i, α = 1, 2, 3

∂tvi − ∂αSiα(F, s) = bi , i = 1, 2, 3

∂t
[
ε(F, s)+ 1

2 |v|2
]− ∂α [vi Siα(F, s)] = bivi + r,

with (cf. (2.5.3))

(3.3.5) Siα(F, s) = ∂ε(F, s)

∂Fiα
, θ(F, s) = ∂ε(F, s)

∂s
.

A lengthy calculation verifies that the system (3.3.4) is hyperbolic on a certain
region of the state space if for every (F, s) lying in that region

(3.3.6)
∂ε(F, s)

∂s
> 0,

(3.3.7)
∂2ε(F, s)

∂Fiα∂Fjβ
νανβξiξ j > 0, for all ν and ξ in S2 .

By account of (3.3.5)2 , condition (3.3.6) simply states that the absolute temperature
must be positive. (3.3.7), called the Legendre-Hadamard condition, means that ε is
rank-one convex in F , i.e., it is convex along any direction ξ ⊗ ν with rank one. An
alternative way of expressing (3.3.7) is to state that for any unit vector ν the acoustic
tensor N (ν, F, s), defined by

(3.3.8) Ni j (ν, F, s) = ∂2ε(F, s)

∂Fiα∂Fjβ
νανβ , i, j = 1, 2, 3

is positive definite. In fact, for the system (3.3.4), the characteristic speeds are the six
square roots of the three eigenvalues of the acoustic tensor, and zero with multiplicity
seven.

Recall from Chapter II that, in addition to the system of balance laws (3.3.4),
thermodynamically admissible processes should also satisfy the Clausius-Duhem
inequality (2.3.13) which here takes the form

(3.3.9) −∂t s ≤ − r

θ(F, s)
.

By virtue of (3.3.5), every classical solution of (3.3.4) will satisfy (3.3.9) identically
as an equality.1 Hence, in the terminology of Section 3.2, −s is an entropy for the
system (3.3.4) with associated entropy flux zero.2 Weak solutions of (3.3.4) will not

1 Thus, for classical solutions it is convenient to substitute the equality (3.3.9) for the third
equation in (3.3.4). In particular, if r ≡ 0, the entropy s stays constant along particle
trajectories and one may determine F and v just by solving the first two equations of (3.3.4).

2 Identifying−s as the “entropy”, rather than s itself which is the physical entropy, may look
strange. This convention is adopted because it is more convenient to deal with functionals
of the solution that are nonincreasing with time.
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necessarily satisfy (3.3.9). Therefore, the role of (3.3.9) is to weed out undesirable
weak solutions. The extension of a companion balance law from an identity for clas-
sical solutions into an inequality for weak solutions will play a crucial role in the
general theory of hyperbolic systems of balance laws.

3.3.3 Isentropic motion of thermoelastic nonconductors of heat:
The physical background of isentropic processes was discussed in Section 2.5. The
entropy is fixed at a constant value s̄ and, for simplicity, is dropped from the notation.
The state vector reduces to U = (F, v) with values in IR12. The system of balance
laws results from (3.3.4) by discarding the balance of energy:

(3.3.10)

⎧⎨⎩ ∂t Fiα − ∂αvi = 0, i, α = 1, 2, 3

∂tvi − ∂αSiα(F) = bi , i = 1, 2, 3

and we still have

(3.3.11) Siα(F) = ∂ε(F)

∂Fiα
, i, α = 1, 2, 3.

The system (3.3.10) is hyperbolic if ε is rank-one convex, i.e., (3.3.7) holds at s = s̄.
As explained in Section 2.5, in addition to (3.3.10) thermodynamically admissi-

ble isentropic motions must also satisfy the inequality (2.5.28), which in the current
notation reads

(3.3.12) ∂t [ε(F)+ 1
2 |v|2] − ∂α[vi Siα(F)] ≤ bivi .

By virtue of (3.3.11), any classical solution of (3.3.10) satisfies identically (3.3.12)
as an equality. Thus, in the terminology of Section 3.2, η = ε(F) + 1

2 |v|2 is an
entropy for the system (3.3.10). Note that (3.3.10) is in canonical form (3.1.4) and
that Dη = (S(F) , v). Therefore, as shown in Section 3.2, if the internal energy ε(F)
is uniformly convex, then changing the state vector from U = (F, v) to U∗ = (S, v)
will render the system (3.3.10) symmetric hyperbolic.

Weak solutions of (3.3.10) will not necessarily satisfy (3.3.12). We thus en-
counter again the situation in which a companion balance law is extended from an
identity for classical solutions into an inequality serving as admissibility condition
on weak solutions.

The passage from (3.3.4) to (3.3.10) provides an example of the truncation pro-
cess that is commonly employed in continuum physics for simplifying systems of
balance laws by dropping a number of the equations while simultaneously reduc-
ing proportionately the size of the state vector, according to the rules laid down in
Section 1.5. In fact, one may derive the companion balance law (3.3.12), for the
truncated system (3.3.10), from the companion balance law (3.3.9), of the original
system (3.3.4), by using the recipe (1.5.12). Recall that in a canonical truncation, the
elimination of any equation should be paired with freezing the corresponding com-
ponent of the special state vector that symmetrizes the system. Thus, for instance,
one may canonically truncate the system (3.3.10) by dropping the i-th of the last
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three equations while freezing the i-th component vi of velocity, or else by dropping
the (i, α)-th of the first nine equations while freezing the (i, α)-th component Siα(F)
of the Piola-Kirchhoff stress.

As explained in Section 2.5, the balance laws for isothermal processes of ther-
moelastic materials are obtained just by replacing in (3.3.10), (3.3.11) and (3.3.12)
the internal energy ε(F), at constant entropy, by the Helmholtz free energy ψ(F), at
constant temperature.

3.3.4 Isentropic motion with relaxation:
We consider isentropic motions of the material considered in Section 2.8, assuming
for simplicity that the reference density ρ0 = 1 and the body force b = 0. The
state vector is U = (F, v,Σ), with values in IR21. The system of balance laws is
composed of the compatibility equation (2.1.8)1 , the balance of linear momentum
(2.3.4) and the balance law (2.8.3) for the internal variable Σ :

(3.3.13)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂t Fiα − ∂αvi = 0, i, α = 1, 2, 3

∂tvi − ∂α[Piα(F)+Σiα] = 0, i = 1, 2, 3

∂tΣiα = 1

τ
[Πiα(Σ)− Fiα], i, α = 1, 2, 3.

Furthermore,

(3.3.14) Piα(F) = ∂σ (F)

∂Fiα
, Πiα(Σ) = −∂h(Σ)

∂Σiα
.

In addition to (3.3.13), thermodynamically admissible (isentropic) motions
should satisfy the entropy inequality (2.5.28), which here takes the form

(3.3.15) ∂t
[
σ(F)+ tr(ΣF�)+ h(Σ)+ 1

2 |v|2
]− ∂α[vi Piα(F)+ viΣiα] ≤ 0,

so that, in the terminology of Section 3.2, σ(F) + tr(ΣF�) + h(Σ) + 1
2 |v|2 is an

entropy for (3.3.13).
The system (3.3.13) is hyperbolic when

(3.3.16)
∂2σ(F)

∂Fiα∂Fjβ
νανβξiξ j + ναναξiζi + ∂2h(Σ)

∂Σiα∂Σ jβ
νανβζiζ j > 0,

for all ν ∈ S2 and (ξ, ζ )� ∈ S5.

3.3.5 Thermoelastic fluid nonconductors of heat:
The system of balance laws (3.3.4) governs the adiabatic thermodynamic processes
of all thermoelastic media, including, in particular, thermoelastic fluids. In the latter
case, however, it is advantageous to employ spatial (Eulerian) description. The reason
is that, as shown in Section 2.5, the internal energy, the temperature, and the Cauchy
stress in a thermoelastic fluid depend on the deformation gradient F solely through



58 III Hyperbolic Systems of Balance Laws

the density ρ. We may thus dispense with F and describe the state of the medium
through the state vector U = (ρ, v, s) which takes values in the (much smaller)
space IR5.

The fields will now be functions of (χ, t). However, for consistency with the
notational conventions of this chapter, we will replace the symbol χ by x . Also we
will be using ∂t (rather than a t-subscript as in Chapter II) to denote partial derivative
with respect to t .

The balance laws in force are for mass (2.3.2), linear momentum (2.3.5) and
energy (2.3.11). The constitutive relations are (2.5.12), with q̃ ≡ 0, (2.5.13) and
(2.5.14). To simplify the notation, we drop the “tilde” and write ε(ρ, s) in place of
ε̃(ρ, s). Therefore, the system of balance laws takes the form

(3.3.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + div(ρv�) = 0

∂t (ρv)+ div(ρvv�)+ grad p(ρ, s) = ρb,

∂t [ρε(ρ, s)+ 1
2ρ|v|2] + div[(ρε(ρ, s)+ 1

2ρ|v|2 + p(ρ, s))v�]

= ρb · v + ρr,

with

(3.3.18) p(ρ, s) = ρ2ερ(ρ, s), θ(ρ, s) = εs(ρ, s).

The system (3.3.17) will be hyperbolic if

(3.3.19) εs(ρ, s) > 0, pρ(ρ, s) > 0.

In addition to (3.3.17), thermodynamically admissible processes must also satisfy
the Clausius-Duhem inequality (2.3.14), which here reduces to

(3.3.20) ∂t (−ρs)+ div(−ρsv) ≤ −ρ r

θ(ρ, s)
.

When the process is smooth, it follows from (3.3.17) and (3.3.18) that (3.3.20) holds
identically, as an equality.3 Consequently, η = −ρs is an entropy for the system
(3.3.17) with associated entropy flux −ρsv. Once again we see that a companion
balance law is extended from an identity for classical solutions into an inequality
serving as a test for the physical admissibility of weak solutions.

3.3.6 Isentropic flow of thermoelastic fluids:
The entropy is fixed at a constant value and is dropped from the notation. The state
vector is U = (ρ, v), with values in IR4. The system of balance laws results from
(3.3.17) by discarding the balance of energy:

3 Thus for smooth solutions it is often convenient to substitute the simpler equality (3.3.20)
for the third equation of (3.3.17).
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(3.3.21)

⎧⎨⎩ ∂tρ + div(ρv�) = 0

∂t (ρv)+ div(ρvv�)+ grad p(ρ) = ρb,

with

(3.3.22) p(ρ) = ρ2ε′(ρ).

The system (3.3.21) is hyperbolic if

(3.3.23) p′(ρ) > 0.

This condition is indeed satisfied in the case of the polytropic gas (2.5.27).
Thermodynamically admissible isentropic motions must satisfy the inequality

(2.5.29), which here reduces to

(3.3.24) ∂t [ρε(ρ)+ 1
2ρ|v|2] + div[(ρε(ρ)+ 1

2ρ|v|2 + p(ρ))v�] ≤ ρb · v.
It should be noted that the system (3.3.21) results from the system (3.3.17) by canon-
ical truncation, as described in Section 1.5, and in particular the companion balance
law (3.3.24) can be derived from the companion balance law (3.3.20) by means of
(1.5.12).

The pattern has by now become familiar: By virtue of (3.3.22), any classical
solution of (3.3.21) satisfies identically (3.3.25), as an equality, so that the function
η = ρε(ρ) + 1

2ρ|v|2 is an entropy for the system (3.3.21). At the same time, the
inequality (3.3.25) is employed to weed out physically inadmissible weak solutions.

The balance laws for isothermal processes of thermoelastic fluids are obtained
by replacing in (3.3.21), (3.3.22) and (3.3.24) the internal energy ε(ρ), at constant
entropy, by the Helmholtz free energy ψ(ρ), at constant termperature.

3.3.7 The Boltzmann equation and extended thermodynamics:
In contrast to continuum physics, kinetic theories realize matter as an aggregate of
interacting molecules, and characterize the state by means of the molecular density
function f (ξ, x, t) of the velocity ξ ∈ IR3 of molecules occupying the position
x ∈ IR3 at time t . In the classical kinetic theory, which applies to monatomic gases,
f (ξ, x, t) satisfies the Boltzmann equation

(3.3.25) ∂t f + ξ · gradx f = Q[ f ],
where Q stands for a complicated integral operator that accounts for changes in f
incurred by collisions between molecules.

A formal connection between the continuum and the kinetic approach can be
established by monitoring the family of moments

(3.3.26) Fi1...iN =
∫

IR3

ξi1 · · · ξiN f dξ, i1, · · · , iN = 1, 2, 3
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of the density f . Indeed, these moments satisfy an infinite system of evolution equa-
tions

(3.3.27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t F + ∂ j Fj = P

∂t Fi + ∂ j Fi j = Pi , i = 1, 2, 3

∂t Fi j + ∂k Fi jk = Pi j , i, j = 1, 2, 3

∂t Fi jk + ∂�Fi jk� = Pi jk , i, j, k = 1, 2, 3

· · · · · · · · · · · · · · ·

∂t Fi1...iN + ∂m Fi1...iN m = Pi1...iN , i1, . . . , iN = 1, 2, 3.

In the above equations, and throughout this section, ∂i denotes ∂/∂xi and we employ
the summation convention: repeated indices are summed over the range 1,2,3. The
term Pi1...iN denotes the integral of ξi1 · · · ξiN Q[ f ] over IR3. Because of the special
structure of Q, the terms P , Pi and Pii vanish.

We notice that each equation of (3.3.27) may be regarded as a balance law, in the
spirit of continuum physics. In that interpretation, the moments of f are playing the
role of both density and flux of balanced extensive quantities. In fact, the flux in each
equation becomes the density in the following one. Under the identification

(3.3.28) F = ρ ,

(3.3.29) Fi = ρvi , i = 1, 2, 3,

(3.3.30) Fi j = ρviv j − Ti j , i, j = 1, 2, 3,

(3.3.31) 1
2 Fii = ρε + 1

2ρ|v|2,

(3.3.32) 1
2 Fiik =

(
ρε + 1

2ρ|v|2
)
vk − Tkivi + qk , k = 1, 2, 3,

in (3.3.27), its first equation renders conservation of mass, its second equation ren-
ders conservation of linear momentum, and one half the trace of its third equation
renders conservation of energy, for a heat conducting viscous gas with density ρ,
velocity v, internal energy ε, Cauchy stress T and heat flux q. We regard T as the
composition, T = −pI + σ , of a pressure p = − 1

3 Tii and a shearing stress σ that is
traceless, σi i = 0. By virtue of (3.3.30) and (3.3.31),

(3.3.33) ρε = 3
2 p ,

which is compatible with the constitutive equations (2.5.19) of the polytropic gas,
for γ = 5/3.
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Motivated by the above observations, one may construct a full hierarchy of con-
tinuum theories by truncating the infinite system (3.3.27), retaining only a finite
number of equations. The resulting systems, however, will not be closed, because
the highest order moments, appearing as flux(es) in the last equation(s), and also the
production terms on the right-hand side remain undetermined. In the spirit of con-
tinuum physics, extended thermodynamics closes these systems by postulating that
the highest order moments and the production terms are related to the lower order
moments by constitutive equations that are determined by requiring that all smooth
solutions of the system satisfy identically a certain inequality, akin to the Clausius-
Duhem inequality. This induces a companion balance law which renders the system
symmetrizable and thereby hyperbolic. The principle of material frame indifference
should also be observed by the constitutive relations.

To see how the program works in practice, let us construct a truncation of (3.3.27)
with state vector U = (ρ, v, p, σ, q), which has dimension 13, as σ is symmetric
and traceless. For that purpose, we retain the first three of the equations of (3.3.27),
for a total of 10 independent scalar equations, and also extract 3 equations from the
fourth equation of (3.3.27) by contracting two of the indices. By virtue of (3.3.28),
(3.3.29), (3.3.30), (3.3.31), (3.3.32) and since P, Pi and Pii vanish, we end up with
the system

(3.3.34)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂ j
(
ρv j
) = 0

∂t
(
ρvi
)+ ∂ j

(
ρviv j + pδi j − σi j

) = 0

∂t
(
ρε + 1

2ρ|v|2
)+ ∂k

{(
ρε + 1

2ρ|v|2 + p
)
vk − σk jv j + qk

} = 0

∂t
(
ρviv j − 1

3ρ|v|2δi j − σi j
)+ ∂k

(
Fi jk − 1

3 F��kδi j
) = Pi j

∂t
{(
ρε + 1

2ρ|v|2 + p
)
vk − σk jv j + qk

}+ 1
2∂i Fj jik = 1

2 Piik .

This system can be closed by postulating that Fi jk, Fj jik , Pi j and Piik are functions
of the state vector U = (ρ, v, p, σ, q), which are determined by requiring that all
smooth solutions satisfy identically an inequality

(3.3.35) ∂tϕ + ∂iψi ≤ 0,

where ϕ andψi are (unspecified) functions of U , and ϕ(U ) is convex. After a lengthy
calculation (see the references cited in Section 3.4), one obtains complicated albeit
quite explicit constitutive relations:

(3.3.36) Fi jk = ρviv jvk +
(

pvk + 2
5 qk
)
δi j +

(
pvi + 2

5 qi
)
δ jk +

(
pv j + 2

5 q j
)
δik ,

(3.3.37) Fj jik =
(
ρ|v|2 + 7p

)
vivk +

(
pδik − σik

)|v|2 − σi jv jvk

−σk jv jvi + 14

5
(qivk + qkvi )+ 4

5
q jv jδik+ p

ρ
(5pδik − 7σik) ,
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(3.3.38) Pi j = τ0σi j , Piik = 2τ0σkivi − τ1qk .

To complete the picture, p, τ0 and τ1 must be specified as functions of (ρ, θ).
The special vector U∗ = B(U ), in the notation of Section 1.5, that symmetrizes

the system has components

(3.3.39) U∗ = 1

θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5p

2ρ
− θs − 1

2
|v|2 + 1

2p
σi jviv j − ρ

5p2
qivi |v|2

vi − 1

p
σi jv j + ρ

5p2

(|v|2qi + 2q jv jvi
)

−1+ 2ρ

3p2
qkvk

− 1

2p
σi j − ρ

5p2

(
vi q j + v j qi − 2

3vkqkδi j
)

ρ

5p2
qi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In particular, as explained in Section 1.5, truncating the system (3.3.34) by dropping
the last two equations should be paired with “freezing” the last two components of
U∗, i.e., by setting q = 0 and σ = 0. In that case, the system of the first three
equations of (3.3.34) reduces to the system (3.3.17), in the particular situation where
b = 0, r = 0 and ρε and p are related by (3.3.33). If one interprets (ρ, v, p) as
the basic state variables and (σ, q) as internal state variables, as explained in Section
2.8, then (3.3.17) becomes the relaxed form of the system (3.3.34).

3.3.8 Maxwell’s equations in nonlinear dielectrics:
Another rich source of interesting systems of hyperbolic balance laws is electromag-
netism. The underlying system is Maxwell’s equations

(3.3.40)

⎧⎨⎩ ∂t B = − curl E

∂t D = curl H − J

on IR3, relating the electric field E , the magnetic field H , the electric displacement
D, the magnetic induction B and the current J , all of them 3-vectors.

Constitutive relations determine E, H , and J from the state vector U = (B, D).
For example, when the medium is a homogeneous electric conductor, with linear
dielectric response, at rest relative to the inertial frame, then D = εE, B = µH ,
and J = σ E , where ε is the dielectric constant, µ is the magnetic permeability
and σ is the electric conductivity. In order to account for (possibly) moving media
with nonlinear dielectric response and cross coupling of electromagnetic fields, one
postulates general constitutive equations
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(3.3.41) E = E(B, D), H = H(B, D), J = J (B, D),

where the functions E and H satisfy the lossless condition

(3.3.42)
∂H

∂D
= ∂E

∂B
.

Physically admissible fields must also satisfy the dissipation inequality

(3.3.43) ∂tη(B, D)+ div Q(B, D) ≤ h(B, D)

where (recall (3.3.42))

(3.3.44) η =
∫

[H · d B + E · d D] , Q = E ∧ H, h = −J · E .

Thus η is the electromagnetic field energy and Q is the Poynting vector. A straight-
forward calculation shows that smooth solutions of (3.3.40), (3.3.41) satisfy (3.3.43)
identically, as an equality. Therefore, (η, Q) constitutes an entropy-entropy flux pair
for the system of balance laws (3.3.40), (3.3.41). Since Dη = (H, E), it follows from
the discussion in Section 3.2 that when the electromagnetic field energy function is
uniformly convex, then the change of state vector from U = (B, D) to U∗ = (H, E)
renders the system symmetric hyperbolic.

The dielectric is isotropic when the electromagnetic field energy is invariant un-
der rigid rotations of the vectors B and D, in which case η may depend on (B, D)
solely through the three scalar products B · B, D · D, and B · D.

The Born-Infeld medium, with constitutive equations

(3.3.45)

⎧⎪⎪⎨⎪⎪⎩
E = ∂η

∂D
= 1

η
[D + B ∧ Q], H = ∂η

∂B
= 1

η
[B − D ∧ Q]

η = √1+ |B|2 + |D|2 + |Q|2 , Q = D ∧ B

has remarkably special structure, as we shall see in Section 5.5.

3.3.9 Lundquist’s equations of magnetohydrodynamics:
Interesting systems of hyperbolic balance laws arise in the context of electromechan-
ical phenomena, where the balance laws of mass, momentum and energy of contin-
uum thermomechanics are coupled with Maxwell’s equations. As an illustrative ex-
ample, we consider here the theory of magnetohydrodynamics, which describes the
interaction of a magnetic field with an electrically conducting thermoelastic fluid.
The equations follow from a number of simplifying assumptions, which will now be
outlined.

Beginning with Maxwell’s equations, the electric displacement D is considered
negligible so (3.3.40) yields J = curl H . The magnetic induction B is related to the
magnetic field H by the classical relation B = µH . The electric field is generated by
the motion of the fluid in the magnetic field and so is given by E = B∧v = µH ∧v.
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The fluid is a thermoelastic nonconductor of heat whose thermomechanical prop-
erties are still described by the constitutive relations (3.3.18). The balance of mass
(3.3.17)1 remains unaffected by the presence of the electromagnetic field. On the
other hand, the electromagnetic field exerts a force on the fluid which should be ac-
counted as body force in the balance of momentum (3.3.17)2 . The contribution of
the electric field E to this force is assumed negligible while the contribution of the
magnetic field is J ∧ B = −µH ∧ curlH . By account of the identity

(3.3.46) −H ∧ curl H = div[H H� − 1
2 (H · H)I ],

this body force may be realized as the divergence of the Maxwell stress tensor. We
assume there is no external body force. The electromagnetic effects on the energy
equation (3.3.17)3 are derived by virtue of (3.3.44): The internal energy should
be augmented by the electromagnetic field energy 1

2µ|H |2. The Poynting vector
µ(H ∧ v) ∧ H = µ|H |2v − µ(H · v)H should be added to the flux. Finally, the
electromagnetic energy production −J · E = −µ(H ∧ v) · curl H and the rate of
work (J ∧ B) · v = −µ(H ∧ curl H) · v of the electromagnetic body force cancel
each other out.

We thus arrive at Lundquist’s equations:

(3.3.47)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + div(ρv�) = 0

∂t (ρv)+ div[ρvv� − µH H�] + grad
[

p(ρ, s)+ 1
2µ|H |2

] = 0

∂t
[
ρε(ρ, s)+ 1

2ρ|v|2 + 1
2µ|H |2

]
+ div

[
(ρε(ρ, s)+ 1

2ρ|v|2 + p(ρ, s)+ µ|H |2)v� − µ(H · v)H�] = ρr

∂t H − curl(v ∧ H) = 0.

The above system of balance laws, with state vector U = (ρ, v, s, H), will be hy-
perbolic if (3.3.19) hold. Thermodynamically admissible solutions of (3.3.47) should
also satisfy the Clausius-Duhem inequality (3.3.20). By virtue of (3.3.18), it is easily
seen that any classical solution of (3.3.47) satisfies identically (3.3.20) as an equality.
Thus −ρs is an entropy for the system (3.3.47), with associated entropy flux −ρsv.

3.4 Notes

The theory of nonlinear hyperbolic systems of balance laws traces its origins to the
mid 19th century and has developed over the years conjointly with gas dynamics.
English translations of the seminal papers, with annotations, are collected in the book
by Johnson and Chéret [1]. The classic monograph by Courant and Friedrichs [1]
amply surveys, in mathematical language, the state of the subject at the end of the
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Second World War. It is the distillation of this material that has laid the foundations
of the formalized mathematical theory in its present form.

The great number of books on the theoretical and the numerical analysis of hy-
perbolic systems of conservation laws published in recent years is a testament to the
vitality of the field. The fact that these books complement each other, as they differ
in scope, style and even content, is indicative of the breadth of the area.

Students who prefer to make their first acquaintance with the subject through a
bird’s-eye view, may begin with the outlines in the treatise by M.E. Taylor [2], the
textbooks by Evans [2] and Hörmander [2], or the lecture notes of Lax [5], Liu [28]
and Dafermos [6,10].

On the theoretical side, Jeffrey [2], Rozdestvenski and Janenko [1], and Smoller
[3] are early comprehensive texts at an introductory level. The more recent books by
Serre [11], Bressan [9], Holden and Risebro [2], and LeFloch [5] combine a general
introduction to the subject with advanced, deeper investigations in selected direc-
tions. The encyclopedic article by Chen and Wang [1] uses the Euler equations of
gas dynamics as springboard for surveying broadly the theory of strictly hyperbolic
systems of conservation laws in one-space dimension. Finally, Majda [4], Chang and
Hsiao [3], Li, Zhang and Yang [1], Yuxi Zheng [1], Lu [2], and Perthame [2] are spe-
cialized monographs, more narrowly focussed. The above books will be cited again,
in later chapters, as their content becomes relevant to the discussion, and thus the
reader will get some idea of their respective offerings.

Turning to numerical analysis, LeVeque [1] is an introductory text, while the
books by Godlewski and Raviart [1,2], and LeVeque [2] provide a more compre-
hensive and technical coverage together with a voluminous list of references. Other
useful sources are the books by Kröner [1], Sod [1], Toro [1], and Holden and
Risebro [2], and the lecture notes of Tadmor [2].

Another rich resource is the text by Whitham [2] which presents a panorama
of connections of the theory with a host of diverse applications as well as a survey
of ideas and techniques devised over the years by applied mathematicians studying
wave propagation, of which many are ready for more rigorous analytical develop-
ment. Zeldovich and Raizer [1,2] are excellent introductions to gas dynamics from
the perspective of physicists and may be consulted for building intuition.

The student may get a sense of the evolution of research activity in the field over
the past twenty years by consulting the Proceedings of the International Conferences
on Hyperbolic Problems which are held biennially. Those that have already appeared
at the time of this writing, listed in chronological order and under the names of their
editors, are: Carasso, Raviart and Serre [1], Ballmann and Jeltsch [1], Engquist and
Gustafsson [1], Donato and Oliveri [1], Glimm, Grove, Graham and Plohr [1], Fey
and Jeltsch [1], Freistühler and Warnecke [1], and Hou and Tadmor [1].

An insightful perspective on the state of the subject at the turn of the century is
provided by Serre [16].

The term “entropy” in the sense employed here was introduced by Lax [4]. A col-
lection of informative essays on various notions of “entropy” in physics and math-
ematics is found in the book edited by Greven, Keller and Warnecke [1]. For an
interesting discussion of the issue of symmetrizability, see Panov [2].
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The systems (3.3.17) and (3.3.21) are commonly called Euler’s equations. There
is voluminous literature on various aspects of their theory, some of which will be
cited in subsequent chapters. For a detailed functional analytic study in several space
dimensions, together with an extensive bibliography, see the monograph of Lions
[2]. A classification of convex entropies is found in Harten [1] and Harten, Lax,
Levermore and Morokoff [1].

For a thorough treatment of extended thermodynamics and its relation to the ki-
netic theory, the reader should consult the monograph by Müller and Ruggeri [1]. The
issue of generating simpler systems by truncating more complex ones is addressed
in detail by Boillat and Ruggeri [1].

For a systematic development of electrothermomechanics, along the lines of the
development of continuum thermomechanics in Chapter II, see Coleman and Dill [1]
and Grot [1]. Numerous examples of electrodynamical problems involving hyper-
bolic systems of balance laws are presented in Bloom [1]. The constitutive equations
(3.3.45) were proposed by Born and Infeld [1]. The reader may find some of their
remarkable properties, together with relevant references, in Chapter V. For magneto-
hydrodynamics see for example the texts of Cabannes [1] and Jeffrey [1].

The theory of relativity is a rich source of interesting hyperbolic systems of bal-
ance laws, which will not be tapped in this work. When the fluid velocity is com-
parable to the speed of light, the Euler equations should be modified to account for
special relativistic effects; cf. Taub [1], Friedrichs [3] and the book by Christodoulou
[1]. The study of these equations from the perspective of the theory of hyperbolic
balance laws has already produced a substantial body of literature. Smoller and Tem-
ple [3] is a detailed survey article with copious references. See also Ruggeri [1,2],
Smoller and Temple [1,2], Pant [1] and Jing Chen [1].

Hyperbolic systems of balance laws, with special structure, govern separation
processes, such as chromatography and electrophoresis, employed in chemistry. In
that connection the reader may consult the monograph by Rhee, Aris and Amundson
[1]. The system of electrophoresis will be recorded later, in Section 7.3, and some of
its special properties will be discussed in Chapters VII and VIII.



IV

The Cauchy Problem

The theory of the Cauchy problem for hyperbolic conservation laws is confronted
with two major challenges. First, classical solutions, starting out from smooth initial
values, spontaneously develop discontinuities; hence in general only weak solutions
may exist in the large. Next, weak solutions to the Cauchy problem fail to be unique.
One does not have to dig too deep in order to encounter these difficulties. As shown in
Sections 4.2 and 4.4, they arise even at the level of the simplest nonlinear hyperbolic
conservation laws, in one or several space dimensions.

The Cauchy problem for weak solutions will be formulated in Section 4.3. To
overcome the obstacle of nonuniqueness, restrictions need to be imposed that will
weed out unstable, physically irrelevant, or otherwise undesirable solutions, in hope
of singling out a unique admissible solution. Two admissibility criteria will be intro-
duced in this chapter: the requirement that admissible solutions satisfy a designated
entropy inequality; and the principle that admissible solutions should be limits of
families of solutions to systems containing diffusive terms, as the diffusion asymp-
totically vanishes. A preliminary comparison of these criteria will be conducted.

The chapter will close with the formulation of the initial-boundary value problem
for hyperbolic conservation laws.

4.1 The Cauchy Problem: Classical Solutions

To avoid trivial complications, we focus the investigation on homogeneous hyper-
bolic systems of conservation laws in canonical form,

(4.1.1) ∂tU (x, t)+ div G(U (x, t)) = 0,

even though the analysis can be extended in a routine manner to general hyperbolic
systems of balance laws (3.1.1). The spatial variable x takes values in IRm and time t
takes values in [0, T ), for some T > 0 or possibly T = ∞. The state vector U takes
values in some open subset O of IRn and G = (G1, . . . ,Gm) is a given smooth
function from O to IMn×m . The system (4.1.1) is hyperbolic when, for every fixed
U ∈ O and ν ∈ Sm−1, the n × n matrix



68 IV The Cauchy Problem

(4.1.2) �(ν;U ) =
m∑
α=1

ναDGα(U )

has real eigenvalues λ1(ν;U ), . . . , λn(ν;U ) and n linearly independent eigenvectors
R1(ν;U ), . . . , Rn(ν;U ).

To formulate the Cauchy problem, we assign initial conditions

(4.1.3) U (x, 0) = U0(x), x ∈ IRm,

where U0 is a function from IRm to O.
A classical solution of (4.1.1) is a locally Lipschitz function U , defined on

IRm ×[0, T ) and taking values in O, which satisfies (4.1.1) almost everywhere. This
function solves the Cauchy problem, with initial data U0 , if it also satisfies (4.1.3)
for all x ∈ IRm .

As we shall see, the theory of the Cauchy problem is greatly enriched when the
system is endowed with an entropy η with associated entropy flux Q, related by

(4.1.4) DQα(U ) = Dη(U )DGα(U ), α = 1, · · · ,m.

In that case, any classical solution of (4.1.1) will satisfy the additional conservation
law

(4.1.5) ∂tη(U (x, t))+ div Q(U (x, t)) = 0.

As we proceed with the development of the theory, it will become clear that con-
vex entropy functions exert a stabilizing influence on solutions. As a first indication
of that effect, the following proposition shows that for systems endowed with a con-
vex entropy, the range of influence of the initial data on solutions of the Cauchy
problem is finite.

4.1.1 Theorem. Assume (4.1.1) is a hyperbolic system, with characteristic speeds
λ1(ν;U ) ≤ · · · ≤ λn(ν;U ), which is endowed with an entropy η(U ) and associated
entropy flux Q(U ). Suppose U (x, t) is a classical solution of (4.1.1) on IRm×[0, T ),
with initial data (4.1.3), where U0 is constant on a half-space: For some ξ ∈ Sm−1,
U0(x) = Ū =constant whenever x · ξ ≥ 0. Assume, further, that D2η(Ū ) is positive
definite. Then, for any t ∈ [0, T ), U (x, t) = Ū whenever x · ξ ≥ λn(ξ ; Ū )t .

Proof. Without loss of generality, we may assume that η(Ū ) = 0, Dη(Ū ) = 0,
Qα(Ū ) = 0, DQα(Ū ) = 0, α = 1, . . . ,m, since otherwise we just replace the
given entropy-entropy flux pair with the new pair

(4.1.6) η̄(U ) = η(U )− η(Ū )− Dη(Ū )[U − Ū ],

(4.1.7) Q̄(U ) = Q(U )− Q(Ū )− Dη(Ū )
[
G(U )− G(Ū )

]
.



4.1 The Cauchy Problem: Classical Solutions 69

For each s ∈ IR, ν ∈ Sm−1 and U ∈ O, we define

(4.1.8) �(s, ν;U ) = sη(U )− Q(U )ν,

noting that �(s, ν; Ū ) = 0 and D�(s, ν; Ū ) = 0. Furthermore, upon using (4.1.4)
and (4.1.2),

(4.1.9) D2�(s, ν; Ū ) = D2η(Ū )[s I −�(ν; Ū )].
Hence, for j, k = 1, . . . , n,

(4.1.10) R j (ν; Ū )�D2�(s, ν; Ū )Rk(ν; Ū )

= [s − λk(ν; Ū )]R j (ν; Ū )�D2η(Ū )Rk(ν; Ū ).

The right-hand side of (4.1.10) vanishes for j �= k, by virtue of (3.2.5), and has the
same sign as s − λk(ν; Ū ) for j = k, since D2η(Ū ) is positive definite.

For ε > 0, we set s̄ = max
ν∈Sm−1

λn(ν; Ū ) + ε and ŝ = λn(ξ ; Ū ) + ε. Then there

exists δ = δ(ε) such that

(4.1.11)

⎧⎨⎩�(s̄, ν;U ) ≥ 1
4ε|U − Ū |2, |U − Ū | < δ(ε), ν ∈ Sm−1

�(ŝ, ξ ;U ) ≥ 1
4ε|U − Ū |2, |U − Ū | < δ(ε).

To establish the assertion of the theorem, it suffices to show that for each fixed
ε > 0 and t ∈ [0, T ), U (x, t) = Ū whenever x · ξ ≥ ŝt .

With any point (y, τ ), where τ ∈ (0, T ) and y · ξ ≥ ŝτ , we associate the cone

(4.1.12)
Ky,τ =

{
(x, t) : 0 ≤ t ≤ τ, |x − y| ≤ s̄(τ − t), x · ξ ≥ y · ξ − ŝ(τ − t)

}
,

which is contained in the set {(x, t) : 0 ≤ t < T, x · ξ ≥ ŝt}. Thus, the boundary of
the t-section of Ky,τ is the union Pt∪St of a subset Pt of a hyperplane perpendicular
to ξ , and a subset St of the sphere with center y and radius s̄(τ − t). The exterior
unit normal to the t-section at a point x is −ξ if x ∈ Pt , and s̄−1(τ − t)−1(x − y)
if x ∈ St . Therefore, integrating (4.1.5) over Ky,τ , applying Green’s theorem and
using the notation (4.1.8) we obtain
(4.1.13)
τ∫

0

∫
Pt

�(ŝ, ξ ;U )dHm−1(x)dt+
τ∫

0

∫
St

�
(
s̄,−s̄−1(τ−t)−1(x−y);U)dHm−1(x)dt = 0.

After this preparation, assume that the assertion of the theorem is false. Since U (x, t)
is continuous, and U (x, 0) = Ū for x ·ξ ≥ 0, one can find (y, τ ), with τ ∈ (0, T ) and
y · ξ ≥ ŝτ , such that U (y, τ ) �= Ū and |U (x, t)− Ū | < δ(ε) for all (x, t) ∈ Ky,τ . In
that case, (4.1.13) together with (4.1.11) yield a contradiction. The proof is complete.
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It is interesting that in the above proof a crude, “energy”, estimate provides the
sharp value of the rate of growth of the range of influence of the initial data.

As we shall see in Chapter V, the Cauchy problem is well-posed in the class of
classical solutions, so long as U0 is sufficiently smooth and T is sufficiently small.
In the large, however, the situation is quite different. This will be demonstrated in the
following section.

4.2 Breakdown of Classical Solutions

Here we shall make the acquaintance of two distinct mechanisms, namely “wave
breaking” and “mass explosion”, which may induce the breakdown of classical so-
lutions of the Cauchy problem for nonlinear hyperbolic conservation laws.

We shall see first that nonlinearity forces compressive wave profiles to become
steeper and eventually break, so that a derivative of the solution blows up. This will
be demonstrated in the context of the simplest example of a nonlinear hyperbolic
conservation law in one spatial variable, namely the Burgers equation

(4.2.1) ∂t u(x, t)+ ∂x
(

1
2 u2(x, t)

) = 0.

This deceptively simple-looking equation pervades the theory of hyperbolic con-
servation laws, as it repeatedly emerges, spontaneously, in the analysis of general
systems; see for instance Section 7.6.

Suppose u(x, t) is a smooth solution of the Cauchy problem for (4.2.1), with
initial data u0(x), defined on some time interval [0, T ). The characteristics of (4.2.1)
associated with this solution are integral curves of the ordinary differential equation
dx/dt = u(x, t). Letting an overdot denote differentiation · = ∂t + u∂x in the
characteristic direction, we may rewrite (4.2.1) as u̇ = 0, which shows that u stays
constant along characteristics. This implies, in turn, that characteristics are straight
lines.

Setting ∂x u = v and differentiating (4.2.1) with respect to x yields the equation
∂tv+ u∂xv+ v2 = 0, or v̇+ v2 = 0. Therefore, along the characteristic issuing from
any point (x̄, 0) where u′0(x̄) < 0, |∂x u| will be an increasing function which blows

up at t̄ = [−u′0(x̄)
]−1. It is thus clear that u(x, t) must break down, as classical

solution, at or before time t̄ .
For future reference, we shall compare and contrast the behavior of solutions of

(4.2.1) with the behavior of solutions to Burgers’s equation with damping:

(4.2.2) ∂t u(x, t)+ ∂x
(

1
2 u2(x, t)

)+ u(x, t) = 0.

The arguments employed above for (4.2.1), adapted to (4.2.2), yield that the evo-
lution of classical solutions u, and their derivatives v = ∂x u, along characteristics
dx/dt = u(x, t), is now governed by the equations u̇ + u = 0, and v̇ + v2 + v = 0.
The last equation exemplifies the competition between the destabilizing action of
nonlinear response and the smoothing effect of damping: When the initial data u0
satisfy u′0(x) ≥ −1, for all x ∈ (−∞,∞), then damping prevails, ∂x u remains
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bounded, and a global classical solution exists for the Cauchy problem. By contrast,
if u′0(x̄) < −1, for some x̄ ∈ (−∞,∞), then waves break in finite time, as v = ∂x u
must blow up along the characteristic issuing from the point (x̄, 0).

As we shall see in Section 7.8, the wave-breaking catastrophe occurs generically
to solutions of genuinely nonlinear systems of conservation laws in one-space di-
mension. In fact, waves are more likely to break in a single spatial dimension, where
characteristics are confined to a plane and cannot avoid colliding with each other.
Nevertheless, in Section 6.1 it is shown that wave breaking commonly occurs even
in several spatial dimensions.

Next we consider a different scenario of breakdown of classical solutions, by
“mass explosion”: Even though the total “mass” is conserved, the restrictions on
the rate of growth of the range of influence, imposed by Theorem 4.1.1, prevent the
timely dispersion of mass peaks, thus producing sizable fluxes that segregate positive
from negative masses, eventually driving them to infinity.

To see whether the above scenario may materialize, consider the Cauchy problem
for the Burgers equation (4.2.1), with initial data u0(·) supported in the interval [0, 1].
Suppose a classical solution u(x, t) exists on some time interval [0, T ). In that case,
by virtue of Theorem 4.1.1, u(·, t) will be supported in [0, 1], for any t ∈ [0, T ). We
define the weighted total mass

(4.2.3) M(t) =
1∫

0

xu(x, t)dx,

and use (4.2.1) and Schwarz’s inequality to derive the differential inequality

(4.2.4) Ṁ(t) = − 1
2

1∫
0

x∂x
(
u2(x, t)

)
dx = 1

2

1∫
0

u2(x, t)dx ≥ 3
2 M2(t).

Thus, if M(0) > 0, M(t) must blow up no later than at time t∗ = 2
3 M(0)−1. It is not

difficult to see, however, that under the current conditions, waves will start breaking
no later than at time t̄ = 1

6 M(0)−1, i.e. the wave-breaking catastrophe will occur
earlier than the mass explosion catastrophe.

Conditions that may trigger mass explosion are commonly present in hyperbolic
systems of conservation laws in several spatial dimensions. We demonstrate this here
in the context of the system governing three-dimensional isentropic flow of poly-
tropic gases, namely (3.3.21) with zero body force, b = 0, and equation of state
p(ρ) = κργ , where κ > 0 and γ > 1. We write this system in canonical form,

(4.2.5)

⎧⎨⎩
∂tρ + div m� = 0

∂t m + div
(
ρ−1mm�

)+ grad
(
κργ

) = 0,

using as state variables the mass density ρ and the momentum density m = ρv.

The fast characteristic speed is λ(ρ) = [p′(ρ)]1/2 = [κγργ−1
]1/2

, in any direction
ν ∈ S2.
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We consider the Cauchy problem for (4.2.5), with initial values ρ(x, 0) =
ρ0 =constant, for x ∈ IR3, and m(x, 0) supported in the unit ball, m(x, 0) = 0
if |x | ≥ 1. Suppose there exists a classical solution (ρ(x, t),m(x, t)) on some time
interval [0, T ). By virtue1 of Theorem 4.1.1, ρ(x, t) = ρ0 and m(x, t) = 0, for any
t ∈ [0, T ) and |x | ≥ r(t), where r(t) = 1+ λ(ρ0)t . In particular, from (4.2.5)1 ,

(4.2.6)
∫

|x |<r(t)

[ρ(x, t)− ρ0] dx = 0, 0 ≤ t < T .

We will monitor the evolution of the weighted radial momentum

(4.2.7) M(t) =
∫

|x |<r(t)

x · m(x, t)dx .

We differentiate (4.2.7) with respect to t , express the time derivative ∂t m in terms of
spatial derivatives, through (4.2.5)2 , and integrate by parts to get

(4.2.8) Ṁ(t) =
∫

|x |<r(t)

[
ρ−1|m|2 + 3κ

(
ργ − ρ

γ

0

)]
dx .

Since γ ≥ 1, (4.2.6) and Jensen’s inequality imply

(4.2.9)
∫

|x |<r(t)

(
ργ − ρ

γ

0

)
dx ≥ 0.

Furthermore, by (4.2.7), (4.2.6) and Schwarz’s inequality,

(4.2.10)

M2(t) ≤
∫

|x |<r(t)

ρ|x |2dx
∫

|x |<r(t)

ρ−1|m|2dx

≤ 4π

3
ρ0r5(t)

∫
|x |<r(t)

ρ−1|m|2dx .

Upon combining (4.2.8) with (4.2.9) and (4.2.10), we end up with the differential
inequality

(4.2.11) Ṁ(t) ≥ 3

4πρ0
[1+ λ(ρ0)t]−5 M2(t).

After an elementary integration, recalling that λ(ρ0) =
[
κγρ

γ−1
0

] 1
2
, we conclude

that if

1 Recall that (4.2.5) is endowed with the convex entropy η = κ
γ−1ρ

γ + 1
2ρ |m|2.
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(4.2.12) M(0) >
16π

3
(κγ )

1
2 ρ

γ+1
2

0 ,

then M(t)will blow up in finite time. Thus, classical solutions of the Cauchy problem
for the system of isentropic gas dynamics, with large initial data, generally break
down in finite time.

More refined analysis, reported in the literature cited in Section 4.8, shows that
mass explosion may also occur in nonisentropic gas dynamics, and even when the
initial data are not necessarily large. Other mechanisms that may induce the break-
down of smooth solutions include wave focusing, formation of vortex sheets, and
the appearance of vacuum. It is not easy to determine which kind of catastrophe will
occur first in each case.

4.3 The Cauchy Problem: Weak Solutions

In view of the examples of breakdown of classical solutions presented in the previous
section—and many more that will be encountered in the sequel—it becomes imper-
ative to consider weak solutions to systems of conservation laws (4.1.1). The natural
notion for a weak solution should be determined in conjunction with an existence
theory. The issue of existence of weak solutions has been settled in a definite manner
for scalar conservation laws, in any number of spatial variables (see Chapter VI),
and at least partially for systems in one spatial variable (see Chapters XIII–XVI); it
remains totally unsettled, however, for systems in several spatial variables. In the ab-
sence of a definitive existence theory, and in order to introduce a number of relevant
notions, without imposing technical growth conditions on the flux function G, we
shall define here as weak solutions of (4.1.1) locally bounded, measurable functions
U , defined on IRm ×[0, T ) and taking values in O, which satisfy (4.1.1) in the sense
of distributions.

Recalling Lemma 1.3.3, we normalize any weak solution U of (4.1.1) so that the
map t �→ U (·, t) becomes continuous on [0, T ) in L∞(X ) weak∗, for any compact
subset X of IRm . A normalized weak solution of (4.1.1) will then solve the Cauchy
problem (4.1.1), (4.1.3) if it also satisfies (4.1.3) almost everywhere on IRm . Lemma
1.3.3 also implies

(4.3.1)

T∫
τ

∫
IRm

[
∂t�U +

m∑
α=1

∂α�Gα(U )

]
dx dt +

∫
IRm

�(x, τ )U (x, τ )dx = 0,

for every Lipschitz test function �(x, t), with compact support in IRm × [0, T ) and
values in IM1×n , and any τ ∈ [0, T ). In particular,

(4.3.2)

T∫
0

∫
IRm

[
∂t�U +

m∑
α=1

∂α�Gα(U )

]
dx dt +

∫
IRm

�(x, 0)U0(x)dx = 0,
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which may serve as an equivalent definition of a weak solution of (4.1.1), (4.1.3).
The continuity of t �→ U (·, t) also induces the desirable semigroup property: If
U (x, t) is a weak solution of (4.1.1) on [0, T ), with initial values U (x, 0), then for
any τ ∈ [0, T ) the function Uτ (x, t) = U (x, t+τ) is a weak solution of (4.1.1) with
initial values Uτ (x, 0) = U (x, τ ).

As the system is in divergence form, there is a mechanism of regularity transfer
from the spatial to the temporal variables:

4.3.1 Theorem. Let U be a bounded weak solution of (4.1.1) on [0, T ) such that, for
any fixed t ∈ [0, T ), U (·, t) ∈ BV (IRm) and T VIRm U (·, t) ≤ V , for all t ∈ [0, T ).
Then t �→ U (·, t) is Lipschitz continuous in L1(IRm) on [0, T ),

(4.3.3) ‖U (·, σ )−U (·, τ )‖L1(IRm) ≤ aV |σ − τ |, 0 ≤ τ < σ < T,

where a depends solely on the Lipschitz constant of G. In particular, U is in BVloc

on IRm × [0, T ).

Proof. Fix 0 ≤ τ < σ < T and any 
 ∈ C∞0
(
IRm; IM1×n

)
, with |
(x)| ≤ 1 for

x ∈ IRm . From (4.3.1) it follows that

(4.3.4)
∫

IRm


(x)[U (x, σ )−U (x, τ )]dx =
σ∫
τ

∫
IRm

m∑
α=1

∂α
(x)Gα(U (x, t))dx dt.

The spatial integral on the right-hand side is majorized by the total variation of
G(U (·, t)), which in turn is bounded by aV . Taking the supremum of (4.3.4) over all

 with |
(x)| ≤ 1, we arrive at (4.3.3).

Theorem 1.7.2 together with (4.3.3) imply that U is in BVloc on IRm × [0, T ).
The proof is complete.

For BVloc solutions of the system (4.1.1), which is in canonical form, the
Rankine-Hugoniot jump condition (3.1.3) becomes

(4.3.5) −s
[
U+ −U−

]+ [G(U+)− G(U−)
]
ν = 0.

4.4 Nonuniqueness of Weak Solutions

Extending the notion of solution from classical to weak introduces a new difficulty:
nonuniqueness. To see this, consider the Cauchy problem for the Burgers equation
(4.2.1), with initial data

(4.4.1) u(x, 0) =
{−1, x < 0

1, x > 0.

This is an example of the celebrated Riemann problem, which will be discussed
at length in Chapter IX. The problem (4.2.1), (4.4.1) admits infinitely many weak
solutions, including the family
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(4.4.2) uα(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, −∞ < x ≤ −t

x

t
, −t < x ≤ −αt

−α, −αt < x ≤ 0

α, 0 < x ≤ αt

x

t
, αt < x ≤ t

1, t < x <∞,

for any α ∈ [0, 1]. Indeed, uα(x, t) satisfies (4.2.1), in the classical sense, provided
x/t /∈ {0,±α,±1}. The lines x/t = ±1, for α ∈ [0, 1], and x/t = ±α, for α
in (0, 1), are just weak fronts, across which uα is continuous. Finally, for α �= 0,
the line x = 0 is a stationary shock front across which the Rankine-Hugoniot jump
condition (4.3.5) holds.

To resolve the issue of nonuniqueness, additional restrictions, in the form of
admissibility conditions, shall be imposed on weak solutions. This will require a
lengthy discussion, which will begin in the following two sections and culminate in
Chapters VIII and IX. In particular, it will turn out that u0(x, t) is the sole admissible
solution of the simple problem (4.2.1), (4.4.1) considered in this section.

4.5 Entropy Admissibility Condition

As we saw in Chapter III, every system of balance laws arising in continuum physics
is accompanied by an entropy inequality that must be satisfied by any physically
meaningful process, as it expresses, explicitly or implicitly, the Second Law of ther-
modynamics. This motivates the following procedure for characterizing admissible
weak solutions of hyperbolic systems of conservation laws.

Assume our system (4.1.1) is endowed with a designated entropy η, associated
with an entropy flux Q, so that (4.1.4) holds. A weak solution of (4.1.1), in the
sense of Section 4.3, defined on IRm × [0, T ), will satisfy the entropy admissibility
criterion, relative to η, if

(4.5.1) ∂tη(U (x, t))+ div Q(U (x, t)) ≤ 0

holds, in the sense of distributions, on IRm × [0, T ).
Clearly, any classical solution of (4.1.1) is admissible, as it satisfies the equality

(4.1.5). Another relevant remark is that the entropy admissibility criterion induces a
time irreversibility condition on solutions: If U (x, t) is an admissible weak solution
of (4.1.1) which satisfies (4.5.1) as a strict inequality, then Ū (x, t) = U (−x,−t),
which is also a solution, is not admissible.
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A natural question is how one may designate an appropriate entropy for the ad-
missibility criterion. For instance, it is clear that a weak solution that is admissible
relative to an entropy η fails to be admissible relative to the entropy η̄ = −η. When
the system derives from physics, then it is physics that should designate the natu-
ral entropy. In the absence of guidance from physics, one has to use mathematical
arguments. It is, of course, desirable that the admissibility criterion induced by the
designated entropy should be compatible with admissibility conditions induced by
alternative criteria, to be introduced later. Another natural condition is that admissi-
ble weak solutions should enjoy reasonable stability properties. As we shall see, all
of the above requirements are met when the designated entropy η(U ) is convex, or
at least “convexlike”.

The reader should bear in mind that convexity is a relevant property of the entropy
only when the system is in canonical form. In the general case, convexity of η should
be replaced by the condition that the (n×n matrix-valued) derivative DB(U, x, t) of
the (n-vector-valued) function B(U, x, t) in (3.2.2) is positive definite.

A review of the examples considered in Section 3.3 reveals that the entropy, as
a function of the state vector that converts the system of balance laws into canoni-
cal form, is indeed convex in the case of the thermoelastic fluid (example 3.3.5), the
isentropic thermoelastic fluid (example 3.3.6) and magnetohydrodynamics (example
3.3.9). This may raise expectations that in the equations of continuum physics en-
tropy is generally convex. However, as we shall see in Section 5.4, this is not always
the case; hence the necessity to consider a broader class of entropy functions.

For any weak solution U satisfying the entropy admissibility criterion, the left-
hand side of (4.5.1) is a nonpositive distribution, and thereby a measure, which shall
be dubbed the entropy production measure. Then Lemma 1.3.3 implies that the
map t �→ η(U (·, t)) is continuous on [0, T )\F in L∞(D) weak∗, for any compact
subset D of IRm , where F is at most countable. Furthermore, for every nonnegative
Lipschitz test function ψ(x, t), with compact support in IRm × [0, T ), and any
τ ∈ [0, T )\F ,

(4.5.2)

T∫
τ

∫
IRm

[
∂tψ η(U )+

m∑
α=1

∂αψ Qα(U )

]
dx dt +

∫
IRm

ψ(x, τ ) η(U (x, τ ))dx ≥ 0.

There are good reasons for conjecturing that the set F is actually empty. Indeed,
τ ∈ F if and only if the entropy production measure of the set IRm × {τ } is (strictly)
negative. However, it is to be expected that sets of Hausdorff dimension m − 1 with
nonzero entropy production should look like shock fronts, propagating with finite
speed. At the time of this writing, there is a rigorous proof that F = ∅ only in the
scalar case, n = 1 (see Section 6.8). As we shall see, it is a great help to the analysis
if at least 0 /∈ F , in which case (4.5.2), with τ = 0, becomes
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(4.5.3)

T∫
0

∫
IRm

[
∂tψ η(U )+

m∑
α=1

∂αψ Qα(U )

]
dx dt+

∫
IRm

ψ(x, 0) η(U0(x))dx ≥ 0.

Accordingly, it is (4.5.3), rather than the slightly weaker condition (4.5.1), that is
often postulated in the literature as the entropy admissibility criterion for the weak
solution U . It should be noted, however, that admissible weak solutions character-
ized through (4.5.3) do not necessarily possess the desirable semigroup property, i.e.
U (x, t) admissible does not generally imply that Uτ (x, t) = U (x, t + τ) is also ad-
missible, for all τ ∈ [0, T ). Thus, in the author’s opinion, admissibility should be
defined either through (4.5.1) alone or through (4.5.2), for all τ ∈ [0, T ). Hopefully,
an eventual proof that F is empty will render the distinction moot.

A first indication of the enhanced regularity enjoyed by admissible weak
solutions when the entropy is convex is provided by the following

4.5.1 Theorem. Assume U (x, t) is a weak solution of (4.1.1) on IRm ×[0, T ), which
satisfies the entropy admissibility condition (4.5.1) relative to a uniformly convex
entropy η(U ). Then t �→ U (·, t) is continuous on [0, T )\F in L P

loc(IR
m), for any

p ∈ [1,∞), where F is at most countable. Moreover, if (4.5.2) holds for some τ
in [0, T ), then t �→ U (·, t) is continuous from the right at τ in L p

loc(IR
m), for any

p ∈ [1,∞).

Proof. Since both t �→ U (·, t) and t �→ η(U (·, t)) are continuous on [0, T )\F in
L∞(D) weak∗, for any compact subset D of IRm , and η(U ) is uniformly convex,
it follows that t �→ U (·, t) is strongly continuous on [0, T )\F in L p(D), for any
p ∈ [1,∞).

Assume now (4.5.2) holds, for some τ ∈ [0, T ). Fix ε > 0 and apply (4.5.2)
for ψ(x, t) = φ(x)g(t), where ϕ ∈ C∞0 (IRm), with ϕ(x) ≥ 0 for x ∈ IRm , and
g(t) = 1 − ε−1(t − τ), for 0 ≤ t < τ + ε, and g(t) = 0, for t + ε ≤ t < ∞. This
gives

(4.5.4)
1

ε

τ+ε∫
τ

∫
IRm

ϕ(x) [η(U (x, τ ))− η(U (x, t))] dx dt ≥ O(ε).

Letting ε ↓ 0 and recalling Lemma 1.3.3, we deduce that ess lim
t↓τ η(U (·, t)) ≤

η(U (·, τ )), where the limit is in L∞(D) weak∗, for any compact subset D of IRm .
Since lim

t↓τ U (·, t) = U (·, τ ), again in L∞(D) weak∗, and η(U ) is uniformly convex,

it follows that, as t ↓ τ, U (·, t) −→ U (·, τ ), strongly in L p(D), for any p ∈ [1,∞).
The proof is complete.

It should be reiterated here that the set F in the above theorem is probably empty.
Whenever the admissible solution U is of class BVloc , Theorem 1.8.2 implies

that the entropy production measure is concentrated on the set of points of approxi-
mate jump discontinuity of U , i.e. on the shock fronts. In that case, (4.5.1) reduces
to the local condition (1.8.5), which in the present notation takes the form
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(4.5.5) −s
[
η(U+)− η(U−)

]+ [Q(U+)− Q(U−)
]
ν ≤ 0.

For admissibility of U relative to the entropy η, (4.5.5) has to be tested at any point
of a shock that propagates in the direction ν ∈ Sm−1 with speed s.

As an application, let us test the admissibility of the family uα(x, t) of solu-
tions to (4.2.1), (4.4.1), defined by (4.4.2), relative to the entropy-entropy flux pair(

1
2 u2, 1

3 u3
)
. It is clear that, for any α ∈ (0, 1], the stationary shock x = 0 violates

(4.5.5). Thus, the sole admissible solution in that family is u0(x, t), which is Lips-
chitz continuous, away from the origin.

4.6 The Vanishing Viscosity Approach

According to the viscosity criterion, a solution U of (4.1.1) is admissible provided
it is the µ ↓ 0 limit of solutions Uµ to a system of conservation laws with diffusive
terms:

(4.6.1) ∂tU (x, t)+
m∑
α=1

∂αGα(U (x, t)) = µ

m∑
α,β=1

∂α[Bαβ(U (x, t))∂βU (x, t)],

where the Bαβ are n × n matrix-valued functions defined on O.
The motivation for this principle and the term “vanishing viscosity” derive from

continuum physics: As we saw in earlier chapters, the balance laws of thermoelastic
materials under adiabatic conditions induce first order systems of hyperbolic type.
By contrast, the balance laws for thermoviscoelastic, heat-conducting materials, in-
troduced in Section 2.6, generate systems of second order in the spatial variables,
containing diffusive terms akin to those appearing on the right-hand side of (4.6.1).
In nature, every material has viscous response and conducts heat, to a certain degree.
Classifying a particular material as an elastic nonconductor of heat simply means
that viscosity and heat conductivity are negligible, albeit not totally absent. Conse-
quently, the theory of adiabatic thermoelasticity may be physically meaningful only
as a limiting case of thermoviscoelasticity, with viscosity and heat conductivity tend-
ing to zero. It is this premise that underlies the vanishing viscosity approach.

In laying down (4.6.1), the first task is to select the n × n matrices Bαβ(U ), for
α, β = 1, . . . ,m. When dealing with systems of physical origin, the natural choice
for these matrices is dictated, or at least suggested, by physics. For example, ther-
moelastic fluid nonconductors of heat should be regarded as Newtonian fluids with
constitutive equations (2.6.16), (2.6.17) having vanishingly small viscosity and heat
conductivity. Accordingly, when (4.1.1) stands for the system (3.3.17) of balance
laws of mass, momentum and energy for thermoelastic fluids that do not conduct
heat (with zero body force and heat supply), the appropriate choice for the corre-
sponding system (4.6.1), with diffusive terms, should be2

2 We write this system in components form, let ∂i denote ∂/∂xi and employ the summation
convention: Repeated indices are summed over the range 1,2,3.
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(4.6.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂ j (ρv j ) = 0

∂t (ρvi )+ ∂ j
(
ρviv j

)+ ∂i p(ρ, s) = λ∂i∂ jv j + µ∂ j
(
∂iv j + ∂ jvi

)
∂t
[
ρε(ρ, s)+ 1

2ρ|v|2
]+ ∂ j

[(
ρε(ρ, s)+ 1

2ρ|v|2 + p(ρ, s)
)
v j
]

= λ∂i
(
vi∂ jv j

)+ µ∂ j
[(
∂iv j + ∂ jvi

)
vi
]+ κ∂i∂iθ.

The reader should take notice that (4.6.2) contains three independent physical
parameters, namely the bulk viscosity λ+ 2

3µ, the shear viscosity µ and the thermal
conductivity κ , which might all be very small albeit of different orders of magnitude.
Thus, one should be prepared to consider formulations of the vanishing viscosity
principle, more general than (4.6.1), involving several independent small parameters.
However, this generalization will not be pursued here.

Physics suggests the natural form for (4.6.1) in every example considered in
Section 3.3, including electromagnetism, magnetohydrodynamics, etc. On the other
hand, in the absence of guidance from physics, or for mere analytical and computa-
tional convenience, one may experiment with artificial viscosity added to the right-
hand side of (4.1.1). For example, one may add artificial viscosity to (4.2.1) to derive
the Burgers equation with viscosity:

(4.6.3) ∂t u(x, t)+ ∂x
(

1
2 u2(x, t)

) = µ∂2
x u(x, t).

It is clear that artificial viscosity should be selected in such a way that the Bαβ
induce dissipation and thus render the Cauchy problem for (4.6.1) well-posed. The
temptation is to use for Bαβ matrices that would render (4.6.1) parabolic; and in
particular the zero matrix if α �= β and the identity matrix if α = β, which would
reduce the right-hand side toµ�U . The physically motivated example (4.6.2) demon-
strates, however, that confining attention to the parabolic case would be ill-advised.
In general, one has to deal with systems of intermediate parabolic-hyperbolic type,
in which case establishing the well-posedness of the Cauchy problem may require
considerable effort.

Effective diffusion matrices Bαβ should at least satisfy the Kawashima condition

(4.6.4)
m∑

α,β=1

νανβ Bαβ(U )Ri (ν;U ) �= 0, U ∈ O, ν ∈ Sm−1, i = 1, · · · , n,

which guarantees that waves of all characteristic families, propagating in any direc-
tion, are properly damped. Indeed, if (4.6.4) is violated for some Ū , ν and i , then
linearizing (4.6.1) about Ū yields a system which admits traveling wave solutions

(4.6.5) U (x, t) = ϕ(ν · x − λi (ν; Ū )t)Ri (ν; Ū )

that are not attenuated by the diffusion.
Assuming a vanishing viscosity mechanism has been selected, rendering the

Cauchy problem (4.6.1), (4.1.3) well-posed, the question arises as to the sense of
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convergence of the family {Uµ} of solutions, as µ ↓ 0. This is of course a serious
issue: Requiring very strong convergence may raise unreasonable expectations for
compactness of the family {Uµ}. On the other hand, if the sense of convergence is
too weak, it is not clear that lim Uµ will be a solution of (4.1.1). Various aspects of
this problem will be discussed later, mainly in Chapters VI, XV and XVI.

Another important task is to compare admissibility of solutions in the sense of
the vanishing viscosity approach and admissibility in the sense of a designated en-
tropy inequality (4.5.1), as discussed in Section 4.5. In continuum thermodynamics,
presented in Chapter II, whenever (4.6.1) results from actual constitutive equations
compatible with the Clausius-Duhem inequality, and (4.5.1) is, or derives from, the
Clausius-Duhem inequality, solutions of (4.1.1) obtained by the vanishing viscosity
approach will automatically satisfy (4.5.1). For example, solutions of (3.3.17) ob-
tained as the (λ, µ, κ) ↓ 0 limit of solutions of (4.6.2) will satisfy automatically the
inequality (3.3.20).

If η(U ) is an entropy for (4.1.1), associated with the entropy flux Q(U ), then any
(classical) solution Uµ of (4.6.1) satisfies the identity

(4.6.6) ∂tη
(
Uµ

)+ m∑
α=1

∂αQα

(
Uµ

) = µ

m∑
α,β=1

∂α
[
Dη
(
Uµ

)
Bαβ
(
Uµ

)
∂βUµ

]

− µ

m∑
α,β=1

(
∂αUµ

)� D2η
(
Uµ

)
Bαβ
(
Uµ

)
∂βUµ .

The second term on the right-hand side should be dissipative, so that the quadratic
form associated with D2ηBαβ must be positive semidefinite. Beyond that, however,
this term is entrusted with the responsibility of dominating the first term on the right-
hand side of (4.6.6) as well as the right-hand side of (4.6.1). A sufficient, though not
necessary, condition for this will be

(4.6.7)
m∑

α,β=1

ξ�α D2η(U )Bαβ(U )ξβ ≥ a
m∑
α=1

∣∣∣∣∣
m∑
β=1

Bαβ(U )ξβ

∣∣∣∣∣
2

,

for some positive constant a, any U ∈ O and all ξα ∈ IRn , α = 1, · · · ,m. Notice
that when Bαβ vanishes for α �= β, and is the identity for α = β, (4.6.7) reduces to
the statement that η(U ) is uniformly convex. Also note the relation between (4.6.7)
and the Kawashima condition (4.6.4)

(
choose ξα = ναRi

)
.

Suppose now that the initial data U0 and the solution Uµ of (4.6.1), (4.1.3) tend
sufficiently fast, as |x | → ∞, to a constant state Ū . Without loss of generality we
may assume that η(Ū ) = 0 and Dη(Ū ) = 0, since otherwise we may replace η(U )

by η̄(U ), defined by (4.1.6). We make the further assumption that actually Ū is the
minimum of η over O. This of course will automatically be the case when η(U )

is convex. Under these hypotheses, integrating (4.6.6) over IRm × [0, T ) yields the
estimate
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(4.6.8) µ

T∫
0

∫
IRm

m∑
α,β=1

(
∂αUµ

)�D2η
(
Uµ

)
Bαβ
(
Uµ

)
∂βUµ dx dt ≤

∫
IRm

η (U0(x)) dx .

We have now laid the groundwork for showing that the viscosity admissibility
criterion implies the entropy admissibility condition.

4.6.1 Theorem. Under the assumptions on η(U ) and {Uµ} stated above, suppose that
a sequence {Uµk }, with µk → 0 as k →∞, converges boundedly almost everywhere
on IRm ×[0, T ) to some function U. Then U is a weak solution of (4.1.1), (4.1.3) on
IRm × [0, T ), which satisfies the entropy admissibility condition (4.5.3).

Proof. We multiply (4.6.1) by any Lipschitz test function �(x, t), with compact
support in IRm × [0, T ), taking values in IM1×n , and integrate the resulting equation
over IRm × [0, T ). After an integration by parts,

(4.6.9)

T∫
0

∫
IRm

[
∂t�Uµ +

m∑
α=1

∂α�Gα

(
Uµ

)]
dx dt +

∫
IRm

�(x, 0)U0(x)dx

= µ

T∫
0

∫
IRm

m∑
α=1

∂α� Bαβ
(
Uµ

)
∂βUµ dx dt.

By virtue of (4.6.7) and (4.6.8), as µk → 0, the right-hand side tends to zero, and
hence the limit function U satisfies the equation (4.3.2).

Next we multiply (4.6.6) by any nonnegative Lipschitz test functionψ(x, t), with
compact support in IRm × [0, T ), and integrate the resulting equation over the strip
IRm × [0, T ). After an integration by parts,

(4.6.10)

T∫
0

∫
IRm

[
∂tψ η

(
Uµ

)+ m∑
α=1

∂αψ Qα

(
Uµ

)]
dx dt +

∫
IRm

ψ(x, 0) η
(
U0(x)

)
dx

= µ

T∫
0

∫
IRm

∂αψ Dη
(
Uµ

)
Bαβ
(
Uµ

)
∂βUµ dx dt

+µ
T∫

0

∫
IRm

ψ

m∑
α,β=1

(
∂αUµ

)�D2η
(
Uµ

)
Bαβ
(
Uµ

)
∂βUµ dx dt.

By account of (4.6.7) and (4.6.8), the first term on the right-hand side tends to zero,
as µk → 0, while the second term is nonnegative. Therefore, the limit function U
satisfies the inequality (4.5.3). This completes the proof.
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More general admissibility conditions, of the same genre as the viscosity
criterion, may be formulated by replacing (4.6.1) with a system of the form

(4.6.11)

∂tU +
m∑
α=1

∂αGα(U ) = µ

m∑
α,β=1

∂α[Bαβ(U )∂βU ] + ν

m∑
α,β,γ=1

∂α[Hαβγ (U )∂β∂γU ],

involving third, and sometimes even fourth, order differential operators and two
“vanishing” parameters µ and ν. For example, in the place of (4.6.3) one may take

(4.6.12) ∂t u(x, t)+ ∂x (
1
2 u2(x, t)) = µ∂2

x u(x, t)+ ν∂3
x u(x, t).

The approach to admissibility via (4.6.11) is suggested by physics when the dis-
sipative effect of viscosity coexists with some dispersive mechanism induced, for
instance, by capillarity. Accordingly, the admissibility condition associated with
(4.6.11) is dubbed the viscosity-capillarity criterion. Which solutions of (4.1.1) pass
this test of admissibility will generally depend not only on the choice of Bαβ and
Hαβγ , but also on the relative speed by which µ and ν tend to zero. As a minimum
requirement, (4.6.11) must be compatible with the Second Law of thermodynamics,
i.e., a proposition analogous to Theorem 4.6.1 must hold for the entropy-entropy flux
pair provided by physics.

4.7 Initial-Boundary-Value-Problems

Suppose that the hyperbolic system of conservation laws (4.1.1) is posed on a proper,
open subset D of IRm , with Lipschitz boundary ∂D and outward unit normal field
ν. To formulate a well-posed problem for (4.1.1) on the cylinder X = D × (0, T ),
in addition to assigning initial data U (x, 0) = U0(x) on the base D × {0}, one must
also prescribe boundary conditions on the lateral boundary B = ∂D × (0, T ). This
raises, however, a number of issues.

To begin with, it is not clear a priori on which part of B one is free to impose
boundary conditions, nor is it obvious what the allowable form of such conditions
should be. Consider, for example, an initial-boundary-value problem for the linear
scalar conservation law ∂t u+a∂x u = 0, in a single spatial dimension, on the interval
D = (−1, 1). For a �= 0, the values of u along the lines t = 0 and x = −sgn a
uniquely determine u on (−1, 1)× (0,∞), and thus no boundary condition may be
imposed along the part x = sgn a of the boundary. When a = 0, the initial data alone
determine u on (−1, 1) × (0,∞), and so no boundary condition may be prescribed
on any part of the boundary.

Nonlinearity introduces additional complications, even in the context of classical
solutions. Consider, for example, an initial-boundary-value problem on (−1, 1) for
the Burgers equation (4.2.1). As we saw in Section 4.2, the straight line characteristic
issuing from any point (x0, 0) carries along the value u0(x0) of the initial data and
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hence fixes the value of u at the point where it collides with the boundary, which may
lie either on x = −1 or on x = 1, depending on whether u0(x0) < 0 or u0(x0) > 0.

The fundamental issue of what constitutes stable boundary conditions for sys-
tems of conservation laws, and where should they be imposed, has been the object
of intensive recent investigation, but it will be barely touched on in this book. The
reader can find pertinent bibliographic information in Sections 4.8 and 5.6.

Another basic question is how boundary conditions should be interpreted in the
context of weak solutions. When the solution U is a BV function on X , its inner trace
U− is well-defined on B (cf. Section 1.7). Consequently, within the BV framework,
boundary conditions may be formulated in a virtually classical, pointwise sense. By
contrast, when the solution U is merely in L∞, there is no natural way of defining
its trace on a manifold of codimension one, like B. Even so, as shown in Section 1.3,
traces on B may be naturally defined for the normal component of L∞ vector fields
on X whose space-time divergence is a measure.

Since the space-time divergence of the field (G1(U ), . . . ,Gm(U ),U ) vanishes
in X , one may define the trace GB ∈ L∞(B; IRn) of G(U )ν on B, by means of the
equation (1.3.14), which here takes the form

(4.7.1)

T∫
0

∫
∂D

�GB dHm−1(x)dt −
∫
D

�(x, 0)U0(x)dx

=
T∫

0

∫
D

[
∂t�U+

m∑
α=1

∂α�Gα(U )

]
dx dt,

for any Lipschitz test function � with compact support in IRm × [0, T ) and values
in IM1×n .

In a similar fashion, when U satisfies an entropy admissibility condition (4.5.1),
one may define the trace QB ∈ L∞(B) of Q(U )ν on B by means of

(4.7.2)

T∫
0

∫
∂D

ψQB dHm−1(x)dt =
T∫

0

∫
D

[
∂tψ η(U )+

m∑
α=1

∂αψ Qα(U )

]
dx dt +〈P, ψ〉X ,

where P is the nonpositive entropy production measure and ψ is any Lipschitz test
function with compact support in IRm × (0, T ).

A useful device for generating admissible boundary conditions employs the van-
ishing viscosity approach expounded in Section 4.6. The premise is to prescribe on
B boundary conditions that are suitable for the diffusive system (4.6.1) and let the
limiting process µ ↓ 0 pick natural boundary conditions for the hyperbolic system
(4.1.1). As boundary layers typically form near B when µ is small, it is not possible
to predict what the resulting boundary conditions will be. It is possible, however, to
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gain some insight when the system is endowed with entropy-entropy flux pairs com-
patible with (4.6.1). To see this, let us consider the initial-boundary-value problem
for the system (4.6.1), with initial conditions U = U0 on D and boundary conditions
U = Ū on B, where Ū is some fixed state. As in Section 4.6, we assume that, for
any µ > 0, this problem possesses a classical solution Uµ on X , and that some se-
quence {Uµk }, with µk → 0 as k →∞, converges boundedly almost everywhere on
X to a (weak) solution U of (4.1.1). Suppose (η, Q) is an entropy-entropy flux pair
that satisfies (4.6.7). We write (4.6.6) for the normalized entropy-entropy flux pair
(η̄, Q̄), defined by (4.1.6), (4.1.7), multiply the resulting equation by any nonnega-
tive Lipschitz test function ψ with compact support in IRm × [0, T ), integrate over
D × (0, T ), integrate by parts, and use the initial and boundary conditions to get the
analog of (4.6.10), namely

(4.7.3)

T∫
0

∫
D

[
∂tψ η̄(Uµ)+

m∑
α=1

∂αψ Q̄α(Uµ)

]
dx dt +

∫
D

ψ(x, 0) η̄(U0(x))dx

= µ

T∫
0

∫
D

∂αψ Dη̄(Uµ)Bαβ(Uµ)∂βUµdx dt

+µ
T∫

0

∫
D

ψ

m∑
α,β=1

(
∂αUµ

)�D2η̄(Uµ)Bαβ(Uµ)∂βUµdx dt.

The argument employed in Section 4.6 shows that, as µ → 0, the first term on
the right-hand side of (4.7.3) tends to zero while the second term stays nonnegative.
Therefore,

(4.7.4)

T∫
0

∫
D

[
∂tψ η̄(U )+

m∑
α=1

∂αψ Q̄α(U )

]
dx dt +

∫
D

ψ(x, 0) η̄(U0(x))dx ≥ 0.

To return to the original entropy-entropy flux pair (η, Q), we write (4.7.1) for
� = ψDη(Ū ) and combine it with (4.7.4) to get

(4.7.5)

T∫
0

∫
D

[
∂tψ η(U )+

m∑
α=1

∂αψ Qα(U )

]
dx dt +

∫
D

ψ(x, 0) η(U0(x))dx

≥
T∫

0

∫
∂D

ψ
{

Q̄B − Dη(Ū )[ḠB − GB]
}

dHm−1(x)dt,

where we have set

(4.7.6) ḠB = G(Ū )ν, Q̄B = Q(Ū )ν.
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Finally, we combine (4.7.5) with (4.7.2):

(4.7.7)

T∫
0

∫
∂D

ψ
{

QB − Q̄B − Dη(Ū )
[
GB − ḠB

]}
dHm−1(x)dt ≥ 〈P, ψ〉X ,

assuming ψ(x, 0) = 0, x ∈ IRm . By letting the support of ψ shrink about points of
B, we deduce the pointwise condition

(4.7.8) QB − Q̄B − Dη(Ū )[GB − ḠB] ≥ 0.

The quantity on the left-hand side of (4.7.8) may be interpreted as the density of a
surface measure that represents the entropy loss in the boundary layer.

The inequality (4.7.8) furnishes some information on the boundary conditions
induced by the vanishing viscosity approach. Naturally, this information becomes
more precise when the system (4.1.1) is endowed with multiple independent en-
tropies compatible with (4.6.1). In particular, as we shall see in Section 6.9, for the
scalar conservation law a sufficiently large collection of inequalities (4.7.5) charac-
terizes completely the solution to the initial-boundary-value problem constructed by
the vanishing viscosity approach.

4.8 Notes

Apparently, it was Bateman [1] who first suggested, in a little noticed paper, that
(4.2.1) and (4.6.3) should be employed as models for the system of conservation
laws of inviscid and viscous gases. The commonly used name of Burgers [1] was
attached to these equations by Hopf [1].

The breaking of waves was first noticed by Challis [1], in the context of a par-
ticular solution of the system of isothermal gas dynamics. For a systematic devel-
opment and references, see Sections 7.7, 7.8 and 7.10. The breakdown of classical
solutions of the system of nonisentropic gas dynamics, and other systems of conser-
vation laws, through mass explosion was demonstrated by Sideris [1]. See also John
[2], Beale, Kato and Majda [1], and Liu and Yang [1]. Development of singulari-
ties in the complex Burgers equation was shown by Noelle [1]. For a discussion of
various mechanisms of blowing up, see Alihnac [1].

The issue of admissibility of weak solutions to hyperbolic systems of conserva-
tion laws stirred up a debate quite early in the development of the subject. Respond-
ing to the introduction of shock fronts in gas dynamics by Stokes [1], Kelvin (in
private correspondence with Stokes) and Rayleigh [1] raised the objection that, in
the presence of shocks, (isentropic) flows that conserve mass and momentum fail to
conserve (mechanical) energy; in other words, weak solutions of the system (3.3.21)
do not generally satisfy (3.3.24) as an equality. Intimidated by this criticism, Stokes
[2] revised his paper, renouncing the idea of a shock. By the turn of the century,
following the development of thermodynamics, weak solutions had been reinstated
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in physics, albeit under conditions of admissibility, in the form of inequalities de-
rived from the Second Law, as we saw in Section 3.3 (cf. Burton [1], Weber [1],
Rayleigh [2]). The jump conditions associated with entropy inequalities were first
written down by Jouguet [1], for the equations of gas dynamics. In the framework
of the general theory of hyperbolic systems of conservation laws, the use of entropy
inequalities to characterize admissible solutions was proposed by Kruzkov [1] and
elaborated by Lax [4]. We shall return to this topic on several occasions.

The idea of regarding inviscid gases as viscous gases with vanishingly small vis-
cosity is quite old; there are hints even in the aforementioned seminal paper by Stokes
[1]. The important contributions of Rankine [1], Hugoniot [1,2], and Rayleigh [3]
helped to clarify the issue. The Kawashima condition was first formulated in Shizuta
and Kawashima [1]. In later chapters, we shall have frequent encounters with the
vanishing viscosity approach, as a method for constructing solutions or as a means
of identifying admissible shocks. References to relevant papers will be provided in
the proper context.

An exposition of the theory of systems of intermediate parabolic-hyperbolic type
is given in the monographs by Songmu Zheng [1] and Hsiao [3], and in the recent
survey article by Hsiao and Jiang [1], where the reader will find an extensive list of
references.

Inequalities (4.7.8) were first derived by Bardos, Leroux and Nédélec [1], for
scalar conservation laws, and were then extended to systems, in one spatial dimen-
sion, by DuBois and LeFloch [1]. As we shall see in Section 6.9, they completely
characterize admissible boundary conditions in the scalar case. For the case of sys-
tems, see Section 5.6.



V

Entropy and the Stability of Classical Solutions

It is a tenet of continuum physics that the Second Law of thermodynamics is essen-
tially a statement of stability. In the examples discussed in the previous chapters, the
Second Law manifests itself in the presence of companion balance laws, to be satis-
fied identically, as equalities, by classical solutions, and to be imposed as inequality
thermodynamic admissibility constraints on weak solutions of the systems of bal-
ance laws. A recurring theme in the exposition of the theory of hyperbolic systems
of balance laws in this book will be that companion balance laws induce stability un-
der various guises. Here the reader will get a glimpse of the implications of entropy
inequalities on the stability of classical solutions.

It will be shown that when the system of balance laws is endowed with a com-
panion balance law induced by a convex entropy, the initial-value problem is locally
well-posed in the context of classical solutions: Sufficiently smooth initial data gen-
erate a classical solution defined on a maximal time interval, typically of finite du-
ration. However, in the presence of frictional damping, and when the initial data are
sufficiently small, the classical solution exists globally in time. Classical solutions
are unique and depend continuously on their initial values, not only within the class
of classical solutions but even within the broader class of weak solutions that satisfy
the companion balance law as an inequality admissibility constraint.

Similar existence and stability results will be established, even when the entropy
fails to be convex, in the following two situations: (a) the entropy is convex only in
the direction of a certain cone in state space but the system is equipped with spe-
cial companion balance laws, called involutions, whose presence compensates for
the lack of convexity in complementary directions; or (b) the system is endowed
with complementary entropies and the principal entropy is polyconvex. This struc-
ture arises in elastodynamics and electromagnetism.

From the standpoint of analytical technique, this chapter presents the aspects of
the theory of quasilinear hyperbolic systems of balance laws that can be tackled by
the methodology of the linear theory, namely energy estimates and Fourier analysis.
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5.1 Convex Entropy and the Existence of Classical Solutions

As in Chapter IV, we consider here the Cauchy problem

(5.1.1) ∂tU (x, t)+ div G(U (x, t)) = 0, x ∈ IRm, t > 0,

(5.1.2) U (x, 0) = U0(x), x ∈ IRm ,

for a homogeneous hyperbolic system of conservation laws in canonical form. The
results may be extended to general hyperbolic systems of balance laws (3.1.1) at the
expense of trivial technical complications.

It will be assumed that (5.1.1) is endowed with an entropy η(U ), so that (3.2.4)
holds,

(5.1.3) D2η(U )DGα(U ) = DGα(U )�D2η(U ), α = 1, . . . ,m,

and it will be shown that if η(U ) is convex, then a classical solution of the initial-
value problem exists on a maximal time interval, provided the initial data are suffi-
ciently smooth.

In what follows, a multi-index r will stand for a m-tuple of nonnegative integers:
r = (r1, · · · , rm). We put |r | = r1 + · · · + rm and ∂r = ∂

r1
1 · · · ∂rm

m . Thus ∂r is a
differential operator of order |r |. We also employ the notation ∇ = (∂1, . . . , ∂m).

For � = 0, 1, 2, · · ·, H � will be the Sobolev space W �,2(IRm ; IMn×m) of n × m
matrix-valued functions. The norm of H � will be denoted by ‖ · ‖�. By the Sobolev
embedding theorem, for � > m/2 , H � is continuously embedded in the space of
continuous n × m matrix-valued functions on IRm .

5.1.1 Theorem. Assume the system of conservation laws (5.1.1) is endowed with a
C3 entropy η with D2η(U ) positive definite on O. Suppose the initial data U0 are
continuously differentiable on IRm , take values in some compact subset of O and
∇U0 ∈ H � for some � > m/2. Moreover, let G ∈ C�+2. Then there exists T∞ ≤ ∞,
and a unique continuously differentiable function U on IRm ×[0, T∞), taking values
in O, which is a classical solution of the Cauchy problem (5.1.1), (5.1.2) on [0, T∞).
Furthermore,

(5.1.4) ∇U (·, t) ∈ C0([0, T∞); H �).

The interval [0, T∞) is maximal, in the sense that whenever T∞ <∞

(5.1.5)

T∞∫
0

‖∇U (·, t)‖L∞dt = ∞

and/or the range of U (·, t) escapes from every compact subset of O as t ↑ T∞ .
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Proof. It is lengthy and tedious. Just an outline will be presented here, so as to il-
lustrate the role of the convex entropy. For the details the reader may consult the
references cited in Section 5.6.

Fix any open subset B of IRm which contains the closure of the range of U0 and
whose closure B is in turn contained in O. With positive constants ω and T , to be
fixed later, we associate the class F of Lipschitz continuous functions V , defined on
IRm × [0, T ], taking values in B, satisfying the initial condition (5.1.2) and

(5.1.6) ∇V (·, t) ∈ L∞([0, T ]; H �), ∂t V (·, t) ∈ L∞([0, T ]; L2 ∩ L∞)

with

(5.1.7) sup
[0,T ]

‖∇V (·, t)‖� ≤ ω,

(5.1.8) sup
[0,T ]

‖∂t V (·, t)‖L∞ ≤ bω, sup
[0,T ]

‖∂t V (·, t)‖L2 ≤ bω,

where

(5.1.9) b2 = max
V∈B̄

m∑
α=1

|DGα(V )|2.

For ω sufficiently large, F is nonempty; for instance, V (x, t) ≡ U0(x) is a member
of it.

By standard weak lower semicontinuity of norms, F is a complete metric space
under the metric

(5.1.10) ρ(V, V̄ ) = sup
[0,T ]

‖V (·, t)− V̄ (·, t)‖L2 .

Notice that, even though V (·, t) and V̄ (·, t) are not necessarily in L2, we still have
ρ(V, V̄ ) ≤ 2bωT <∞, by virtue of V (·, 0)− V̄ (·, 0) = 0 and (5.1.8).

We now linearize (5.1.1) about any fixed V ∈ F :

(5.1.11) ∂tU (x, t)+
m∑
α=1

DGα(V (x, t))∂αU (x, t) = 0.

The existence of a solution to (5.1.1), (5.1.2) on [0, T ]will be established by showing
that

(a) When ω is sufficiently large and T is sufficiently small, the initial-value problem
(5.1.11), (5.1.2) admits a solution U ∈ F on [0, T ].

(b) The aforementioned solution U is endowed with regularity (5.1.4), slightly better
than (5.1.6)1 which mere membership in F would guarantee.

(c) For T sufficiently small, the map that carries V ∈ F to the solution U ∈ F
of (5.1.11), (5.1.2) is a contraction in the metric (5.1.10) and thus possesses a
unique fixed point in F , which is the desired solution of (5.1.1), (5.1.2).
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In the following sketch of proof of assertion (a), above, we shall take for granted
that the solution U of (5.1.11), (5.1.2), with the requisite regularity, exists, and will
proceed to establish that it belongs to F . In a complete proof, one should first mol-
lify V and the initial data, then employ the classical theory of symmetrizable linear
hyperbolic systems, and finally pass to the limit. The Hessian D2η(V ) will serve as
symmetrizer, since it is symmetric, positive definite, and symmetrizes DGα(V ) by
virtue of (5.1.3).

We fix any multi-index r of order 1 ≤ |r | ≤ �+ 1, set ∂rU = Ur , and apply ∂r

to equation (5.1.11) to get

(5.1.12) ∂tUr +
m∑
α=1

DGα(V )∂αUr =
m∑
α=1

{DGα(V )∂
r∂αU − ∂r [DGα(V )∂αU ]}.

The L2 norm of the right-hand side of (5.1.12) may be majorized with the help of
Moser-type inequalities combined with (5.1.7):

(5.1.13) ‖
m∑
α=1

{DGα(V )∂
r∂αU − ∂r [DGα(V )∂αU ]}‖L2

≤ c‖∇V ‖L∞‖∇U‖� + c‖∇U‖L∞‖∇V ‖� ≤ 2acω‖∇U‖� .
Here and below c will stand for a generic positive constant, which may depend on B,
but is independent of ω and T .1

Let us now multiply (5.1.12), from the left, by 2U�
r D2η(V ), sum over all multi-

indices r with 1 ≤ |r | ≤ �+ 1 and integrate the resulting equation over IRm × [0, t].
Note that

(5.1.14) 2U�
r D2η(V )∂tUr = ∂t [U�

r D2η(V )Ur ] −U�
r ∂t D

2η(V )Ur .

Moreover, by virtue of (5.1.3),

(5.1.15) 2U�
r D2η(V )DGα(V )∂αUr = ∂α[U�

r D2η(V )DGα(V )Ur ]
−U�

r ∂α[D2η(V )DGα(V )]Ur .

Recall that D2η(V ) is positive definite, uniformly on compact sets, so that

(5.1.16) U�
r D2η(V )Ur ≥ δ|Ur |2, V ∈ B,

for some δ > 0. Therefore, combining the above we end up with an estimate

(5.1.17) ‖∇U (·, t)‖2
� ≤ c‖∇U0(·)‖2

� + cω
∫ t

0
‖∇U (·, τ )‖2

�dτ

whence, by Gronwall’s inequality,

1 To be precise, c solely depends on the maximum on B̄ of |U | and all derivatives |Dk G(U )|,
up to order k = �+ 2.
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(5.1.18) sup
[0,T ]

‖∇U (·, t)‖2
� ≤ cecωT ‖∇U0(·)‖2

� .

It follows from (5.1.18) that if ω is sufficiently large and T is sufficiently small,
sup[0,T ] ‖∇U (·, t)‖� ≤ ω. Then (5.1.11) implies sup[0,T ] ‖∂tU (·, t)‖L∞ ≤ bω,
sup[0,T ] ‖∂tU (·, T )‖L2 ≤ bω, with b given by (5.1.9). Finally, for T sufficiently
small, U will take values in B on IRm × [0, T ]. Thus U ∈ F .

As a by-product of the derivation of (5.1.7), one obtains that the function
t �→ ∫

U�
r D2η(V )Ur dx is continuous on [0, T ]. Moreover, t �→ Ur (·, t) is at least

weakly continuous in L2. Consequently, for any fixed t ∈ [0, T ], the integral over
IRm of the right-hand side of the identity

(5.1.19) [Ur (·, t)−Ur (·, τ )]�D2η(V (·, t))[Ur (·, t)−Ur (·, τ )]
= U�

r (·, t)D2η(V (·, t))Ur (·, t)+U�
r (·, τ )D2η(V (·, τ ))Ur (·, τ )

− 2U�
r (·, t)D2η(V (·, t))Ur (·, τ )

+U�
r (·, τ )[D2η(V (·, t))−D2η(V (·, τ ))]Ur (·, τ )

tends to zero, as τ → t . Thus, t �→ Ur (·, t) is actually strongly continuous in L2.
This in turn implies assertion (b), namely ∇U (·, t) is in fact continuous, and not
merely bounded, in H � on [0, T ].

Turning now to assertion (c), let us fix V and V̄ in F which induce solutions U
and Ū of (5.1.11), (5.1.2), also in F . Thus

(5.1.20) ∂t [U − Ū ]+
m∑
α=1

DGα(V )∂α[U − Ū ] = −
m∑
α=1

[DGα(V )−DGα(V̄ )]∂αŪ .

Multiply (5.1.20), from the left, by 2(U − Ū )�D2η(V ) and integrate the resulting
equation over IRm × [0, t], 0 ≤ t ≤ T . Notice that

(5.1.21) 2(U − Ū )�D2η(V )∂t (U − Ū ) = ∂t [(U − Ū )�D2η(V )(U − Ū )]
−(U − Ū )�∂t D

2η(V )(U − Ū ),

and also, by virtue of (5.1.3),

(5.1.22)
2(U − Ū )�D2η(V )DGα(V )∂α(U − Ū ) = ∂α[(U − Ū )�D2η(V )DGα(V )(U − Ū )]

−(U −Ū )�∂α[D2η(V )DGα(V )](U −Ū ).

Since D2η(V ) is positive definite,

(5.1.23) (U − Ū )�D2η(V )(U − Ū ) ≥ δ|U − Ū |2.
Therefore, combining the above with (5.1.7), (5.1.8) and the Sobolev embedding
theorem, we arrive at the estimate
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(5.1.24) ‖(U − Ū )(·, t)‖2
L2 ≤ cω

∫ t

0
‖(U − Ū )(·, τ )‖2

L2 dτ

+ cω
∫ t

0
‖(V−V̄ )(·, τ )‖L2‖(U−Ū )(·, τ )‖L2 dτ.

Using (5.1.10) and Gronwall’s inequality, we infer from (5.1.24) that

(5.1.25) ρ(U, Ū ) ≤ cωT ecωT ρ(V, V̄ ).

Consequently, for T sufficiently small, the map that carries V in F to the solution U
of (5.1.11), (5.1.2) is a contraction on F and thus possesses a unique fixed point U
which is the unique solution of (5.1.1), (5.1.2) on [0, T ], in the function class F .

Since the restriction U (·, T ) of the constructed solution to t = T belongs to the
same function class as U0(·), we may repeat the above construction and extend U
to a larger time interval [0, T ′]. Continuing the process, we end up with a solution
U defined on a maximal interval [0, T∞) with T∞ ≤ ∞. Furthermore, if T∞ < ∞,
then the range of U (·, t) must escape from every compact subset of O, as t ↑ T∞ ,
and/or

(5.1.26) ‖∇U (·, t)‖� →∞, as t ↑ T∞ .

In order to see the implications of (5.1.26), we retrace the steps that led to
(5.1.17). We use again (5.1.13), (5.1.14), (5.1.15), and (5.1.16), setting V ≡ U ,
but we no longer majorize ‖∇U‖L∞ by aω. Thus, in the place of (5.1.17) we now
get

(5.1.27) ‖∇U (·, t)‖2
� ≤ c‖∇U0(·)‖2

� + c
∫ t

0
‖∇U (·, τ )‖L∞‖∇U (·, τ )‖2

�dτ.

Gronwall’s inequality then implies that (5.1.26) cannot occur unless (5.1.5) does.
This completes the proof.

We already saw, in Chapter IV, that finite life span for classical solutions is the
rule rather than the exception.

5.2 The Role of Damping and Relaxation

In this section we consider the Cauchy problem

(5.2.1) ∂tU (x, t)+ div G(U (x, t))+ P(U (x, t)) = 0, x ∈ IRm, t > 0,

(5.2.2) U (x, 0) = U0(x), x ∈ IRm,

for a homogeneous hyperbolic system of balance laws in canonical form, where
G(U ) and P(U ) are smooth functions defined on O. We assume that P(Ū ) = 0,
for some Ū ∈ O, so that U ≡ Ū is a constant equilibrium solution of (5.2.1).
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Suppose (5.2.1) is endowed with a C3 entropy-entropy flux pair (η, Q), where
η(U ) is locally uniformly convex, so that any classical solution satisfies the addi-
tional balance law

(5.2.3) ∂tη(U (x, t))+ div Q(U (x, t))+ Dη(U (x, t))P(U (x, t)) = 0.

Without loss of generality, we may assume η(Ū ) = 0, Dη(Ū ) = 0, Q(Ū ) = 0,
DQα(Ū ) = 0, α = 1, . . . ,m, since otherwise we simply replace (η, Q) with the
pair (η̄, Q̄) defined by (4.1.6), (4.1.7).

For initial data U0 with ∇U0 ∈ H �, � > m/2, a straightforward extension of
Theorem 5.1.1 yields the existence of a classical solution to (5.2.1), (5.2.2) on a
maximal time interval [0, T∞). The aim is to investigate whether the mechanism
that causes the breaking of waves may be offset by a dissipative source term that
keeps ‖∇U (·, t)‖L∞ bounded for all t > 0. Our experience with Equation (4.2.2), in
Section 4.2, indicates that dissipation is likely to prevail near equilibrium.

Damping manifests itself in that the entropy production is nonnegative on some
open neighborhood B ⊂ O of Ū :

(5.2.4) Dη(U )P(U ) ≥ 0, U ∈ B.

Under this assumption, for as long as U takes values in B,

(5.2.5) ‖U (·, t)− Ū‖L2 ≤ a‖U0(·)− Ū‖L2 ,

which is obtained by integrating (5.2.3) over IRm × (0, t). This, combined with the
“interpolation” estimate

(5.2.6) ‖U (·, t)− Ū‖L∞ ≤ b‖∇U (·, t)‖ρL∞‖U (·, t)− Ū‖1−ρ
L2 ,

where ρ = 1
2 m(� + 1), in turn implies that U (·, t) will lie in B for as long as

‖∇U (·, t)‖L∞ stays sufficiently small.
As in Section 5.1, we fix any multi-index r of order 1 ≤ |r | ≤ � + 1, then set

∂rU = Ur , and apply ∂r to the equation (5.2.1) to get

(5.2.7) ∂tUr +
m∑
α=1

DGα(U )∂αUr + DP(U )Ur

=
m∑
α=1

{DGα(U )∂r∂αU − ∂r [DGα(U )∂αU ]}

+{DP(U )∂s∂βU − ∂s[DP(U )∂βU ]},
where β is any fixed index in {1, . . . ,m} with rβ ≥ 1, and s is the multi-index with
sγ = rγ , for γ �= β, and sβ = rβ − 1. We recall (5.1.13) and note its analog

(5.2.8) ‖DP(U )∂s∂βU − ∂s[DP(U )∂βU ]‖L2 ≤ c‖∇U‖L∞‖∇U‖� .
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Here and below c stands for a generic constant depending solely on the maximum on
B of U , all derivatives |Dk G(U )| up to order k = �+ 2, and all derivaties |Dk P(U )|
up to order k = �+ 1.

When (5.2.4) holds, the matrix D2η(Ū )DP(Ū ) is at least positive semi-definite.
In particular, P is strongly dissipative at Ū if

(5.2.9) W�D2η(Ū )DP(Ū )W ≥ µ > 0, W ∈ Sm−1.

In that case, multiplying (5.2.7), from the left, by 2U�
r D2η(U ), summing over all

multi-indices r with 1 ≤ |r | ≤ � + 1, and integrating the resulting equation over
IRm × (0, t), we arrive at the following analog of (5.1.27):

(5.2.10) ‖∇U (·, t)‖2
� + 2µ

t∫
0

‖∇U (·, τ )‖2
�dτ

≤ c‖∇U0(·)‖2
�+c

t∫
0

{‖∇U (·, τ )‖L∞+‖U (·, τ )−Ū‖L∞}‖∇U (·, τ )‖2
�dτ.

So long as ‖∇U (·, τ )‖ stays small, the integral on the left-hand side of (5.2.10)
dominates the integral on the right-hand side and induces ‖∇U‖2

� ≤ c‖∇U0‖2
� .

Since ‖∇U‖L∞ ≤ κ‖∇U‖� , we conclude that if ‖∇U0‖� is sufficiently small, then
‖∇U‖� , and thereby ‖∇U‖L∞ , stay small throughout the life span of the solution
and thus the life span cannot be finite.

Unfortunately, assumption (5.2.9) is too stringent, as it generally rules out the
type of source term associated with the dissipative mechanisms encountered in con-
tinuum physics. A typical example is the system that governs isentropic gas flow
through a porous medium, namely (3.3.21) with body force −v:

(5.2.11)

⎧⎨⎩ ∂tρ + div(ρv�) = 0

∂t (ρv)+ div(ρvv�)+ grad p(ρ)+ ρv = 0.

This difficulty is also encountered in systems with source terms induced by relax-
ation effects, for instance (3.3.13). Typically, in the applications, D2η(Ū )DP(Ū ) is
merely positive semidefinite. In this situation, the damping fails to be effective, un-
less the source term satisfies an additional condition which ensures that waves of any
characteristic family, propagating in any direction ν ∈ Sm−1, are properly damped.
The appropriate assumption, similar to the Kawashima condition (4.6.4), reads

(5.2.12) DP(Ū )Ri (ν; Ū ) �= 0, ν ∈ Sm−1, i = 1, . . . , n,

where Ri (ν;U ) is an eigenvector of the matrix �(ν;U ), in (4.1.2), associated with
the eigenvalue λi (ν;U ). To see the implications of (5.2.12), linearize (5.2.1) about
Ū :
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(5.2.13) ∂t V (x, t)+
m∑
α=1

DGα(Ū )∂αV (x, t)+ DP(Ū )V (x, t) = F(x, t).

Notice that when (5.2.12) is violated for some i and ν, then (5.2.13), with F ≡ 0,
admits traveling wave solutions (4.6.5), which are not attenuated by the damping. On
the other hand, it can be shown that when (5.2.12) holds, then, for any ν ∈ Sm−1,
there exists a skew symmetric n × n matrix K (ν) such that the matrix

(5.2.14) K (ν)�(ν; Ū )+ D2η(Ū )DP(Ū )

is positive definite. This in turn implies that solutions of (5.2.13) satisfy an estimate

(5.2.15)

t∫
0

∫
IRm

|V |2(x, τ )dx dτ ≤ κ

t∫
0

∫
IRm

V�(x, τ )D2η(Ū )DP(Ū )V (x, τ )dx dτ

+κ
∫

IRm

[|V |2(x, t)+ |V |2(x, 0)]dx + κ

t∫
0

∫
IRm

|F |2(x, τ )dx dτ.

As before, we multiply (5.2.7), from the left, by 2U�
r D2η(U ), we sum over all

multi-indices r with 1 ≤ |r | ≤ �+1, and integrate over IRm×(0, t). Upon combining
the resulting equation with the estimate (5.2.15), one reestablishes (5.2.10), for some
µ > 0, thus proving the following

5.2.1 Theorem. Consider the hyperbolic system of balance laws (5.2.1), with G in
C�+2 and P in C�+1, for some � > m/2. Assume P(Ū ) = 0 and DP(Ū ) satisfies
(5.2.12). Furthermore, let η be a C3 entropy for (5.2.1) such that D2η(Ū ) is positive
definite and (5.2.4) holds on some neighborhood B of Ū . When U0 − Ū ∈ L2(IRm),
∇U0 ∈ H � and ‖∇U0‖� is sufficiently small, then the Cauchy problem (5.2.1), (5.2.2)
admits a unique classical solution U on the upper half-space, such that

(5.2.16) ∇U (·, t) ∈ C0([0,∞); H �) ∩ L2([0,∞); H �).

When Ū is a strict minimum of Dη(U )P(U ), it is expected that dissipation will
drive the solution obtained in the above theorem to this isolated equilibrium point,
as t → ∞. Of far greater interest is the long time behavior of solutions of (5.2.1),
(5.2.2) when the source vanishes on a manifold in state space. This is typically the
case with systems governing relaxation phenomena.

Upon rescaling the coordinates by (x, t) �→ (µx, µt), where µ > 0 is the so-
called relaxation parameter, we recast (5.2.1) in the form

(5.2.17) ∂tU (x, t)+ div G(U (x, t))+ 1

µ
P(U (x, t)) = 0, x ∈ IRm , t > 0.
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Thus, the asymptotic behavior of solutions of (5.2.1), as t ↑ ∞, will be derived from
the asymptotic behavior of solutions of (5.2.17), as µ ↓ 0.

The following assumptions on P embody the structure typically encountered in
systems governing relaxation phenomena:

(a) For some k < n, there is a constant k × n matrix K such that K P(U ) = 0, for
all U ∈ O.

(b) There is a k-dimensional local equilibrium manifold, embedded in O, which is
defined by a smooth function U = E(V ), V ∈ V ⊂ IRk , such that P(E(V )) = 0
and K E(V ) = V , for all V ∈ V .

As a representative example, consider the system

(5.2.18)

⎧⎨⎩
∂t u(x, t)+ ∂xv(x, t) = 0

∂tv(x, t)+ ∂x p(u(x, t))+ 1
µ [v(x, t)− f (u(x, t))] = 0

of two balance laws in one spatial variable, where p′(u) = a2(u), a(u) > 0. Here
K = (1, 0), V = u, and E(u) = (u, f (u))� .

The expectation is that, as µ ↓ 0, the stiff source will induce U to relax on
its local equilibrium manifold U = E(V ), with V satisfying the relaxed system of
conservation laws

(5.2.19) ∂t V (x, t)+ div Ĝ(V (x, t)) = 0, x ∈ IRm, t > 0,

where

(5.2.20) Ĝ(V ) = K G(E(V )), V ∈ V.

For the system (5.2.18), (5.2.19) reduces to the scalar conservation law

(5.2.21) ∂t u(x, t)+ ∂x f (u(x, t)) = 0.

We now explore the implications of the dissipativeness of the source P as en-
coded in the existence of an entropy-entropy flux pair (η, Q) for (5.2.17) which
satisfies (5.2.4), for all U ∈ O. In particular, Dη(U )P(U ) is minimized on the local
equilibrium manifold, and so

(5.2.22) Dη(E(V ))DP(E(V )) = 0, V ∈ V.

We also have K DP(U ) = 0, U ∈ O. Hence, assuming that the rank of DP(E(V ))
is n − k, for any V ∈ V , we conclude

(5.2.23) Dη(E(V )) = M(V )K , V ∈ O,

for some k-row vector-valued function M on O.
We now set

(5.2.24) η̂(V ) = η(E(V )), Q̂(V ) = Q(E(V )),
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and show that (η̂, Q̂) is an entropy-entropy flux pair for the relaxed system (5.2.19).
Indeed, recalling (4.1.4), (5.2.20), (5.2.23) and noting that K E(V ) = V implies
K DV E = I , we deduce, by the chain rule,

(5.2.25) DV η̂DV Ĝα = DUηDV E K DU Gα DV E = M K DV E K DU Gα DV E

= M K DU Gα DV E = DUηDU Gα DV E = DU Qα DV E = DV Q̂α .

It has also been shown (references in Section 5.6) that if D(U )P(U ) is strictly
positive away from the local equilibrium manifold and D2η(U ) is positive definite on
O, then D2η̂(V ) is positive definite on V , in which case the relaxed system (5.2.19) is
hyperbolic. Moreover, all characteristic speeds of (5.2.19), in any direction ν ∈ Sm−1

and state V ∈ V , are confined between the minimum and the maximum characteristic
speed of (5.2.17), in the direction ν and state U = E(V ). This last property expresses
the subcharacteristic condition which has important implications for stability.

As noted above, the objective is to demonstrate that, as µ ↓ 0, the solution Uµ

of (5.2.17), (5.2.2) converges to E(V ), where V is the solution of the relaxed system
(5.2.19) with initial value V0 = KU0 . When the initial data U0 do not lie on the local
equilibrium manifold, i.e. U0 �= E(V0), then as µ ↓ 0, Uµ will develop a boundary
layer across t = 0, connecting U0 to E(V0).

The asymptotic behavior of Uµ , as µ ↓ 0, has been analyzed within the context
of classical solutions, for quite general systems. The reader should consult the rele-
vant references cited in Section 5.6. Additional information can be found in Sections
6.6 and 16.5.

An intimate relation exists between dissipation induced by relaxation and dissi-
pation induced by viscosity. The reader may catch a first glimpse through the follow-
ing formal calculation for the simple system (5.2.18).

We set

(5.2.26) v = f (u)+ µw

and substitute into (5.2.18). Dropping, formally, all terms of order µ and then elimi-
nating ∂t u between the two equations of the system yields

(5.2.27) w = [ f ′(u)2 − a(u)2]∂x u.

Upon combining (5.2.18)1 with (5.2.26) and (5.2.27), we deduce that, formally, to
leading order, u satisfies the equation

(5.2.28) ∂t u + ∂x f (u) = µ∂x {[a2(u)− f ′(u)2]∂x u}.
For well-posedness we need

(5.2.29) −a(u) < f ′(u) < a(u).

Since ±a(u) are the characteristic speeds of (5.2.18) and f ′(u) is the characteris-
tic speed of (5.2.21), (5.2.29) expresses the subcharacteristic condition encountered
above.
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An analogous calculation, with analogous conclusions, applies to the general
system (5.2.17) as well. In fact the Kawashima-type conditions (4.6.4) and (5.2.12)
are intimately related. The reader can find details in the literature cited in Section
5.6.

5.3 Convex Entropy and the Stability of Classical Solutions

The aim here is to show that the presence of a convex entropy guarantees that clas-
sical solutions of the initial-value problem depend continuously on the initial data,
even within the broader class of admissible bounded weak solutions.

5.3.1 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
entropy-entropy flux pair (η, Q), where D2η(U ) is positive definite on O. Suppose Ū
is a classical solution of (5.1.1) on [0, T ), taking values in a convex compact subset
D of O, with initial data Ū0 . Let U be any admissible weak solution of (5.1.1) on
[0, T ), taking values in D, with initial data U0 . Then

(5.3.1)
∫
|x |<r

|U (x, t)− Ū (x, t)|2dx ≤ aebt
∫
|x |<r+st

|U0(x)− Ū0(x)|2dx

holds for any r > 0 and t ∈ [0, T ), with positive constants s, a, depending solely
on D, and b that also depends on the Lipschitz constant of Ū . In particular, Ū is the
unique admissible weak solution of (5.1.1) with initial data Ū0 and values in D.

Proof. On D ×D we define the functions

(5.3.2) h(U, Ū ) = η(U )− η(Ū )− Dη(Ū )[U − Ū ],

(5.3.3) Yα(U, Ū ) = Qα(U )− Qα(Ū )− Dη(Ū )[Gα(U )− Gα(Ū )],

(5.3.4) Zα(U, Ū ) = D2η(Ū )
{
Gα(U )− Gα(Ū )− DGα(Ū )[U − Ū ]},

all of quadratic order in U − Ū (recall (4.1.4)). Consequently, since D2η(U ) is posi-
tive definite, uniformly on D, there is a positive constant s such that

(5.3.5) |Y (U, Ū )| ≤ sh(U, Ū ).

Let us fix any nonnegative, Lipschitz continuous test function ψ , with com-
pact support, on IRm × [0, T ) and evaluate h, Y and Z along the two solutions
U (x, t), Ū (x, t). Recalling that U , as an admissible weak solution, must satisfy in-
equality (4.5.3), while Ū , being a classical solution, will identically satisfy (4.5.3) as
an equality, we deduce
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(5.3.6)∫ T

0

∫
IRm
[∂tψ h(U, Ū )+

m∑
α=1

∂αψ Yα(U, Ū )]dxdt+
∫

IRm
ψ(x, 0) h(U0(x), Ū0(x)) dx

≥ −
∫ T

0

∫
IRm
{∂tψ Dη(Ū )[U − Ū ] +

m∑
α=1

∂αψ Dη(Ū )[Gα(U )− Gα(Ū )]}dxdt

−
∫

IRm
ψ(x, 0)Dη(Ū0(x))[U0(x)− Ū0(x)]dx .

Next we write (4.3.2) for both solutions U and Ū , using the Lipschitz continuous
vector field ψDη(Ū ) as test function �, to get

(5.3.7)
∫ T

0

∫
IRm
{∂t [ψDη(Ū )][U−Ū ]+

m∑
α=1

∂α[ψDη(Ū )][Gα(U )−Gα(Ū )]}dxdt

+
∫

IRm
ψ(x, 0)Dη(Ū0(x))[U0(x)− Ū0(x)]dx = 0.

Since Ū is a classical solution of (5.1.1), and by virtue of (5.1.3),

(5.3.8) ∂t Dη(Ū ) = ∂t Ū
�D2η(Ū ) = −

m∑
α=1

∂αŪ�DGα(Ū )�D2η(Ū )

= −
m∑
α=1

∂αŪ�D2η(Ū )DGα(Ū )

so that, recalling (5.3.4),

(5.3.9)

∂t Dη(Ū )[U − Ū ] +
m∑
α=1

∂αDη(Ū )[Gα(U )− Gα(Ū )] =
m∑
α=1

∂αŪ�Zα(U, Ū ).

Combining (5.3.6), (5.3.7) and (5.3.9) yields

(5.3.10)∫ T

0

∫
IRm
[∂tψ h(U, Ū )+

m∑
α=1

∂αψ Yα(U, Ū )]dxdt+
∫

IRm
ψ(x, 0) h(U0(x), Ū0(x)) dx

≥
∫ T

0

∫
IRm

ψ

m∑
α=1

∂αŪ�Zα(U, Ū )dxdt.



100 V Entropy and the Stability of Classical Solutions

We now fix r > 0 and any point t ∈ (0, T ) of L∞ weak∗ continuity of η(U (·, τ ));
see Section 4.5. For ε positive small, write (5.3.10) for the test function ψ(x, τ ) =
χ(x, τ )ω(τ), with

(5.3.11) ω(τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 0 ≤ τ < t

ε−1(t − τ)+ 1 t ≤ τ < t + ε

0 t + ε ≤ τ <∞

(5.3.12) χ(x, τ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |x | − r − s(t − τ) < 0

ε−1[r + s(t − τ)− |x |] + 1 0 ≤ |x | − r − s(t − τ) < ε

0 |x | − r − s(t − τ) ≥ ε

where s is the constant appearing in (5.3.5). The calculation gives

(5.3.13)

1

ε

∫ t+ε

t

∫
|x |<r

h(U (x, τ ), Ū (x, τ ))dxdτ ≤
∫
|x |<r+st

h(U0(x), Ū0(x))dx

− 1

ε

∫ t

0

∫
r+s(t−τ)<|x |<r+s(t−τ)+ε

[
sh(U, Ū )+ Y (U, Ū )x

|x |
]

dxdτ

−
∫ t

0

∫
|x |<r+s(t−τ)

m∑
α=1

∂αŪ�Zα(U, Ū )dxdτ + O(ε).

We let ε ↓ 0. The second integral on the right-hand side of (5.3.13) is nonnegative
by account of (5.3.5). Using that h(U (·, τ ), Ū (·, τ )) is weak∗ continuous in L∞ at
τ = t , we deduce

(5.3.14)
∫
|x |<r

h(U (x, t), Ū (x, t))dx ≤
∫
|x |<r+st

h(U0(x), Ū0(x))dx

−
∫ t

0

∫
|x |<r+s(t−τ)

m∑
α=1

∂αŪ�Zα(U, Ū )dxdτ.

As noted above, h(U, Ū ) and the Zα(U, Ū ) are of quadratic order in U − Ū and, in
addition, h(U, Ū ) is positive definite, due to the convexity of η. Therefore, (5.3.14)
in conjunction with Gronwall’s inequality imply (5.3.1). Notice that a and s depend
solely on D while b depends also on the Lipschitz constant of Ū . This completes the
proof.
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It is remarkable that a single entropy inequality, with convex entropy, manages
to weed out all but one solution of the initial-value problem, so long as a classical
solution exists. As we shall see, however, when no classical solution exists, just one
entropy inequality is no longer generally sufficient to single out any particular weak
solution. The issue of uniqueness of weak solutions is knotty and will be a major
issue for discussion in subsequent chapters.

The functions h(U, Ū ) and Y (U, Ū ), defined by (5.3.2) and (5.3.3), are com-
monly called the relative entropy and associated relative entropy flux, with respect to
the state Ū .

Notice that in the proof of Theorem 5.3.1 one only needs that h(U, Ū ) be positive
definite for all Ū in the range of the classical solution. This may well hold, even for
η that fail to be convex, when the classical solution is special, e.g. it is a constant
state Ū which is a strong minimum of η.

5.4 Involutions

The previous three sections have illustrated the beneficent role of convex entropies.
Nevertheless, the entropy associated with systems of balance laws in continuum
physics is not always convex. An illustrative case is example 3.3.3 of Section 3.3,
namely isentropic adiabatic thermoelasticity, with system of balance laws (3.3.10)
and entropy function η = ε(F) + 1

2 |v|2, which would be convex if ε were con-
vex. Even though ε may indeed be convex on certain regions of state space, global
convexity is incompatible with experience and in particular would violate the prin-
ciple of material frame indifference, which requires ε(O F) = ε(F) for all proper
orthogonal matrices O (cf. (2.5.5)).

It will be shown here that the failure of ε to be convex in certain directions is
compensated by the property that solutions of the system (3.3.10) satisfy identically
the additional conservation law

(5.4.1) ∂βFiα − ∂αFiβ = 0, i = 1, · · · ,m; α, β = 1, · · · ,m,

whenever the initial data do so. By virtue of (2.1.2), these are the only solutions that
are physically relevant.

Systems exhibiting such behavior arise quite commonly in continuum physics.
For example, solutions of Maxwell’s equations (3.3.40), with current J ≡ 0, satisfy
identically the additional conservation laws

(5.4.2) divB = 0, divD = 0,

as long as the initial data do so, and again these are the solutions with physical
relevance. It is thus warranted to investigate systems of balance laws with this special
structure, in a general framework:
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5.4.1 Definition. The first order system

(5.4.3)
m∑
α=1

Mα∂αU = 0

of differential equations, with Mα k × n matrices, α = 1, . . . ,m, is called an invo-
lution of the system (5.1.1) of conservation laws if any (generally weak) solution of
the Cauchy problem (5.1.1),(5.1.2) satisfies (5.4.3) identically, whenever the initial
data do so.2

Thus (5.4.1) is an involution of (3.3.10) and (5.4.2) is an involution of (3.3.40).
A sufficient condition for (5.4.3) to be an involution of (5.1.1) is

(5.4.4) MαGβ(U )+ MβGα(U ) = 0, α, β = 1, · · · ,m,

for any U ∈ O. We shall focus our investigation to this special case which covers,
in particular, the prototypical examples (5.4.1) and (5.4.2). The aim is to demon-
strate that, in the presence of involutions, one may establish existence and stability
of classical solutions under the weaker hypothesis that the entropy is convex just in
the direction of a certain cone in state space, which is constructed by the following
procedure:

With any ν ∈ Sm−1, we associate the k × n matrix

(5.4.5) N (ν) =
m∑
α=1

ναMα .

Recalling the notation (4.1.2), (5.4.4) implies

(5.4.6) N (ν)�(ν;U ) = 0.

We impose the condition, valid in the prototypical examples, that for any ν ∈ Sm−1

the rank of N (ν) equals the dimension of the kernel of �(ν;U ), i.e., the row vectors
of N (ν) span the left eigenspace of the matrix �(ν;U ) associated with the eigen-
value λ(ν;U ) = 0.

5.4.2 Definition. The involution cone in IRn of the involution (5.4.3) is

(5.4.7) C =
⋃

ν∈Sm−1

ker N (ν),

with N (ν) given by (5.4.5).

2 This should be contrasted with the vanishing vorticity condition curl v = 0, characterizing
irrotational or potential flow, which is sustained by classical solutions of the Euler equations
(3.3.21), when the body force derives from a potential, but generally breaks down after
discontinuities develop.
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5.4.3 Lemma. Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.4.3) with involution cone C. Suppose P is a symmetric n × n matrix-
valued L∞ function on IRm which is uniformly positive definite in the direction of C,
i.e.,

(5.4.8) Z�P(x)Z ≥ µ|Z |2, Z ∈ C, x ∈ IRm,

for some µ > 0, and its local oscillation is less than µ, i.e.,

(5.4.9) lim sup
ε↓0

sup
|y−x |<ε

|P(y)− P(x)| < µ− 2δ,

for some δ > 0. If W is any L2 function from IRm to IRn which is compactly sup-
ported in the hypercube K = {x ∈ IRm : |xα| < p, α = 1, . . . ,m} and satisfies the
involution

(5.4.10)
m∑
α=1

Mα∂αW = 0

in the sense of distributions, then

(5.4.11)
∫

IRm
W (x)�P(x)W (x)dx ≥ δ‖W‖2

L2(K) − b‖W‖2
W−1,2(K) ,

where b does not depend on W .

Proof. Expand W in Fourier series over K:

(5.4.12) W (x) =
∑
ξ∈ZZm

exp

{
iπ

p
(ξ · x)

}
X (ξ).

Fix Û ∈ O and consider the differential operator

(5.4.13) L =
m∑
β=1

DGβ(Û )∂β .

Construct a 2p-periodic W 1,2
loc function V , mapping IRm to IRn , such that

(5.4.14) LV = W − X (0).

Such a V is derived via its Fourier series expansion

(5.4.15) V (x) =
∑

ξ∈ZZm\{0}
exp

{
iπ

p
(ξ · x)

}
Y (ξ),

with coefficients determined by solving the linear systems
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(5.4.16) �
(
|ξ |−1ξ ; Û

)
Y (ξ) = − i p

π

1

|ξ | X (ξ).

Solutions to (5.4.16) exist because by (5.4.10)

(5.4.17) |ξ |N (|ξ |−1ξ)X (ξ) =
[ m∑
α=1

ξαMα

]
X (ξ) = 0,

so that X (ξ) lies in the kernel of N (|ξ |−1ξ); and the rank of N (|ξ |−1ξ) is assumed
equal to the dimension of the kernel of �(|ξ |−1ξ ; Û ). Furthermore, since

(5.4.18) ‖W‖2
W−1,2(K) = (2p)m

∑
ξ∈ZZm

(1+ |ξ |2)−1|X (ξ)|2 ,

(5.4.19) ‖V ‖2
L2(K) = (2p)m

∑
ξ∈ZZm

|Y (ξ)|2 ,

we conclude that

(5.4.20) ‖V ‖L2(K) ≤ a p‖W‖W−1,2(K) ,

where a is independent of p and W .
Next we cover K by the union of a finite collection K1, · · · ,KJ of open hyper-

cubes, centered at points y1, · · · , y J , such that

(5.4.21) sup
x∈KI

|P(x)− P(y I )| ≤ µ− 2δ, I = 1, · · · , J.

With the above covering we associate a partition of unity induced by C∞ functions
θ1, . . . , θJ on IRm such that spt θI ⊂ KI ∩K, I = 1, . . . , J , and

(5.4.22)
J∑

I=1

θ2
I (x) = 1, x ∈ spt W.

Then

(5.4.23)
∫

IRm

W (x)�P(x)W (x)dx =
J∑

I=1

∫
KI

θ2
I (x)W (x)�P(x)W (x)dx

=
J∑

I=1

∫
KI

θ2
I (x)W (x)�P(y I )W (x)dx+

J∑
I=1

∫
KI

θ2
I (x)W (x)�[P(x)− P(y I )]W (x)dx .

By virtue of (5.4.21) and (5.4.22),

(5.4.24)
J∑

I=1

∫
KI

θ2
I (x)W (x)�[P(x)− P(y I )]W (x)dx ≥ −(µ− 2δ)‖W‖2

L2 .
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For each I = 1, . . . , J , we split θI W into

(5.4.25) θI W = SI + TI ,

where

(5.4.26) SI = L(θI V ),

(5.4.27) TI (x) = θI (x)X (0)−
[ m∑
β=1

∂βθI (x)D Gβ(Û )

]
V (x).

Clearly, SI is square integrable, has compact support in KI and zero mean over KI .
Moreover, by account of (5.4.13) and (5.4.4),

(5.4.28)
m∑
α=1

Mα∂αSI = 0.

Consequently, SI may be expanded in Fourier series over KI ,

(5.4.29) SI (x) =
∑

ξ∈ZZm\{0}
exp

{
iπ

pI
[ξ · (x − y I )]

}
Z(ξ),

with

(5.4.30) |ξ |N (|ξ |−1ξ)Z(ξ) =
[ m∑
α=1

ξαMα

]
Z(ξ) = 0.

Thus X (ξ) lies in the complexification of the involution cone C and so, by Parseval’s
relation and (5.4.8),

(5.4.31)
∫
KI

SI (x)
�P(y I )SI (x)dx = (2pI )m

∑
ξ∈ZZm

Z(ξ)∗P(y I )Z(ξ)

≥ µ(2pI )m
∑
ξ∈ZZm

|Z(ξ)|2 = µ

∫
KI

|SI (x)|2dx .

Moreover, from (5.4.27), (5.4.18) and (5.4.20) we infer

(5.4.32)
∫
KI

|TI (x)|2dx ≤ c‖W‖2
W−1,2(K) .

We now return to (5.4.23). From (5.4.25), (5.4.31) and (5.4.32) it follows that
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(5.4.33)
∫
KI

θ2
I (x)W (x)�P(y I )W (x)dx

≥ (1− δ

2µ
)

∫
KI

SI (x)
�P(y I )SI (x)dx − 2µ

δ

∫
KI

TI (x)
�P(y I )TI (x)dx

≥ (µ− δ

2
)

∫
KI

|SI (x)|2dx − c‖W‖2
W−1,2 .

Again by (5.4.25) and (5.4.32),

(5.4.34)
∫
KI

|SI (x)|2dx ≥ (1− δ

2µ
)

∫
KI

θ2
I (x)|W (x)|2dx − 2µ

δ

∫
KI

|TI (x)|2dx

≥ (1− δ

2µ
)

∫
KI

θ2
I (x)|W (x)|2dx − c‖W‖2

W−1,2 .

Combining (5.4.23), (5.4.24), (5.4.33), (5.5.34) and (5.4.22), we arrive at (5.4.11).
This completes the proof.

In the presence of involutions, local existence of classical solutions to the Cauchy
problem is obtained even when the entropy is merely convex in the direction of the
involution cone:

5.4.4 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.4.3) and is equipped with a C3 entropy η, with D2η(U ) positive definite
in the direction of the involution cone C. Suppose the initial data U0 are continuously
differentiable on IRm, take values in a compact subset of O, are constant, say Ũ ,
outside a bounded subset of IRm, satisfy the involution on IRm, and ∇U0 ∈ H � for
some � > m/2. Moreover, let G ∈ C�+2. Then there exists T∞ , 0 < T∞ ≤ ∞, and
a unique continuously differentiable function U on IRm × [0, T∞), taking values in
O, which is a classical solution of the Cauchy problem (5.1.1), (5.1.2) on [0, T∞).
Furthermore,

(5.4.35) ∇U (·, t) ∈ C0([0, T∞); H �).

The interval [0, T∞) is maximal, in the sense that whenever T∞ <∞ then

(5.4.36)

T∞∫
0

‖∇U (·, t)‖L∞dt = ∞

and/or the range of U (·, t) escapes from every compact subset of O as t ↑ T∞ .

Sketch of Proof. It is a slight variant of the proof of Theorem 5.1.1. In the place of
(5.1.11) one should now employ some alternative linearization of (5.1.1), such as
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(5.4.37) ∂tU +
m∑
α=1

∂α[Gα(V )+ DGα(V )(U − V )] = 0,

whose solutions satisfy the involution (5.4.3) when their initial values do so. Never-
theless, in order to avoid the tedium of recasting all the estimates established earlier
to this new setting, we shall carry out the proof under the extraneous assumption
that the matrices MαDGβ(V ) are constant, which holds, in particular, for the system
(3.3.10) of elastodynamics. In that case, the involution (5.4.3) will be satisfied even
by solutions of (5.1.11), and we may thus continue using that linearization of (5.1.1).

We retrace the steps in the proof of Theorem 5.1.1. In the definition of the metric
space F the stipulation should be added that its members are constant, Ũ , outside
some ball in IRm .

The first snag we hit is that (5.1.16) no longer applies, as D2η(V ) is now positive
only in the direction of the involution cone C. In its place we use

(5.4.38)
∫

IRm

U�
r D2η(V )Ur dx ≥ δ‖Ur‖2

L2 − c‖Ur‖2
W−1,2 ,

which follows from Lemma 5.4.3. To estimate ‖Ur‖W−1,2 , we integrate (5.1.12) with
respect to t . This yields

(5.4.39) ‖Ur (·, t)‖W−1,2 ≤ c‖∇U0(·)‖� + cω

t∫
0

‖∇U (·, τ )‖�dτ.

By employing (5.4.38), (5.4.39) as a substitute for (5.1.16), we establish, in the place
of (5.1.17), the new estimate

(5.4.40) ‖∇U (·, t)‖2
� ≤ c‖∇U0(·)‖2

� + cω(1+ ωT )

t∫
0

‖∇U (·, τ )‖2
�dτ,

whence we deduce that when ω is sufficiently large and T is sufficiently small,
sup
[0,T ]

‖∇U (·, t)‖� < ω, as required for the proof.

A similar argument is used to compensate for the failure of (5.1.23). In its place,
by using Lemma 5.4.3, we have

(5.4.41)
∫

IRm

(U − Ū )�D2η(V )(U − Ū )dx ≥ δ‖U − Ū‖2
L2 − c‖U − Ū‖2

W−1,2 .

Integrating (5.1.20) with respect to t yields the estimate

(5.4.42) ‖(U−Ū )(·, t)‖W−1,2 ≤ cω

t∫
0

{‖(U−Ū )(·, τ )‖L2+‖(V−V̄ )(·, τ )‖L2}dτ.
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By virtue of (5.4.41) and (5.4.42), we obtain, in the place of (5.1.24),

(5.4.43)

‖(U − Ū )(·, t)‖2
L2 ≤ cω(1+ ωT )

t∫
0

{‖(U − Ū )(·, τ )‖2
L2 + ‖(V − V̄ )(·, τ )‖2

L2}dτ.

From (5.1.10), (5.4.43) and Gronwall’s inequality, we deduce

(5.4.44) ρ(U, Ū ) ≤ [cωT (1+ ωT )]1/2 exp[cωT (1+ ωT )]ρ(V, V̄ ).

Thus, for T small, the map that carries V ∈ F to the solution U ∈ F of (5.1.11),
(5.1.2) is a contraction.

This completes the proof.

In the presence of involutions, classical solutions to the Cauchy problem are sta-
ble within the class of admissible weak solutions, even when the entropy is convex
only in the direction of the involution cone:

5.4.5 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.4.3), and is equipped with an entropy-entropy flux pair (η, Q), where
D2η(U ) is positive definite in the direction of the involution cone C. Suppose Ū is a
classical solution of (5.1.1) on a bounded time interval [0, T ), which takes values in
a convex, compact subset D of O, and has initial data Ū0 satisfying the involution.
Let U be any weak solution of (5.1.1), which also takes values in D, coincides with
Ū outside some ball of IRm, has sufficiently small local oscillation

(5.4.45) lim sup
ε↓0

sup
|y−x |<ε

|U (y, t)−U (x, t)| < κ, 0 ≤ t < T,

meets the entropy admissibility criterion (4.5.3), and has initial values U0 satisfying
the involution. Then

(5.4.46)
∫

IRm

|U (x, t)− Ū (x, t)|2dx ≤ a
∫

IRm

|U0(x)− Ū0(x)|2dx

holds for t ∈ [0, T ), where a depends on D, T and the Lipschitz constant of Ū .

Proof. Retracing the steps in the proof of Theorem 5.3.1, we derive (5.3.14), with
r = ∞:

(5.4.47)
∫

IRm

h(U (x, t), Ū (x, t))dx ≤
∫

IRm

h(U0(x), Ū0(x))dx

−
t∫

0

∫
IRm

m∑
α=1

∂αŪ�Zα(U, Ū )dxdτ.
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From (5.3.2),

(5.4.48) h(U, Ū ) = (U − Ū )�P(U, Ū )(U − Ū ),

where

(5.4.49) P(U, Ū ) =
1∫

0

w∫
0

D2η(Ū + z(U − Ū ))dzdw.

In particular,

(5.4.50) Z�P(U, Ū )Z ≥ µ|Z |2, Z ∈ C,

for some µ > 0. Therefore, when κ in (5.4.45) is so small that the local oscillation
of P(U (x, t), Ū (x, t)) is less than µ, we may apply Lemma 5.4.3 with W = U − Ū
to get

(5.4.51)∫
IRm

h(U (x, t), Ū (x, t))dx ≥ δ‖U (·, t)− Ū (·, t)‖2
L2 − c‖U (·, t)− Ū (·, t)‖2

W−1,2

for some δ > 0. We estimate the second term on the right-hand side of (5.4.51) as
follows:

(5.4.52) ‖U (·, t)− Ū (·, t)‖W−1,2 ≤ ‖U0(·)− Ū0(·)‖W−1,2

+
t∫

0

‖∂t {U (·, τ )− Ū (·, τ )}‖W−1,2 dτ,

(5.4.53)

‖∂t {U (·, τ )− Ū (·, τ )}‖W−1,2 = ‖
m∑
α=1

∂α{Gα(U (·, τ ))− Gα(Ū (·, τ ))}‖W−1,2

≤
m∑
α=1

‖Gα(U (·, τ ))− Gα(Ū (·, τ ))‖L2 ≤ c‖U (·, τ )− Ū (·, τ )‖L2 .

Combining (5.4.51), (5.4.52) and (5.4.53), we deduce from (5.4.47),

(5.4.54) ‖U (·, t)− Ū (·, t)‖2
L2 ≤ c‖U0(·)− Ū0(·)‖2

L2

+c

t∫
0

‖U (·, τ )−Ū (·, τ )‖2
L2 dτ+c{

t∫
0

‖U (·, τ )−Ū (·, τ )‖L2 dτ }2 ,

whence (5.4.46) follows. The proof is complete.
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For the system of elastodynamics (3.3.10), with involution (5.4.1), the involution
cone C consists of states (F, v) in IR12 with F = ξ ⊗ ν, for ξ, ν and v in IR3. Thus,
Theorems 5.4.4 and 5.4.5 establish the existence and stability of classical solutions
to the Cauchy problem, under the assumption that the internal energy ε(F) is rank-
one convex, i.e. it is convex in the direction of matrices F = ξ ⊗ ν of rank one. As
noted in Section 3.3.3, ε(F) is rank-one convex if and only if the system (3.3.10) is
hyperbolic.

The following discussion will shed some light on the relationship between con-
vexity of the entropy in the direction of the involution cone and the important notion
of quasiconvexity.

5.4.6 Definition. An entropy η for the system of conservation laws (5.1.1), endowed
with an involution (5.4.3), is called quasiconvex if for any U ∈ L∞(IRm;O), which
is 2p-periodic, satisfies (5.4.3) and has mean

(5.4.55) Û = (2p)−m
∫
K

U (y)dy

over the standard hypercube K in IRm with edge length 2p, it is

(5.4.56) η(Û ) ≤ (2p)−m
∫
K

η(U (y))dy.

Roughly, quasiconvexity stipulates that the uniform state minimizes the total en-
tropy, among all states that are compatible with the involution and have the same
“mass”. This is in the spirit of the fundamental law of classical thermostatics, which
affirms that the physical entropy is maximized at the equilibrium state.

The relevance of quasiconvexity is demonstrated by the following propostion,
whose proof may be found in the references cited in Section 5.6:

5.4.7 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
entropy η and an involution (5.4.3), such that the rank of N (ν) is constant, for any
ν ∈ Sm−1, and equal to the dimension of the kernel of�(ν;U ). Then

∫
|x |<r

η(U )dx is

weak∗ lower semicontinuous on the space of L∞ vector fields U that satisfy (5.4.3),
if and only if η is quasiconvex. Furthermore, any quasiconvex η is necessarily convex
in the direction of the involution cone C.

Because of the above proposition, the notion of quasiconvexity plays a funda-
mental role in the calculus of variations. Unfortunately, Definition 5.4.6 does not
provide any clue as to how to test whether a given entropy is quasiconvex. The con-
jecture that convexity in the direction of the involution cone is also sufficient for qua-
siconvexity is valid when the entropy is quadratic: η = U�AU . In general, however,
quasiconvexity is a more stringent condition than mere convexity in the direction of
the involution cone.
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The above may be illustrated in the context of our prototypical example, namely
the system (3.3.10) of isentropic elastodynamics, with involution (5.4.1) and entropy
η = ε(F) + 1

2 |v|2. In that case, η is quasiconvex when ε(F) is quasiconvex in the

sense of Morrey: For any constant deformation gradient F̂ and any Lipschitz function
χ from K to IR3, with compact support in K,

(5.4.57) ε(F̂) ≤ (2p)−3
∫
K

ε(F̂ +∇χ)dy.

In other words, a homogeneous deformation of K minimizes the total internal energy
among all placements of K with the same boundary values. Any quasiconvex internal
energy is rank-one convex (3.3.7). On the other hand, there exist rank-one convex
functions ε(F) that fail to be quasiconvex.

A placement of an elastic body is in (isentropic) equilibrium when its total in-
ternal energy

∫
ε(F)dx is minimum over all placements with the same boundary

conditions. Thus, quasiconvexity is necessary and sufficient for attaining equilibria
by minimizing sequences of placements that are merely bounded in W 1,∞.

It is easily seen, from (2.2.17), that the involution (5.4.1) is equivalent to (2.2.12).
Accordingly, one may regard (2.2.13) as a nonlinear involution. Nonlinear involu-
tions are often encountered in mathematical physics, most notably in the theory of
relativity.

5.5 Contingent Entropies and Polyconvexity

As pointed out in the previous section, the natural entropy ε(F)+ 1
2 |v|2 for the system

of conservation laws (3.3.10) of elastodynamics fails to be convex on the entire state
space. The same difficulty is encountered in Maxwell’s equations (3.3.40) for the
Born-Infeld medium, with constitutive relations (3.3.45), as the entropy defined by

[1 + |B|2 + |D|2 + |D ∧ B|2] 1
2 is not a convex function of (B, D), far from the

origin. We have seen that when the internal energy ε(F) is rank-one convex, the
presence of involutions (5.4.1) provides some relief, but only partial: Theorem 5.4.5
is weaker than Theorem 5.3.1, as it requires the small local oscillation assumption
(5.4.45) and asserts global, but not necessarily local, stability. Moreover, when it
comes to Maxwell’s equations, Theorems 5.4.4 and 5.4.5 are of no help, because the
involution cone associated with the involutions (5.4.2) spans the entire state space
IR6. Fortunately, in the above systems the failure of the entropy to be convex is
compensated by the presence of supplementary entropy-entropy flux pairs. These
are induced by the kinematic conservation laws (2.2.15), (2.2.16) for the system of
elastodynamics; and they derive from the extra conservation law

(5.5.1) ∂t Q = div
[
η−1(I + B B� + DD� − Q Q�)

]
,

for the electrodynamics equations of the Born-Infeld medium. It should be noted,
however, that (2.2.15), (2.2.16) do not hold for arbitrary solutions of (3.3.10), but
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only for those that satisfy the involution (5.4.1). Similarly, (5.5.1) holds identically
only for classical solutions of (3.3.40) (with J = 0) and (3.3.45) that satisfy the
involution (5.4.2). We thus need an extended notion of entropy that is contingent on
involutions:

5.5.1 Definition. For a system of conservation laws (5.1.1) endowed with an invo-
lution (5.4.3), a scalar-valued function η(U ), together with a m-row vector-valued
function Q(U ), constitute a contingent entropy-entropy flux pair if

(5.5.2) DQα(U ) = Dη(U )DGα(U )+!(U )�Mα , α = 1, . . . ,m,

for some k-column vector Lagrange multiplier !(U ).

Notice that (5.5.2) still implies

(5.5.3) ∂tη(U (x, t))+ div Q(U (x, t)) = 0,

for any classical solution U of (5.1.1) that satisfies the involution (5.4.3). On the
other hand, (5.1.3) is here replaced by the symmetry condition

(5.5.4) D2η(U )DGα(U )+ D!(U )�Mα = DGα(U )�D2η(U )+ M�
α D!(U ).

Thus, F∗ and det F are contingent entropies of the system (3.3.10) of elasto-
dynamics, with involution (5.4.1); and Q = D ∧ B is a contingent entropy of the
system of electrodynamics (3.3.40) for the Born-Infeld medium (3.3.45), with invo-
lution (5.4.2).

We now lay down a general framework that will eventually encompass the above
applications. We consider a system of conservation laws (5.1.1) which is endowed
with an involution (5.4.3) and is equipped with a principal contingent entropy-
entropy flux pair (η(U ), Q(U )) as well as N additional contingent entropy-entropy
flux pairs (�I (U ),
I (U )), I = 1, . . . , N , which we group together into a single
pair (�(U ),
(U )) of a N -column vector and a N ×m matrix. In particular, for any
i = 1, . . . , n, the i-th component U i of U may be viewed as a contingent entropy
for (5.1.1), with associated flux the i-th row vector Gi of G, and we include all these
pairs in (�,
). Thus, for the equations (3.3.10) of elastodynamics one employs as�
(F, v, F∗, det F) arranged as a 22-column vector. Similarly, in the case of Maxwell’s
equations (3.3.40) for the Born-Infeld medium (3.3.45), � shall be (B, D, D ∧ B)
arranged as a 9-column vector. As usual, the α-th column of 
 will be denoted by

α . The Lagrange multiplier vectors "I (U ) associated with (�I (U ),
I (U )) will
be assembled into a k × N matrix-valued function "(U ). We thus have

(5.5.5) D
α(U ) = D�(U )DGα(U )+"(U )�Mα , α = 1, . . . ,m,

(5.5.6) D2�I (U )DGα(U )+D"I (U )�Mα = DGα(U )�D2�I (U )+M�
α D"I (U ).

Furthermore,
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(5.5.7) ∂t�(U (x, t))+ div
(U (x, t)) = 0

will hold for any classical solution U of (5.1.1) which satisfies the involution (5.4.3).
Since (U,G) is part of (�,
), �(U ) will be complete in the sense

(5.5.8) rank D�(U ) = n, U ∈ O.

The special structure that induces existence and stability of classical solutions is
introduced in the following

5.5.2 Definition. In the above setting, the principal contingent entropy η(U ) is called
polyconvex, relative to the contingent entropies �(U ), if it admits a representation

(5.5.9) η(U ) = θ(�(U )), U ∈ O,

where θ is uniformly convex on IRN .

In the conservation laws for the Born-Infeld medium, with � = (B, D, Q), the
principal entropy η = [1+ |B|2 + |D|2 + |Q|2] 1

2 is indeed polyconvex.
For the system of elastodynamics, with � = (F, v, F∗, det F), the principal

entropy η = ε(F)+ 1
2 |v|2 will be polyconvex if

(5.5.10) ε(F) = σ(F, F∗, det F),

where σ is uniformly convex on IM3×3×IM3×3×IR+. Functions of this form provide
a realistic representation of the internal energy functions of rubberlike materials at
constant temperature or at constant (physical) entropy.

It can be shown that any null Lagrangian (2.2.9) is continuous in L∞ weak∗.
Consequently, any polyconvex internal energy function (5.5.10) is necessarily lower
semicontinuous in L∞ weak∗, and thereby quasiconvex and rank-one convex, by
virtue of Theorem 5.4.7. However, the converse is not generally true: Quasiconvexity
does not necessarily imply polyconvexity of ε.

In what follows, θ�I (�) will denote the partial derivative ∂θ(�)/∂�I ; θ� will
stand for the N -row vector (θ�1 , . . . , θ�N ); and θ�� will denote the N × N Hessian
matrix of θ(�).

For any U ∈ O, we define the symmetric n × n matrix

(5.5.11) A(U ) = D2η(U )−
N∑

I=1

θ�I (�(U ))D2�I (U ).

Using (5.5.9),

(5.5.12) A(U ) = D�(U )�θ��(�(U ))D�(U ),

so A(U ) is positive definite when η(U ) is polyconvex and �(U ) is complete. Fur-
thermore, by virtue of (5.5.4) and (5.5.6),
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(5.5.13) A(U )DGα(U )+ �(U )�Mα = DGα(U )�A(U )+ M�
α �(U ),

where

(5.5.14) �(U ) = D!(U )−
N∑

I=1

θ�I (�(U ))D"I (U ).

We now show that polyconvexity induces local existence of classical solutions to
the Cauchy problem:

5.5.3 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.4.3) and is equipped with a principal contingent entropy η(U ), which
is polyconvex (5.5.9) relative to a complete family �(U ) of contingent entropies.
Suppose the initial data U0 are continuously differentiable on IRm, take values in
a compact subset of O, satisfy the involution on IRm, and ∇U0 ∈ H � for some
� > m/2. Moreover, let G ∈ C�+2. Then there exists T∞ , 0 < T∞ ≤ ∞, and a
unique continuously differentiable function U on IRm × [0, T∞), taking values in
O, which is a classical solution of the Cauchy problem (5.1.1), (5.1.2) on [0, T∞).
Furthermore,

(5.5.15) ∇U (·, t) ∈ C0([0, T∞); H �).

The interval [0, T∞) is maximal, in the sense that whenever T∞ <∞ then

(5.5.16)

T∞∫
0

‖∇U (·, t)‖L∞dt = ∞

and/or the range of U (·, t) escapes from every compact subset of O as t ↑ T∞ .

Sketch of Proof. It is a slight variant of the proof of Theorem 5.1.1. As in the
proof of Theorem 5.4.4, in order to avoid the replication of cumbersome routine
estimations, we shall proceed under the extraneous assumption that the matrices
MαDGβ(V ) are constant, in which case solutions of (5.1.11), (5.1.2) satisfy the in-
volution (5.4.3), so long as U0 does. This will allow us to use (5.1.11), rather than
(5.4.37), as the designated linearization of (5.1.1).

In carrying out the proof, one may no longer use D2η(V ) as symmetrizer. In its
place, we employ the symmetric positive definite matrix A(V ), defined by (5.5.12).
Indeed, the key role of the equations (5.1.15) and (5.1.22) which embody the sym-
metrizability of (5.1.11) when η is a convex entropy, is here undertaken by
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(5.5.17)

m∑
α=1

2U�
r A(V )DGα(V )∂αUr

=
m∑
α=1

∂α
{
U�

r [A(V )DGα(V )+ �(V )�Mα]Ur
}

−
m∑
α=1

U�
r ∂α[A(V )DGα(V )+ �(V )�Mα]Ur ,

(5.5.18)

m∑
α=1

2(U − Ū )�A(V )DGα(V )∂α(U − Ū )

=
m∑
α=1

∂α
{
(U − Ū )�[A(V )DGα(V )+ �(V )�Mα](U − Ū )

}

−
m∑
α=1

(U − Ū )�∂α[A(V )DGα(V )+ �(V )�Mα](U − Ū ),

which are verified by using (5.5.13) in conjunction with
∑

Mα∂αUr = 0 and∑
Mα∂α(U − Ū ) = 0.
The remaining equations in the proof of Theorem 5.1.1 carry over to the present

setting by simply substituting A(V ) for D2η(V ). This completes the proof.

In certain systems, (5.5.7) may hold, as an equality, even for weak solutions. This
is certainly the case in elastodynamics, as the kinematic conservation laws (2.2.15)
and (2.2.16) hold for any L∞ solution satisfying the involution (5.4.1). This is also
true in electrodynamics for the Born-Infeld medium, at least in the realm of BV
solutions, the reason being that all shocks turn out to be linearly degenerate (see
Section 7.5) and thus do not incur any entropy production (Theorem 8.5.2). Under
these circumstances, polyconvexity of the entropy implies uniqueness and stability
of classical solutions, even within the class of admissible weak solutions:

5.5.4 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.4.3) and is equipped with a principal contingent entropy η(U ), which
is polyconvex (5.5.9), relative to a complete family �(U ) of contingent entropies.
Suppose Ū is a classical solution of (5.1.1) on [0, T ), taking values in a convex
compact subset D of O, with initial data Ū0 that satisfy the involution. Let U be any
weak solution of (5.1.1) on [0, T ), also taking values in D, which satisfies (5.5.7),
meets the entropy admissibliity criterion (4.5.3), and has initial data U0 satisfying
the involution. Then

(5.5.19)
∫
|x |<r

|U (x, t)− Ū (x, t)|2dx ≤ aebt
∫
|x |<r+st

|U0(x)− Ū0(x)|2dx
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holds for any r > 0 and t ∈ [0, T ), with positive constants s, a, depending solely
on D, and b that also depends on the Lipschitz constant of Ū . In particular, Ū is the
unique admissible weak solution of (5.1.1) with initial data Ū0 and values in D.

Proof. It is a variant of the proof of Theorem 5.3.1. In the place of (5.3.2), (5.3.3)
and (5.3.4), we now set

(5.5.20) h(U, Ū ) = η(U )− η(Ū )− θ�(�(Ū ))[�(U )−�(Ū )],

(5.5.21) Yα(U, Ū ) = Qα(U )− Qα(Ū )− θ�(�(Ū ))[
α(U )−
α(Ū )]
+ [θ�(�(Ū ))"(Ū )� −!(Ū )�]Mα[U − Ū ],

(5.5.22) Zα(U, Ū ) = − DGα(Ū )�D�(Ū )�θ��(�(Ū ))[�(U )−�(Ū )]
+ D�(Ū )�θ��(�(Ū ))[
α(U )−
α(Ū )]
− D�(Ū )�θ��(�(Ū ))"(Ū )�Mα[U − Ū ]
+ �(Ū )�Mα[U − Ū ],

where �(U ) is defined by (5.5.14).

Clearly, h(U, Ū ) is of quadratic order in U−Ū , and positive definite. Upon using
(5.5.2), (5.5.5) and (5.5.9), we deduce

(5.5.23) DYα(U, Ū ) = [θ�(�(U ))− θ�(�(Ū ))]D�(U )DGα(U )

+[!(U )−!(Ū )]�Mα−θ�(�(Ū ))["(U )−"(Ū )]�Mα ,

which vanishes at U = Ū , so that Y (U, Ū ) is also of quadratic order in U − Ū . In
particular, we still have (5.3.5).

Turning to Z(U, Ū ), and by virtue of (5.5.5),

(5.5.24) DZα(U, Ū ) = − DGα(Ū )�D�(Ū )�θ��(�(Ū ))D�(U )

+ D�(Ū )�θ��(�(Ū ))D�(U )DGα(U )

+ D�(Ū )�θ��(�(Ū ))["(U )−"(Ū )]�Mα

+ �(Ū )�Mα .

Recalling (5.5.12) and (5.5.13), we conclude that

(5.5.25)

DZα(Ū , Ū ) = −DGα(Ū )�A(Ū )+ A(Ū )DGα(Ū )+ �(Ū )�Mα = M�
α �(Ū ).

Retracing the steps in the proof of Theorem 5.3.1, we fix a nonnegative, Lipschitz
continuous test function ψ on IRm×[0, T ), with compact support, and evaluate h, Y
and Z along the two solutions U (x, t), Ū (x, t). As an admissible weak solution, U
satisfies the inequality (4.5.3), while Ū , being a classical solution, will identically
satisfy (4.5.3) as an equality. Thus, in the place of (5.3.6) we now have
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(5.5.26)∫ T

0

∫
IRm
[∂tψ h(U, Ū )+

m∑
α=1

∂αψ Yα(U, Ū )]dxdt+
∫

IRm
ψ(x, 0) h(U0(x), Ū0(x)) dx

≥ −
∫ T

0

∫
IRm

{
∂tψ θ�(�(Ū ))[�(U )−�(Ū )] +

m∑
α=1

∂αψ{θ�(�(Ū ))

× [
α(U )−
α(Ū )] − [θ�(�(Ū ))S(Ū )� −!(Ū )�]Mα[U − Ū ]}
}

dxdt

−
∫

IRm
ψ(x, 0)θ�(�(Ū0(x)))[�(U0(x))−�(Ū0(x))]dx .

Next we recall that both U and Ū satisfy (5.5.7), in the sense of distributions.
Hence, using ψθ�(�(Ū )) as test function,

(5.5.27)

T∫
0

∫
IRm

{
∂t [ψθ�(�(Ū ))][�(U )−�(Ū )] +

m∑
α=1

∂α[ψθ�(�(Ū ))][
α(U )−
α(Ū )]
}

dxdt

+
∫

IRm

ψ(x, 0)θ�(�(Ū0(x)))[�(U0(x))−�(Ū0(x))]dx = 0.

Furthermore, since (5.4.3) holds for both U and Ū ,

(5.5.28)

T∫
0

∫
IRm

m∑
α=1

∂α
{
ψ[θ�(�(Ū ))"(Ū )� −!(Ū )�]Mα[U − Ū ]}dxdt = 0.

By virtue of (5.5.5) and
∑

Mα∂αŪ = 0,

(5.5.29)
∂tθ�(�(Ū )) = ∂t�(Ū )�θ��(�(Ū ))

= −
m∑
α=1

∂α
α(Ū )�θ��(�(Ū ))

= −
m∑
α=1

∂αŪ�D
α(Ū )�θ��(�(Ū ))

= −
m∑
α=1

∂αŪ�[D�(Ū )DGα(Ū )+"(Ū )�Mα]�θ��(�(Ū ))

= −
m∑
α=1

∂αŪ�DGα(Ū )�D�(Ū )�θ��(�(Ū )).
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Similarly,

(5.5.30) ∂αθ�(�(Ū )) = ∂αŪ�D�(Ū )�θ��(�(Ū )),

(5.5.31) ∂α[θ�(�(Ū ))"(Ū )� −!(Ū )�]
= ∂αŪ�D�(Ū )�θ��(�(Ū ))"(Ū )� − ∂αŪ��(Ū )� .

Therefore, recalling (5.5.22),

(5.5.32) ∂tθ�(�(Ū ))[�(U )−�(Ū )] +
m∑
α=1

∂αθ�(�(Ū ))[
α(U )−
α(Ū )]

−
m∑
α=1

∂α[θ�(�(Ū ))"(Ū )� −!(Ū )�]Mα[U − Ū ]

=
m∑
α=1

∂αŪ�Zα(U, Ū ).

By account of (5.2.25),

(5.5.33)
m∑
α=1

∂αŪ�DZα(Ū , Ū ) =
[ m∑
α=1

Mα∂αŪ

]�
�(Ū ) = 0.

Consequently, the right-hand side of (5.5.32) is of quadratic order in U − Ū .
Upon combining (5.5.26), (5.5.27), (5.5.28) and (5.5.32), we reestablish (5.3.10) and
thereby (5.3.14). Then, an application of Gronwall’s inequality yields (5.5.19). The
proof is complete.

In particular, Theorems 5.5.3 and 5.5.4 apply to the class of systems of con-
servation laws that are endowed with an involution and are equipped with a con-
vex contingent entropy η(U ) (just take �(U ) ≡ U ). One may attempt to reduce
the more general class of systems endowed with an involution and equipped with a
polyconvex contingent entropy to the above special class by means of the following
procedure. Assume that the system (5.1.1) is endowed with the involution (5.4.3)
and is equipped with a principal contingent entropy-entropy flux pair (η(U ), Q(U ))

which is polyconvex (5.5.9), relative to a complete family (�(U ),
(U )) of contin-
gent entropy-entropy flux pairs. We seek functions S(X) and Π(X), defined on IRN

and taking values in IM N×m and IM1×m , respectively, such that

(5.5.34) S(�(U )) = 
(U ), Π(�(U )) = Q(U )

and, in addition, (θ(X), Π(X)) is a (generally contingent) entropy-entropy flux pair
for the extended system

(5.5.35) ∂t X (x, t)+ div S(X (x, t)) = 0.

When functions satisfying the above specifications can be found, one may construct
solutions to the Cauchy problem (5.1.1), (5.1.2) by first solving (5.5.35) with initial
conditions
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(5.5.36) X (x, 0) = �(U0(x)),

and then getting U from the equation �(U ) = X . The merit of this approach lies in
that (5.5.35) is now equipped with a convex (possibly contingent) entropy θ .

The above program has been implemented successfully for the systems of elas-
todynamics and electrodynamics.

In elastodynamics, U = (F, v)�, X = (F, v,�,ω)� , σ = σ(F,�, ω), the
extended system reads

(5.5.37)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t Fiα − ∂αvi = 0, α = 1, 2, 3; i = 1, 2, 3

∂tvi − ∂α

(
∂σ

∂Fiα
+ ∂σ

∂�β j

∂F∗β j

∂Fıα
+ ∂σ

∂ω

∂ det F

∂Fiα

)
= 0, i = 1, 2, 3

∂t�βi − ∂α

(
∂F∗βi

∂Fjα
v j

)
= 0, β = 1, 2, 3; i = 1, 2, 3

∂tω − ∂α

(
∂ det F

∂Fjα
v j

)
= 0,

and the entropy-entropy flux pair is

(5.5.38) θ = 1
2 |v|2 + σ(F,�, ω),

(5.5.39) Πα = −
(
∂σ

∂Fiα
+ ∂σ

∂�β j

∂F∗β j

∂Fiα
+ ∂σ

∂ω

∂ det F

∂Fiα

)
vi .

On the “manifold” X = �(U ) = (F, v, F∗, det F)�, (5.5.37) reduces to the sys-
tem (3.3.10) (with b = 0) together with the kinematic conservation laws (2.2.15),
(2.2.16), while (θ,Π) reduces to the classical entropy-entropy flux pair recorded in
Section 3.3.3.

In electrodynamics, for the Born-Infeld medium, where U = (B, D)�, X =
(B, D, P)�, the extended system reads

(5.5.40)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t B + curl

[
θ−1(D + B ∧ P)

] = 0

∂t D − curl
[
θ−1(B − D ∧ P)

] = 0

∂t P − div
[
θ−1(I + B B� + DD� − P P�)

] = 0,

and the entropy-entropy flux pair is

(5.5.41) θ = (1+ |B|2 + |D|2 + |P|2) 1
2 ,

(5.5.42) Π = P − θ−2[P − D ∧ B − (D · P)D − (B · P)B].
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Again, on the “manifold” X = �(U ) = (B, D, D ∧ B)� (5.5.40) reduces to
Maxwell’s equations (3.3.40) (with J = 0), (3.3.45), together with the supplemen-
tary conservation law (5.5.1), while (θ,Π) reduces to the entropy-entropy flux pair
(η, Q) recorded in (3.3.44).

5.6 Notes

The proof of Theorem 5.1.1 has been adapted from Majda [3]. This approach is in
the spirit of the theory of symmetric hyperbolic systems developed by Friedrichs
[2]. For an alternative, functional analytic approach, see Kato [1]. By employing
more sophisticated symmetrizers, one may establish local existence for the Cauchy
problem in a more general class of hyperbolic systems, including those with the sole
property that the multiplicity of each characteristic speed λi (ν;U ) does not vary
with the direction ν; cf. Lax [1], M.E. Taylor [1,2], and Métivier [1]. Quite often,
systems arising in continuum physics exhibit particular features that require special
treatment; cf. Godunov [3], Makino, Ukai and Kawashima [1], and Chemin [1].

Remarks on the initial-boundary-value problem for systems are here in order. An
informative discussion of proper boundary conditions is found in the book [11] and
the survey article [23] by Serre. In the case of linear systems, the initial-boundary-
value problem is well posed when the boundary conditions satisfy the so-called
Lopatinski condition, which rules out the existence of sinusoidal waves with am-
plitude that grows exponentially in time (see Kreiss [1] and the survey article by
Higdon [1]). For quasilinear systems, a uniform Lopatinski condition suffices for
local existence of solutions to the initial-boundary-value problem, constructed by
linearization, in the spirit of Theorem 5.1.1. In one spatial dimension, the uniform
Lopatinski condition is essentially equivalent to the statement that the number of in-
dependent, scalar boundary conditions equals the number of characteristics imping-
ing on the boundary. For that case, solutions to the initial-boundary-value problem
are constructed by the method of characteristics in the monograph by Li and Yu
[1]. Unfortunately, the uniform Lopatinski condition requires that the amplitude of
sinusoidal waves decay exponentially in time, thus ruling out the system of elastody-
namics and other systems of physical interest, which admit Rayleigh wave solutions
with persistent, nondecaying amplitudes. To treat such systems, one has to exploit
their special structure; see Schochet [1] and references therein for the Euler equa-
tions of gas dynamics. The construction of solutions to systems by the vanishing
viscosity method, and the study of the resulting boundary layer, has been mainly
considered in one spatial dimension and before shocks impinge upon the boundary;
see Serre [11,17], Benabdallah and Serre [1], Gisclon [1], Gisclon and Serre [1],
Grenier [1], Joseph and LeFloch [1,2,3], Serre and Zumbrun [1], Rousset [1,2,3] and
Xin [4]. The case where a shock is impinging on the boundary is discussed in Serre
[14]. References to weak solutions of initial-boundary-value problems are found in
Sections 6.11, 13.10, 14.13, 15.9 and 16.9.

The discussion of the effects of damping, culminating in Theorem 5.2.1, is here
adapted from Hanouzet and Natalini [1] and Yong [6]. See also Sideris, Thomases
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and Wang [1]. For the effect of damping on the long time behavior of solutions,
see Ruggeri and Serre [1]. The setting of the general relaxation framework has been
taken from Chen, Levermore and Liu [1]. For applications to continuum physics,
see Boillat and Ruggeri [1]. There is voluminous literature investigating relaxation
of smooth solutions to local equilibrium, e.g. Yong [2,3,5], Lattanzio and Tzavaras
[1]. Surveys providing examples and extensive bibliography are found in Natalini [3]
and Yong [4]. For additional discussion and references on relaxation, see Chapters
VI and XVI. The connection between relaxation and diffusion was first recognized
in the kinetic theory of gases, where it is effected by means of the Chapman-Enskog
expansion (e.g. Cercignani [1]). Chapman-Enskog type expansions have also been
employed in order to relate classes of hyperbolic balance laws (5.2.1) with parabolic
systems of the form (4.6.1); see Kawashima and Yong [1,2]. The intimate relation
between relaxation and diffusion also emerges in the large time behavior of solutions
to hyperbolic systems with frictional damping; see Liu [25], Hsiao and Liu [1], Hsiao
and Li [1,2], Hsiao, Li and Pan [1], Hsiao and Pan [1,2,3], Pan [1], Marcati and Pan
[1], Serre and Xiao [1], Liu and Natalini [1], He and Li [1], Huang and Pan [1,2,3],
and Lattanzio and Rubino [1].

Dispersion is an alternative decay mechanism that may delay or even prevent
the breaking of waves, thus rendering smooth solutions in the large to the Cauchy
problem. This is particularly effective when the dimension of the space is large,
the initial data are “small” and the system satisfies the so-called null condition; cf.
Christodoulou [1], Klainerman [1], Sideris [2,3], and Chae and Huh [1]. See also the
monograph by Ta-tsien Li [1]. An interesting family of global classical solutions to
the Euler equations is presented in Serre [5] and Grassin and Serre [1].

The proof of Theorem 5.3.1 combines ideas of DiPerna [7] and Dafermos [9].
This approach even applies in certain cases where Ū is a special weak solution to
special systems; see Chen [7], Chen and Frid [7] and Chen and Yachun Li [1,2]. A
connection between relative entropy and relaxation is established by Tzavaras [6].

Hyperbolic systems of conservation laws with involutions were considered by
Boillat [4] and by Dafermos [12]. In particular, Boillat [4] exhibits sufficient condi-
tions that are more general that (5.4.4) and presents examples arising in the theory
of general relativity. The analysis in Section 5.4 is intimately related to the theory of
compensated compactness, as formalized by Murat and Tartar; cf. Tartar [1,2]. The
“involution cone” corresponds to the “characteristic cone”, in the terminology of that
theory. Theorem 5.4.4 originally appeared in the first edition of this book; however,
typical examples, such as the system (3.3.10) of balance laws of (isentropic) elasto-
dynamics, had been studied earlier, for example by Hughes, Kato and Marsden [1]
and by Dafermos and Hrusa [1]. Theorem 5.4.5 is taken from Dafermos [21].

The notion of quasiconvexity, introduced by Definition 5.4.6, is a generalization
of quasiconvexity in the sense of Morrey [1] due to Dacorogna [1]; for a detailed
study and proof of Theorem 5.4.7, see Müller and Fonseca [1].

The notion of polyconvexity in elasticity was introduced by Ball [1], as a condi-
tion rendering the internal energy function weakly lower semicontinuous. The author
originally heard from P.G. LeFloch the idea of extending the system of conserva-
tion laws in elastodynamics by appending conservation laws for the invariants of the
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stretch tensor. Explicit extensions were first published by Qin [1] and by Demoulini,
Stuart and Tzavaras [2]. Brennier [2] presents two distinct extensions of the equa-
tions of electrodynamics, for the Born-Infeld medium, including the one recorded
here. See also Neves and Serre [1]. Serre [22] discovered that the Poynting vector Q
satisfies a conservation law, akin to (5.5.1), for general media (3.3.41), under the loss-
less condition (3.3.42), and devised the proper extension of Maxwell’s equations for
that general class of media. See also Boillat [3,5]. Existence and stability of classical
solutions to the Cauchy problems for systems of conservation laws endowed with an
involution and equipped with a convex contingent entropy was established by Serre
[22]. The general polyconvex case, Theorems 5.5.3 and 5.5.4, is treated here for the
first time (for elastodynamics, see Lattanzio and Tzavaras [1]). The author thanks
Denis Serre for his helpful remarks.

In the context of elasticity, the proof that polyconvexity implies quasiconvex-
ity and, in turn, quasiconvexity implies rank-one convexity, was established in the
aforementioned, pioneering paper by Ball [1]. The question of whether, conversely,
rank-one convexity generally implies quasiconvexity was settled, in the negative, by
Šverak [1].



VI

The L1 Theory for Scalar Conservation Laws

The theory of the scalar balance law, in several spatial dimensions, has reached a
state of virtual completeness. In the framework of classical solutions, the elementary,
yet effective, method of characteristics yields a sharper version of Theorem 5.1.1,
determining explicitly the life span of solutions with Lipschitz continuous initial
data and thereby demonstrating that in general this life span is finite. Thus one must
deal with weak solutions, even when the initial data are very smooth.

In regard to weak solutions, the special feature that sets the scalar balance law
apart from systems of more than one equation is the size of its family of entropies. It
will be shown that the abundance of entropies induces an effective characterization of
admissible weak solutions as well as very strong L1-stability and L∞-monotonicity
properties. Armed with such powerful a priori estimates, one can construct admissi-
ble weak solutions in a number of ways. As a sample, construction by the method of
vanishing viscosity, the theory of L1-contraction semigroups, the layering method,
a relaxation method and an approach motivated by the kinetic theory will be pre-
sented here. The method of vanishing viscosity will also be employed for solving
the initial-boundary-value problem. When the initial data are functions of locally
bounded variation then so are the solutions. Remarkably, however, even solutions
that are merely in L∞ exhibit the same geometric structure as BV functions, with
jump discontinuities assembling on “manifolds” of codimension one.

The chapter will close with a description of the insurmountable obstacles encoun-
tered in the study of weak solutions for hyperbolic systems of conservation laws in
several spatial dimensions, and an account of current efforts to bypass these obstruc-
tions.

In order to expose the elegance of the theory, the discussion will be restricted to
the homogeneous scalar conservation law, even though the general, inhomogeneous
balance law (3.3.1) may be treated by the same methodology, at the expense of rather
minor technical complications.

The issue of stability of weak solutions with respect to the weak* topology of
L∞ will be addressed in Chapter XVI. The special case of a single space variable,
m = 1, has a very rich theory of its own, certain aspects of which will be presented
in later chapters and especially in Chapter XI.
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6.1 The Cauchy Problem: Perseverance and Demise
of Classical Solutions

We consider the Cauchy problem for a homogeneous scalar conservation law:

(6.1.1) ∂t u(x, t)+ div G(u(x, t)) = 0, x ∈ IRm, t > 0,

(6.1.2) u(x, 0) = u0(x), x ∈ IRm .

The flux G(u) = (G1(u), . . . ,Gm(u)) is a given smooth function on IR, taking
values in IM1×m .

A characteristic of (6.1.1), associated with a continuously differentiable solution
u, is an orbit ξ : [0, T )→ IRm of the system of ordinary differential equations

(6.1.3)
dx

dt
= G ′(u(x, t))� .

With every characteristic ξ we associate the differential operator

(6.1.4)
d

dt
= ∂t + G ′(u(ξ(t), t)) grad ,

which determines the directional derivative along ξ . In particular, since u satisfies
(6.1.1), du/dt = 0, i.e., u is constant along any characteristic. By virtue of (6.1.3),
this implies that the slope of the characteristic is constant. Thus all characteristics
are straight lines along which the solution is constant. With the help of this property,
one may study classical solutions of (6.1.1), (6.1.2) in minute detail. In particular,
for scalar conservation laws Theorem 5.1.1 admits the following refinement:

6.1.1 Theorem. Assume that u0 , defined on IRm , is bounded and Lipschitz continu-
ous. Let

(6.1.5) κ = ess inf
y∈IRm

div G ′(u0(y)).

Then there exists a classical solution u of (6.1.1), (6.1.2) on the maximal interval
[0, T∞), where T∞ = ∞ when κ ≥ 0 and T∞ = −κ−1 when κ < 0. Furthermore, if
u0 is Ck so is u.

Proof. Suppose first ∇u0 ∈ H �, for � very large, so that, by Theorem 5.1.1, the
solution u of (6.1.1), (6.1.2) exists on some maximal interval [0, T∞) and is a smooth
function. Since u is constant along characteristics, its value at any point (x, t), with
x ∈ IRm , t ∈ [0, T∞), satisfies the implicit relation

(6.1.6) u(x, t) = u0(x − tG ′(u(x, t))�).

In particular, the range of u coincides with the range of u0 .
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Differentiating (6.1.6) yields

(6.1.7) ∂αu(x, t) = ∂αu0(y)

1+ t div G ′(u0(y))
, α = 1, · · · ,m,

where y = x − tG ′(u(x, t))�. Thus, by virtue of Theorem 5.1.1, T∞ = ∞ when
κ ≥ 0 and T∞ ≥ −κ−1 when κ < 0. For κ < 0, derivatives of the solution along
characteristics emanating from points (y, 0) with div G ′(u0(y)) < κ + ε < 0 will
have to blow up no later than t = −(κ + ε)−1. Hence T∞ = −κ−1.

When u0 is merely Lipschitz continuous, we approximate it in L∞(IRm), via
mollification, by a sequence {un} of smooth functions with ∇un ∈ H � and

(6.1.8) ess inf div G ′(un(y)) ≥ κ − 1

n
.

Classical solutions of (6.1.1) with initial data un are defined on IRm ×[0, Tn), where
Tn ≥ n when κ ≥ 0 and Tn ≥ −(κ − 1/n)−1 when κ < 0, and are Lipschitz
equicontinuous on any compact subset of IRm × [0, T∞). Therefore, we may extract
a subsequence that converges, uniformly on compact sets, to some function u on
IRm × [0, T∞). Clearly, u is at least a weak solution of (6.1.1), (6.1.2) and, being
locally Lipschitz continuous, it is actually a classical solution on [0, T∞). The lim-
iting process also implies that u still satisfies (6.1.6) for x ∈ IRm and t ∈ [0, T∞).
In particular, if u0 is differentiable at a point y ∈ IRm then u is differentiable along
the straight line x = y + tG ′(u0(y))� , the derivatives being given by (6.1.7). Con-
sequently, [0, T∞) is the life span of the classical solution.

When u0 is Ck , (6.1.6) together with (6.1.7) and the implicit function theorem
imply that u is also Ck on IRm × [0, T∞). This completes the proof.

An instructive way of viewing classical solutions u to (6.1.1) is by realizing them
as “level surfaces” of functions f (v; x, t), defined on IR × IRm × IR; that is

(6.1.9) f (u(x, t); x, t) = 0

whenever u satisfies (6.1.1). It is easy to see that for that purpose f must satisfy the
transport equation

(6.1.10) ∂t f (v; x, t)+
m∑
α=1

DGα(v)∂α f (v; x, t) = 0.

In particular, to solve the initial-value problem (6.1.1), (6.1.2), one should solve a
Cauchy problem for (6.1.10) with initial condition f (v; x, 0) = v − u0(x). Since
(6.1.10) is linear, a solution of this Cauchy problem will exist on IR× IRm × IR. The
resulting f will in turn induce, through (6.1.9), the classical solution u to (6.1.1),
(6.1.2), which will be valid up until fv vanishes for the first time. We shall return to
the transport equation (6.1.10), in the context of weak solutions, in Section 6.7.

From the above considerations it becomes clear that the life span of classical
solutions is generally finite. It is thus imperative to deal with weak solutions.
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6.2 Admissible Weak Solutions and their Stability Properties

In Section 4.2, we saw that the initial-value problem for a scalar conservation law
may admit more than one weak solution, thus raising the need to impose admissibil-
ity conditions. In Section 4.5, we discussed how entropy inequalities may serve that
purpose. Recall from Section 3.3.1 that for the scalar conservation law (6.1.1) any
smooth function η may serve as an entropy, with associated entropy flux

(6.2.1) Q(u) =
∫ u

η′(ω)G ′(ω)dω,

and entropy production zero. It will be convenient to relax slightly the regularity con-
dition and allow entropies (and thereby entropy fluxes) that are merely locally Lips-
chitz continuous. Similarly, G need only be locally Lipschitz continuous. It turns out
that in order to characterize properly admissible weak solutions, one has to impose
the entropy inequality

(6.2.2) ∂tη(u(x, t))+ div Q(u(x, t)) ≤ 0

for every convex entropy-entropy flux pair:

6.2.1 Definition. A bounded measurable function u on IRm×[0,∞) is an admissible
weak solution of (6.1.1), (6.1.2), with u0 in L∞(IRm), if the inequality
(6.2.3)∫ ∞

0

∫
IRm
[∂tψ η(u)+

m∑
α=1

∂αψ Qα(u)]dxdt +
∫

IRm
ψ(x, 0) η(u0(x)) dx ≥ 0

holds for every convex function η, with Q determined through (6.2.1), and all non-
negative Lipschitz continuous test functions ψ on IRm × [0,∞), with compact sup-
port.

Applying (6.2.3) with η(u) = ±u, Q(u) = ±G(u) shows that (6.2.3) implies
(4.3.2), i.e., any admissible weak solution in the sense of Definition 6.2.1 is in par-
ticular a weak solution as defined in Section 4.3. Also note that if u is a classical
solution of (6.1.1), (6.1.2), then (6.2.3) holds automatically, as an equality, i.e., all
classical solutions are admissible. Several motivations for (6.2.3) will be presented
in subsequent sections.

To verify (6.2.3) for all convex η, it would suffice to test it just for some family
of convex η with the property that the set of linear combinations of its members,
with nonnegative coefficients, spans the entire set of convex functions. To formu-
late examples, consider the following standard notation: For w ∈ IR , w+ denotes
max{w, 0} and sgnw stands for −1, 1 or 0, as w is negative, positive or zero. Notice
that any Lipschitz continuous function is the limit of a sequence of piecewise linear
convex functions

(6.2.4) c0u +
k∑

i=1

ci (u − ui )
+
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with ci > 0, i = 1, · · · , k. Consequently, it would suffice to verify (6.2.3) for the
entropies ±u, with entropy flux ±G, together with the family of entropy-entropy
flux pairs

(6.2.5) η(u; ū) = (u − ū)+, Q(u; ū) = sgn(u − ū)+[G(u)− G(ū)],
where ū is a parameter taking values in IR. Equally well, one may use the celebrated
family of entropy-entropy flux pairs of Kruzkov:

(6.2.6) η(u; ū) = |u − ū|, Q(u; ū) = sgn(u − ū)[G(u)− G(ū)].
The fundamental existence and uniqueness theorem, which will be demonstrated

by several methods in subsequent sections, is

6.2.2 Theorem. For each u0 ∈ L∞(IRm), there exists a unique admissible weak
solution u of (6.1.1), (6.1.2) and

(6.2.7) u(·, t) ∈ C0([0,∞); L1
loc(IR

m)).

The following proposition establishes the most important properties of admissi-
ble weak solutions of the scalar conservation law, namely, stability in L1 and mono-
tonicity in L∞:

6.2.3 Theorem. Let u and ū be admissible weak solutions of (6.1.1) with respective
initial data u0 and ū0 taking values in a compact interval [a,b]. There is s > 0,
depending solely on [a,b], such that, for any t > 0 and r > 0

(6.2.8)
∫
|x |<r

[u(x, t)− ū(x, t)]+dx ≤
∫
|x |<r+st

[u0(x)− ū0(x)]+dx,

(6.2.9) ‖u(·, t)− ū(·, t)‖L1(Br )
≤ ‖u0(·)− ū0(·)‖L1(Br+st )

.

Furthermore, if

(6.2.10) u0(x) ≤ ū0(x), a.e. on IRm ,

then

(6.2.11) u(x, t) ≤ ū(x, t), a.e. on IRm × [0,∞).

In particular, the (essential) range of both u and ū is contained in [a,b].

Proof. The salient feature of the scalar conservation law that induces (6.2.8) is that
the functions η(u; ū), Q(u; ū), defined through (6.2.5), constitute entropy-entropy
flux pairs not only in the variable u, for fixed ū, but also in the variable ū, for fixed
u.
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Consider any nonnegative Lipschitz continuous function φ(x, t, x̄, t̄), defined on
IRm×[0,∞)× IRm×[0,∞) and having compact support. Fix (x̄, t̄) in IRm×[0,∞)

and write (6.2.3) for the entropy-entropy flux pair η(u; ū(x̄, t̄)), Q(u; ū(x̄, t̄)), and
the test function ψ(x, t) = φ(x, t, x̄, t̄):

(6.2.12)
∫ ∞

0

∫
IRm
{∂tφ(x, t, x̄, t̄) η(u(x, t); ū(x̄, t̄))

+
m∑
α=1

∂xαφ(x, t, x̄, t̄) Qα(u(x, t); ū(x̄, t̄))}dxdt

+
∫

IRm
φ(x, 0, x̄, t̄) η(u0(x); ū(x̄, t̄))dx ≥ 0.

Interchanging the roles of u and ū, we similarly obtain, for any fixed point (x, t) in
IRm × [0,∞):

(6.2.13)
∫ ∞

0

∫
IRm
{∂t̄φ(x, t, x̄, t̄) η(u(x, t); ū(x̄, t̄))

+
m∑
α=1

∂x̄αφ(x, t, x̄, t̄) Qα(u(x, t); ū(x̄, t̄))}dx̄dt̄

+
∫

IRm
φ(x, t, x̄, 0) η(u(x, t); ū0(x̄)) dx̄ ≥ 0.

Integrating over IRm × [0,∞) (6.2.12), with respect to (x̄, t̄), and (6.2.13), with
respect to (x, t), and then adding the resulting inequalities yields

(6.2.14)
∫ ∞

0

∫
IRm

∫ ∞

0

∫
IRm
{(∂t + ∂t̄ )φ(x, t, x̄, t̄) η(u(x, t); ū(x̄, t̄))

+
m∑
α=1

(∂xα + ∂x̄α )φ(x, t, x̄, t̄) Qα(u(x, t); ū(x̄, t̄))}dxdtd x̄dt̄

+
∫ ∞

0

∫
IRm

∫
IRm

φ(x, 0, x̄, t̄) η(u0(x); ū(x̄, t̄)) dxdx̄dt̄

+
∫ ∞

0

∫
IRm

∫
IRm

φ(x, t, x̄, 0) η(u(x, t); ū0(x̄)) dxdx̄dt ≥ 0.

We fix a smooth nonnegative function ρ on IR with compact support and total
mass one:

(6.2.15)
∫ ∞

−∞
ρ(ξ)dξ = 1.

Consider any nonnegative Lipschitz test function ψ on IRm×[0,∞), with compact
support. For positive small ε, write (6.2.14) with



6.2 Admissible Weak Solutions and their Stability Properties 129

(6.2.16) φ(x, t, x̄, t̄) = ε−(m+1)ψ(
x + x̄

2
,

t + t̄

2
)ρ(

t − t̄

2ε
)

m∏
β=1

ρ(
xβ − x̄β

2ε
)

and then let ε ↓ 0. Noting that

(6.2.17)

(∂t + ∂t̄ )φ(x, t, x̄, t̄) = ε−(m+1)∂tψ(
x + x̄

2
,

t + t̄

2
)ρ(

t − t̄

2ε
)

m∏
β=1

ρ(
xβ − x̄β

2ε
),

(6.2.18)(
∂xα + ∂x̄α

)
φ(x, t, x̄, t̄) = ε−(m+1)∂αψ(

x + x̄

2
,

t + t̄

2
)ρ(

t − t̄

2ε
)

m∏
β=1

ρ(
xβ − x̄β

2ε
),

(6.2.19) |η(u(x, t); ū0(x̄))− η(u0(x); ū0(x̄))| ≤ |u(x, t)− u0(x)|,

(6.2.20) |η(u0(x); ū(x̄, t̄))− η(u0(x); ū0(x̄))| ≤ |ū(x̄, t̄)− ū0(x̄)|,
recalling Theorem 4.5.1, and using standard convergence theorems, we conclude that

(6.2.21)∫ ∞

0

∫
IRm
{∂tψ(x, t) η(u(x, t); ū(x, t))+

m∑
α=1

∂αψ(x, t) Qα(u(x, t); ū(x, t))}dxdt

+
∫

IRm
ψ(x, 0) η(u0(x); ū0(x)) dx ≥ 0.

From (6.2.5) it is clear that there is s > 0 such that

(6.2.22) |Q(u; ū)| ≤ sη(u; ū),

for all u and ū in the range of the solutions.
Fix r > 0, t ≥ 0, and ε > 0 small; write (6.2.21) for the test function ψ(x, τ ) =

χ(x, τ )ω(τ), with χ and ω defined by (5.3.12) and (5.3.11) to get

(6.2.23)
1

ε

∫ t+ε

t

∫
|x |<r

[u(x, τ )− ū(x, τ )]+dxdτ ≤
∫
|x |<r+st

[u0(x)− ū0(x)]+dx

−1

ε

∫ t

0

∫
r+s(t−τ)<x<r+s(t−τ)+ε

[
sη(u; ū)+ Q(u; ū)x

|x |
]

dxdτ + O(ε).

On account of (6.2.22), the second integral on the right-hand side of (6.2.23) is non-
negative. Thus, letting ε ↓ 0, recalling Theorem 4.5.1, and using that (u − ū)+ is a
convex function of u − ū, we arrive at (6.2.8).

Interchanging the roles of u and ū in (6.2.8) we deduce a similar inequality which
added to (6.2.8) yields (6.2.9).

Clearly, (6.2.10) implies (6.2.11), by virtue of (6.2.8). In particular, applying this
monotonicity property, first for ū0(x) ≡ b and then for u0(x) ≡ a, we deduce
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u(x, t) ≤ b and ū(x, t) ≥ a a.e. Interchanging the roles of u and ū, we conclude that
the essential range of both solutions is contained in [a, b]. Thus s in (6.2.22) depends
solely on [a, b]. This completes the proof.

From (6.2.9) we immediately draw the following conclusion on uniqueness and
finite dependence:

6.2.4 Corollary. There is at most one admissible weak solution of (6.1.1), (6.1.2).

6.2.5 Corollary. The value of the admissible weak solution at any point (x̄, t̄) de-
pends solely on the restriction of the initial data to the ball {Bst̄ (x̄)}.

Another important consequence of (6.2.9) is that any admissible weak solution
of (6.1.1) with initial data of locally bounded variation is itself a function of locally
bounded variation:

6.2.6 Theorem. Let u be an admissible weak solution of (6.1.1) with initial data
u0 ∈ BVloc(IRm) taking values in an interval [a, b]. Then u ∈ BVloc(IRm × (0,∞)).
For any fixed t > 0, u(·, t) is in BVloc(IRm) and

(6.2.24) T VBr u(·, t) ≤ T VBr+st u0(·),
for every r > 0, where s depends solely on [a, b].
Proof. Let {Eα, α = 1, · · · ,m} denote the standard orthonormal basis of IRm . Note
that, for α = 1, · · · ,m, the function ū, defined by ū(x, t) = u(x + hEα, t), h > 0,
is an admissible weak solution of (6.1.1) with initial data ū0, ū0(x) = u0(x + hEα).
Therefore, by virtue of (6.2.9), for any t ∈ (0, T ),

(6.2.25)
∫
|x |<r

|u(x + hEα, t)− u(x, t)|dx ≤
∫
|x |<r+st

|u0(x + hEα)− u0(x)|dx .

Since u0 ∈ BVloc(IRm), Theorem 1.7.2 and (1.7.3) yield that u(·, t) ∈ BVloc(IRm)

and (6.2.24) holds.
Thus ∂αu(·, t) is a Radon measure which is bounded on any ball of radius r in

IRm , uniformly on compact time intervals. Since u is bounded, it follows from The-
orem 1.7.5 that div G(u(·, t)) has the same property. In particular, the distributions
∂αu and div G(u) are locally finite measures on IRm × (0,∞). Because (6.1.1) is
satisfied in the sense of distributions, ∂t u will also be a measure on IRm × (0,∞).
Consequently, u ∈ BVloc(IRm × (0,∞)). This completes the proof.

The trivial, constant, solutions of (6.1.1) are stable, not only in L1 but also in any
L p. Since u may be renormalized, it suffices to establish L p-stability for the zero
solution.

6.2.7 Theorem. Let u be an admissible weak solution of (6.1.1), (6.1.2), with initial
data taking values in a compact interval [a, b]. There is s > 0, depending solely on
[a, b], such that, for any 1 ≤ p ≤ ∞, t ≥ 0, and r > 0,
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(6.2.26) ‖u(·, t)‖L p(Br ) ≤ ‖u0(·)‖L p(Br+st ) .

Proof. For 1 ≤ p <∞, consider the convex entropy η(u) = |u|p, with entropy flux
Q determined through (6.2.1). Note that there is s > 0, independent of p, such that

(6.2.27) |Q(u)| ≤ sη(u), u ∈ [a, b].
Fix r > 0, t ≥ 0, and ε > 0 small; write (6.2.3) for the above entropy-entropy

flux pair and the test function ψ(x, τ ) = χ(x, τ )ω(τ), with χ and ω defined by
(5.3.12) and (5.3.11). This yields

(6.2.28)
1

ε

∫ t+ε

t

∫
|x |<r

|u(x, τ )|pdxdτ ≤
∫
|x |<r+st

|u0(x)|pdx

−1

ε

∫ t

0

∫
r+s(t−τ)<|x |<r+s(t−τ)+ε

[
sη(u)+ Q(u)x

|x |
]

dxdτ + O(ε).

We know that the range of u is contained in [a, b] and so, by (6.2.27), the second
integral on the right-hand side of (6.2.28) is nonnegative. Thus, letting ε ↓ 0 and
using that |u|p is convex, we arrive at (6.2.26). This completes the proof.

The following sections will present various methods of constructing admissible
weak solutions of (6.1.1), (6.1.2), inducing alternative proofs of Theorem 6.1.1.

6.3 The Method of Vanishing Viscosity

The aim here is to construct admissible weak solutions of the scalar hyperbolic con-
servation law (6.1.1) as the µ ↓ 0 limit of solutions of the family of parabolic equa-
tions

(6.3.1) ∂t u(x, t)+ div G(u(x, t)) = µ#u(x, t), x ∈ IRm , t ∈ [0,∞),

where # stands for Laplace’s operator with respect to the spatial variables, namely
# =∑m

α=1 ∂
2
α , and µ is a positive parameter.

The motivation for this approach has already been presented in Section 4.6. Note
that (6.3.1) is not necessarily related to any specific physical model and so the term
µ#u should be regarded as “artificial viscosity”.

Because (6.3.1) is parabolic, the initial value problem (6.3.1), (6.1.2) always has
a unique solution, which is smooth for t > 0 (assuming G is regular) even when
the initial data u0 are merely in L∞. For example, if the derivative G ′ is Hölder
continuous, then the solution u of (6.3.1), (6.1.2) is continuously differentiable with
respect to t and twice continuously differentiable with respect to the spatial variables,
on IRm × (0,∞).

Espousing the premise that “relevant” solutions of (6.1.1), (6.1.2) are µ ↓ 0
limits of solutions of (6.3.1), (6.1.2) provides the first justification of the notion of
admissible weak solution postulated by Definition 6.2.1:
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6.3.1 Theorem. Let uµ denote the solution of (6.3.1), (6.1.2). Assume that for some
sequence {µk}, with µk ↓ 0 as k →∞, {uµk } converges to some function u, bound-
edly almost everywhere on IRm × [0,∞). Then u is an admissible weak solution of
(6.1.1), (6.1.2) on IRm × [0,∞).

Proof. Consider any smooth convex entropy function η, with associated entropy flux
Q determined through (6.2.1). Multiply (6.3.1) by η′(uµ(x, t)) and use (6.2.1) to get

(6.3.2) ∂tη(uµ)+ div Q(uµ) = µ#η(uµ)− µη′′(uµ)|∇uµ|2.
Multiply (6.3.2) by any smooth nonnegative test function ψ , with compact sup-

port in IRm×[0,∞), integrate over IRm×[0,∞), and integrate by parts. Taking into
account that the last term in (6.3.2) is nonnegative yields the inequality

(6.3.3)
∫ ∞

0

∫
IRm
[∂tψ η(uµ)+

m∑
α=1

∂αψ Qα(uµ)]dxdt +
∫

IRm
ψ(x, 0) η(u0(x)) dx

≥ −µ
∫ ∞

0

∫
IRm

#ψ η(uµ) dxdt.

Setting µ = µk in (6.3.3) and letting k → ∞, we conclude that the limit u
of {uµk } satisfies (6.2.3) for all smooth convex entropy functions η and all smooth
nonnegative test functions ψ . By completion we infer that (6.2.3) holds even when η
and ψ are merely Lipschitz continuous. This completes the proof.

That (6.1.1) and (6.3.1) are perfectly matched becomes clear by comparing The-
orem 6.2.3 with

6.3.2 Theorem. Let uµ and ūµ be solutions of (6.3.1) with respective initial data u0
and ū0 that are in L1(IRm) and take values in a compact interval [a, b]. Then, for
any t > 0,

(6.3.4)
∫

IRm
[uµ(x, t)− ūµ(x, t)]+dx ≤

∫
IRm
[u0(x)− ū0(x)]+dx,

(6.3.5) ‖uµ(·, t)− ūµ(·, t)‖L1(IRm) ≤ ‖u0(·)− ū0(·)‖L1(IRm) .

Furthermore, if

(6.3.6) u0(x) ≤ ū0(x), a.e. on IRm,

then

(6.3.7) uµ(x, t) ≤ ūµ(x, t), on IRm × (0,∞).

In particular, the range of both uµ and ūµ is contained in [a, b].
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Proof. To simplify the notation, we drop the subscript µ and denote uµ, ūµ by u, ū.
From standard theory of parabolic equations it follows that when u0(·), ū0(·) are in
L1(IRm) ∩ L∞(IRm), then u(·, t), ū(·, t) and their spatial derivatives of any order
are also in L1(IRm)∩ L∞(IRm), with norms uniformly bounded with respect to t on
compact subsets of (0,∞).

For ε > 0, we define the function ηε on IR by

(6.3.8) ηε(w) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for −∞ < w ≤ 0

w2

4ε
for 0 < w ≤ 2ε

w − ε for 2ε < w <∞.

Using that both u and ū satisfy (6.3.1), one easily verifies the equation

(6.3.9) ∂tηε(u − ū)+
m∑
α=1

∂α{η′ε(u − ū)[Gα(u)− Gα(ū)]}

−
m∑
α=1

η′′ε (u − ū)[Gα(u)− Gα(ū)]∂α(u − ū)

= µ#ηε(u − ū)− µη′′ε (u − ū)|∇(u − ū)|2.
Fix 0 < s < t <∞ and integrate (6.3.9) over IRm × (s, t). Considering that the last
term on the right-hand side of (6.3.9) is nonnegative, we thus obtain the inequality

(6.3.10)
∫

IRm
ηε(u(x, t)− ū(x, t))dx −

∫
IRm

ηε(u(x, s)− ū(x, s))dx

≤
m∑
α=1

∫ t

s

∫
IRm

η′′ε (u − ū) [Gα(u)− Gα(ū)] ∂α(u − ū) dxdτ.

Notice that η′′ε (u − ū)[Gα(u)− Gα(ū)] is bounded, uniformly for ε > 0. Also, it is
clear that as ε ↓ 0, ηε(u(x, t)− ū(x, t)) converges pointwise to [u(x, t)− ū(x, t)]+
while η′′ε (u(x, t)− ū(x, t))[Gα(u(x, t))−Gα(ū(x, t))] converges pointwise to zero.
Therefore, (6.3.10) and the Lebesgue dominated convergence theorem imply

(6.3.11)
∫

IRm
[u(x, t)− ū(x, t)]+dx −

∫
IRm
[u(x, s)− ū(x, s)]+dx ≤ 0,

whence we deduce (6.3.4), by letting s ↓ 0.
Interchanging the roles of u and ū in (6.3.4) we derive a similar inequality which

added to (6.3.4) yields (6.3.5).
Clearly, (6.3.6) implies (6.3.7), by virtue of (6.3.4). In particular, applying this

monotonicity property, first for ū0(x) ≡ b and then for u0(x) ≡ a, we deduce
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u(x, t) ≤ b and ū(x, t) ≥ a. Interchanging the roles of u and ū, we conclude that
the range of both solutions is contained in [a, b]. This completes the proof.

Estimate (6.3.5) may be employed to estimate the modulus of continuity in the
mean of solutions of (6.3.1) with initial data in L∞(IRm) ∩ L1(IRm).

6.3.3 Lemma. Let uµ be the solution of (6.3.1), (6.1.2), where u0 is in L1(IRm) and
takes values in a compact interval [a, b]. In particular,

(6.3.12)
∫

IRm
|u0(x + y)− u0(x)|dx ≤ ω(|y|), y ∈ IRm ,

for some nondecreasing function ω on [0,∞), with ω(r) ↓ 0 as r ↓ 0. There is a
constant c, depending solely on [a, b], such that, for any t > 0,

(6.3.13)
∫

IRm
|uµ(x + y, t)− uµ(x, t)|dx ≤ ω(|y|), y ∈ IRm ,

(6.3.14)∫
IRm
|uµ(x, t+h)−uµ(x, t)|dx ≤ c(h2/3+µh1/3)‖u0‖L1(IRm)+2ω(h1/3), h > 0.

Proof. Fix t > 0. For any y ∈ IRm , the function ūµ(x, t) = uµ(x + y, t) is the
solution of (6.3.1) with initial data ū0(x) = u0(x + y). Applying (6.3.5) yields

(6.3.15)
∫

IRm
|uµ(x + y, t)− uµ(x, t)|dx ≤

∫
IRm
|u0(x + y)− u0(x)|dx

whence (6.3.13) follows.
We now fix h > 0. We normalize G by subtracting G(0) so henceforth we may

assume, without loss of generality, that G(0) = 0. We multiply (6.3.1) by a bounded
smooth function φ, defined on IRm , and integrate the resulting equation over the strip
IRm × (t, t + h). Integration by parts yields

(6.3.16)
∫

IRm
φ(x)[uµ(x, t + h)− uµ(x, t)]dx

=
∫ t+h

t

∫
IRm
{

m∑
α=1

∂αφ(x)Gα(uµ(x, τ ))+ µ#φ(x) uµ(x, τ )}dxdτ.

Let us set

(6.3.17) v(x) = uµ(x, t + h)− uµ(x, t).

One may establish (6.3.14) formally by inserting φ(x) = sgn v(x) in (6.3.16).
However, since the function sgn is discontinuous, we have to mollify it first, with
the help of a smooth, nonnegative function ρ on IR, with support contained in
[−m−1/2,m−1/2] and total mass one, (6.2.15):
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(6.3.18) φ(x) =
∫

IRm
h−m/3

m∏
β=1

ρ(
xβ − zβ

h1/3
) sgn v(z) dz.

Notice that |∂αφ| ≤ c1h−1/3 and |#φ| ≤ c2h−2/3. Moreover, by virtue of (6.3.5),
with ū ≡ 0, ‖u(·, τ )‖L1(IRm) ≤ ‖u0(·)‖L1(IRm) . Therefore, (6.3.16) implies

(6.3.19)
∫

IRm
φ(x)v(x)dx ≤ c(h2/3 + µh1/3)‖u0‖L1(IRm) ,

where c depends solely on [a, b]. On the other hand, observing that

(6.3.20)

|v(x)| − v(x) sgn v(z) = |v(x)| − |v(z)| + [v(z)− v(x)] sgn v(z) ≤ 2|v(x)− v(z)|,
we obtain from (6.3.18):

(6.3.21)

|v(x)| − φ(x)v(x) =
∫

IRm
h−m/3

m∏
β=1

ρ(
xβ − zβ

h1/3
)[|v(x)| − v(x) sgn v(z)]dz

≤ 2
∫
|ξ |<1

m∏
β=1

ρ(ξβ)|v(x)− v(x − h1/3ξ)|dξ.

Combining (6.3.17), (6.3.21), (6.3.19), and (6.3.13), we arrive at (6.3.14). This com-
pletes the proof.

We have now laid the groundwork for presenting a

Proof of Theorem 6.2.2. Assume first that u0 ∈ L∞(IRm)∩ L1(IRm). Let uµ denote
the solution of (6.3.1), (6.1.2). By Theorem 6.3.2 and Lemma 6.3.3, the family {uµ}
is uniformly bounded and equicontinuous in the mean on any compact subset of
IRm × (0,∞). Consequently, any sequence {µk}, with µk ↓ 0 as k → ∞, will
contain a subsequence, denoted again by {µk}, such that {uµk } converges in L1

loc ,
as well as boundedly almost everywhere on IRm × [0,∞), to some function u. On
account of Theorem 6.3.1, u is an admissible weak solution of (6.1.1), (6.1.2). Since
there may exist at most one such solution (cf. Corollary 6.2.4), we conclude that the
whole family {uµ} converges to u, as µ ↓ 0. Furthermore, by virtue of Lemma 6.3.3,
for h > 0,

(6.3.22)
∫

IRm
|u(x, t + h)− u(x, t)|dx ≤ ch2/3‖u0‖L1(IRm) + 2ω(h1/3),

so u(·, t) ∈ C0([0,∞); L1(IRm)).
Suppose now u0 ∈ L∞(IRm). For r > 0, let χr denote the characteristic function

of the ball Br (0), and ur denote the admissible weak solution of (6.1.1), with initial
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data χr u0 ∈ L∞(IRm)∩ L1(IRm). As r →∞, χr u0 → u0 in L1
loc(IR

m). Therefore,
on account of (6.2.9), the family {ur } will converge in L1

loc to some function u.
Clearly, u is an admissible weak solution of (6.1.1), (6.1.2). By Corollary 6.2.4,
this solution is unique. Now, by Corollary 6.2.5, u ≡ ur on any compact subset of
IRm × [0,∞), if r is sufficiently large. Since ur (·, t) ∈ C0([0,∞); L1(IRm)), it
follows that u(·, t) ∈ C0([0,∞); L1

loc(IR
m)). This completes the proof.

6.4 Solutions as Trajectories of a Contraction Semigroup

For t ∈ [0,∞), consider the map S(t) that carries u0 ∈ L∞(IRm) ∩ L1(IRm) to
the admissible weak solution u of (6.1.1), (6.1.2) restricted to t , i.e., S(t)u0(·) =
u(·, t). By virtue of the properties of admissible weak solutions demonstrated in the
previous two sections, S(t) is well-defined as a map from L∞(IRm) ∩ L1(IRm) to
L∞(IRm) ∩ L1(IRm) and

(6.4.1) S(0) = I (the identity),

(6.4.2) S(t + τ) = S(t)S(τ ), for any t and τ in [0,∞),

(6.4.3) S(·)u0 ∈ C0([0,∞); L1(IRm)),

(6.4.4) ‖S(t)u0 − S(t)ū0‖L1(IRm) ≤ ‖u0 − ū0‖L1(IRm), for any t in [0,∞).

Consequently, S(·) is a L1-contraction semigroup on L∞(IRm) ∩ L1(IRm).
Naturally, the question arises whether one may construct S(·) ab initio, through

the theory of nonlinear contraction semigroups in Banach space. This would pro-
vide a direct, independent proof of existence of admissible weak solutions of (6.1.1),
(6.1.2) as well as an alternative derivation of their properties.

To construct the semigroup, we must realize (6.1.1) as an abstract differential
equation

(6.4.5)
du

dt
+ A(u) � 0,

for a suitably defined nonlinear transformation A, with domain D(A) and range
R(A) in L1(IRm). This operator may, in general, be multivalued, i.e., for each
u ∈ D(A), A(u) will be a nonempty subset of L1(IRm) which may contain more
than one point.

For u smooth, one should expect A(u) = div G(u). However, the task of ex-
tending D(A) to u that are not smooth is by no means straightforward, because the
construction should somehow reflect the admissibility condition encoded in Defini-
tion 6.2.1. First we perform a preliminary extension. For convenience, we normalize
G so that G(0) = 0.
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6.4.1 Definition. The (possibly multivalued) transformation Â, with domain D( Â) in
L1(IRm), is defined by u ∈ D( Â) and w ∈ Â(u) if u, w and G(u) are all in L1(IRm)

and the inequality

(6.4.6)
∫

IRm
{

m∑
α=1

∂αψ(x) Qα(u(x))+ ψ(x) η′(u(x))w(x)}dx ≥ 0

holds for any convex entropy function η, such that η′ is bounded on IR, with asso-
ciated entropy flux Q determined through (6.2.1), and for all nonnegative Lipschitz
continuous test functions ψ on IRm , with compact support.

Applying (6.4.6) for the entropy-entropy flux pairs ±u,±G(u), verifies that

(6.4.7) Â(u) =
m∑
α=1

∂αGα(u)

holds, in the sense of distributions, for any u ∈ D( Â). In particular, Â is single-
valued. Furthermore, the identity

(6.4.8)
∫

IRm
{

m∑
α=1

∂αψ Qα(u)+ ψ η′(u)
m∑
α=1

∂αGα(u)}dx = 0,

which is valid for any u ∈ C1
0(IR

m) and every entropy-entropy flux pair, implies that

C1
0(IR

m) ⊂ D( Â). In particular, D( Â) is dense in L1(IRm). For u ∈ C1
0(IR

m), Â(u)

is given by (6.4.7). Thus Â is indeed an extension of (6.4.7).
The reader may have already noticed the similarity between (6.4.6) and (6.2.3).

Similar to (6.2.3), to verify (6.4.6) it would suffice to test it just for the entropies ±u
and the family (6.2.5) or (6.2.6) of entropy-entropy flux pairs.

6.4.2 Definition. The (possibly multivalued) transformation A, with domain D(A)
in L1(IRm), is the graph closure of Â, i.e., u ∈ D(A) and w ∈ A(u) if (u, w) is
the limit in L1(IRm) × L1(IRm) of a sequence {(uk, wk)} such that uk ∈ D( Â) and
wk ∈ Â(uk).

The following propositions establish properties of A, implying that it is the gen-
erator of a contraction semigroup on L1(IRm).

6.4.3 Theorem. The transformation A is accretive, that is if u and ū are in D(A),
then

(6.4.9)
‖(u + λw)− (ū + λw̄)‖L1(IRm) ≥ ‖u − ū‖L1(IRm), λ > 0, w ∈ A(u), w̄ ∈ A(ū).

Proof. It is the property of accretiveness that renders the semigroup generated by A
contractive. Consequently, the proof of Theorem 6.4.3 bears close resemblance to
the demonstration of the L1-contraction estimate (6.2.9) in Theorem 6.2.3.
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In view of Definition 6.4.2, it would suffice to show that the “smaller” transfor-
mation Â is accretive. Accordingly, fix u, ū in D( Â) and let w = Â(u), w̄ = Â(ū).
Consider any nonnegative Lipschitz continuous function φ on IRm × IRm , with
compact support. Fix x̄ in IRm and write (6.4.6) for the entropy-entropy flux pair
η(u; ū(x̄)), Q(u; ū(x̄)) of the Kruzkov family (6.2.6) and the test function ψ(x) =
φ(x, x̄) to obtain

(6.4.10)
∫

IRm
sgn[u(x)− ū(x̄)]{

m∑
α=1

∂xαφ(x, x̄) [Gα(u(x))− Gα(ū(x̄))]

+φ(x, x̄) w(x)}dx ≥ 0.

We may interchange the roles of u and ū and derive the analog of (6.4.10), for any
fixed x in IRm :

(6.4.11)
∫

IRm
sgn[ū(x̄)− u(x)]{

m∑
α=1

∂x̄αφ(x, x̄) [Gα(ū(x̄))− Gα(u(x))]

+φ(x, x̄) w̄(x̄)}dx̄ ≥ 0.

Integrating over IRm (6.4.10), with respect to x̄ , and (6.4.11), with respect to x , and
then adding the resulting inequalities yields

(6.4.12)
∫

IRm

∫
IRm

sgn[u(x)−ū(x̄)]{
m∑
α=1

(∂xα+∂x̄α )φ(x, x̄) [Gα(u(x))−Gα(ū(x̄))]

+φ(x, x̄)[w(x)− w̄(x̄)]}dxdx̄ ≥ 0.

Fix a smooth nonnegative function ρ on IR with compact support and total mass
one, (6.2.15). Take any nonnegative Lipschitz continuous test function ψ on IRm ,
with compact support. For positive small ε, write (6.4.12) with

(6.4.13) φ(x, x̄) = ε−mψ(
x + x̄

2
)

m∏
β=1

ρ(
xβ − x̄β

2ε
),

and let ε ↓ 0. Noting that

(6.4.14) (∂xα + ∂x̄α )φ(x, x̄) = ε−m∂αψ(
x + x̄

2
)

m∏
β=1

ρ(
xβ − x̄β

2ε
),

(6.4.15)∫
IRm

σ(x){
m∑
α=1

∂αψ(x) [Gα(u(x))− Gα(ū(x))] + ψ(x)[w(x)− w̄(x)]}dx ≥ 0,

where σ is some function such that
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(6.4.16) σ (x)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= 1 if u(x) > ū(x)

∈ [−1, 1] if u(x) = ū(x)

= −1 if u(x) < ū(x).

In particular, choosing ψ with ψ(x) = 1 for |x | < r, ψ(x) = 1 + r − |x | for
r ≤ |x | < r + 1 and ψ(x) = 0 for r + 1 ≤ |x | <∞, and letting r →∞, we obtain

(6.4.17)
∫

IRm
σ(x)[w(x)− w̄(x)]dx ≥ 0,

for some function σ as in (6.4.16).
Take now any λ > 0 and use (6.4.17), (6.4.16) to conclude

(6.4.18)

‖(u + λw)− (ū + λw̄)‖L1(IRm) ≥
∫

IRm
σ(x){u(x)− ū(x)+ λ[w(x)− w̄(x)]}dx

≥
∫

IRm
σ(x)[u(x)− ū(x)]dx = ‖u − ū‖L1(IRm) .

This completes the proof.

An immediate consequence (actually an alternative, equivalent restatement) of
the assertion of Theorem 6.4.3 is

6.4.4 Corollary. For any λ > 0, (I + λA)−1 is a well-defined, single-valued, L1-
contractive transformation, defined on the range R(I + λA) of I + λA.

6.4.5 Theorem. The transformation A is maximal, that is

(6.4.19) R(I + λA) = L1(IRm), f or any λ > 0.

Proof. By virtue of Definition 6.4.2 and Corollary 6.4.4, it will suffice to show that
R(I + λ Â) is dense in L1(IRm); for instance that it contains L1(IRm) ∩ L∞(IRm).
We thus fix f ∈ L1(IRm) ∩ L∞(IRm) and seek solutions u ∈ D( Â) of the equation

(6.4.20) u + λ Â(u) = f.

Recall that Â(u) admits the representation (6.4.7), in the sense of distributions. Thus,
solving (6.4.20) amounts to determining an admissible weak solution of a first order
quasilinear partial differential equation, namely the stationary analog of (6.1.1).

Motivated by the method of vanishing viscosity, discussed in Section 6.3, we
shall construct solutions to (6.4.20) as the µ ↓ 0 limit of solutions of the family of
elliptic equations

(6.4.21) u(x)+ λdiv G(u(x))− µ#u(x) = f (x), x ∈ IRm .
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For any fixed µ > 0, (6.4.21) admits a solution in H2(IRm). We have to show that, as
µ ↓ 0, the family of solutions of (6.4.21) converges, boundedly almost everywhere,
to some function u which is the solution of (6.4.20). The proof will be partitioned
into the following steps.

6.4.6 Lemma. Let uµ and ūµ be solutions of (6.4.21) with respective right-hand
sides f and f̄ that are in L1(IRm) and take values in a compact interval [a, b]. Then

(6.4.22)
∫

IRm
[uµ(x)− ūµ(x)]+dx ≤

∫
IRm
[ f (x)− f̄ (x)]+dx,

(6.4.23) ‖uµ − ūµ‖L1(IRm) ≤ ‖ f − f̄ ‖L1(IRm) .

Furthermore, if

(6.4.24) f (x) ≤ f̄ (x), a.e. on IRm ,

then

(6.4.25) uµ(x) ≤ ūµ(x), on IRm .

In particular, the range of both u and ū is contained in [a, b].

Proof. It is very similar to the proof of Theorem 6.3.2 and so it will be left to the
reader.

6.4.7 Lemma. Let uµ denote the solution of (6.4.21), with right-hand side f in
L∞(IRm) ∩ L1(IRm). Then, as µ ↓ 0, {uµ} converges boundedly a.e. to the solu-
tion u of (6.4.20).

Proof. For any y ∈ IRm , the function ūµ , defined by ūµ(x) = uµ(x + y), is a
solution of (6.4.21) with right-hand side f̄ , f̄ (x) = f (x + y). Hence, by (6.4.23),

(6.4.26)
∫

IRm
|uµ(x + y)− uµ(x)|dx ≤

∫
IRm
| f (x + y)− f (x)|dx .

Thus the family {uµ} is uniformly bounded and uniformly equicontinuous in L1. It
follows that every sequence {µk}, with µk → 0 as k → ∞, will contain a subse-
quence, labeled again as {µk}, such that

(6.4.27) uµk → u, boundedly a.e. on IRm,

where u is in L∞(IRm) ∩ L1(IRm).
Consider now any smooth convex entropy function η, with associated entropy

flux Q, determined by (6.2.1). Then uµ will satisfy the identity

(6.4.28) η′(uµ)uµ + λdiv Q(uµ)− µ#η(uµ)+ µη′′(uµ)|∇uµ|2 = η′(uµ) f.
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Multiplying (6.4.28) by any nonnegative smooth test function ψ on IRm , with com-
pact support, and integrating over IRm yields

(6.4.29)
∫

IRm
{λ

m∑
α=1

∂αψ Qα(uµ)+ ψ η′(uµ)( f − uµ)}dx ≥ −µ
∫

IRm
#ψ η dx .

From (6.4.27) and (6.4.29),

(6.4.30)
∫

IRm
{

m∑
α=1

∂αψ Qα(u)+ ψ η′(u)λ−1( f − u)}dx ≥ 0,

which shows that u is indeed a solution of (6.4.20).
By virtue of Corollary 6.4.4, the solution of (6.4.20) is unique and so the entire

family {uµ} converges to u, as µ ↓ 0. This completes the proof.

Once accretiveness and maximality have been established, the Crandall-Liggett
theory of semigroups in nonreflexive Banach space ensures that A generates a con-
traction semigroup S(·) on D(A) = L1(IRm). S(·)u0 can be constructed by solving
the differential equation (6.4.5) through the implicit difference scheme

(6.4.31)

⎧⎪⎨⎪⎩
1

ε
[uε(t)− uε(t − ε)] + A(uε(t)) � 0, t > 0

uε(t) = u0 , t < 0.

For any ε > 0, a unique solution uε of (6.4.31) exists on [0,∞), by virtue of Theorem
6.4.5 and Corollary 6.4.4. It can be shown, further, that Corollary 6.4.4 provides the
necessary stability to ensure that, as ε ↓ 0, uε(·) converges, uniformly on compact
subsets of [0,∞), to some function that we denote by S(·)u0.

The general properties of S(·) follow from the Crandall-Liggett theory: When
u0 ∈ D(A), S(t)u0 stays in D(A) for all t ∈ [0,∞). In general, S(t)u0 may fail
to be differentiable with respect to t , even when u0 ∈ D(A). Thus S(·)u0 should be
interpreted as a weak solution of the differential equation (6.4.5).

The special properties of S(·) are consequences of the special properties of A
induced by the propositions recorded above (e.g. Lemma 6.4.6). The following the-
orem, whose proof can be found in the references cited in Section 6.11, summarizes
the properties of S(·) and in particular provides an alternative proof for the existence
of a unique admissible weak solution to (6.1.1), (6.1.2) (Theorem 6.2.2) and its basic
properties (Theorems 6.2.3 and 6.2.7).

6.4.8 Theorem. The transformation A generates a contraction semigroup S(·) in
L1(IRm), namely a family of maps S(t) : L1(IRm) → L1(IRm), t ∈ [0,∞), which
satisfy the semigroup property (6.4.1), (6.4.2); the continuity property (6.4.3), for any
u0 ∈ L1(IRm); and the contraction property (6.4.4), for any u0, ū0 in L1(IRm). If

(6.4.32) u0 ≤ ū0 , a.e. on IRm,
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then

(6.4.33) S(t)u0 ≤ S(t)ū0 , a.e. on IRm .

For 1 ≤ p ≤ ∞, the sets L p(IRm) ∩ L1(IRm) are positively invariant under S(t)
and, for any t ∈ [0,∞),

(6.4.34) ‖S(t)u0‖L p(IRm) ≤ ‖u0‖L p(IRm) , f or all u0 ∈ L p(IRm) ∩ L1(IRm).

If u0 ∈ L∞(IRm) ∩ L1(IRm), then S(·)u0 is the admissible weak solution of (6.1.1),
(6.1.2), in the sense of Definition 6.2.1.

The reader should note that the approach via semigroups suggests a notion of
admissible weak solution to (6.1.1), (6.1.2) for any, even unbounded, u0 in L1(IRm).
These are not necessarily distributional solutions of (6.1.1), unless the flux G exhibits
linear growth at infinity.

6.5 The Layering Method

The admissible weak solution of (6.1.1), (6.1.2) will here be determined as the h ↓ 0
limit of a family {uh} of functions constructed by patching together classical solu-
tions of (6.1.1) in a stratified pattern. In addition to providing another method for
constructing solutions and thereby an alternative proof of the existence Theorem
6.2.2, this approach also offers a different justification of the admissibility condition,
Definition 6.2.1.

The initial data u0 are in L∞(IRm), taking values in a compact interval [a, b].
The construction of approximate solutions will involve mollification of functions on
IRm by forming their convolution with a kernel λh constructed as follows. We start
out with a nonnegative, smooth function ρ on IR, supported in [−1, 1], which is even,
ρ(−ξ) = ρ(ξ) for ξ ∈ IR, and has total mass one, (6.2.15). For h > 0, we set

(6.5.1) λh(x) = (ph)−m
m∏
β=1

ρ(
xβ
ph

),

with

(6.5.2) p = √m qγ ‖u0‖L∞(IRm) ,

where q denotes the total variation of the function ρ and γ is the maximum of
|G ′′(u)| over the interval [a, b]. We employ λh to mollify functions f ∈ L∞(IRm):

(6.5.3) (λh ∗ f )(x) =
∫

IRm
λh(x − y) f (y)dy, x ∈ IRm .
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From (6.5.3) and (6.5.1) it follows easily

(6.5.4) inf(λh ∗ f ) ≥ ess inf f, sup(λh ∗ f ) ≤ ess sup f,

(6.5.5) ‖λh ∗ f ‖L1(Br )
≤ ‖ f ‖L1(Br+√m ph)

, for any r > 0,

(6.5.6) ‖∂α(λh ∗ f )‖L∞(IRm) ≤ q

ph
‖ f ‖L∞(IRm) , α = 1, · · · ,m.

A somewhat subtler estimate, which depends crucially on λh being an even function,
and whose proof can be found in the references cited in Section 6.11, is

(6.5.7) |
∫

IRm
χ(x)[(λh ∗ f )(x)− f (x)]dx | ≤ ch2‖χ‖C2(IRm)‖ f ‖L∞(IRm) ,

for all χ ∈ C∞0 (IRm).
The construction of the approximate solutions proceeds as follows. After the

parameter h > 0 has been fixed, IRm × [0,∞) is partitioned into layers:

(6.5.8) IRm × [0,∞) =
∞⋃
�=0

IRm × [�h, �h + h).

The initial value uh(·, 0) is determined by

(6.5.9) uh(·, 0) = λh ∗ u0(·).
By virtue of (6.5.6) and (6.5.2), uh(·, 0) is Lipschitz continuous, with Lipschitz con-
stant ω = 1/pγ . Hence, by Theorem 6.1.1, (6.1.1) with initial data uh(·, 0) admits a
classical solution uh on the layer IRm × [0, h).

Next we determine uh(·, h) by mollifying the limit uh(·, h−) of uh(·, t) as t ↑ h:

(6.5.10) uh(·, h) = λh ∗ uh(·, h−).
We extend uh to the layer IRm×[h, 2h) by solving (6.1.1) with data uh(·, h) at t = h.

Continuing this process, we determine uh on the general layer [�h, �h + h) by
solving (6.1.1) with data

(6.5.11) uh(·, �h) = λh ∗ uh(·, �h−)
at t = �h. We thus end up with a measurable function uh on IRm × [0,∞) which
takes values in the interval [a, b]. Inside each layer IRm × [�h, �h + h), uh is a
classical solution of (6.1.1). However, as one crosses the border t = �h between
adjacent layers, uh experiences jump discontinuities, from uh(·, �h−) to uh(·, �h).
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6.5.1 Theorem. As h ↓ 0, the family {uh} constructed above converges boundedly
almost everywhere on IRm × [0,∞) to the admissible solution u of (6.1.1), (6.1.2).

The proof is an immediate consequence of the following two propositions to-
gether with uniqueness of the admissible solution, Corollary 6.2.4. The fact that the
limit of classical solutions yields the admissible weak solution provides another jus-
tification of Definition 6.2.1.

6.5.2 Lemma. (Consistency). Assume that for some sequence {hk}, with hk → 0 as
k →∞,

(6.5.12) uhk (x, t)→ u(x, t), a.e. on IRm × [0,∞).

Then u is an admissible weak solution of (6.1.1), (6.1.2).

Proof. Consider any convex entropy function η with associated entropy flux Q de-
termined through (6.2.1). In the interior of each layer, uh is a classical solution of
(6.1.1) and so it satisfies the identity

(6.5.13) ∂tη(uh(x, t))+ div Q(uh(x, t)) = 0.

Fix any nonnegative smooth test function ψ on IRm × [0, T ), with compact sup-
port. Multiply (6.5.13) by ψ , integrate over each layer, integrate by parts, and then
sum the resulting equations over all layers to get

(6.5.14)∫ ∞

0

∫
IRm
[∂tψ η(uh)+

m∑
α=1

∂αψ Qα(uh)]dxdt +
∫

IRm
ψ(x, 0) η(uh(x, 0))dx

= −
∞∑
�=1

∫
IRm

ψ(x, �h)[η(uh(x, �h))− η(uh(x, �h−))]dx .

Combining (6.5.11) with Jensen’s inequality and using (6.5.7) yields

(6.5.15)
∫

IRm
ψ(x, �h)[η(uh(x, �h))− η(uh(x, �h−))]dx

≤
∫

IRm
ψ(x, �h)[λh ∗ η(uh)(x, �h−))− η(uh(x, �h−))]dx ≤ Ch2.

The summation on the right-hand side of (6.5.14) contains O(1/h) many nonzero
terms. Therefore, passing to the k → ∞ limit along the sequence {hk} in (6.5.14)
and using (6.5.12), (6.5.9), and (6.5.15), we conclude that u satisfies (6.2.3). This
completes the proof.
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6.5.3 Lemma. (Compactness). There is a sequence {hk}, with hk → 0 as k → ∞,
and a L∞ function u on IRm × [0,∞) such that (6.5.12) holds.

Proof. The first step is to establish the weaker assertion that for some sequence {hk},
with hk → 0 as k →∞, and a function u,

(6.5.16) uhk (·, t)→ u(·, t), as k →∞, in L∞(IRm) weak∗ ,

for almost all t in [0,∞). To this end, fix any smooth test function χ on IRm , with
compact support, and consider the function

(6.5.17) vh(t) =
∫

IRm
χ(x)uh(x, t)dx, t ∈ [0,∞).

Notice that vh is smooth on [�h, �h + h) and satisfies

(6.5.18)
∫ �h+h

�h

∣∣∣∣ d

dt
vh(t)

∣∣∣∣dt =
∫ �h+h

�h

∣∣∣∣− ∫
IRm

χ(x)
m∑
α=1

∂αGα(u(x, t))dx

∣∣∣∣dt

=
∫ �h+h

�h

∣∣∣∣∫
IRm

m∑
α=1

∂αχ(x)Gα(u(x, t))dx

∣∣∣∣dt ≤ Ch.

On the other hand, vh experiences jump discontinuities across the points t = �h
which can be estimated with the help of (6.5.11) and (6.5.7):

(6.5.19) |vh(�h)− vh(�h−)| =
∣∣∣∣ ∫

IRm
χ(x)[uh(x, �h)− uh(x, �h−)]dx

∣∣∣∣ ≤ Ch2.

From (6.5.18) and (6.5.19) it follows that the total variation of vh over any compact
subinterval of [0,∞) is bounded, uniformly in h. Therefore, by Helly’s theorem (cf.
Section 1.7), there is a sequence {hk}, hk → 0 as k →∞, such that vhk (t) converges
for almost all t in [0,∞).

By Cantor’s diagonal process, we may construct a subsequence of {hk}, which
will be denoted again by {hk}, such that the sequence

(6.5.20)

{∫
IRm

χ(x)uhk (x, t)dx

}
converges for almost all t , for every member χ of any given countable family of
test functions. Consequently, the sequence (6.5.20) converges for any χ in L1(IRm).
Thus, for almost any t in [0,∞) there is a bounded measurable function on IRm ,
denoted by u(·, t), such that (6.5.16) holds.

We now strengthen the mode of convergence in (6.5.16). For any y ∈ IRm , the
functions uh and ūh, ūh(x, t) = uh(x + y, t) are both solutions of (6.1.1) in every
layer. Let us fix t > 0 and r > 0. Suppose t ∈ [�h, �h + h). Applying repeatedly
(6.2.9) and (6.5.5) (recalling (6.5.11)), we conclude
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(6.5.21)∫
|x |<r

|uh(x + y, t)− uh(x, t)|dx ≤
∫
|x |<r+s(t−�h)

|uh(x + y, �h)− uh(x, �h)|dx

≤
∫
|x |<r+s(t−�h)+√m ph

|uh(x + y, �h−)− uh(x, �h−)|dx

≤ . . . ≤
∫
|x |<r+st+√m p(t+h)

|u0(x + y)− u0(x)|dx .

It follows that the family {uh(·, t)} is equicontinuous in the mean on every com-
pact subset of IRm . Therefore, the convergence in (6.5.16) is upgraded to strongly in
L1

loc(IR
m). Thus, passing to a final subsequence we arrive at (6.5.12). This completes

the proof.

6.6 Relaxation

Another interesting method for constructing admissible weak solutions of (6.1.1) is
through relaxation. The point of departure is a semilinear system of m+1 equations,

(6.6.1)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tv(x, t)+

m∑
α=1

cα∂αv(x, t) = 1

µ

m∑
α=1

[Fα(v(x, t))− Zα(x, t)]

∂t Zα(x, t)− cα∂αZα(x, t) = 1

µ
[Fα(v(x, t))− Zα(x, t)], α = 1, · · · ,m,

in the m+1 unknowns (v, Z1, · · · , Zm), where µ is a small positive parameter while,
for α = 1, · · · ,m, the cα are given constants and the Fα are specified smooth func-
tions such that

(6.6.2) F ′α(v) < 0, −∞ < v <∞, α = 1, · · · ,m,

(6.6.3) Fα(0) = 0, Fα(v)→±∞ as v −→ ∓∞, α = 1, · · · ,m.

Notice that solutions of (6.6.1) satisfy the conservation law

(6.6.4) ∂t [v(x, t)−
m∑
α=1

Zα(x, t)] +
m∑
α=1

cα∂α[v(x, t)+ Zα(x, t)] = 0.

Because of the form of the right-hand side of (6.6.1), one should expect that, as
µ ↓ 0, the variables Zα “relax” to their equilibrium states Fα(v), in which case
(6.6.4) reduces to a scalar conservation law (6.1.1) with1

1 By virtue of (6.6.2), the transformation (6.6.5)1 may be inverted to express v as a smooth,
increasing function of u, and it is in that sense that Gα , defined by (6.6.5)2, should be
realized as a function of u.
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(6.6.5) u = v −
m∑
α=1

Fα(v), Gα(u) = cα[v + Fα(v)], α = 1, · · · ,m.

The above considerations suggest a program for constructing solutions of (6.1.1)
as asymptotic limits of solutions of (6.6.1).

The first step is to examine the Cauchy problem for (6.6.1), under assigned initial
conditions

(6.6.6) v(x, 0) = v0(x), Zα(x, 0) = Zα0(x), α = 1, · · · ,m, x ∈ IRm .

Since (6.6.1) is semilinear hyperbolic, when the initial data (v0, Z10, · · · , Zm0)

are in C1
0(IR

m) there exists a unique classical solution (v, Z1, · · · , Zm) defined on a
maximal time interval [0, T ), for some 0 < T ≤ ∞. For any t ∈ [0, T ), the functions
(v(·, t), Z1(·, t), · · · , Zm(·, t)) are in C1

0(IR
m). Furthermore, if T <∞,

(6.6.7) ‖v(·, t)‖L∞(IRm) +
m∑
α=1

‖Zα(·, t)‖L∞(IRm) →∞, as t ↑ T .

Here we need (possibly weak) solutions, under a broader class of initial data,
which exist globally in time. Such solutions do indeed exist because, under our as-
sumptions (6.6.2), (6.6.3), the effect of the right-hand side in (6.6.1) is dissipative.
This is manifested in the following

6.6.1 Theorem. For any initial data (v0, Z10, · · · , Zm0) in L1(IRm)∩L∞(IRm), there
exists a unique weak solution (v, Z1, · · · , Zm) of (6.6.1), (6.6.6) on IRm × [0,∞)

such that (v(·, t), Z1(·, t), · · · , Zm(·, t)) are in C0([0,∞); L1(IRm)). If

(6.6.8) a ≤ v0(x) ≤ b, Fα(b) ≤ Zα0(x) ≤ Fα(a), α = 1, · · · ,m, x ∈ IRm,

then

(6.6.9)
a ≤ v(x, t) ≤ b, Fα(b) ≤ Zα(x, t) ≤ Fα(a), α = 1, · · · ,m , (x, t) ∈ IRm×[0,∞).

Furthermore, if (v̄, Z̄1, · · · , Z̄m) is another solution of (6.6.1), with initial data
(v̄0, Z̄10, · · · , Z̄m0) in L1(IRm) ∩ L∞(IRm), then, for any t ∈ [0,∞),

(6.6.10)
∫

IRm
{[v(x, t)− v̄(x, t)]+ +

m∑
α=1

[Z̄α(x, t)− Zα(x, t)]+}dx

≤
∫

IRm
{[v0(x)− v̄0(x)]+ +

m∑
α=1

[Z̄α0(x)− Zα0(x)]+}dx,
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(6.6.11) ‖v(·, t)− v̄(·, t)‖L1(IRm) +
m∑
α=1

‖Zα(·, t)− Z̄α(·, t)‖L1(IRm)

≤ ‖v0(·)− v̄0(·)‖L1(IRm)+
m∑
α=1

‖Zα0(·)− Z̄α0(·)‖L1(IRm) .

In particular, if

(6.6.12) v0(x) ≤ v̄0(x), Zα0(x) ≥ Z̄α0(x), α = 1, · · · ,m, x ∈ IRm,

then

(6.6.13)
v(x, t) ≤ v̄(x, t), Zα(x, t) ≥ Z̄α(x, t), α = 1, · · · ,m, (x, t) ∈ IRm × [0,∞).

Proof. The first objective is to establish (6.6.10) under the assumption that both
solutions (v, Z1, · · · , Zm) and (v̄, Z̄1, · · · , Z̄m) are classical, with initial data
(v0, Z10, · · · , Zm0) and (v̄0, Z̄10, · · · , Z̄m0) in C1

0(IR
m). For ε > 0, we recall the

function ηε defined through (6.3.8) and note that

(6.6.14) ∂t [ηε(v − v̄)+
m∑
α=1

ηε(Z̄α − Zα)] +
m∑
α=1

cα∂α[ηε(v − v̄)− ηε(Z̄α − Zα)]

= 1

µ

m∑
α=1

[η′ε(v − v̄)− η′ε(Z̄α − Zα)][Fα(v)− Fα(v̄)+ Z̄α − Zα]

follows readily from (6.6.1). For fixed values of v, v̄, Zα , Z̄α , of any sign, the right-
hand side of (6.6.14) has a nonpositive limit as ε ↓ 0. Therefore, integrating (6.6.14)
over IRm × (0, t) and letting ε ↓ 0 we arrive at (6.6.10).

When (6.6.12) holds, (6.6.10) immediately implies (6.6.13). Notice that, for any
constants a and b, (a, F1(a), · · · , Fm(a)) and (b, F1(b), · · · , Fm(b)) are particular
solutions of (6.6.1) and hence (6.6.8) implies (6.6.9). In particular, blow-up (6.6.7)
cannot occur for any T and thus the solutions exist on IRm × [0,∞).

To get (6.6.11), it suffices to write (6.6.10) with the roles of (v, Z1, · · · , Zm)

and (v̄, Z̄1, · · · , Z̄m) reversed and then add the resulting inequality to the original
(6.6.10).

We have now verified all the assertions of the theorem, albeit within the context
of classical solutions, with initial data in C1

0(IR
m). Nevertheless, by virtue of the

L1-contraction estimate (6.6.11), weak solutions of (6.6.1), with any initial data in
L1(IRm) ∩ L∞(IRm), satisfying the asserted properties, may readily be constructed
as L1 limits of sequences of classical solutions. This completes the proof.

Our next task is to investigate the limiting behavior of solutions of (6.6.1) as
µ ↓ 0. The mechanism that induces the Zα to relax to their equilibrium values Fα(v)
will be captured through an entropy-like inequality. We define the family
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(6.6.15) �α(Zα) = −
∫ Zα

0
F−1
α (w)dw, α = 1, · · · ,m

of nonnegative, convex functions on (−∞,∞). Assuming (v, Z1, · · · , Zm) is a clas-
sical solution of (6.6.1), with initial data (v0, Z10, · · · , Zm0) in C1

0(IR
m), we readily

verify that

(6.6.16) ∂t

[
1
2v

2 +
m∑
α=1

�α(Zα)
]
+

m∑
α=1

cα∂α
[

1
2v

2 −�α(Zα)
]

= 1

µ

m∑
α=1

[v − F−1
α (Zα)][Fα(v)− Zα].

Since v − F−1
α (Zα) = F−1

α (Fα(v))− F−1
α (Zα), the mean-value theorem implies

(6.6.17) −[v − F−1
α (Zα)][Fα(v)− Zα] ≥ 1

k
[Fα(v)− Zα]2 ,

where k is any upper bound of −F ′α over the range of v. Therefore, upon integrating
(6.6.16) over IRm × [0,∞) we deduce the inequality

(6.6.18)
∫ ∞

0

∫
IRm

m∑
α=1

[Fα(v)− Zα]2dxdt ≤ kµ
∫

IRm

[
1
2v

2
0 +

m∑
α=1

�α(Zα0)
]
dx .

As explained in the proof of Theorem 6.6.1, weak solutions of (6.6.1) are constructed
as L1 limits of sequences of classical solutions, and hence the inequality (6.6.18) will
hold even for weak solutions with initial data in L1(IRm) ∩ L∞(IRm).

6.6.2 Theorem. Let (vµ, Zµ
1 , · · · , Zµ

m) denote the family of solutions of (6.6.1),
(6.6.6), with parameter µ > 0, and initial data (v0, F1(v0), · · · , Fm(v0)), where
v0 is in L1(IRm) ∩ L∞(IRm). Then there is a bounded measurable function v on
IRm × [0,∞) such that, as µ ↓ 0,

(6.6.19) vµ(x, t) −→ v(x, t), Zµ
α (x, t) −→ Fα(v(x, t)), α = 1, · · · ,m,

almost everywhere on IRm × [0,∞). The function

(6.6.20) u(x, t) = v(x, t)−
m∑
α=1

Fα(v(x, t))

is the admissible weak solution of the conservation law (6.1.1), with flux functions
Gα defined through (6.6.5), and initial data

(6.6.21) u0(x) = v0(x)−
m∑
α=1

Fα(v0(x)), x ∈ IRm .
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Proof. Let us set, for (x, t) ∈ IRm × [0,∞),

(6.6.22) uµ(x, t) = vµ(x, t)−
m∑
α=1

Zµ
α (x, t),

(6.6.23) Gµ
α (x, t) = cα[vµ(x, t)+ Zµ

α (x, t)].
By virtue of (6.6.4),

(6.6.24) ∂t u
µ(x, t)+ div Gµ(x, t) = 0.

First we show that there is a bounded measurable function u on IRm × [0,∞)

and some sequence {µn}, with µn ↓ 0 as n →∞, such that

(6.6.25) uµn (·, t) −→ u(·, t), n →∞,

in L∞(IRm) weak∗, for all t ∈ [0,∞). To that end, let us fix any test function
χ ∈ C∞0 (IRm) and define the family of functions

(6.6.26) wµ(t) =
∫

IRm
χ(x)uµ(x, t)dx, t ∈ [0,∞),

which, by account of (6.6.24), are continuously differentiable with derivative

(6.6.27)
d

dt
wµ(t) =

m∑
α=1

∫
IRm

∂αχ(x)Gµ
α (x, t)

bounded, uniformly in µ > 0. It then follows from Arzela’s theorem that there
is a sequence {µn}, with µn ↓ 0 as n → ∞, such that {wµn } converges for all
t ∈ [0,∞). By Cantor’s diagonal process we may construct a subsequence of {µn},
denoted again by {µn}, such that the sequence

(6.6.28)

{∫
IRm

χ(x)uµn (x, t)dx

}
is convergent for all t ∈ [0,∞) and every member χ of any given countable fam-
ily of test functions. Consequently, (6.6.28) is convergent for any χ ∈ L1(IRm).
Thus, for each t ∈ [0,∞) there is a bounded measurable function on IRm , denoted
by u(·, t), such that (6.6.25) holds in L∞(IRm) weak∗. Next we note that, by the
L1 contraction estimate (6.6.11), for any fixed t in [0,∞) the family of functions
(vµ(·, t), Zµ

1 (·, t), · · · , Zµ
m(·, t)) is equicontinuous in the mean. Hence, the conver-

gence in (6.6.25) is upgraded to strongly in L1(IRm). In particular,

(6.6.29) uµn (x, t) −→ u(x, t), n →∞,

almost everywhere on IRm × [0,∞).
We now apply (6.6.18) for our solutions (vµn , Zµn

1 , · · · , Zµn
m ) and, passing if

necessary to a subsequence, denoted again by {µn}, we obtain
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(6.6.30) Fα(v
µn (x, t))− Zµn

α (x, t)→ 0, n →∞, α = 1, · · · ,m,

almost everywhere on IRm × [0,∞).
Combining (6.6.22), (6.6.29) and (6.6.30), we deduce

(6.6.31) vµn (x, t)−
m∑
α=1

Fα(v
µn (x, t))→ u(x, t), n →∞,

almost everywhere on IRm×[0,∞). Because of the monotonicity assumption (6.6.2),
(6.6.31) implies that the sequence {vµn } itself must be convergent, say

(6.6.32) vµn (x, t) −→ v(x, t), n →∞,

almost everywhere on IRm × [0,∞), where v is a function related to u through
(6.6.20). Furthermore, (6.6.30) and (6.6.32) together imply

(6.6.33) Zµn
α (x, t)→ Fα(v(x, t)), n →∞, α = 1, · · · ,m,

almost everywhere on IRm × [0,∞).
By virtue of (6.6.22), (6.6.23), (6.6.24), (6.6.32) and (6.6.33), u is a weak so-

lution of (6.1.1), with fluxes Gα defined through (6.6.5). We proceed to show that
this solution is admissible. We fix any constant v̄ and write (6.6.14) for the two solu-
tions (vµn , Zµn

1 , · · · , Zµn
m ) and (v̄, F1(v̄), · · · , Fm(v̄)). We apply this (distributional)

equation to any nonnegative Lipschitz continuous test functionψ , with compact sup-
port on IRm × [0,∞) and let ε ↓ 0. Since the ε ↓ 0 limit of the right-hand side of
(6.6.14) is nonpositive, this calculation gives

(6.6.34)
∫ ∞

0

∫
IRm

∂tψ [(vµn − v̄)+ +
m∑
α=1

(Fα(v̄)− Zµn
α )+] dxdt

+
∫ ∞

0

∫
IRm

m∑
α=1

cα∂αψ [(vµn − v̄)+ − (Fα(v̄)− Zµn
α )+] dxdt

+
∫

IRm
ψ(x, 0)[(v0 − v̄)+ +

m∑
α=1

(Fα(v̄)− Fα(v0))
+]dx ≥ 0.

Letting n →∞ and using (6.6.32) and (6.6.33), (6.6.34) yields

(6.6.35)
∫ ∞

0

∫
IRm

∂tψ [(v − v̄)+ +
m∑
α=1

(Fα(v̄)− Fα(v))
+] dxdt

+
∫ ∞

0

∫
IRm

m∑
α=1

cα∂αψ [(v − v̄)+ − (Fα(v̄)− Fα(v))
+] dxdt

+
∫

IRm
ψ(x, 0)[(v0 − v̄)+ +

m∑
α=1

(Fα(v̄)− Fα(v0))
+]dx ≥ 0.
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On account of (6.6.2), v − v̄ and Fα(v̄)− Fα(v) have the same sign. Furthermore, if
we set ū = v̄ −∑ Fα(v̄), then v − v̄ and u − ū also have the same sign. Therefore,
upon using (6.6.20), (6.6.21), and (6.6.5), we may rewrite (6.6.35) as

(6.6.36)
∫ ∞

0

∫
IRm
[∂tψ η(u; ū)+

m∑
α=1

∂αψ Qα(u; ū)]dxdt

+
∫

IRm
ψ(x, 0)η(u0; ū)dx ≥ 0,

where (η(u; ū), Q(u; ū)) is the entropy-entropy flux pair defined by (6.2.5). As noted
in Section 6.2, the set of entropy-entropy flux pairs (6.2.5), with ū arbitrary, is “com-
plete” and hence (6.6.36) implies that (6.2.3) will hold for any entropy-entropy flux
pair (η, Q) with η convex. This verifies that u is the admissible weak solution of
(6.1.1), with initial data u0 given by (6.6.21). Since u is unique, the convergence in
(6.6.29), (6.6.32) and (6.6.33) applies not only along the particular sequence {µn}
but also along the whole family {µ}, as µ ↓ 0. This completes the proof.

Theorem 6.6.2 demonstrates how, starting out from a given system (6.6.1), one
may construct, by relaxation, admissible solutions of a particular scalar conservation
law induced by (6.6.1). Of course, we are interested in the reverse process, namely
to determine the appropriate system (6.6.1) whose relaxed form is a given scalar
conservation law (6.1.1). This may be accomplished when, given the fluxes Gα(u),
it is possible to select constants cα in such a way that the transformations (6.6.5)
determine implicitly functions Fα(v) that satisfy the assumptions (6.6.2) and (6.6.3).
Let us normalize the given fluxes by Gα(0) = 0, α = 1, · · · ,m. Since our solutions
will be a priori bounded, let us assume, without loss of generality, that the G ′α(u) are
uniformly bounded on (−∞,∞). From (6.6.5),

(6.6.37) (m + 1)v = u +
m∑
α=1

1

cα
Gα(u).

Therefore, the first constraint is to fix the |cα| so large that

(6.6.38) (m + 1)
dv

du
= 1+

m∑
α=1

1

cα
G ′α(u) ≥

1

2
,

in order to secure that the map v �→ u will possess a smooth inverse. Next we note

(6.6.39) F ′α(v) = −1+ 1

cα
G ′α(u)

du

dv
= −1+ m + 1

cα
[1+

m∑
β=1

1

cβ
G ′β(u)]−1G ′α(u),

so that, by selecting the |cα| sufficiently large, we can satisfy both assumptions
(6.6.2) and (6.6.3). Restrictions on cα that maintain that the convective character-
istic speeds cα should be high relative to the characteristic speeds G ′α of the relaxed
conservation law are called subcharacteristic conditions.
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6.7 A Kinetic Formulation

This section discusses an alternative, albeit equivalent, characterization of admissible
weak solutions to (6.1.1), (6.1.2), which, as we shall see below, is motivated by the
kinetic theory.

It has already been noted that the entropy production for any solution of (6.1.1)
satisfying (6.2.2) is a nonpositive measure. In particular, if u is an admissible solution
of (6.1.1), (6.1.2) in the sense of Definition 6.2.1, then for any v ∈ (−∞,∞),

(6.7.1) ∂t {|u−v|− |v|}+ div{sgn (u−v) [G(u)−G(v)]− sgn v G(v)} = −2νv ,

where νv is a nonnegative measure on IRm × IR+. Notice that for |v| > sup |u0| =
sup |u| it is −2νv = ∂t u + div G(u) = 0.

We realize {νv} as a nonnegative measure ν on IR × IRm × IR+ and differentiate
(6.7.1), in the sense of distributions, with respect to v to deduce

(6.7.2) ∂tχ(v; u)+
m∑
α=1

G ′α(v)∂αχ(v; u) = ∂vν,

where χ denotes the function

(6.7.3) χ(v; u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 0 < v < u

−1 if u < v < 0

0 otherwise.

The entropy production by any entropy-entropy flux pair (η, Q) is easily ex-
pressed in terms of ν. Indeed, let us multiply (6.7.2) by η′(v) and integrate with
respect to v over (−∞,∞). Recalling (6.2.1) and after an integration by parts, we
obtain

(6.7.4) ∂t

∫ ∞

−∞
η′(v)χ(v; u)dv + div

∫ ∞

−∞
Q′(v)χ(v; u)dv

= −
∫ ∞

−∞
η′′(v)dν(v; ·, ·).

One easily verifies that if p(v) is any C1 function, then

(6.7.5)
∫ ∞

−∞
p′(v)χ(v; u)dv = p(u)− p(0),

and so (6.7.4) yields

(6.7.6) ∂tη(u)+ div Q(u) = −
∫ ∞

−∞
η′′(v)dν(v; ·, ·).



154 VI The L1 Theory for Scalar Conservation Laws

In particular, when η(u) is convex the right-hand side of (6.7.6) is nonpositive. Fur-
thermore, applying (6.7.6) for η(u) = 1

2 u2 and integrating with respect to (x, t) over
IRm × [0,∞) we deduce

(6.7.7)
∫ ∞

0

∫
IRm

∫ ∞

−∞
dν(v; x, t) ≤ 1

2

∫
IRm

u2
0(x)dx .

It is remarkable that (6.7.2) fully characterizes admissible weak solutions of
(6.1.1), as shown in the following

6.7.1 Theorem. A bounded measurable function u(x, t) on IRm × [0,∞) which sat-
isfies (6.7.2), for some bounded, nonnegative measure ν, together with the initial
condition

(6.7.8) χ(v; u(x, 0)) = χ(v; u0(x)),

is the admissible solution of (6.1.1), (6.1.2).

Proof. Equation (6.7.2) admits solutions χ(· ; u(·, t)) ∈ C0([0,∞); IRm+1) and thus
the initial condition (6.1.2) is attained strongly in L1(IRm). Hence it remains to show
that (6.2.2) holds for every entropy-entropy flux pair (η, Q) with η convex. Since u
is bounded, it will suffice to establish (6.2.2) for entropies with linear growth, i.e.,
with |η′(u)| bounded on (−∞,∞).

Starting out from (6.7.2), one can show, as above, that (6.7.6) holds, albeit only
for functions η(v) whose derivative η′(v) vanishes for |v| large (in order to perform
the integration by parts, as it is no longer known that ν vanishes for |v| > sup |u0|).

Fix any convex function η, with linear growth. For k = 1, 2, · · ·, set ηk(v) =
η(v)φ(v/k), where φ is a smooth even function on (−∞,∞), with φ(v) = 1 for
|v| ≤ 1, φ(v) = 0 for |v| ≥ 2, and φ′(v) < 0 for v ∈ (1, 2). We thus have

(6.7.9) ∂tηk(u)+ div Qk(u) = −
∫ ∞

−∞
η′′k (v)dν(v; ·, ·)

= −
∫ ∞

−∞

[
η′′(v)φ

(v
k

)
+ 2

k
η′(v)φ′

(v
k

)
+ 1

k2
η(v)φ′′

(v
k

)]
dν(v; ·, ·).

For k large, ηk(u) = η(u) and Qk(u) = Q(u), on the range of the solution. Fur-
thermore, η′′(v)φ(v/k)→ η′′(v) monotonically, as k → ∞. Finally, it is clear that
η′(v)φ′(v/k) = O(1) and η(v)φ′′(v/k) = O(k), as k → ∞. Thus, letting k → ∞
in (6.7.9), we arrive at (6.7.6), and thereby at (6.2.2). This completes the proof.

The kinetic formulation (6.7.2), which may serve as an alternative, albeit equiv-
alent, definition of admissible weak solutions of (6.1.1), provides a powerful instru-
ment for discovering properties of these solutions. In particular, one obtains an al-
ternative, direct proof of the L1 contraction property (6.2.9), even under the more
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general assumption that the initial data are merely in L1(IRm) and not necessarily in
L∞(IRm); see references in Section 6.11.

Up to this point, we have been facing nonlinearity as an agent that provokes the
development of discontinuities in solutions with smooth initial values. It turns out,
however, that nonlinearity may also play the opposite role, of smoothing out solu-
tions with rough initial data. In the course of the book, we shall encounter various
manifestations of such behavior. The kinetic formulation provides valuable insight
into the compactifying and smoothing effects of nonlinearity in scalar conservation
laws. This will become evident in the next Section 6.8, but it is also seen in the fol-
lowing regularity theorem whose (hard and technical) proof is found in the references
cited in Section 6.11.

6.7.2 Theorem. Assume there are r ∈ (0, 1] and C ≥ 0 such that

(6.7.10) meas{v : |v| ≤ ‖u0‖L∞ , |p + G ′(v)P| ≤ δ} ≤ Cδr ,

for all δ ∈ (0, 1), p ∈ IR , P ∈ IRm with p2+ |P|2 = 1. Then the admissible weak
solution u of (6.1.1), (6.1.2) satisfies

(6.7.11) u(·, t) ∈ C0((0,∞);W s,1
loc (IR

m)),

for any s ∈
(

0, r
r+2

)
.

It is condition (6.7.10) that encodes the aspect of nonlinearity of G responsible
for the regularizing effect. For example, (6.7.10) fails, for any r , when G is linear,
but it is satisfied, with r = 1, if the Gα are uniformly convex functions, G ′′α(u) > 0,
α = 1, · · · ,m.

The section closes with a discussion on how the kinetic formulation (6.7.2) of
the scalar conservation law may be motivated by the kinetic theory of matter. As we
saw in Chapter III, Example 3.3.7, in the classical kinetic theory of gases the state
of the gas at the point x and time t is described by the molecular density function
f (ξ, x, t) of the molecular velocity ξ . The evolution of f is governed by the Boltz-
mann equation (3.3.25), which monitors the changes in the distribution of molecular
velocities due to transport and collisions. The connection between the kinetic and the
continuum approach is established by identifying intensive quantities, such as den-
sity, velocity, pressure, temperature, etc., with appropriate moments of the molecular
density function f , and then showing that these fields satisfy the balance laws of con-
tinuum physics. Thus, in principle one may construct solutions to systems of balance
laws by treating the fields as moments of a molecular density in an underlying kinetic
model with density function whose zero moment satisfies the scalar conservation law
(6.1.1).

In the model, the “velocity” v is scalar-valued and the “molecular density”
f (v; x, t), at the point x and time t , is allowed to take positive and negative val-
ues. Then u is obtained from f by

(6.7.12) u(x, t) =
∫ ∞

−∞
f (v; x, t)dv.
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In turn, f satisfies the transport equation

(6.7.13) ∂t f (v; x, t)+
m∑
α=1

G ′α(v)∂α f (v; x, t) = 1

µ
[χ(v; u(x, t))− f (v; x, t)] ,

where µ is a small positive parameter and χ(v; u) is the function defined by (6.7.3).
Readers familiar with the kinetic theory will recognize in (6.7.13) a model of the
BGK approximation to the classical Boltzmann equation. Hopefully, as µ ↓ 0, the
stiff term on the right-hand side will force f (v; x, t) to “relax” to χ(v; u(x, t))which
satisfies (6.7.2). Before verifying that this expectation will be fulfilled, let us discuss
properties of solutions of (6.7.13), (6.7.12).

6.7.3 Theorem. Let u0 ∈ L∞(IRm)
⋂

L1(IRm). For any µ > 0, there exist bounded
measurable functions

(6.7.14) fµ(· ; ·, t) ∈ C0([0,∞); L1(IR× IRm)), uµ(·, t) ∈ C0([0,∞); L1(IRm))

which provide the unique solution of (6.7.13), (6.7.12) with initial data induced by

(6.7.15) fµ(v; x, 0) = χ(v; u0(x)), v ∈ (−∞,∞), x ∈ IRm .

For any (x, t) ∈ IRm × [0,∞),

(6.7.16) f (v; x, t) ∈
⎧⎨⎩ [0, 1] if v > 0

[−1, 0] if v < 0.

If ( f̄µ, ūµ) is another solution of (6.7.13), (6.7.12), with initial data induced by ū0
in L∞(IRm)

⋂
L1(IRm), then, for any t > 0,

(6.7.17) ‖ fµ(· ; ·, t)− f̄µ(· ; ·, t)‖L1(IR×IRm) ≤ ‖ fµ(· ; ·, 0)− f̄µ(· ; ·, 0)‖L1(IR×IRm)

(6.7.18) ‖uµ(·, t)− ūµ(·, t)‖L1(IRm) ≤ ‖u0(·)− ū0(·)‖L1(IRm).

Furthermore, if

(6.7.19) u0(x) ≤ ū0(x), x ∈ IRm,

then

(6.7.20) fµ(v; x, t) ≤ f̄µ(v; x, t), v ∈ (−∞,∞), x ∈ IRm, t ∈ [0,∞),

(6.7.21) uµ(x, t) ≤ ūµ(x, t), x ∈ IRm, t ∈ [0,∞).
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Proof. Taking, for the time being, the existence of ( fµ, uµ) and ( f̄µ, ūµ) for granted,
we integrate (6.7.13) along characteristics dx/dt = G ′(v)� , dv/dt = 0 to deduce

(6.7.22) fµ(v; x, t) = e−
t
µ fµ(v; x − tG ′(v)�, 0)

+ 1

µ

∫ t

0
e−

t−τ
µ χ(v; uµ(x − (t − τ)G ′(v)�, τ )dτ.

Thus (6.7.16) readily follows from (6.7.22), (6.7.15) and the properties of the func-
tion χ .

We write the analog of (6.7.22) for the other solution ( f̄µ, ūµ) and subtract the
resulting equation from (6.7.22) to get

(6.7.23)

fµ(v; x, t)− f̄µ(v; x, t) = e−
t
µ

[
fµ(v; x − tG ′(v)�, 0)− f̄µ(v; x − tG ′(v)�, 0)

]
+ 1

µ

∫ t

0
e−

t−τ
µ [χ(v; uµ(x − (t − τ)G ′(v)�, τ )

− χ(v; ūµ(x − (t − τ)G ′(v)�, τ )]dτ
whence

(6.7.24)

‖ fµ(· ; ·, t)− f̄µ(· ; ·, t)‖L1(IR×IRm) ≤ e−
t
µ ‖ fµ(· ; ·, 0)− f̄µ(· ; ·, 0)‖L1(IR×IRm)

+ 1

µ

∫ t

0
e−

t−τ
µ ‖χ(v; uµ(x − (t − τ)G ′(v)�, τ )

−χ(v; ūµ(x − (t − τ)G ′(v)�, τ )‖L1(IR×IRm)dτ

≤ e−
t
µ ‖ fµ(· ; ·, 0)− f̄µ(· ; ·, 0)‖L1(IR×IRm)

+(1− e−
t
µ ) max

0≤τ≤t
‖ fµ(· ; ·, τ )− f̄µ(· ; ·, τ )‖L1(IR×IRm).

Clearly, (6.7.24) implies (6.7.17) and this in turn yields (6.7.18). In particular, there
is at most one solution to (6.7.13), (6.7.12), (6.7.15). Furthermore, this solution can
be constructed from the integral equation (6.7.22) by Picard iteration.

Since χ(v; u) is increasing in u, (6.7.23) and (6.7.12) guarantee that (6.7.19)
implies (6.7.20) and (6.7.21). This completes the proof.

We now turn to the limiting behavior of solutions as µ ↓ 0.

6.7.4 Theorem. For µ > 0, let ( fµ, uµ) denote the solution of (6.7.13), (6.7.12),
(6.7.15) with u0 ∈ L∞(IRm)

⋂
L1(IRm). Then, as µ ↓ 0,

(6.7.25) uµ(x, t)→ u(x, t),
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(6.7.26) fµ(v; x, t)→ χ(v; u(x, t)),

in L1
loc , where χ(v; u) satisfies (6.7.2) for some bounded, nonnegative measure ν,

and hence u is the admissible weak solution of (6.1.1.), (6.1.2).

Proof. The first step is to demonstrate that the family {( fµ, uµ) : µ > 0} is equicon-
tinuous in the mean. This is clearly the case in the v and x directions by virtue of the
contraction property (6.7.17), (6.7.18). For any w ∈ IR and y ∈ IRm , the functions
( f̄µ, ūµ) defined by f̄µ(v; x, t) = fµ(v +w; x + y, t), ūµ(x, t) = uµ(x + y, t) are
solutions of (6.7.13), (6.7.12) with initial data f̄µ(v; x, 0) = χ(v + w; u0(x + y)),
and so

(6.7.27)
∫ ∞

0

∫
IRm
| fµ(v + w; x + y, t)− fµ(v; x, t)|dxdv

≤
∫ ∞

0

∫
IRm
|χ(v + w; u0(x + y))− χ(v; u0(x))|dxdv,

(6.7.28)
∫

IRm
|uµ(x + y, t)− uµ(x, t)|dx ≤

∫
IRm
|u0(x + y)− u0(x)|dx .

Equicontinuity in the t-direction easily follows from the above, in conjunction with
the transport equation (6.7.13) itself; the details are omitted.

Next we consider the function

(6.7.29) ωµ(v; x, t) =
∫ v

−∞
[
χ(w; uµ(x, t))− fµ(w; x, t)

]
dw.

Let us fix (x, t), assuming for definiteness uµ(x, t) > 0 (the other cases being
similarly treated). Clearly, ωµ(−∞; x, t) = 0. By virtue of (6.7.3) and (6.7.16),
ωµ(· ; x, t) is nondecreasing on the interval (−∞, uµ(x, t)) and nonincreasing on
the interval (uµ(x, t),∞). Finally, by account of (6.7.12), ωµ(∞; x, t) = 0. Conse-
quently, we may write

(6.7.30)
1

µ

[
χ(v; uµ(x, t))− fµ(v; x, t)

] = ∂vνµ ,

where νµ is a nonnegative measure which is bounded, uniformly in µ > 0.
It follows that from any sequence {µk}, µk → 0 as k → ∞, we may extract

a subsequence, denoted again by {µk}, so that {( fµk , uµk )} converges in L1
loc to

functions ( f, u), and {νµk } converges weakly in the space of measures to a bounded
non-negative measure ν. Clearly, f (v; x, t) = χ(v; u(x, t)) and (6.7.2) holds. By
uniqueness, the whole family {( fµ, uµ)} converges to (χ(· ; u), u), as µ ↓ 0. This
completes the proof.
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6.8 Fine Structure of L∞ Solutions

According to Theorem 6.2.6, admissible solutions u to the scalar conservation law
(6.1.1), with initial values u0 of locally bounded variation on IRm , have locally
bounded variation on the upper half-space, and thereby inherit the fine structure
of BV functions described in Sections 1.7 and 1.8. In particular, the points of ap-
proximate jump discontinuity of u assemble on the (at most) countable union of C1

manifolds of codimension one. Furthermore, u has (generally distinct) traces on both
sides of any oriented manifold of codimension one. However, when u0 is merely in
L∞ the above structure is generally lost, as may be seen by considering the case
where (6.1.1) is linear. On the other hand, we saw in Section 6.7 (Theorem 6.7.2)
that nonlinearity in the flux function may exert a smoothing influence on L∞ so-
lutions. As another manifestation of this phenomenon, we shall see here that when
the conservation law is linearly nondegenerate, in a sense to be made precise be-
low, admissible solutions that are merely in L∞ are nevertheless endowed with fine
structure that closely resembles the structure of BV functions.

For the present purposes, the distinction between spatial and temporal variables
is irrelevant, so it will be convenient to revert to the formulation and notations
of Chapter I, by fusing the m-dimensional space and 1-dimensional time into k-
dimensional space-time, k = m + 1, and representing (x, t) by the vector X , with
Xα = xα , α = 1, · · · ,m and Xk = t . In what follows, div will denote the divergence
operator in IRk , acting on k-row vectors.

On some open subset X of IRk , we consider scalar balance laws in the form

(6.8.1) div G(u(X)) = νG ,

where νG is a locally bounded Radon measure. A function u ∈ L∞(X )will be called
an admissible solution of (6.8.1) if, for any companion Q of G,

(6.8.2) div Q(u(X)) = νQ ,

where νQ is a locally bounded Radon measure on X .
We recall, from Section 1.5, that companions Q are related to G by

(6.8.3) Q′(u) = η′(u)G ′(u),

where η is some scalar-valued function.
In the setting of Section 6.2, Gk(u) = u, Qk(u) = η(u) and νG = 0. For

companions Q induced by convex entropies η, admissible solutions of (6.1.1), in
the sense of Definition 6.2.1, satisfy (6.8.2) with νQ a nonpositive, locally bounded
measure. Thus, admissible solutions in the sense of Definition 6.2.1 are in particular
admissible solutions in the above sense.

In order to expunge linear systems, we introduce the following notion (compare
with (6.7.10)):

6.8.1 Definition. The balance law (6.8.1) is called linearly nondegenerate if for each
N ∈ Sk−1
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(6.8.4) G ′(u)N �= 0, for almost all u ∈ (−∞,∞).

The fine structure of admissible solutions of linearly nondegenerate scalar bal-
ance laws is described by the following

6.8.2 Theorem. Assume (6.8.1) is linearly nondegenerate and let u be an admissible
solution on X . Then X is the union of three pairwise disjoint subsets C, J and I
with the following properties:

(a) C is the set of points of vanishing mean oscillation of u, i.e., for X̄ ∈ C

(6.8.5) lim
r↓0

1

rk

∫
Br (X̄)

|u(X)− ūr (X̄)|d X = 0,

where ūr (X̄) denotes the average of u on the ball Br (X̄).
(b) J is rectifiable, namely it is essentially covered by the countable union of C1

(k − 1)-dimensional manifolds {Fi } embedded in IRk : Hk−1(J \⋃Fi ) = 0.
When X̄ ∈ J ⋂Fi , then the normal on Fi at X̄ is interpreted as the normal on
J at X̄ . The function u has distinct inward and outward traces u− and u+ , in
the sense of Definition 1.7.7, at any point X̄ ∈ J .

(c) The (k − 1)-dimensional Hausdorff measure of I is zero: Hk−1(I) = 0.

A comparison between Theorems 1.7.4 and 6.8.2 reveals the striking similarity
in the fine structure of admissible L∞ solutions and BV functions. The reader should
note, however, that there are some differences as well: Points in the set C have merely
vanishing mean oscillation in admissible L∞ solutions, whereas they are Lebesgue
points in the BV case. Furthermore, if u is a BV solution of (6.8.1), with νG = 0,
then, on account of Theorem 1.8.2, for any companion Q, νQ is concentrated on the
set J of points of jump discontinuity. However, it is not known at the present time
whether this important property carries over to L∞ admissible solutions.

The reader should consult the references in Section 6.11 for the proof of Theorem
6.8.2, which is lengthy and technical. Even so, a brief outline of some of the key
ingredients is here in order.

Admissible L∞ solutions u to (6.8.1) on X may be characterized by the kinetic
formulation, discussed in Section 6.7. In the present setting, (6.7.2) takes the form

(6.8.6)
k∑

α=1

G ′α(v)∂αχ(v; u) = ∂vν,

where χ is the function defined by (6.7.3) and ν is a bounded measure on IR × X .
Notice that here, in contrast to Section 6.7, the measure ν need not be nonnegative,
as the notion of admissible solution adopted in this section is broader.

In analogy to (6.7.6), the measure νQ associated with any companion Q induced
by some η through (6.8.3) is related to the measure ν by

(6.8.7) νQ = −
∫ ∞

−∞
η′′(v)dν(v; ·).
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The measure ν also determines the “jump set” J , in Theorem 6.8.2, by

(6.8.8) J = {X ∈ X : lim sup
r↓0

|ν|(IR × Br (X))

rk−1
> 0},

where |ν| denotes the total variation measure of ν.
The resolution of the fine structure of u is achieved by “blowing up” the neigh-

borhood of any point X ∈ X , that is by rescaling u and ν in the vicinity of X in
a manner that leaves (6.8.6) invariant. The linear nondegeneracy condition (6.8.4),
in conjunction with velocity averaging estimates for the transport equation (6.8.6),
induces the requisite compactness, so that the limits u∞ and ν∞ of u and ν under
rescaling exist and satisfy (6.8.6). When X �∈ J , the measure ν∞ vanishes. On the
other hand, when X ∈ J , ν∞ is the tensor product of a measure on IR and a measure
on X . It is by studying solutions of (6.8.6) with ν having this special tensor product
structure that the assertion of Theorem 6.8.2 is established.

By the same techniques one verifies that admissible solutions of linearly nonde-
generate scalar balance laws share another important property with BV functions,
namely they have one-sided traces on manifolds of codimension one:

6.8.3 Theorem. Let u be an admissible solution of the linearly nondegenerate bal-
ance law (6.8.1) on a Lipschitz subset X of IRk with boundary B. Assume that for
any companion Q the measure νQ in (6.8.2) is finite on X . Then u has a strong trace
uB ∈ L∞(B) on B.

The strong trace is realized in L1
loc , roughly as follows: Suppose that B contains

a compact subset P of a (k − 1)-dimensional hyperplane with outward unit normal
N . Then the restriction of uB to P is characterized by

(6.8.9) ess lim
τ↓0

∫
P
|u(X − τN )− uB(X)|dHk−1(X) = 0.

In the general case, one employs Lipschitz transformations on IRk to map “pieces”
of B into “pieces” P of a hyperplane, and then uses the above characterization.

Theorem 6.8.3 plays an important role in the theory of boundary-value problems
for scalar conservation laws, as we shall see in Section 6.9. Another important im-
plication of Theorem 6.8.3 is the following

6.8.4 Corollary. Assume that the scalar conservation law (6.1.1) is linearly nonde-
generate, and let u be an L∞ weak solution of the Cauchy problem (6.1.1), (6.1.2),
on the upper half-space, which satisfies the inequalities (6.2.2), in the sense of distri-
butions, for every convex entropy η. Then the map t �→ u(·, t) is strongly continuous
in L1

loc(IR
m), for any t ∈ [0,∞).

In particular, for linearly nondegenerate scalar conservation laws, admissible so-
lutions to the Cauchy problem may be characterized merely by the set of inequalities
(6.2.2), rather than by the stronger condition (6.2.3). Thus, referring back to the dis-
cussion on entropy admissibility, in Section 4.5, we conclude that for scalar, linearly
nondegenerate conservation laws, the set F is empty.
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6.9 Initial-Boundary-Value Problems

Let D be an open bounded subset of IRm , with smooth boundary ∂D and outward
unit normal field ν. Here we consider the initial-boundary-value problem

(6.9.1) ∂t u(x, t)+ div G(u(x, t)) = 0, (x, t) ∈ X ,

(6.9.2) u(x, t) = 0, (x, t) ∈ B,

(6.9.3) u(x, 0) = u0(x), x ∈ D,

in the domain X = D × (0,∞), with lateral boundary B = ∂D × (0,∞).
The boundary condition (6.9.2) shall be interpreted in the context of the vanishing

viscosity approach, as explained in Section 4.7. The inequality (4.7.5) motivates the
following notion of admissible weak solution:

6.9.1 Definition. A bounded measurable function u on X is an admissible weak
solution of (6.9.1), (6.9.2), (6.9.3), with initial data u0 ∈ L∞(D), if the inequality

(6.9.4)
∫ ∞

0

∫
D
[∂tψ η(u)+

m∑
α=1

∂αψ Qα(u)]dxdt +
∫
D
ψ(x, 0)η(u0(x))dx

≥
∫ ∞

0

∫
∂D

ψ
{

Q0
B − η′(0)[G0

B − GB]
}

dHm−1(x)dt

holds for every convex entropy η, with associated entropy flux Q determined by
(6.2.1), and all nonnegative Lipschitz continuous test functions ψ with compact sup-
port in IRm × [0,∞). GB denotes the trace of the normal component of G on B,
while G0

B and Q0
B stand for G(0)ν and Q(0)ν, respectively.

Notice that (6.9.4) implies ∂tη + divQ ≤ 0, and in particular ∂t u + divG = 0,
so that the traces QB and GB of the normal components of Q and G on B are well
defined. Furthermore, (4.7.8) holds on B, in the form

(6.9.5) QB − Q0
B − η′(0)[GB − G0

B] ≥ 0.

At the price of technical complications, but without any essential difficulty, the
special boundary condition u = 0 may be replaced with u = û(x, t), for any suffi-
ciently smooth function û.

The justification of Definition 6.9.1 is provided by

6.9.2 Theorem. For each u0 ∈ L∞(D), there exists a unique admissible weak solu-
tion u of (6.9.1), (6.9.2), (6.9.3), and

(6.9.6) u(·, t) ∈ C0([0,∞); L1(D)).

Furthermore, if u0 ∈ BV (D), then u ∈ BVloc(X ).
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Before establishing the existence of solutions by proving the above theorem, we
demonstrate uniqueness and stability by means of the following analog of Theorem
6.2.3:

6.9.3 Theorem. Let u and ū be admissible weak solutions of (6.9.1), (6.9.2) with
respective initial values u0 and ū0. Then, for any t > 0,

(6.9.7)
∫
D

[u(x, t)− ū(x, t)]+ dx ≤
∫
D

[u0(x)− ū0(x)]
+ dx,

(6.9.8) ‖u(·, t)− ū(·, t)‖L1(D) ≤ ‖u0(·)− ū0(·)‖L1(D) .

Furthermore, if

(6.9.9) u0(x) ≤ ū0(x), a.e. on D,

then

(6.9.10) u(x, t) ≤ ū(x, t), a.e. on X .

Proof. We sketch the proof under the simplifying assumption that both u and ū attain
strong traces uB and ūB on B, in which case the traces of the normal components of
G and Q on B are obtained via ordinary composition:

(6.9.11) GB = G(uB)ν, QB = Q(uB)ν, ḠB = G(ūB)ν, Q̄B = Q(ūB)ν.

The above assumption will hold when u and ū are BV functions or when u and ū are
merely in L∞ and G is linearly nondegenerate; see Theorem 6.8.3.

We retrace the steps in the proof of Theorem 6.2.3, employing the same entropy-
entropy flux pair η(u; ū), Q(u; ū), defined by (6.2.5), and the same test function
φ(x, t, x̄, t̄), given by (6.2.16). However, we now integrate over D× [0,∞), instead
of IRm × [0,∞), and substitute (6.9.4) for (6.2.3). We thus obtain, in the place of
(6.2.21),

(6.9.12)∫ ∞

0

∫
D
{∂tψ η(u; ū)+

m∑
α=1

∂αψ Qα(u; ū)}dxdt +
∫
D
ψ(x, 0)η(u0(x); ū0(x))dx

≥
∫ ∞

0

∫
∂D

ψ sgn[uB − ūB]+[GB − ḠB]dHm−1(x)dt.

We verify that, as a consequence of the boundary condition (6.9.5), the integral on
the right-hand side of (6.9.12) is nonnegative. Indeed, the integrand vanishes where
uB ≤ ūB , and has the sign of GB − ḠB where uB > ūB . In the latter case, we
examine, separately, the following three subcases:
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(a) uB > ūB ≥ 0: (6.9.5), written for the solution u and the entropy-entropy flux
pair η(u; ūB), Q(u; ūB), yields GB ≥ ḠB .

(b) 0 ≥ uB > ūB : (6.9.5), written for the solution ū and the entropy-entropy flux
pair η(uB; ū), Q(uB; ū), again yields GB ≥ ḠB .

(c) uB > 0 > ūB : (6.9.5), written for the solution u and the entropy-entropy
flux pair η(u; 0), Q(u; 0), yields GB ≥ G0

B . Similarly, (6.9.5), written for the
solution ū and the entropy-entropy flux pair η(0; ū), Q(0; ū), yields ḠB ≤ G0

B .
In particular, GB ≥ ḠB .

We apply (6.9.12) for the test function ψ(x, τ ) = χ(x)ω(τ), where χ(x) = 1
for x ∈ D, and ω is defined by (5.3.11). Since the right-hand side of (6.9.12) is
nonnegative, we deduce

(6.9.13)
1

ε

∫ t+ε

t

∫
D

[u(x, τ )− ū(x, τ )]+ dxdτ ≤
∫
D

[u0(x)− ū0(x)]
+ dx .

Letting ε ↓ 0, we arrive at (6.9.7). In turn, (6.9.7) readily implies the remaining
assertions of the theorem. The proof is complete.

The next task is to construct the solution to (6.9.1), (6.9.2), (6.9.3) by the vanish-
ing viscosity method. We thus consider the family of parabolic equations

(6.9.14) ∂t u(x, t)+ div G(u(x, t)) = µ#u(x, t), (x, t) ∈ X ,

with boundary condition (6.9.2) and initial condition (6.9.3). For anyµ > 0, (6.9.14),
(6.9.2), (6.9.3) admits a unique solution uµ which is smooth on D̄ × (0,∞). By the
maximum principle,

(6.9.15)
∣∣uµ(x, t)

∣∣ ≤ sup |u0(·)| , x ∈ D, t ∈ (0,∞).

Upon retracing the steps in the proof of Theorem 6.3.2, except that now (6.3.10)
should be integrated over D × (s, t) instead of IRm × (s, t), one readily obtains

6.9.4 Theorem. Let uµ and ūµ be solutions of (6.9.14), (6.9.2) with respective initial
data u0 and ū0. Then, for any t > 0,

(6.9.16)
∫
D
[
uµ(x, t)− ūµ(x, t)

]+
dx ≤

∫
D

[u0(x)− ū0(x)]
+ dx,

(6.9.17) ‖uµ(·, t)− ūµ(·, t)‖L1(D) ≤ ‖u0(·)− ū0(·)‖L1(D).

Furthermore, if

(6.9.18) u0(x) ≤ ū0(x), a.e. on D,

then

(6.9.19) uµ(x, t) ≤ ūµ(x, t), (x, t) ∈ D × (0,∞).
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We proceed to show that the family {uµ : µ > 0} of solutions to (6.9.14), (6.9.2),
(6.9.3) is relatively compact in L1.

6.9.5 Lemma. Let uµ be the solution of (6.9.14), (6.9.2), (6.9.3) with initial data
u0 ∈ L∞(D)⋂W 2,1(D). Then, for any t > 0,

(6.9.20)
∥∥∂t uµ(·, t)

∥∥
L1(D)

≤ c0 ‖u0(·)‖W 1,1(D) + µ ‖u0(·)‖W 2,1(D) ,

(6.9.21)
m∑
β=1

∥∥∂βuµ(·, t)
∥∥

L1(D)
≤ a(t)‖u0(·)‖W 1,1(D) + µb(t)‖u0(·)‖W 2,1(D) ,

where c0 and the continuous functions a(t), b(t) do not depend on µ.

Proof. For h > 0, we apply (6.9.17) for the two solutions uµ(x, t), with initial
value u0(x), and ūµ(x, t) = uµ(x, t + h), with initial value ū0(x) = uµ(x, h).
Upon dividing the resulting inequality by h, and then letting h ↓ 0, we deduce∥∥∂t uµ(·, t)

∥∥
L1(D)

≤ ∥∥∂t uµ(·, 0)
∥∥

L1(D)
, whence (6.9.20) follows with the help of

(6.9.14).
One cannot use the same procedure for estimating spatial derivatives, because

shifting in the spatial direction no longer carries solutions into solutions. We thus
have to employ a different argument.

For ε > 0, we define the function

(6.9.22) νε(w) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−w − ε for −∞ < w ≤ −2ε

w2

4ε
for − 2ε < w ≤ 2ε

w − ε for 2ε < w <∞.

We set w = ∂βuµ , differentiate (6.9.14) with respect to xβ , multiply the resulting
equation by η′ε(w) and integrate over D. After an integration by parts, this yields

(6.9.23)
d

dt

∫
D
ηε(w)dx =

∫
D
[
ηε(w)− η′ε(w)w

]
div G ′(uµ) dx

−µ
∫
D
η′′ε (w) |∇w|2 dx +

∫
∂D

[µη′ε(w)
∂w

∂ν
− ηε(w)G

′(0)ν]dHm−1(x).

As ε ↓ 0, the integrand on the left-hand side of (6.9.23) tends to |w|. On the
right-hand side, the first integral is O(ε) and the second integral is nonnegative.
To estimate the integral over ∂D, we note that since uµ vanishes on the boundary,

∂αuµ = ∂uµ
∂ν

να , α = 1, · · · ,m. In particular, w = ∂uµ
∂ν

νβ . Then (6.9.14) implies



166 VI The L1 Theory for Scalar Conservation Laws

∂uµ
∂ν

G ′(0)ν = µ#uµ . Finally, it is clear that
∂w

∂ν
= ∂2uµ

∂ν2
νβ + O(1)

∂uµ
∂ν

and

#uµ = ∂2uµ
∂ν2

+ O(1)
∂uµ
∂ν

. We thus have

(6.9.24) µη′ε(w)
∂w

∂ν
−ηε(w)G ′(0)ν = µ[η′ε(w)−

ηε(w)

w
]∂

2uµ
∂ν2

νβ+O(1)µ
∂uµ
∂ν

,

which tends to O(1)µ
∂uµ
∂ν

as ε ↓ 0. Therefore, in the limit, as ε ↓ 0, (6.9.23) yields

(6.9.25)
d

dt

∫
D

∣∣∂βuµ
∣∣ dx ≤ c

∫
∂D

µ

∣∣∣∣∂uµ
∂ν

∣∣∣∣dHm−1(x) ≤ c′
∫
D
µ
∣∣#uµ

∣∣ dx .

We sum (6.9.25) over β = 1, · · · ,m, and also substitute µ#uµ by ∂t uµ+ divG(uµ).
Using (6.9.15), (6.9.20) and applying Gronwall’s inequality, we arrive at (6.9.21).
The proof is complete.

Proof of Theorem 6.9.2. Assume first u0 ∈ L∞(D)⋂W 2,1(D). By virtue of
Lemma 6.9.5, the family {uµ : µ > 0} of solutions to (6.9.14), (6.9.2), (6.9.3) is
relatively compact in L1(D × (0, T )), for any T > 0. Therefore, recalling (6.9.15),
we may extract a sequence {uµk }, with µk ↓ 0 as k →∞, which converges bound-
edly almost everywhere on D × (0,∞) to some function u. As shown in Section
4.7, u satisfies (6.9.4) and hence is the unique solution of (6.9.1), (6.9.2), (6.9.3). In
particular, the entire family {uµ : µ > 0} converges to u, as µ ↓ 0. Moreover, it
follows from (6.9.20), (6.9.21) that u is in BVloc(D × (0,∞)) and, for any T > 0,

(6.9.26) T VD×(0,T )u ≤ c(T )‖u0‖W 1,1(D) .

In addition, u inherits from (6.9.15) the maximum principle: |u(x, t)| ≤ sup |u0(·)|.
Assume now u0 ∈ L∞(D). We construct a sequence of functions {u0n} in

L∞(D)
⋂

W 2,1(D) with ‖u0n‖L∞(D) ≤ ‖u0‖L∞(D) and u0n → u0 in L1(D).
By virtue of (6.9.8), the sequence {un} of admissible solutions to (6.9.1), (6.9.2),
with initial data u0n , converges in L1 to a function u which satisfies (6.9.4) and
hence is the admissible solution of (6.9.1), (6.9.2), (6.9.3). Moreover, when u0 is in
BV (D), the sequence {u0n} may be constructed with the additional requirement that
‖u0n‖W 1,1(D) ≤ C

[
T VDu0 + ‖u0‖L∞(D)

]
, in which case (6.9.26) implies that u is

in BV (D × (0, T )), for any T > 0. This completes the proof.

6.10 The L1 Theory for Systems of Conservation Laws

The successful treatment of the scalar conservation law, based on L1 and L∞ esti-
mates, which we witnessed in the previous sections, naturally raises the expectation
that a similar approach may also be effective for systems of conservation laws. Un-
fortunately, this does not seem to be the case. In order to gain some insight into the
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difficulty, let us consider the Cauchy problem for a symmetrizable system of conser-
vation laws:

(6.10.1) ∂tU +
m∑
α=1

∂αGα(U ) = 0, x ∈ IRm, t > 0,

(6.10.2) U (x, 0) = U0(x), x ∈ IRm .

In analogy to Definition 6.2.1, for the scalar case, we shall require that admissible
solutions of (6.10.1), (6.10.2) satisfy (4.5.3), for any entropy-entropy flux pair (η, Q)
with η convex. The first test of this should be whether the trivial, constant solutions
Ū of (6.10.1) are L p-stable in the class of admissible solutions:

(6.10.3) ‖U (·, t)− Ū‖L p(Br ) ≤ cp‖U0(·)− Ū‖L p(Br+st ).

Since the system is symmetrizable, and thereby endowed with a convex entropy
of quadratic growth, (6.10.3) will be satisfied at least for p = 2, by virtue of Theorem
5.3.1. The question then arises whether such an estimate may also hold for p �= 2,
with the cases p = 1 and p = ∞ being of particular interest.

For the linear system

(6.10.4) ∂t V +
m∑
α=1

DGα(Ū )∂αV = 0,

resulting from linearizing (6.10.1) about a constant state Ū , it is known (references in
Section 6.11) that the following three statements are equivalent: (a) the zero solution
is L p-stable for some p �= 2; (b) the zero solution is L p-stable for all 1 ≤ p ≤ ∞;
(c) the Jacobian matrices DGα(Ū ) commute:

(6.10.5) DGα(Ū )DGβ(Ū ) = DGβ(Ū )DGα(Ū ), α, β = 1, · · · ,m.

The nonlinear system (6.10.1) inherits (6.10.5) as a necessary condition for L p-
stability:

6.10.1 Theorem. Assume that the constant state Ū is L p-stable, (6.10.3) for some
p �= 2, within the class of classical solutions. Then (6.10.5) holds.

Sketch of Proof. For ε small, let Uε(x, t) denote the solution of (6.10.1) with initial
values Uε(x, 0) = Ū + εV0(x), where ∇V0 ∈ H � for � > m

2 . By Theorem 5.1.1, Uε

exists, as a classical solution, on a time interval with length O(ε−1). Furthermore,

(6.10.6) Uε(x, t) = Ū + εV (x, t)+ O(ε2),

where V (x, t) is the solution of (6.10.4) with initial value V0(x). Now if (6.10.3)
is satisfied by the solutions Uε , for any ε > 0, it follows that the zero solution of
(6.10.4) is L p-stable and hence (6.10.5) must hold. This completes the proof.



168 VI The L1 Theory for Scalar Conservation Laws

A similar argument shows that (6.10.3) is also necessary for stability of solutions
of (6.10.1), (6.10.2) in the space BV :

(6.10.7) T VBr U (·, t) ≤ c T VBr+st U0(·).
The above results douse any hope that the elegant L1 and BV theory of the scalar

conservation law may be readily extended to general systems of conservation laws
for which (6.10.5) is violated. A question of some relevance is whether (6.10.3) may
at least hold in the special class of systems that satisfy (6.10.5). This is indeed the
case, at least for systems of just two conservation laws:

6.10.2 Theorem. Let (6.10.1) be a symmetrizable system of two conservation laws
(n = 2) with the property that (6.10.5) holds for all Ū . Then, for any 1 ≤ p ≤ 2,
there are δ > 0 and cp > 0 such that (6.10.3) holds for any admissible solution U
of (6.10.1), (6.10.2), taking values in the ball Bδ(Ū ).

The proof, which is found in the references cited in Section 6.11, employs a
convex entropy η for (6.10.1) such that

(6.10.8) c|U − Ū |p ≤ η(U ) ≤ C |U − Ū |p, U ∈ Bδ(Ū ).

Recall that in order to construct an entropy for a system of n conservation laws in
m spatial variables, one has to solve the generally overdetermined system (3.2.4) of
1
2 n(n−1)m equations for the single scalar η. However, as noted in Section 3.2, when
(6.10.5) holds, the number of independent equations is reduced to 1

2 n(n − 1), and in
the special case n = 2 to just one. It thus becomes possible to construct a convex
entropy with the requisite property (6.10.8), by solving a Goursat problem on Bδ(Ū ).
In fact, under additional assumptions on the system, it is even possible to construct
convex entropies that satisfy (6.10.8) for any 1 ≤ p ≤ ∞, and for such systems
constant solutions are L p-stable over the full range 1 ≤ p ≤ ∞.

The class of systems that satisfy (6.10.5) includes, in particular, the scalar conser-
vation laws (n = 1), in any spatial dimension m, as well as the systems of arbitrary
size n, in a single spatial dimension (m = 1); but beyond that it contains very few
representatives of (even modest) physical interest. An example is the system

(6.10.9) ∂tU +
m∑
α=1

∂α[Fα(|U |)U ] = 0,

which governs the flow of a fluid in an anisotropic porous medium. The special fea-
tures of this system make it analytically tractable, so that it may serve as a vehicle for
exhibiting some of the issues facing the study of hyperbolic systems of conservation
laws in several space dimensions.

If U is a classical solution of (6.10.9), it is easy to see that its “density” ρ = |U |
satisfies the scalar conservation law

(6.10.10) ∂tρ +
m∑
α=1

∂α[ρFα(ρ)] = 0,
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while its directional unit vector field � = ρ−1U satisfies the transport equation

(6.10.11) ∂t�+
m∑
α=1

Fα(ρ)∂α� = 0.

Thus, classical solutions to the Cauchy problem (6.10.9), (6.10.2) can be constructed
by first solving (6.10.10), with initial data ρ(·, 0) = |U0(·)|, say by the method of
characteristics expounded in Section 6.1, and then determining � by its property of
staying constant along the trajectories of the ordinary differential equation

(6.10.12)
dx

dt
= F(ρ(x, t)).

It is not obvious how to adapt the above procedure to weak solutions. It is of
course still possible to determine ρ as the admissible weak solution of (6.10.10)
with initial data |U0| merely in L∞, but it is by no means clear how one should
interpret (6.10.12) when F(ρ(x, t)) is just an L∞ function. A relevant, powerful
theory of ordinary differential equations Ẋ = P(X) exists, but it requires that P be a
divergence-free vector field in BV . In order to use that theory, we restrict the initial
data so that |U0| is a positive function of locally bounded variation on IRm . This will
guarantee, by virtue of Theorems 6.2.3 and 6.2.6, that ρ is a positive function of
locally bounded variation on the upper half-space. Next, we rescale the time variable
and rewrite (6.10.12) in the implicit form

(6.10.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dt

dτ
= ρ(x, t)

dx

dτ
= ρ(x, t)F(ρ(x, t)),

which has the desired feature that the vector field (ρ, ρF(ρ)) is divergence-free on
the upper half-space, by virtue of (6.10.10).

By eliminating τ in the family of solutions (t (τ ), x(τ )) of (6.10.13), one obtains
the family of curves x = x(t), namely the formal trajectories of (6.10.12), along
which � stays constant. Thus � can be determined from its initial data, which may
merely be in L∞. Finally, it can be shown (references in Section 6.11) that U = ρ�

is an admissible weak solution of (6.10.9), (6.10.2):

6.10.3 Theorem. Let U0 ∈ L∞(IRm; IRn), |U0| ∈ BVloc(IRm), and |U0| ≥ a > 0
a.e. on IRm . Then there exists an admissible weak solution U of (6.10.9), (6.10.2)
on [0,∞). Furthermore, ρ = |U | is the admissible weak solution of (6.10.10) with
initial data ρ(·, 0) = |U0(·)|.

An example has been concocted (references in Section 6.11) demonstrating that
when |U0| is merely in L∞ solutions to the Cauchy problem (6.10.9), (6.10.2) may
fail to exist.

The reader should bear in mind that (6.10.9) is so special that the above should
not necessarily be interpreted as representative of the behavior of generic systems.
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The theory of hyperbolic systems of conservation laws in several spatial variables is
still in its infancy.

6.11 Notes

More extensive discussion on the breakdown of classical solutions of scalar conser-
vation laws can be found in Majda [4]. Theorem 6.1.1 is due to Conway [1]. For a
systematic study of the geometric features of shock formation and propagation, see
Izumiya and Kossioris [1]. The reduction of (6.1.1) to the linear transport equation
(6.1.10) is classical; see Courant-Hilbert [1,§I.5].

There is voluminous literature on weak solutions of the scalar conservation law.
The investigation was initiated in the 1950’s, in the framework of the single space
dimension, stimulated by the seminal paper of Hopf [1], already cited in Section 4.8.
References to this early work will be provided, as they become relevant, in Section
11.12.

The first existence proof in several space dimensions is due to Conway and
Smoller [1], who recognized the relevance of the space BV and constructed solutions
with bounded variation through the Lax-Friedrichs difference scheme. The definitive
treatment in the space BV was later given by Volpert [1], who was apparently the
first to realize the L1 contraction property in several space dimensions. Building on
Volpert’s work, Kruzkov [1] proposed the characterization of admissible weak solu-
tions recorded in Section 6.2, derived the L1 contraction estimate, and established the
convergence of the method of vanishing viscosity along the lines of our discussion in
Section 6.3. More delicate treatment is needed when the flux is merely continuous in
u; see Bénilan and Kruzkov [1]. On the other hand, the analysis extends routinely to
inhomogeneous scalar balance laws (3.3.1), though solutions may blow up in finite
time when the production grows superlinearly with u; see Natalini, Sinestrari and Te-
sei [1]. In particular, the inhomogeneous conservation law of “transport type,” with
flux G(u, x) = f (u)V (x), has interesting structure, especially when div V = 0; see
Caginalp [1] and Otto [2].

The theory of nonlinear contraction semigroups in general, not necessarily reflex-
ive, Banach space is due to Crandall and Liggett [1]. The application to the scalar
conservation law presented in Section 6.4 is taken from Crandall [1]. For an alterna-
tive functional analytic characterization of admissible solutions, see Portilheiro [1].

The construction of solutions by the layering method, discussed in Section 6.5,
was suggested by Roždestvenskii [1] and was carried out by Kuznetsov [1] and
Douglis [1].

The program of realizing hyperbolic conservation laws as the “relaxed” form of
larger, but simpler, systems that govern, or model, relaxation phenomena in physics
(see Section 5.2) is currently undergoing active development. Further discussion and
references are found in Chapter XVI. The presentation in Section 6.6 follows Kat-
soulakis and Tzavaras [1]. Though artificially constructed for the purposes of the
analysis, (6.6.1) may be interpreted a posteriori as a system governing the evolution



6.11 Notes 171

of an ensemble of interacting particles, at the mesoscopic scale. An alternative con-
struction of solutions to multidimensional scalar conservation laws by a relaxation
scheme is discussed in Natalini [2].

The kinetic formulation described in Section 6.7 is due to Perthame and Tadmor
[1] and Lions, Perthame and Tadmor [2]. A detailed discussion, with extensions,
applications and an extensive bibliography, is found in the recent monograph and
survey article by Perthame [2,3]. For related results, see Giga and Miyakawa [1],
Bäcker and Dressler [1], Brenier [1], James, Peng and Perthame [1], Natalini [2],
Perthame [1], and Perthame and Pulvirenti [1]. The mechanism that induces the reg-
ularizing effect stated in Theorem 6.7.2 plays a prominent role in the theory of non-
linear transport equations in general, including the classical Boltzmann equation (cf.
DiPerna and Lions [1]).

There are several other methods for constructing solutions, most notably by
fractional stepping, spectral viscosity approximation, or through various difference
schemes that may also be employed for efficient computation. See, for exam-
ple, Bouchut and Perthame [1], Chen, Du and Tadmor [1], Cockburn, Coquel and
LeFloch [1], and Crandall and Majda [1]. For references on the numerics the reader
should consult LeVeque [1], Godlewski and Raviart [1,2], and Kröner [1].

In addition to L1 and BV , other function spaces are relevant to the theory. DeVore
and Lucier [1] show that solutions of (6.1.1) reside in Besov spaces. Perthame and
Westdickenberg [1] establish a total oscillation diminishing property for solutions.

The fine structure of L∞ solutions, and in particular Theorem 6.8.2, is discussed
in De Lellis, Otto and Westdickenberg [1]. See also De Lellis and Rivière [1] and De
Lellis and Golse [1]. Theorem 6.8.3 is due to Vasseur [2]. See also Chen and Rascle
[1], and Panov [3].

The construction of BV solutions to the initial-boundary-value problem by the
method of vanishing viscosity, expounded in Section 6.9, is taken from Bardos, Ler-
oux and Nédélec [1]. For a proof of Theorem 6.9.3 when u and ū are merely in L∞,
see Otto [1] and Málek, Nečas, Rokyta and Růžička [1]. For an alternative approach,
see Szepessy [1]. Solutions in L∞ have been constructed via the kinetic formulation
by Nouri, Omrane and Villa [1] and Tidriri [1]. For measure-valued solutions, see
Kondo and LeFloch [1].

The large time behavior of solutions of (6.1.1), (6.1.2) is discussed in Conway
[1], Engquist and E [1], Bauman and Phillips [1], and Feireisl and Petzeltová [1].
Chen and Frid [1,3,4,6] set a framework for investigating, in general systems of
conservation laws, decay of solutions induced by scale invariance and compactness.
In particular, this theory establishes the long time behavior of solutions of (6.1.1),
(6.1.2) when u0 is either periodic or of the form u0(x) = v(|x |−1x) + w(x), with
w ∈ L1(IRm).

The proof that (6.10.5) is necessary and sufficient for L p-stability in symmetriz-
able linear systems, is due to Brenner [1]. Rauch [1] demonstrated Theorem 6.10.1,
and Dafermos [19] proved Theorem 6.10.2. Theorem 6.10.3 is due to Ambrosio and
De Lellis [1]. See also Ambrosio, Bouchut and De Lellis [1]. Finally, Bressan [11]
and De Lellis [1] explain why the Cauchy problem for the system (6.10.9) is not
generally well-posed in L∞ or in BV , when m > 1. By contrast, when m = 1
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the Cauchy problem for this system is well-posed and has an interesting theory; see
Temple [2], Isaacson and Temple [1], Liu and Wang [1], Tveito and Winther [1], and
Freistühler [7].



VII

Hyperbolic Systems of Balance Laws
in One-Space Dimension

The remainder of the book will be devoted to the study of systems of balance laws
in one-space dimension. This narrowing of focus is principally dictated by neces-
sity: At the present time the theory of multidimensional systems is terra incognita.
Eventually, research should turn to that vastly unexplored area, which is replete with
fascinating problems. In any event, the reader should bear in mind that certain mul-
tidimensional phenomena, with special symmetry, such as wave focussing, may be
studied in the context of the one-space dimensional theory.

This chapter introduces many of the concepts that serve as foundation of the
theory of hyperbolic systems of balance laws in one space dimension: strict hyper-
bolicity; Riemann invariants and their relation to entropy; simple waves; genuine
nonlinearity and its role in the breakdown of classical solutions.

In order to set the stage, the chapter opens with the presentation of a number of
illustrative examples of hyperbolic systems of balance laws in one-space dimension,
arising in physics or other branches of science and technology.

7.1 Balance Laws in One-Space Dimension

When m = 1, the general system of balance laws (3.1.1) reduces to

(7.1.1) ∂t H(U (x, t), x, t)+ ∂x F(U (x, t), x, t) = Π(U (x, t), x, t).

Systems (7.1.1) naturally arise in the study of gas flow in ducts, vibration of elas-
tic bars or strings, etc., in which the medium itself is modeled as one-dimensional.
The simplest examples are homogeneous systems of conservation laws, beginning
with the scalar conservation law

(7.1.2) ∂t u + ∂x f (u) = 0.

Despite its apparent simplicity, the scalar conservation law provides valuable in-
sight into complex processes, in physics and elsewhere. The simple hydrodynamic
theory of traffic flow in a stretch of highway is a case in point.
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The state of the traffic at the location x and time t is described by the traffic
density ρ(x, t) (measured, say, in vehicles per mile) and the traffic speed v(x, t) (in
miles per hour). The fields ρ and v are related by the law of conservation of vehicles,
which is identical to mass conservation (2.3.2), in one-space dimension:

(7.1.3) ∂tρ + ∂x (ρv) = 0.

This equation is then closed by the behavioral assumption that drivers set their ve-
hicles’ speed according to the local density, v = g(ρ). In order to account for the
congestion effect, g must be decreasing with ρ, for instance g(ρ) = v0(1 − ρ/ρ0),
where v0 is the speed limit and ρ0 is the saturation density beyond which traffic
crawls to a standstill. For that g(ρ), (7.1.3) becomes

(7.1.4) ∂tρ + ∂x

[
v0ρ

(
1− ρ

ρ0

)]
= 0.

This simplistic model manages, nevertheless, to capture some of the qualitative
features of traffic flow in congested highways, and serves as the springboard for more
sophisticated models, developed in the references cited in Section 7.10.

Thermoelasticity is a rich source of interesting examples of systems. A classical
one is the one-dimensional version of (3.3.4), in Lagrangian coordinates,

(7.1.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t u − ∂xv = 0

∂tv − ∂xσ(u, s) = 0

∂t
[
ε(u, s)+ 1

2v
2
]− ∂x [vσ(u, s)] = 0,

with

(7.1.6) σ (u, s) = εu(u, s), θ(u, s) = εs(u, s),

which governs the adiabatic flow of a thermoelastic gas in a duct, or the longitudinal
oscillation of a thermoelastic solid bar, or even the shearing motion of a thermoelastic
layer. In the context of gas flow, u is specific volume (notice that by virtue of (2.3.3)
u = 1/ρ), thus constrained by u > 0. In the context of the thermoelastic bar, u is the
strain, likewise constrained by u > 0. Finally, in the context of shearing motion, u
is shearing, which may take both positive and negative values. In the gas case, it is
traditional to use the pressure p = −σ , instead of σ .

The system (7.1.5) is hyperbolic if

(7.1.7) εs(u, s) > 0, εuu(u, s) > 0,

that is, the absolute temperature θ is positive and the internal energy ε is convex in u.
Equivalently, σ is increasing in u, σu(u, s) > 0, or p is decreasing in u, pu(u, s) < 0.

In the isentropic case, (7.1.5) reduces to
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(7.1.8)

⎧⎨⎩ ∂t u − ∂xv = 0

∂tv − ∂xσ(u) = 0,

which is hyperbolic when σ ′(u) > 0. Again, in the context of gas dynamics one uses
p = −σ , instead of σ , in which case (7.1.8) becomes the so-called “p-system”. As
with (7.1.5), when (7.1.8) is interpreted as governing the longitudinal oscillation of
elastic bars, the natural range of u is (0,∞), with σ becoming unbounded as u ↓ 0.
However, when (7.1.8) governs the shearing motion of an elastic layer, the shearing u
is no longer constrained by u > 0 but may take any value in (−∞,∞). Accordingly,
in our use of (7.1.8) as a mathematical model we shall be assuming that σ is defined
as a smooth monotone increasing function on (−∞,∞).

The spatial form of (7.1.8), namely the one-space dimensional version of
(3.3.21), which governs in Eulerian coordinates the isentropic flow of a thermoe-
lastic fluid in a duct, reads

(7.1.9)

⎧⎨⎩
∂tρ + ∂x (ρv) = 0

∂t (ρv)+ ∂x [ρv2 + p(ρ)] = 0.

This system is hyperbolic when p′(ρ) > 0. In particular, when the fluid is a poly-
tropic gas (2.5.27), (7.1.9) becomes

(7.1.10)

⎧⎨⎩
∂tρ + ∂x (ρv) = 0

∂t (ρv)+ ∂x [ρv2 + κργ ] = 0.

For γ > 1, hyperbolicity breaks down at the vacuum state ρ = 0.
The so called system of pressureless gas dynamics

(7.1.11)

⎧⎨⎩
∂tρ + ∂x (ρv) = 0

∂t (ρv)+ ∂x
(
ρv2
) = 0,

which is not hyperbolic, governs the flow of an aggregate of “sticky” particles: Col-
liding particles fuse into a single particle that combines their masses and moves with
velocity that conserves the total linear momentum. The propensity of solutions of
(7.1.11) to develop mass concentrations may serve as an explanation for the forma-
tion of large scale structures in the universe.

Next we derive the system that governs isentropic, planar oscillations of a three-
dimensional, homogeneous thermoelastic medium, with reference density ρ0 = 1.
In the terminology and notation of Chapter II, we consider motions of the particular
form χ = x+φ(x ·ν, t), where ν is the (constant) unit vector pointing in the direction
of the oscillation. For consistency with the notation of this chapter, we shall denote
the scalar variable x · ν by x , so that ∂x = ∑3

α=1 να∂α . The velocity in the ν-
direction is v(x, t) = ∂tφ(x, t). We also set u(x, t) = ∂xφ(x, t), in which case the
deformation gradient is F = I + u ⊗ ν. The stress vector, per unit area, on planes
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perpendicular to ν is σ(u) = S(I + u ⊗ ν)ν, where S(F) is the Piola-Kirchhoff
stress. We thus end up with a system of six conservation laws

(7.1.12)

⎧⎨⎩ ∂t u − ∂xv = 0

∂tv − ∂xσ(u) = 0,

which looks identical to (7.1.8), except that here u, v and σ are no longer scalars but
3-vectors.

The internal energy ε(F) also becomes a function of u: ε(I+u⊗ν) = e(u). Then,
(2.5.26) yields σ(u) = ∂e(u)/∂u. Thus the Jacobian matrix of σ(u) is the Hessian
matrix of e(u), which in turn is the acoustic tensor (3.3.8) evaluated at F = I+u⊗ν.
The system (7.1.12) is hyperbolic when the function e(u) is convex.

As explained in Section 2.5 (recall (2.5.21)), when the medium is an isotropic
solid, the internal energy depends on F solely through the invariants |F |, |F∗| and
det F . Here F = I+u⊗ν and so |F |2 = 3+2u·ν+|u|2, |F∗|2 = (u·ν)2+4u·ν+|u|2
and det F = 1 + u · ν. Thus, the internal energy depends on just two variables, |u|
and u · ν. If, in addition, the material is incompressible, the kinematic constraint
(2.7.1) becomes u · ν = 0, in which case the internal energy depends solely on |u|,
e(u) = h(|u|). The stress tensor is now given by (2.7.2), where p is the hydrostatic
pressure. After a short calculation, recalling that σ = Sν, we deduce that (7.1.12)
takes the form

(7.1.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t u − ∂xv = 0

∂tv + ∂x pν − ∂x

(
h′(|u|)
|u| u

)
= 0.

However, the incompressibility condition u · ν = 0 implies ∂xv · ν = 0; let us take
v · ν = 0 to eliminate a trivial rigid motion in the direction ν. Then (7.1.13)2 yields
∂x p = 0, and thus (7.1.13) reduces to

(7.1.14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t u − ∂xv = 0

∂tv − ∂x

(
h′(|u|)
|u| u

)
= 0.

The special symmetry encoded in the flux function of (7.1.14) induces rich geo-
metric structure which is a gift to the geometer that must be paid by the analyst, who
has to deal with particular analytical difficulties. A taste of these is coming later. The
next example indicates that the same symmetry structure arises in other contexts as
well.

We now derive the system that governs the oscillation of a flexible, extensible
elastic string. The reference configuration of the string lies along the x-axis, and is
assumed to be a natural state of (linear) density one. The motion χ = χ(x, t) is mon-
itored through the velocity v = ∂tχ and the stretching u = ∂xχ which take values
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in IR3 or in IR2, depending on whether the string is free to move in 3-dimensional
space or is constrained to undergo planar oscillations. The tension τ of the string
is assumed to depend solely on |u|, τ = τ(|u|), which measures the stretch of the
string. Since the string cannot sustain any compression, the natural range of |u| is
[1,∞), and τ is assumed to satisfy τ(r) > 0, [τ(r)/r ]′ > 0, for r > 1. The compat-
ibility relation between u and v together with balance of momentum, in Lagrangian
coordinates, yield the hyperbolic system

(7.1.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t u − ∂xv = 0

∂tv − ∂x

(
τ(|u|)
|u| u

)
= 0,

which is identical to (7.1.14).
Our next example is the classical system of conservation laws that governs the

propagation of long gravity waves in shallow water. It may be derived either by
asymptotic analysis of the Euler equations or ab initio, by appealing to gross balance
of mass and momentum. We follow here the latter approach.

An incompressible, inviscid fluid of density one flows isentropically in an open
channel with horizontally level bottom and unit width. The atmospheric pressure on
the free surface is taken to be zero. The flow is driven by the hydrostatic pressure
gradient induced by variations in the height of the free surface. Assume the channel
lies along the x-axis, the y-axis is vertical, pointing upwards, and the bottom rests
on the x-z plane. It is assumed that the height of the free surface is constant in the z-
direction and thus is described by a function h of (x, t) alone. Moreover, the velocity
vector points in the x-direction and is constant on any cross section of the channel,
so its length is likewise described by a function v of (x, t).

As explained in Section 2.7, the stress tensor for an incompressible, inviscid fluid
is just a hydrostatic pressure −pI . The balance of linear momentum in the y and the
z-direction yields ∂y p = −g and ∂z p = 0, respectively, where g is the acceleration
of gravity. Thus, p = g[h(x, t) − y], for 0 ≤ y ≤ h(x, t). Integrating with respect
to y and z, we find that the total pressure force exerted on the x-cross section at time
t is P(x, t) = 1

2 gh2(x, t).
We treat the flow in the channel as a motion of a one-dimensional continuum

governed by conservation of mass and linear momentum, exactly as in (7.1.9), where
now the role of density is naturally played by the cross sectional area h and the role
of pressure is played by the pressure force P . We thus arrive at the system of shallow
water waves:

(7.1.16)

⎧⎨⎩
∂t h + ∂x (hv) = 0

∂t (hv)+ ∂x
(
hv2 + 1

2 gh2
) = 0.

Notice that (7.1.16) is identical to (7.1.10), with γ = 2.
Systems with interesting features govern the propagation of planar electromag-

netic waves through special isotropic dielectrics in which the electromagnetic energy
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depends on the magnetic induction B and the electric displacement D solely through

the scalar r = (B ·B+D ·D) 1
2 ; i.e., in the notation of Section 3.3.8, η(B, D) = ψ(r),

with ψ ′(0) = 0, ψ ′′(0) > 0, and ψ ′(r) > 0, ψ ′′(r) > 0 for r > 0. Waves propagat-
ing in the direction of the 3-axis are represented by solutions of Maxwell’s equations
(3.3.40), with J = 0, in which the fields B, D, E and H depend solely on the sin-
gle spatial variable x = x3 and on time t . In particular, (3.3.40) imply B3 = 0
and D3 = 0 so that B and D should be regarded as vectors in IR2 satisfying the
hyperbolic system

(7.1.17)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t B − ∂x

[
ψ ′(r)

r
AD

]
= 0

∂t D + ∂x

[
ψ ′(r)

r
AB

]
= 0,

where A is the alternating 2× 2 matrix, with A11 = A22 = 0, A12 = −A21 = 1.
Returning to the general balance law (7.1.1), we note that H and/or F may de-

pend explicitly on x , to account for inhomogeneity of the medium. For example,
isentropic gas flow through a duct of (slowly) varying cross section a(x) is governed
by the system

(7.1.18)

⎧⎨⎩
∂t [a(x)ρ] + ∂x [a(x)ρv] = 0

∂t [a(x)ρv] + ∂x [a(x)ρv2 + a(x)p(ρ)] = a′(x)p(ρ),

which reduces to (7.1.9) in the homogeneous case a =constant. On the other hand,
explicit dependence of H or F on t , indicating “ageing” of the medium, is fairly
rare. By contrast, dependence of Π on t is not uncommon, because external forcing
is generally time-dependent.

The source Π may depend on the state vector U , to account for relaxation or
reaction effects. A simple example of the latter case is provided by the system

(7.1.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x (ρv) = 0

∂t (ρv)+ ∂x [ρv2 + (γ − 1)cρθ ] = 0

∂t
[
cρθ + βρz + 1

2ρv
2
]+ ∂x

[(
γ cρθ + βρz + 1

2ρv
2
)
v
] = 0

∂t (ρz)+ ∂x (ρzv) = −δh(θ − θi )ρz,

which governs the flow of a combustible polytropic gas in a duct. In addition to
density ρ, velocity v and temperature θ , the state vector here comprises the mass
fraction z of the unburnt gas, which takes values in [0, 1]. The first three equations
in (7.1.19) express the balance of mass, momentum and energy. As in (2.5.17), the
equation of state for the pressure is p = Rρθ = (γ −1)cρθ , where γ is the adiabatic
exponent and c is the specific heat. On the other hand, unlike (2.5.18), the internal
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energy here depends also on z, ε = cθ + βz, where β > 0 is the heat of reaction
(assumed exothermic). In the fourth equation of (7.1.19), which governs the reaction,
h is the standard Heaviside function (i.e. h(ζ ) = 0 for ζ < 0 and h(ζ ) = 1 for
ζ ≥ 0), θi is the ignition temperature and δ > 0 is the reciprocal activation energy.

A simple model system that captures the principal features of (7.1.19) is

(7.1.20)

⎧⎨⎩ ∂t (u + βz)+ ∂x f (u) = 0

∂t z = −δh(u)z,

where both u and z are scalar variables, and f (u) is a strictly increasing convex
function.

As an example of a source that manifests relaxation, consider the isothermal flow
of a binary mixture of polytropic gases in a duct. Both constituents of the mixture
satisfy partial balance laws of mass and momentum: For α = 1, 2,

(7.1.21)α

⎧⎨⎩
∂tρα + ∂x (ραvα) = 0

∂t (ραvα)+ ∂x
[
ραv

2
α + ναρα

] = χα .

The coupling is induced by the source term χα , which accounts for the momentum
transfer to the α-constituent by the other constituent, as a result of the disparity be-
tween v1 and v2 . In particular, χ1 + χ2 = 0. In nonisothermal flow, the coupling is
enhanced by the balance law of energy. In more sophisticating modeling of mixtures,
the density gradient appears, along with the density, as a state variable (Fick’s law), in
which case second order spatial derivatives of the concentrations emerge in the field
equations. Such terms induce diffusion, similar to the effect of heat conduction or
viscosity. Here, however, we shall deal with the simple system (7.1.21)1−(7.1.21)2 ,
which is hyperbolic.

So as to realize the mixture as a single continuous medium, it is expedient to
replace the original state vector (ρ1, ρ2, v1, v2) with new state variables (ρ, c, v,m),
where ρ and v are the density and mean velocity of the mixture, that is, ρ = ρ1+ρ2 ,
ρv = ρ1v1 + ρ2v2 , c is the concentration of the first constituent, i.e. c = ρ1/ρ, and
m = (−1)αρα(v − vα). It is assumed that χα = βρα(vα − v) = (−1)αβm, where β
is a positive constant. One may then rewrite the system (7.1.21) in the form

(7.1.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x (ρv) = 0

∂t (ρc)+ ∂x (ρcv + m) = 0

∂t (ρv)+ ∂x

[
ρv2 + (ν2 + (ν1 − ν2)c)ρ + m2

ρc(1− c)

]
= 0

∂t (ρcv + m)+ ∂x

[
ρcv2 + 2mv + m2

ρc
+ ν1cρ

]
= −βm.
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Indeed, the second and fourth equations in the above system are just (7.1.21)1, rewrit-
ten in terms of the new state variables, while the first and the third equations are
obtained by adding the corresponding equations of (7.1.21)1 and (7.1.21)2 .

Single-space-dimensional systems (7.1.1) also derive from multispace-dimensi-
onal systems (3.1.1), in the presence of symmetry (planar, cylindrical, radial, etc.)
that reduces spatial dependence to a single parameter. In that process, parent multi-
dimensional homogeneous systems of conservation laws may yield one-dimensional
inhomogeneous systems of balance laws, as a reflection of multidimensional geo-
metric effects. For example, the single-space-dimensional system governing radial,
isentropic gas flow, which results from the homogeneous Euler equations (3.3.21) is
inhomogeneous:

(7.1.23)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tρ + ∂r (ρv)+ 2ρv

r
= 0

∂t (ρv)+ ∂r [ρv2 + p(ρ)] + 2ρv2

r
= 0.

In particular, certain multidimensional phenomena, such as wave focusing, may be
investigated in the framework of one-space dimension.

7.2 Hyperbolicity and Strict Hyperbolicity

As in earlier chapters, to avoid inessential technical complications, the theory will be
developed in the context of homogeneous systems of conservation laws in canonical
form:

(7.2.1) ∂tU (x, t)+ ∂x F(U (x, t)) = 0.

F is a C3 map from an open convex subset O of IRn to IRn .
Often in the applications, systems (7.2.1) govern planar front solutions, namely,

U = U (ν · x, t), in the spatial direction ν ∈ Sm−1, of multispace-dimensional sys-
tems of conservation laws (4.1.1). In that connection,

(7.2.2) F(U ) =
m∑
α=1

ναGα(U ), U ∈ O.

Referring to the examples introduced in Section 7.1, in order to cast the system
(7.1.5) of thermoelasticity to canonical form, we have to switch from (u, v, s) to
new state variables (u, v, E), where E = ε + 1

2v
2 is the total energy. Similarly, the

system (7.1.9) of isentropic gas flow is written in canonical form in terms of the state
variables (ρ,m), where m = ρv is the momentum.

By Definition 3.1.1, the system (7.2.1) is hyperbolic if for every U ∈ O the n×n
Jacobian matrix DF(U ) has real eigenvalues λ1(U ) ≤ · · · ≤ λn(U ) and n lineary
independent eigenvectors R1(U ), · · · , Rn(U ). For future use, we also introduce left
(row) eigenvectors L1(U ), · · · , Ln(U ) of DF(U ), normalized by
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(7.2.3) Li (U )R j (U ) =
⎧⎨⎩0 if i �= j

1 if i = j.

Henceforth, the symbols λi , Ri and Li will be reserved to denote these quantities.
Clearly, the multispace-dimensional system (4.1.1) is hyperbolic if and only if all

one-space-dimensional systems (7.2.1) resulting from it through (7.2.2), for arbitrary
ν ∈ Sm−1, are hyperbolic. Thus hyperbolicity is essentially a one-space-dimensional
notion.

For the system (7.1.8) of one-dimensional isentropic elasticity, in Lagrangian
coordinates, which will serve throughout as a vehicle for illustrating the general con-
cepts, we have

(7.2.4) λ1 = −σ ′(u)1/2 , λ2 = σ ′(u)1/2 ,

(7.2.5) R1 = 1
2

⎛⎝−σ ′(u)−1/2

−1

⎞⎠ , R2 = 1
2

⎛⎝−σ ′(u)−1/2

1

⎞⎠ ,

(7.2.6) L1 = (−σ ′(u)1/2 , −1), L2 = (−σ ′(u)1/2 , 1).

The eigenvalue λi of DF , i = 1, · · · , n, is called the i-characteristic speed of the
system (7.2.1). The term derives from the following

7.2.1 Definition. An i-characteristic, i = 1, · · · , n, of the system (7.2.1), associated
with a classical solution U , is a C1 function x = x(t), with graph contained in the
domain of U , which is an integral curve of the ordinary differential equation

(7.2.7)
dx

dt
= λi (U (x, t)).

The standard existence-uniqueness theory for ordinary differential equations
(7.2.7) implies that through any point (x̄, t̄) in the domain of a classical solution
of (7.2.1) passes precisely one characteristic of each characteristic family.

Characteristics are carriers of waves of various types. For example, Eq. (1.6.1),
for the general system (1.4.3) of balance laws, specialized to (7.2.1), implies that
weak fronts propagate along characteristics. As a result, the presence of multiple
eigenvalues of DF may induce severe complexity in the behavior of solutions, be-
cause of resonance. It is thus natural to single out systems that are free from such
complication:

7.2.2 Definition. The system (7.2.1) is strictly hyperbolic if for any U ∈ O the
Jacobian DF(U ) has real, distinct eigenvalues

(7.2.8) λ1(U ) < · · · < λn(U ).
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By virtue of (7.2.4), the system (7.1.8) of isentropic elasticity in Lagrangian co-
ordinates is strictly hyperbolic. The same is true for the system (7.1.5) of adiabatic
thermoelasticity, for which the characteristic speeds are

(7.2.9) λ1 = −σu(u, s)1/2, λ2 = 0, λ3 = σu(u, s)1/2.

The system (7.1.10) for the polytropic gas has characteristic speeds

(7.2.10) λ1 = v − (κγ )1/2ρ
γ−1

2 , λ2 = v + (κγ )1/2ρ
γ−1

2 ,

and so it is strictly hyperbolic on the part of the state space with ρ > 0.
Furthermore, any one-dimensional system resulting, through (7.2.2), from the

Euler equations for two-dimensional isentropic flow is strictly hyperbolic.
In view of the above examples, the reader may form the impression that strict

hyperbolicity is the norm in systems arising in continuum physics. However, this
is not the case. For example, the system (7.1.12) of planar elastic oscillations fails
to be strictly hyperbolic in those directions ν for which the acoustic tensor (3.3.8)
has multiple eigenvalues. Indeed, it has been shown that in one-space dimensional
systems (7.2.1), of size n = ±2,±3,±4 (mod 8), which result from parent three-
space-dimensional systems (4.1.1) through (7.2.2), strict hyperbolicity necessarily
fails, at least in some spatial direction ν ∈ S2. In particular, one-dimensional systems
resulting from the Euler equations for two-dimensional non-isentropic flow (n = 4),
or for three-dimensional isentropic or non-isentropic flow (n = 4 or n = 5) are not
strictly hyperbolic. Actually, failure of strict hyperbolicity is often a byproduct of
symmetry. For instance, the systems (7.1.14) and (7.1.15) are not strictly hyperbolic.

In systems of size n = 2, strict hyperbolicity typically fails at isolated umbilic
points, at which DF reduces to a multiple of the identity matrix. Even the presence
of a single umbilic point is sufficient to create havoc in the behavior of solutions.
This will be demonstrated in following chapters by means of the simple system

(7.2.11)

⎧⎨⎩ ∂t u + ∂x [(u2 + v2)u] = 0

∂tv + ∂x [(u2 + v2)v] = 0,

which is a caricature of (7.1.14) and (7.1.15). The characteristic speeds of (7.2.11)
are

(7.2.12) λ1 = u2 + v2 , λ2 = 3(u2 + v2),

with corresponding eigenvectors

(7.2.13) R1 =
(

v

−u

)
, R2 =

(
u
v

)
,

so this system is strictly hyperbolic, except at the origin (0, 0) which is an umbilic
point.

We close this section with the derivation of a useful identity. We apply D to both
sides of the equation DF R j = λ j R j and then multiply, from the left, by R�k ; we also
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apply D to DF Rk = λk Rk and then multiply, from the left, by R�j . Upon subtracting
the resulting two equations, we deduce

(7.2.14) (Dλ j Rk)R j − (Dλk R j )Rk

= DF[R j , Rk] − λ j DR j Rk + λkDRk R j , j, k = 1, · · · , n,

where [R j , Rk] denotes the Lie bracket:

(7.2.15) [R j , Rk] = DR j Rk − DRk R j .

In particular, at a point U ∈ O where strict hyperbolicity fails, say λ j (U ) = λk(U ),
(7.2.14) yields

(7.2.16) (Dλ j Rk)R j − (Dλk R j )Rk = (DF − λ j I )[R j , Rk].
Upon multiplying (7.2.16), from the left, by L j (U ) and by Lk(U ), we conclude from
(7.2.3):

(7.2.17) Dλ j (U )Rk(U ) = Dλk(U )R j (U ) = 0.

7.3 Riemann Invariants

Consider a hyperbolic system (7.2.1) of conservation laws on O ⊂ IRn . A very
important concept is introduced by the following

7.3.1 Definition. An i-Riemann invariant of (7.2.1) is a smooth scalar-valued func-
tion w on O such that

(7.3.1) Dw(U )Ri (U ) = 0, U ∈ O.

For example, recalling (7.2.5), one readily verifies that the functions

(7.3.2) w = −
∫ u

σ ′(ω)
1
2 dω + v, z = −

∫ u

σ ′(ω)
1
2 dω − v

are, respectively, 1- and 2-Riemann invariants of the system (7.1.8). Similarly, it can
be shown that

(7.3.3) w = v + 2(κγ )1/2

γ − 1
ρ

γ−1
2 , z = v − 2(κγ )1/2

γ − 1
ρ

γ−1
2

are 1- and 2-Riemann invariants of the system (7.1.10) of isentropic flow of a poly-
tropic gas.1

1 In the isothermal case, γ = 1, w = v + κ1/2 log ρ, z = v − κ1/2 log ρ.
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By solving the first order linear differential equation (7.3.1) for w, one may con-
struct in the vicinity of any point U ∈ O n−1 i-Riemann invariants whose gradients
are linearly independent and span the orthogonal complement of Ri . For example,
the reader may verify as an exercise that the three pairs of functions

(7.3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s , −
∫ u

σω(ω, s)
1
2 dω + v

v , σ (u, s)

s , −
∫ u

σω(ω, s)
1
2 dω − v

are, respectively, 1-, 2-, and 3-Riemann invariants of the system (7.1.5) of adiabatic
thermoelasticity.

Riemann invariants are particularly useful in systems with the following special
structure:

7.3.2 Definition. The system (7.2.1) is endowed with a coordinate system of Riemann
invariants if there exist n scalar-valued functions (w1, · · · , wn) on O such that, for
any i, j = 1, · · · , n, with i �= j , w j is an i-Riemann invariant of (7.2.1).

An immediate consequence of Definitions 7.3.1 and 7.3.2 is

7.3.3 Theorem. The functions (w1, · · · , wn) form a coordinate system of Riemann
invariants for (7.2.1) if and only if

(7.3.5) Dwi (U )R j (U )

⎧⎨⎩= 0 if i �= j

�= 0 if i = j

i.e., if and only if, for i = 1, · · · , n, Dwi (U ) is a left eigenvector of the matrix
DF(U ), associated with the characteristic speed λi (U ). Equivalently, the tangent
hyperplane to the level surface of wi at any point U, is spanned by the vectors
R1(U ), . . . , Ri−1(U ), Ri+1(U ), . . . , Rn(U ).

Assuming (7.2.1) is endowed with a coordinate system (w1, · · · , wn) of Riemann
invariants and multiplying from the left by Dwi , i = 1, · · · , n, we reduce this system
to diagonal form:

(7.3.6) ∂twi + λi∂xwi = 0, i = 1, · · · , n,

which is equivalent to the original form (7.2.1), albeit only in the context of clas-
sical solutions. The left-hand side of (7.3.6) is just the derivative of wi in the i-
characteristic direction. Therefore,
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7.3.4 Theorem. Assume (w1, · · · , wn) form a coordinate system of Riemann invari-
ants for (7.2.1). For i = 1, · · · , n, wi stays constant along every i-characteristic
associated with any classical solution U of (7.2.1).

Clearly, any hyperbolic system of two conservation laws is endowed with a co-
ordinate system of Riemann invariants. By contrast, in systems of size n ≥ 3, coor-
dinate systems of Riemann invariants will exist only in the exceptional case where
the formally overdetermined system (7.3.5), with n(n − 1) equations for the n un-
known (w1, · · · , wn), has a solution. By the Frobenius theorem, the hyperplane to
the level surface of wi will be spanned by R1, . . . , Ri−1, Ri+1, . . . , Rn if and only
if, for i �= j �= k �= i , the Lie bracket [R j , Rk] (cf. (7.2.15)) lies in the span of
{R1, · · · , Ri−1, Ri+1, · · · , Rn}. Consequently, the system (7.2.1) is endowed with a
coordinate system of Riemann invariants if and only if

(7.3.7) [R j , Rk] = αk
j R j − α

j
k Rk , j, k = 1, · · · , n,

where the α�i are scalar fields.
When a coordinate system (w1, · · · , wn) of Riemann invariants exists for (7.2.1),

it is convenient to normalize the eigenvectors R1, · · · , Rn so that

(7.3.8) Dwi (U )R j (U ) =
⎧⎨⎩0 if i �= j

1 if i = j.

In that case we note the identity

(7.3.9) Dwi DR j Rk = D(Dwi R j )Rk − R�j D2wi Rk

= −R�j D2wi Rk , i, j, k = 1, · · · , n,

which implies, in particular, Dwi [R j , Rk] = 0, i = 1, · · · , n, i.e.,

(7.3.10) [R j , Rk] = 0, j, k = 1, · · · , n.

Recalling the identity (7.2.14) and using (7.2.15), (7.3.10), we deduce that when-
ever λ j (U ) �= λk(U ),DR j (U )Rk(U ) lies in the span of {R j (U ), Rk(U )}. This, to-
gether with (7.3.8) and (7.3.9), yields

(7.3.11) R�j D2wi Rk = −Dwi DR j Rk = 0, i �= j �= k �= i.

When (7.2.1) possesses a coordinate system (w1, · · · , wn) of Riemann invariants,
the map that carries U to W = (w1, · · · , wn)

� is locally a diffeomorphism. It is often
convenient to regard W rather than U as the state vector. To avoid proliferation of
symbols, when there is no danger of confusion we shall be using the same symbol to
denote fields as functions of either U or W . By virtue of (7.3.8), ∂U/∂wi = Ri and
so the chain rule yields, for the typical function φ,

(7.3.12)
∂φ

∂wi
= DφRi , i = 1, · · · , n.

For example, (7.3.10) reduces to ∂R j/∂wk = ∂Rk/∂w j = ∂2U/∂w j∂wk .
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We proceed to derive certain identities that will help us later to establish other
remarkable properties of systems endowed with a coordinate system of Riemann
invariants. Upon combining (7.2.14), (7.2.15), (7.3.10) and (7.3.12), we deduce

(7.3.13) −∂R j

∂wk
= g jk R j + gkj Rk , j, k = 1, · · · , n; j �= k,

where we have set

(7.3.14) g jk = 1

λ j − λk

∂λ j

∂wk
, j, k = 1, · · · , n ; j �= k.

Notice that g jk may be defined even when λ j = λk , because at such points
∂λ j/∂wk = 0, by virtue of (7.2.17) and (7.3.12). From (7.3.13),

(7.3.15) − ∂2 R j

∂wi∂wk
= ∂g jk

∂wi
R j − g jk(g ji R j + gi j Ri )

+∂gkj

∂wi
Rk − gkj (gki Rk + gik Ri ).

Since Ri , R j , Rk are linearly independent for i �= j �= k �= i , and the right-hand side
of (7.3.15) has to be symmetric in (i, k), we deduce

(7.3.16)
∂g jk

∂wi
= ∂g ji

∂wk
, i �= j �= k �= i,

(7.3.17)
∂gi j

∂wk
+ gi j g jk − gi j gik + gik gk j = 0, i �= j �= k �= i.

Of the hyperbolic systems of conservation laws of size n ≥ 3 that arise in the
applications, few possess coordinate systems of Riemann invariants. A noteworthy
example is the system of electrophoresis:

(7.3.18) ∂tU
i + ∂x

[
ciUi

n∑
j=1

U j

]
= 0, i = 1, · · · , n,

where c1 < c2 < · · · < cn are positive constants. This system governs the process
used to separate n ionized chemical compounds in solution by applying an elec-
tric field. In that context, Ui denotes the concentration and ci measures the elec-
trophoretic mobility of the i-th species. In particular, Ui ≥ 0. As an exercise, the
reader may verify that the characteristic speeds of (7.3.18) are given by

(7.3.19) λi = µi

n∑
j=1

U j , i = 1, · · · , n,

where for i = 1, · · · , n − 1 the value of µi at U is the solution of the equation
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(7.3.20)
n∑

j=1

c jU j

c j − µ
=

n∑
j=1

U j

lying in the interval (ci , ci+1); and µn = 0. Moreover, (7.3.18) is endowed with a
coordinate system (w1, · · · , wn) of Riemann invariants, where, for i = 1, · · · , n−1,
the value of wi at U is the solution of the equation

(7.3.21)
n∑

j=1

U j

c j − w
= 0

that lies in the interval (ci , ci+1); and

(7.3.22) wn =
n∑

j=1

1

c j
U j .

Later we shall see that the system (7.3.18) has very special structure and a host of
interesting properties.

Another interesting system endowed with coordinate systems of Riemann in-
variants is (7.1.17), which, as we recall, governs the propagation of planar electro-
magnetic waves through special isotropic dielectrics. This is seen by passing from
(B1, B2, D1, D2) to the new state vector (p, q, a, b) defined through

(7.3.23)

⎧⎨⎩
√

2p exp(ia) = B2 + D1 − i(B1 − D2)

√
2q exp(ib) = −B2 + D1 + i(B1 + D2).

In particular, p2 + q2 = r2. A simple calculation shows that, at least in the context
of classical solutions, (7.1.17) reduces to

(7.3.24)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t p + ∂x

[
ψ ′(r)

r
p

]
= 0

∂t q − ∂x

[
ψ ′(r)

r
q

]
= 0,

(7.3.25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t a + ψ ′(r)

r
∂x a = 0

∂t b − ψ ′(r)
r

∂x b = 0.

Notice that (7.3.24) constitutes a closed system of two conservation laws, from which
p, q, and thereby r , may be determined. Subsequently (7.3.25) may be solved, as
two independent nonhomogeneous scalar conservation laws, to determine a and b.
In particular, a and b together with any pair of Riemann invariants of (7.3.24) will
constitute a coordinate system of Riemann invariants for (7.1.17).
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7.4 Entropy-Entropy Flux Pairs

Entropies play a central role in the theory of hyperbolic systems of conservation laws
in one-space dimension. Adapting the discussion of Section 3.2 to the present setting,
we infer that functions η and q on O constitute an entropy-entropy flux pair for the
system (7.2.1) if

(7.4.1) Dq(U ) = Dη(U )DF(U ), U ∈ O.

Furthermore, the integrability condition (3.2.4) here reduces to

(7.4.2) D2η(U )DF(U ) = DF(U )�D2η(U ), U ∈ O.

Upon multiplying (7.4.2) from the left by R j (U )� and from the right by Rk(U ),

j �= k, we deduce that (7.4.2) is equivalent to

(7.4.3) R j (U )�D2η(U )Rk(U ) = 0, j, k = 1, · · · , n; j �= k,

with the understanding that (7.4.3) holds automatically when λ j (U ) �= λk(U ) but
may require renormalization of eigenvectors Ri associated with multiple character-
istic speeds. (Compare with (3.2.5).) Note that the requirement that some entropy η
is convex may now be conveniently expressed as

(7.4.4) R j (U )�D2η(U )R j (U ) > 0, j = 1, · · · , n.

When the system (7.2.1) is symmetric,

(7.4.5) DF(U )� = DF(U ), U ∈ O,

it admits two interesting entropy-entropy flux pairs:

(7.4.6) η = 1
2 |U |2, q = U · F(U )− h(U ),

(7.4.7) η = h(U ), q = 1
2 |F(U )|2,

where h is defined by the condition

(7.4.8) Dh(U ) = F(U )�.

As explained in Chapter III, the systems (7.1.5), (7.1.8), (7.1.10) are endowed
with entropy-entropy flux pairs, respectively,

(7.4.9) η = −s, q = 0,

(7.4.10) η = 1
2v

2 + e(u), q = −vσ(u), e(u) =
∫ u

σ(ω)dω,
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(7.4.11) η = 1

2
ρv2 + κ

γ − 1
ργ , q = 1

2
ρv3 + κγ

γ − 1
ργ v,

induced by the Second Law of thermodynamics.2 In fact, (7.4.10), with vσ and σdω
interpreted as v · σ and σ · dω, constitutes an entropy-entropy flux pair even for the
system (7.1.12). When expressed as functions of the canonical state variables, that is
(u, v, E) for (7.4.9), (u, v) for (7.4.10), and (ρ,m) for (7.4.11), the above entropies
are convex.

In developing the theory of systems (7.2.1), it will be useful to construct entropies
with given specifications. These must be solutions of (7.4.2), which is a linear, sec-
ond order system of 1

2 n(n − 1) partial differential equations in a single unknown η.
Thus, when n = 2, (7.4.2) reduces to a single linear hyperbolic equation which may
be solved to produce an abundance of entropies. By contrast, for n ≥ 3, (7.4.2) is
formally overdetermined. Notwithstanding the presence of special solutions such as
(7.4.6) and (7.4.7), one should not expect an abundance of entropies, unless (7.2.1) is
special. It is remarkable that the overdeterminacy of (7.4.2) vanishes when (7.2.1) is
endowed with a coordinate system (w1, · · · , wn) of Riemann invariants. In that case
it is convenient to seek η and q as functions of the state vector W = (w1, · · · , wn)

�.
Upon multiplying (7.4.1), from the right, by R j (U ) and by using (7.3.12), we deduce
that (7.4.1) is now equivalent to

(7.4.12)
∂q

∂w j
= λ j

∂η

∂w j
, j = 1, · · · , n.

The integrability condition associated with (7.4.12) takes the form

(7.4.13)
∂2η

∂w j∂wk
+ g jk

∂η

∂w j
+ gkj

∂η

∂wk
= 0, j, k = 1, · · · , n; j �= k,

where g jk, gkj are the functions defined through (7.3.14). An alternative, useful
expression for g jk arises if one derives (7.4.13) directly from (7.4.3). Indeed, for
j, k = 1, · · · , n,

(7.4.14) R�j D2ηRk = D(DηR j )Rk − DηDR j Rk

= D(DηR j )Rk −
n∑

i=1

∂η

∂wi
Dwi DR j Rk .

Combining (7.4.3), (7.3.12), (7.3.10) and (7.3.9), we arrive at an equation of the form
(7.4.13) with

(7.4.15) g jk = R�j D2w j Rk , j, k = 1, · · · , n; j �= k.

The reader may verify directly, as an exercise, with the help of (7.2.14), (7.3.8),
(7.3.11), (7.3.10), (7.3.9) and (7.3.12) that (7.3.14) and (7.4.15) are equivalent.

2 In the isothermal case, γ = 1, the entropy-entropy flux pair of (7.1.10) takes the following
form: η = 1

2ρv
2 + κρ log ρ, q = 1

2ρv
3 + κρv log ρ + κρv.
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Applying (7.4.14) with k = j , using (7.3.12), (7.3.9) and recalling (7.4.4), we de-
duce that, in terms of Riemann invariants, the convexity condition on η is expressed
by the set of inequalities

(7.4.16)
∂2η

∂w2
j

+
n∑

i=1

ai j
∂η

∂wi
≥ 0, j = 1, · · · , n,

where

(7.4.17) ai j = R�j D2wi R j , i, j = 1, · · · , n.

The system (7.4.13) contains 1
2 n(n − 1) equations in the single unknown η

and thus looks overdetermined when n ≥ 3. It turns out, however, that this set of
equations is internally consistent. To see this, differentiate (7.4.13) with respect to
wi , i �= j �= k �= i , to get

(7.4.18)
∂3η

∂wi∂w j∂wk
= ∂g jk

∂wi

∂η

∂w j
− g jk

(
g ji

∂η

∂w j
+ gi j

∂η

∂wi

)

+∂gkj

∂wi

∂η

∂wk
− gkj

(
gki

∂η

∂wi
+ gik

∂η

∂wi

)
.

The system (7.4.13) will be integrable if and only if, for i �= j �= k �= i ,
the right-hand side of (7.4.18) is symmetric in (i, j, k). But this is always the
case, on account of the identities (7.3.16) and (7.3.17). Consequently, in a neigh-
borhood of any given state W̄ = (w̄1, · · · , w̄n)

�, there exists a unique entropy
η with arbitrarily prescribed values {η(w1, w̄2, · · · , w̄n), η(w̄1, w2, · · · , w̄n) , · · · ,
η(w̄1, · · · , w̄n−1, wn)} along straight lines parallel to the coordinate axes. When
n = 2, this amounts to solving a classical Goursat problem.

We have thus shown that systems endowed with coordinate systems of Riemann
invariants are also endowed with an abundance of entropies. For this reason, such
systems are called rich. In particular, the system (7.3.18) of electrophoresis and the
system (7.1.17) of electromagnetic waves are rich. The reader will find how to con-
struct the family of entropies of these systems in the references cited in Section 7.10.

7.5 Genuine Nonlinearity and Linear Degeneracy

The feature distinguishing the behavior of linear and nonlinear hyperbolic systems
of conservation laws is that in the former, characteristic speeds being constant, all
waves of the same family propagate with fixed speed; while in the latter, wave speeds
vary with wave-amplitude. As we proceed with our study, we will encounter various
manifestations of nonlinearity, and in every case we shall notice that its effects will
be particularly pronounced when the characteristic speeds λi vary in the direction of
the corresponding eigenvectors Ri . This motivates the following
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7.5.1 Definition. For the hyperbolic system (7.2.1) of conservation laws on O, U in
O is called a state of genuine nonlinearity of the i-characteristic family if

(7.5.1) Dλi (U )Ri (U ) �= 0,

or a state of linear degeneracy of the i-characteristic family if

(7.5.2) Dλi (U )Ri (U ) = 0.

When (7.5.1) holds for all U ∈ O, i is a genuinely nonlinear characteristic family
while if (7.5.2) is satisfied for all U ∈ O, then i is a linearly degenerate characteristic
family. When every characteristic family is genuinely nonlinear, (7.2.1) is a genuinely
nonlinear system.

It is clear that the i-characteristic family is linearly degenerate if and only if the
i-characteristic speed λi is constant along the integral curves of the vector field Ri .

The scalar conservation law (7.1.2), with characteristic speed λ = f ′(u), is gen-
uinely nonlinear when f has no inflection points: f ′′(u) �= 0. In particular, the Burg-
ers equation (4.2.1) is genuinely nonlinear.

Using (7.2.4) and (7.2.5), one readily checks that the system (7.1.8) is genuinely
nonlinear when σ ′′(u) �= 0. As an exercise, the reader may verify that the system
(7.1.9) is genuinely nonlinear if 2p′(ρ) + ρp′′(ρ) > 0 so, in particular, the system
(7.1.10) for the polytropic gas is genuinely nonlinear. The system (7.1.16) of waves
in shallow water is likewise genuinely nonlinear.

By account of (7.2.9), the 2-characteristic family of the system (7.1.5) of ther-
moelasticity is linearly degenerate. It turns out that the other two characteristic fam-
ilies are genuinely nonlinear, provided σuu(u, s) �= 0.

Consider next the system (7.1.12) of planar elastic oscillations in the direction
ν, recalling that σ(u) = ∂e(u)/∂u, with e(u) convex. The six characteristic speeds
are the square roots ±√µ1,±√µ2,±√µ3 of the eigenvalues µ1(u), µ2(u), µ3(u)
of the Hessian matrix of e(u), namely the eigenvalues of the acoustic tensor (3.3.8)
evaluated at F = I + u ⊗ ν. A simple calculation shows that the characteristic
families associated with the characteristic speeds ±√µ� are genuinely nonlinear at
u = Fν if

(7.5.3)
3∑

i, j,k=1

∂3e(u)

∂ui∂u j∂uk
ξiξ jξk =

3∑
i, j,k=1

3∑
α,β,γ=1

∂3ε(F)

∂Fiα∂Fjβ∂Fkγ
ξiξ jξkνανβνγ �= 0,

where ξ is the eigenvector of the acoustic tensor associated with the eigenvalue µ� .
Applying the above to the special system (7.1.14), one finds that µ1 = h′′(|u|)

is a simple eigenvalue, with eigenvector u, and µ2 = µ3 = h′(|u|)/|u| is a dou-
ble eigenvalue, with eigenspace the orthogonal complement of u. Thus, the char-
acteristic speeds ± [h′′(|u|)]1/2 are associated with longitudinal oscillations, while

± [h′(|u|)/|u|]1/2 are associated with transverse oscillations. However, only trans-
verse oscillations that are also orthogonal to ν are compatible with incompressibility.
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The characteristic families associated with ± [h′′(|u|)]1/2 are genuinely nonlinear at

u if h′′′(|u|) �= 0, while the characteristic families associated with ± [h′(|u|)/|u|]1/2

are linearly degenerate. Clearly, the same conclusions apply to the system of elastic
string oscillations (7.1.15), with τ(|u|) replacing h′(|u|). For this system, all trans-
verse oscillations are physically meaningful, as the incompressibility constraint is
no longer relevant. The model system (7.2.11) exhibits similar behavior, as its 1-
characteristic family is linearly degenerate, while its 2-characteristic family is gen-
uinely nonlinear, except at the origin.

Finally, in the system (7.3.18) of electrophoresis the n-characteristic family is
linearly degenerate while the rest are genuinely nonlinear.

The system of Maxwell’s equations (3.3.40) for the Born-Infeld medium (3.3.45)
has the remarkable property that planar oscillations in any spatial direction ν ∈ S2

are governed by a system whose characteristic families are all linearly degenerate.
Quite often, linear degeneracy results from the loss of strict hyperbolicity. Indeed,

an immediate consequence of (7.2.17) is

7.5.2 Theorem. In the hyperbolic system (7.2.1) of conservation laws, assume that
the j- and k-characteristic speeds coincide: λ j (U ) = λk(U ) , U ∈ O. Then both
the j- and the k-characteristic families are linearly degenerate.

When the system (7.2.1) is endowed with a coordinate system (w1, · · · , wn) of
Riemann invariants and one uses W = (w1, · · · , wn)

� as state vector, the condi-
tions of genuine nonlinearity and linear degeneracy assume an elegant and suggestive
form. Indeed, upon using (7.3.12), we deduce that (7.5.1) and (7.5.2) are respectively
equivalent to

(7.5.4)
∂λi

∂wi
�= 0

and

(7.5.5)
∂λi

∂wi
= 0.

7.6 Simple Waves

In the context of classical solutions, the scalar conservation law (7.1.2), with charac-
teristic speed λ = f ′(u), takes the form

(7.6.1) ∂t u(x, t)+ λ(u(x, t))∂x u(x, t) = 0.

As noted already in Section 6.1, by virtue of (7.6.1) u stays constant along charac-
teristics and this, in turn, implies that each characteristic propagates with constant
speed, i.e., it is a straight line. It turns out that general hyperbolic systems (7.2.1) of
conservation laws admit special solutions with the same features:
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7.6.1 Definition. A classical, C1 solution U of the hyperbolic system (7.2.1) of
conservation laws is called an i-simple wave if U stays constant along any i-
characteristic associated with it.

Thus a C1 function U , defined on an open subset of IR2 and taking values in O,
is an i-simple wave if it satisfies (7.2.1) together with

(7.6.2) ∂tU (x, t)+ λi (U (x, t))∂xU (x, t) = 0.

In particular, in an i-simple wave each i-characteristic propagates with constant
speed and so it is a straight line.

If U is an i-simple wave, combining (7.2.1) with (7.6.2) we deduce

(7.6.3)

⎧⎨⎩ ∂xU (x, t) = a(x, t)Ri (U (x, t))

∂tU (x, t) = −a(x, t)λi (U (x, t))Ri (U (x, t)),

where a is a scalar field. Conversely, any C1 function U that satisfies (7.6.3) is nec-
essarily an i-simple wave.

It is possible to give still another characterization of simple waves, in terms of
Riemann invariants:

7.6.2 Theorem. A classical, C1 solution U of (7.2.1) is an i-simple wave if and only
if every i-Riemann invariant is constant on each connected component of the domain
of U .

Proof. For any i-Riemann invariant w, ∂xw = Dw∂xU and ∂tw = Dw∂tU . If U is
an i-simple wave, ∂xw and ∂tw vanish identically, by virtue of (7.6.3) and (7.3.1), so
that w is constant on any connected component of the domain of U .

Conversely, recalling that the gradients of i-Riemann invariants span the orthog-
onal complement of Ri , we infer that when ∂xw = Dw∂xU vanishes identically
for all i-Riemann invariants w, ∂xU must satisfy (7.6.3)1 . Substituting (7.6.3)1 into
(7.2.1) we conclude that (7.6.3)2 holds as well, i.e. U is an i-simple wave. This com-
pletes the proof.

Any constant function U = Ū qualifies, according to Definition 7.6.1, to be
viewed as an i-simple wave, for every i = 1, · · · , n. It is expedient, however, to
refer to such trivial solutions as constant states and reserve the term simple wave
for solutions that are not constant on any open subset of their domain. The follow-
ing proposition, which demonstrates that simple waves are the natural neighbors of
constant states, is stated informally, in physical rather than mathematical terminol-
ogy. The precise meaning of assumptions and conclusions may be extracted from the
proof.

7.6.3 Theorem. Any weak front moving into a constant state propagates with con-
stant characteristic speed of some family i . Furthermore, the wake of this front is
necessarily an i-simple wave.
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Proof. The setting is as follows: The system (7.2.1) is assumed strictly hyperbolic. U
is a classical, Lipschitz solution which is C1 on its domain, except along the graph of
a C1 curve x = χ(t). U is constant, Ū , at any point of its domain lying on one side,
say to the right, of the graph of χ . By contrast, ∂xU and ∂tU attain nonzero limits
from the left along the graph of χ . Thus, according to the terminology of Section
1.6, χ is a weak front propagating with speed χ̇ = dχ/dt . In particular, (1.6.1) here
reduces to

(7.6.4) [DF(Ū )− χ̇ I ][[∂U/∂N ]] = 0,

which shows that χ̇ is constant and equal to λi (Ū ) for some i .
Next we show that to the left of, and sufficently close to, the graph of χ

the solution U is an i-simple wave. By virtue of Theorem 7.6.2, it suffices to
prove that n − 1 independent i-Riemann invariants, which will be denoted by
w1, · · · , wi−1, wi+1, · · · , wn , are constant.

For U near Ū , the n − 1 vectors {Dw1(U ), · · · ,Dwi−1(U ),

Dwi+1(U ), · · · ,Dwn(U )} span the orthogonal complement of Ri (U ) and so
do the vectors {L1(U ), · · · , Li−1(U ), Li+1(U ), · · · , Ln(U )}. Consequently, there is
a nonsingular (n − 1)× (n − 1) matrix B(U ) such that

(7.6.5) L j (U ) =
∑
k �=i

B jk(U )Dwk(U ), j = 1, · · · , i − 1, i + 1, · · · , n.

Multiplying (7.2.1), from the left, by L j (U ) yields

(7.6.6) L j (U )∂tU + λ j (U )L j (U )∂xU = 0, j = 1, · · · , n.

Combining (7.6.5) with (7.6.6), we conclude

(7.6.7)
∑
k �=i

B jk∂twk +
∑
k �=i

λ j B jk∂xwk = 0, j = 1, · · · , i − 1, i + 1, · · · , n.

We regard (7.6.7) as a first order linear inhomogeneous system of n − 1 equa-
tions in the n − 1 unknowns w1, · · · , wi−1, wi+1, · · · , wn . In that sense, (7.6.7)
is strictly hyperbolic, with characteristic speeds λ1, · · · , λi−1, λi+1, · · · , λn . Along
the graph of χ , the n − 1 Riemann invariants are constant, namely, equal to their
values at Ū : w1(Ū ), · · · , wi−1(Ū ), wi+1(Ū ), · · · , wn(Ū ). Also the graph of χ is
non-characteristic for the system (7.6.7). Consequently, the standard uniqueness the-
orem for the Cauchy problem for linear hyperbolic systems implies that (7.6.7) may
admit only one solution compatible with the Cauchy data, namely the trivial one:
w1 = w1(Ū ), · · · , wi−1 = wi−1(Ū ), wi+1 = wi+1(Ū ), · · · , wn = wn(Ū ). This
completes the proof.

At any point (x, t) in the domain of an i-simple wave U of (7.2.1), we let ξ(x, t)
denote the slope at (x, t) of the i-characteristic associated with U , i.e.,

(7.6.8) ξ(x, t) = λi (U (x, t)).
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The derivative of ξ in the direction of the line with slope ξ is zero, that is

(7.6.9) ∂tξ + ξ∂xξ = 0.

Thus ξ satisfies the Burgers equation (4.2.1).
In the vicinity of any point (x̄, t̄) in the domain of U , we shall say that the i-

simple wave is an i-rarefaction wave if ∂xξ(x̄, t̄) > 0, i.e., if the i-characteristics
diverge, or an i-compression wave if ∂xξ(x̄, t̄) < 0, i.e., if the i-characteristics con-
verge. This terminology originated in the context of gas dynamics.

Since in an i-simple wave U stays constant along i-characteristics, on a small
neighborhood X of any point (x̄, t̄) where ∂xξ(x̄, t̄) �= 0 we may use the single
variable ξ to label U , i.e., there is a function Vi , defined on an interval (ξ̄−ε, ξ̄+ε),
with ξ̄ = λi (U (x̄, t̄)), taking values in O and such that

(7.6.10) U (x, t) = Vi (ξ(x, t)), (x, t) ∈ X .

Furthermore, by virtue of (7.6.3) and (7.6.8), Vi satisfies

(7.6.11) V̇i (ξ) = b(ξ)Ri (V (ξ)), ξ ∈ (ξ̄ − ε, ξ̄ + ε),

(7.6.12) λi (Vi (ξ)) = ξ, ξ ∈ (ξ̄ − ε, ξ̄ + ε),

where b is a scalar function and an overdot denotes derivative with respect to ξ .
Conversely, if Vi satisfies (7.6.11), (7.6.12) and ξ is any C1 solution of (7.6.9)

taking values in the interval (ξ̄−ε, ξ̄+ε), then U = Vi (ξ(x, t)) is an i-simple wave.
The above considerations motivate the following

7.6.4 Definition. An i-rarefaction wave curve in the state space IRn , for the hyper-
bolic system (7.2.1), is a curve U = Vi (·), where the function Vi satisfies (7.6.11)
and (7.6.12).

Rarefaction wave curves will provide one of the principal tools for solving the
Riemann problem in Chapter IX. The construction of these curves is particularly
simple in the neighborhood of states of genuine nonlinearity:

7.6.5 Theorem. Assume Ū ∈ O is a state of genuine nonlinearity of the i-
characteristic family of the hyperbolic system (7.2.1) of conservation laws. Then
there exists a unique i-rarefaction wave curve Vi through Ū . If Ri is normalized on
a neighborhood of Ū through

(7.6.13) Dλi (U )Ri (U ) = 1,

and Vi is reparametrized by τ = ξ − ξ̄ , where ξ̄ = λi (Ū ), then Vi is the solution of
the ordinary differential equation

(7.6.14) V̇i = Ri (Vi )
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with initial condition Vi (0) = Ū . In particular, Vi is C3. The more explicit notation
Vi (τ ; Ū ) shall be employed when one needs to display the point of origin of this
rarefaction wave curve.

Proof. Any solution Vi of (7.6.14) clearly satisfies (7.6.11) with b = 1. At ξ = ξ̄ ,
i.e. τ = 0, λi (Vi ) = λi (Ū ) = ξ̄ . Furthermore, λ̇i (Vi ) = Dλi (Vi )V̇i = 1, by virtue
of (7.6.14) and (7.6.13). This establishes (7.6.12) and completes the proof.

By contrast, when the i-characteristic family is linearly degenerate, differentiat-
ing (7.6.12) with respect to ξ and combining the resulting equation with (7.6.11),
yields a contradiction: 0 = 1. In that case, i-characteristics in any i-simple wave
are necessarily parallel straight lines. It is still true, however, that any i-simple wave
takes values along some integral curve of the differential equation (7.6.14).

Motivated by Theorem 7.6.2, we may characterize rarefaction wave curves in
terms of Riemann invariants:

7.6.6 Theorem. Every i-Riemann invariant is constant along any i-rarefaction wave
curve of the system (7.2.1). Conversely, if Ū is any state of genuine nonlinearity of
the i-characteristic family of (7.2.1) and w1, · · · , wi−1, wi+1, · · · , wn are indepen-
dent i-Riemann invariants on some neighborhood of Ū , then the i-rarefaction curve
through Ū is determined implicitly by the system of equations w j (U ) = w j (Ū ), for
j = 1, · · · , i − 1, i + 1, · · · , n.

Proof. Any i-rarefaction curve Vi satisfies (7.6.11). If w is an i-Riemann invariant
of (7.2.1), multiplying (7.6.11), from the left, by Dw(Vi (ξ)) and using (7.3.1) yields
ẇ(Vi (ξ)) = 0, i.e., w stays constant along Vi .

Assume now w1, · · · , wi−1, wi+1, · · · , wn are i-Riemann invariants such that
Dw1, · · · ,Dwi−1,Dwi+1, · · · ,Dwn are linearly independent. Then the n − 1 sur-
facesw j (U ) = w j (Ū ) , j = 1, · · · , i−1, i+1, · · · , n, intersect transversely to form
a C1 curve Vi through Ū , parametrized by arclength s, whose tangent V

′
i must sat-

isfy, on account of Definition 7.3.1, V
′
i (s) = c(s)Ri (V (s)), for some nonzero scalar

function c. For as long as Vi is a state of genuine nonlinearity of the i-characteristic
field, λ

′
i (Vi ) = Dλi V

′
i = cDλi Ri �= 0. We may thus find the proper parametrization

s = s(ξ) so that Vi satisfies both (7.6.11) and (7.6.12). This completes the proof.

As an application of Theorem 7.6.6, we infer that the 1- and 2-rarefaction wave
curves of the system (7.1.8) through a point (ū, v̄), with σ ′′(ū) �= 0, are determined,
in terms of the Riemann invariants (7.3.2), by the equations

(7.6.15) v = v̄ +
∫ u

ū

√
σ ′(ω)dω, v = v̄ −

∫ u

ū

√
σ ′(ω)dω.

When the system (7.2.1) is endowed with a coordinate system (w1, · · · , wn) of
Riemann invariants and we use W = (w1, · · · , wn)

�, instead of U , as our state
variable, the rarefaction wave curves assume a very simple form. Indeed, by virtue of
Theorem 7.6.4, the i-rarefaction wave curve through the point W̄ = (w̄1, · · · , w̄n)

�
is the straight line w j = w̄ j , j �= i , parallel to the i-axis.
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7.7 Explosion of Weak Fronts

The aim here is to expose the decisive role played by genuine nonlinearity in the
amplification and eventual explosion of weak fronts.

We consider a Lipschitz continuous solution U of the strictly hyperbolic system
(7.2.1), defined on a strip (−∞,∞) × [0, T ) and having the following structure: A
C1 curve x = χ(t) issues from the origin, and U (x, t) = Ū = constant on the set
{(x, t) : 0 ≤ t < T, x > χ(t)}, while on the set {(x, t) : 0 ≤ t < T, x < χ(t)} U
is C2 and its first and second partial derivatives attain non-zero limits, as x ↑ χ(t).
Thus, χ(·) is a weak front moving into a constant state.

On the set {(x, t) : 0 ≤ t < T, x < χ(t)},
(7.7.1) ∂tU (x, t)+ DF(U (x, t))∂xU (x, t) = 0.

Since U (χ(t)−, t) = Ū ,

(7.7.2) ∂tU (χ(t)−, t)+ χ̇ (t)∂xU (χ(t)−, t) = 0.

By combining (7.7.1) with (7.7.2),

(7.7.3)
[
DF(Ū )− χ̇(t)I

]
∂xU (χ(t)−, t) = 0.

Therefore, χ̇(t) is constant, equal to λi (Ū ), for some characteristic family i , and

(7.7.4) ∂xU (χ(t)−, t) = a(t)Ri (Ū ).

The function a(t) measures the strength of the weak front.
We multiply (7.7.4), from the left, by Li (Ū ), use (7.2.3) and differentiate with

respect to t to get

(7.7.5)
da(t)

dt
= Li (Ū )

[
∂x∂tU (χ(t))−, t)+ λi (Ū )∂x∂xU (χ(t)−, t)

]
.

Next, we multiply (7.7.1), from the left, by Li (U (x, t)),

(7.7.6) Li (U (x, t)) [∂tU (x, t)+ λi (U (x, t))∂xU (x, t)] = 0,

then differentiate with respect to x and let x ↑ χ(t). Upon combining χ̇(t) = λi (Ū ),
(7.7.2), (7.7.5), (7.7.4) and (7.2.3), we conclude that a(t) satisfies an ordinary differ-
ential equation of Bernoulli type:

(7.7.7)
da

dt
+ Dλi (Ū )Ri (Ū )a2 = 0.

Thus, if Ū is a state of genuine nonlinearity for the i-characteristic family and
Dλi (Ū )Ri (Ū )a(0) < 0, then the strength of the weak wave increases with time
and eventually explodes as t ↑ [−Dλi (Ū )Ri (Ū )a(0)

]−1. The issue of breakdown
of classical solutions will be discussed from a broader perspective in the following
section.
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7.8 Breakdown of Classical Solutions

When the system (7.2.1) is equipped with a convex entropy, Theorem 5.1.1 guar-
antees the existence of a unique, locally defined, classical solution, with initial data
U0 in the Sobolev space H2. In one-space dimension, however, there is a sharper
existence theory which applies to quasilinear hyperbolic systems in general, not nec-
essarily conservation laws, and does not rely on the existence of entropies:

7.8.1 Theorem. Let U0 be a C1 function, defined on (−∞,∞) and taking val-
ues in a ball of IRn with closure contained in O. Assume dU0/dx is bounded on
(−∞,∞). Then there exists a unique C1 function U defined on (−∞,∞)×[0, T∞),
for some T∞ , 0 < T∞ ≤ ∞, and taking values in O, which satisfies (7.2.1) on the
strip (−∞,∞) × (0, T∞) together with the initial condition U (x, 0) = U0(x) on
(−∞,∞). Furthermore, the life span interval [0, T∞) is maximal in the sense that if
T∞ <∞, then, as t ↑ T∞ , ‖∂xU (·, t)‖L∞ →∞ and/or the range of U (·, t) escapes
from every compact subset of O.

The proof of the above theorem, which may be found in the references cited in
Section 7.10, relies on pointwise bounds for U and ∂xU obtained by monitoring the
evolution of U and its derivatives along characteristics. Estimates of this nature will
be established below but they will be employed not for establishing the existence of
classical solutions but for demonstrating that classical solutions break down in finite
time.

We have already encountered a number of examples of breakdown of classical
solutions, notably for scalar conservation laws, in Section 6.1, and for weak fronts, in
Section 7.7. Breakdown also occurs in the presence of compressive simple waves. In-
deed, as shown in Section 7.6, an i-simple wave solution U is obtained by taking the
composition (7.6.10) of a (smooth) solution Vi to the ordinary differential equation
(7.6.11) with a classical solution ξ to the Burgers equation (7.6.9). When that solu-
tion of (7.6.9) breaks down, so does the i-simple wave. The above examples involve
a single characteristic family. The aim here is to demonstrate that, in the presence of
genuine nonlinearity, the interaction of waves from different characteristic families
cannot prevent the breakdown of smooth solutions.

Any classical, C2 solution U of (7.2.1) on (−∞,∞)× [0, T ) may be written as

(7.8.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂xU =
n∑

j=1

a j R j (U )

∂tU = −
n∑

j=1

a jλ j (U )R j (U )

with

(7.8.2) a j = L j (U )∂xU, j = 1, · · · , n.
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In view of (7.6.3), one may interpret (7.8.1) as a decomposition of U into simple
waves, one for each characteristic family, with respective strengths a1, · · · , an . Our
aim is to study the evolution of ai along the i-characteristics associated with U . We
let

(7.8.3)
d

dt
= ∂t + λi∂x

denote differentiation in the i-characteristic direction. Combining (7.8.2) with (7.8.1)
yields

(7.8.4) ∂t ai = Li∂t∂xU + ∂xU�DL�i ∂tU

= ∂x (Li∂tU )− ∂tU
�DL�i ∂xU + ∂xU�DL�i ∂tU

= ∂x (Li∂tU )+
n∑

j,k=1

(λ j − λk)R
�
j DL�i Rka j ak ,

(7.8.5) λi∂x ai = ∂x (λi Li∂xU )− (Dλi∂xU )(Li∂xU )

= ∂x (λi Li∂xU )−
n∑

j,k=1

(Dλi R j )δika j ak ,

where δik is the Kronecker delta. From (7.2.1), Li∂tU + λi Li∂xU = 0. Also, by
virtue of (7.2.3), R�j DL�i Rk = −Li DR j Rk . Therefore, combining (7.8.3), (7.8.4),
(7.8.5) and symmetrizing we conclude

(7.8.6)
dai

dt
=

n∑
j,k=1

γi jka j ak

with

(7.8.7) γi jk = − 1
2 (λ j − λk)Li [R j , Rk] − (Dλi R j )δik ,

where [R j , Rk] denotes the Lie bracket (7.2.15). Note, in particular, that

(7.8.8) γi i i = −Dλi Ri ,

(7.8.9) γi j j = 0, j �= i.

It is clear that in any argument showing blow-up of ai through (7.8.6), the co-
efficient γi i i will play a pivotal role. By virtue of (7.8.8), γi i i never vanishes when
the i-characteristic family is genuinely nonlinear, and vanishes identically when the
i-characteristic family is linearly degenerate.
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To gain some insight, let us consider first the case where U is just an i-simple
wave, i.e., ai �= 0 and a j = 0 for j �= i . In that case, (7.8.6) reduces to

(7.8.10)
dai

dt
= γi i i a

2
i .

Furthermore, since U is constant along characteristics, γi i i in (7.8.10) is a constant.
When γi i i �= 0 and ai has the same sign as γi i i , (7.8.10) induces blow-up of ai in a
finite time.

Another noteworthy special case is when the system (7.2.1) is endowed with a
coordinate system (w1, · · · , wn) of Riemann invariants. In that case L j = Dw j and
so, by (7.8.2),

(7.8.11) a j = ∂xw j .

Moreover, in virtue of (7.8.7), (7.3.10) and (7.3.12), (7.8.6) reduces to

(7.8.12)
dai

dt
= −

n∑
j=1

∂λi

∂w j
ai a j .

We seek an integrating factor for (7.8.12). If φ is any smooth scalar function of U ,
we get from (7.8.1):

(7.8.13)
dφ

dt
= Dφ(∂tU + λi∂xU ) =

∑
j �=i

(λi − λ j )(DφR j )a j

=
∑
j �=i

(λi − λ j )
∂φ

∂w j
a j .

Combining (7.8.12) with (7.8.13) yields

(7.8.14)
d

dt
(eφai ) = −eφ

∂λi

∂wi
a2

i −
∑
j �=i

eφ[ ∂λi

∂w j
− (λi − λ j )

∂φ

∂w j
]ai a j .

From (7.3.14) and (7.3.16), it follows that there exists φ that satisfies

(7.8.15)
∂φ

∂w j
= 1

λi − λ j

∂λi

∂w j
, j = 1, · · · , i − 1, i + 1, · · · , n.

For that φ, (7.8.14) reduces to

(7.8.16)
d

dt
(eφai ) = −e−φ ∂λi

∂wi
(eφai )

2.

When the i-characteristic family is genuinely nonlinear, ∂λi/∂wi �= 0. Whenever
e−φ∂λi/∂wi is bounded away from zero, uniformly on the range of the solution,
(7.8.16) will induce blowup of ai , in finite time, along any characteristic emanating
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from a point x̄ of the x-axis where ai has the opposite sign of ∂λi/∂wi . Uniform
boundedness of e−φ∂λi/∂wi is maintained, because, by Theorem 7.3.4, the range
of any classical solution in the state space of Riemann invariants coincides with the
range of its initial values. We have thus established

7.8.2 Theorem. Assume (7.2.1) is endowed with a coordinate system of Riemann
invariants (w1, · · · , wn). Suppose the i-characteristic family is genuinely nonlinear.
Then any classical solution U with bounded initial values U0 , such that dwi (U0)/dx
has the opposite sign from ∂λi/∂wi at some point x̄ ∈ (−∞,∞), breaks down in
finite time.

We now return to the general situation. When the i-characteristic field is gen-
uinely nonlinear, and thus, by (7.8.8), γi i i �= 0, the term γi i i a2

i in (7.8.6) will have a
destabilizing effect. Any expectation that this may be offset by the remaining terms in
(7.8.6), which account for the interaction effects with the other characteristic fields,
is not likely to be fulfilled, at least when the initial data have compact support, for the
following reason. Equation (7.8.9) rules out the possibility of self-interactions of the
remaining characteristic fields: All interactions, other than γi i i a2

i , involve two dis-
tinct characteristic families. Now, when the initial data have compact support, mutual
interactions eventually become insignificant, because waves of distinct characteristic
families propagate with different speeds and thus eventually separate. Consequently,
in the long run the term γi i i a2

i becomes the dominant factor and drives ai to infin-
ity in finite time. The above heuristic arguments can be formalized and lead to the
following

7.8.3 Theorem. Assume (7.2.1) is a genuinely nonlinear strictly hyperbolic system
of conservation laws. When the initial data U0 are C2, have compact support, and
max |dU0/dx | is sufficiently small, the classical solution of the initial-value problem
breaks down in finite time.

The long and technical proof of Theorem 7.8.3, together with various extensions
addressing the situation where some (or all) of the characteristic fields are linearly
degenerate or weakly linearly degenerate, may be found in the references cited in
Section 7.10.

7.9 Weak Solutions

In view of the breakdown of classical solutions, demonstrated in the previous sec-
tion, in order to solve the initial-value problem in the large, for nonlinear hyperbolic
systems of conservation laws, one has to resort to weak solutions. As explained in
Chapter IV, the issue of the admissibility of weak solutions will have to be addressed.

In earlier chapters, we mainly considered weak solutions that are merely bounded
measurable functions. Existence in that function class will indeed be established, for
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certain systems, in Chapter XVI, through the functional analytic method of compen-
sated compactness. On the other hand, there are systems of three conservation laws
for which the Cauchy problem is not well-posed in L1. Apparently, the function
class of choice for hyperbolic systems of conservation laws is BV , which provides
the natural framework for envisioning the most important features of weak solutions,
namely shocks and their interactions.

The finite domain of dependence property for solutions of hyperbolic systems,
combined with the fact that our system (7.2.1) is invariant under uniform stretching
of coordinates: x = x̄ + ay , t = t̄ + aτ , a > 0, suggests that the admissibility
of BV weak solutions may be decided locally, through examination of shocks and
wave fans. These issues will be discussed thoroughly in the following two chapters.

7.10 Notes

The general mathematical framework of the theory of hyperbolic systems of conser-
vation laws in one-space dimension was set in the seminal paper of Lax [2], which
distills the material collected over the years in the context of special systems. The
notions of Riemann invariants, genuine nonlinearity, simple waves and simple wave
curves, at the level of generality considered here, were introduced in that paper. The
books by Smoller [3] and Serre [11] contain expositions of these topics, illustrated
by interesting examples.

The simple hydrodynamic model of traffic flow was introduced by Lighthill and
Whitham [1]. For elaborations and extensions, see the book by Whitham [1] and the
papers by Tong Li [1,2], Aw and Rascle [1], Colombo [1], Coclite, Garavello and
Piccoli [1], Benzoni-Gavage and Colombo [1], and Greenberg, Klar and Rascle [1].

The connection of the system (7.1.11) of pressureless gas dynamics with astro-
physics is discussed in Shandarin and Zeldovich [1].

A systematic, rigorous exposition of the theory of one-dimensional elastic con-
tinua (strings, rods, etc.) is found in the book by Antman [1]. See also Antman [2].
The system (7.1.14) was studied by Freistühler.

The shallow water wave system (7.1.16), originally derived (in a somewhat dif-
ferent form) by Lagrange [1], has been used extensively in hydraulic theory to model
flood and tidal waves and bores. A few relevant references, out of an immense bib-
liography, are Airy [1], Saint Venant [1], Stoker [1], Whitham [1], Gerbeau and
Perthame [1], and Holden and Risebro [2].

The system (7.1.17) for planar electromagnetic waves was studied thoroughly by
Serre [4].

Combustion theory, in connection to system (7.1.19), is expounded in the book
by Williams [1]. The model system (7.1.20) was proposed by Majda [1].

For a general thermodynamic theory of mixtures, see Müller [2] and Müller and
Ruggeri [1]. A thorough treatment of the mathematical properties of the nonisother-
mal version of the system (7.1.22) is given in Ruggeri and Simić [1].

There are many other interesting examples of hyperbolic systems of conserva-
tion laws, for example the equations governing sedimentation and suspension flows
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(Bürger and Wendland [1]), the system of chemical chromatography (Rhee, Aris and
Amundson [1]), the system of flood waves (Whitham [2]), the equations of multi-
phase flow in porous media and the system of polymer flooding (Holden, Risebro
and Tveito [1]).

The failure of strict hyperbolicity in one-space dimensional systems deriving
from three-space dimensional parent systems is discussed by Lax [6]. The system
(7.2.11) has been used extensively as a vehicle for demonstrating the features of
non-strictly hyperbolic systems of conservation laws, beginning with the work of
Keyfitz and Kranzer [2].

Riemann invariants were first considered by Earnshaw [1] and by Riemann [1], in
the context of the system (7.1.9) of isentropic gas dynamics. Conditions for existence
of coordinate systems of Riemann invariants and its implications on the existence of
entropies were investigated by Conlon and Liu [1] and by Sévennec [1]. The calcu-
lation of the characteristic speeds and Riemann invariants of the system (7.3.18) of
electrophoresis is due to Alekseyevskaya [1] and Fife and Geng [1]. A detailed ex-
position of the noteworthy properties of this system is contained in Serre [11]. Serre
[4] shows that the system (7.1.17) is equivalent to (7.3.24), (7.3.25) even within the
realm of weak solutions.

As already mentioned in Section 1.10, the special entropy-entropy flux pair
(7.4.6), for symmetric systems, was noted by Godunov [1,2,3] and by Friedrichs
and Lax [1]. Over the years, a great number of entropy-entropy flux pairs with spe-
cial properties have been constructed, mainly for systems of two conservation laws,
beginning with the pioneering paper of Lax [4]. We shall see some of that work in
later chapters. The characterization of systems of size n ≥ 3 endowed with an abun-
dance of entropies is due to Tsarev [1], who calls them semi-Hamiltonian, and Serre
[6], who named them rich. A comprehensive exposition of their theory is contained
in Serre [11].

Theorem 7.5.2 is due to Boillat [2].
The earliest example of a simple wave, in the context of the system of isothermal

gas dynamics, appears in a memoir by Poisson [1]. See also Earnshaw [1]. Theorem
7.6.3 is taken from Lax [2], who attributes the proof to Friedrichs.

A thorough discussion on the explosion of weak waves in continuum physics,
together with extensive bibliography, are found in the encyclopedic article by Peter
Chen [1].

Local existence of C1 solutions to the initial-value problem in one-space dimen-
sion was first established by Schauder [1] and Friedrichs [1]. For a comprehensive
treatment of the initial as well as the initial-boundary value problem see the mono-
graph by Li Ta-tsien and Yu Wen-ci [1].

The breakdown of classical solutions was first noticed by Challis [1], in the con-
text of the compressible simple wave solution of the system of isothermal gas dy-
namics derived by Poisson [1]. It is this paper that provided the stimulus for the
introduction of weak solutions with shocks, by Stokes [1] (see Sections 1.10 and
4.8). The earliest result on generic breakdown of solutions is due to Lax [3], who
proved directly the case n = 2 of Theorem 7.8.2. This work was extended in several
directions: Klainerman and Majda [1] established breakdown in the case n = 2 so
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long as none of the two characteristic families is linearly degenerate. John [1] de-
rived3 (7.8.6) and used it to prove Theorem 7.8.3. A detailed discussion is found in
Hörmander [1,2]. Liu [13] gives an extension of Theorem 7.8.3 covering the case
where some of the characteristic families are linearly degenerate. Li Ta-tsien, Zhou
Yi and Kong De-xing [1] consider the case of weakly linearly degenerate character-
istic families. See also Li Ta-tsien and Kong De-xing [1]. A direct proof of Theorem
7.8.2, for any n, is found in Serre [11]. Additional results are presented in Chemin
[2] and in the monograph by Alinhac [1].

Examples of systems for which the Cauchy problem is not well-posed in L1 are
found in Bressan and Shen [1].

3 John’s formula for γi jk is different from (7.8.7) but, of course, the two expressions are
equivalent.



VIII

Admissible Shocks

Shock fronts were introduced in Section 1.6, for general systems of balance laws, and
were placed in the context of BV solutions in Section 1.8. They were encountered
again, briefly, in Section 3.1, where the governing Rankine-Hugoniot condition was
recorded.

Since shock fronts have codimension one, important aspects of their local behav-
ior may be investigated, without loss of generality, within the framework of systems
in one-space dimension. This will be the object of the present chapter. The discussion
will begin with an exploration of the geometric features of the Rankine-Hugoniot
condition, leading to the introduction of the Hugoniot locus.

The necessity of imposing admissibility conditions on weak solutions was
pointed out in Chapter IV. These in turn induce, or at least motivate, admissibility
conditions on shocks. Indeed, the prevailing view is that the issue of admissibility of
general BV weak solutions should be resolved through a test applied to every point
of the shock set. In particular, the shock admissibility conditions associated with the
entropy condition of Section 4.5 and the vanishing viscosity approach of Section 4.6
will be introduced, and they will be compared with each other as well as with other
important shock admissibility conditions proposed by Lax and by Liu.

8.1 Strong Shocks, Weak Shocks,
and Shocks of Moderate Strength

For the hyperbolic system

(8.1.1) ∂tU + ∂x F(U ) = 0,

in one-space dimension, the Rankine-Hugoniot jump condition (3.1.3) reduces to

(8.1.2) F(U+)− F(U−) = s(U+ −U−).

Actually, (8.1.2) is as general as the multi-space-dimensional version (3.1.3), once
the direction ν of propagation of the shock has been fixed and F has been defined
through (7.2.2).
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When (8.1.2) holds, we say that the state U− , on the left, is joined to the state
U+ , on the right, by a shock of speed s. Note that “left” and “right” may be inter-
changed in (8.1.2), in consequence of the invariance of (8.1.1) under the transfor-
mation (x, t) �→ (−x,−t). Nevertheless, later on we shall introduce admissibility
conditions inducing irreversibility, as a result of which the roles of U− and U+ cannot
be interchanged.

The jump U+ − U− is the amplitude and its size |U+ − U−| is the strength of
the shock. Properties established without restriction on the strength are said to hold
even for strong shocks. Quite often, however, we shall have to impose limitations on
the strength of shocks: |U+−U−| < δ, with δ depending on DF through parameters
such as the size of the gaps between characteristic speeds of distinct families, which
induce the separation of waves of different families, and the size of derivatives of
the functions λi and Ri , which manifest the nonlinearity of the system. In particular,
when δ depends solely on the size of the first derivatives of the λi and Ri , the shock
is of moderate strength; while if δ also depends on the size of second derivatives, the
shock is dubbed weak. Of course, the size of these parameters may be changed by
rescaling the variables x, t and U , so the relevant factor is the relative rather than the
absolute size of δ.

Notice that (8.1.2) may be written as

(8.1.3) [A(U−,U+)− s I ](U+ −U−) = 0,

where we are using the notation

(8.1.4) A(V,U ) =
∫ 1

0
DF(τU + (1− τ)V )dτ.

For i = 1, · · · , n, let µi (V,U ) denote the eigenvalues and Si (V,U ) the cor-
responding eigenvectors of A(V,U ). In particular, A(U,U ) = DF(U ) and so
µi (U,U ) = λi (U ), Si (U,U ) = Ri (U ). Notice that A(V,U ), and thereby also
µi (V,U ) and Si (V,U ) are symmetric in (V,U ). Therefore, (finite) Taylor expand-
ing of these functions about the midpoint 1

2 (V +U ) yields

(8.1.5) µi (V,U ) = λi (
1
2 (V +U ))+ O(|V −U |2),

(8.1.6) Si (V,U ) = Ri (
1
2 (V +U ))+ O(|V −U |2).

Clearly, (8.1.3) will hold if and only if

(8.1.7) s = µi (U−,U+),

(8.1.8) U+ −U− = ζ Si (U−,U+),

for some i = 1, · · · , n and some nonzero ζ ∈ IR. In particular, the speed s of any
shock of moderate strength must be close to some characteristic speed λi . Such a
shock is then called an i-shock.
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An interesting implication of (8.1.5), (8.1.7) is the useful identity

(8.1.9) s = 1
2 [λi (U−)+ λi (U+)] + O(|U− −U+|2).

In special systems it is possible to associate even strong shocks with a particular
characteristic family. For example, the Rankine-Hugoniot condition

(8.1.10)

⎧⎨⎩ v+
− v− + s(u+ − u−) = 0

σ(u+)− σ(u−)+ s(v+ − v−) = 0

for the system (7.1.8) of isentropic elasticity implies

(8.1.11) s = ±
√
σ(u+)− σ(u−)

u+ − u−
.

Recalling the characteristic speeds (7.2.4) of this system, it is natural to call shocks
propagating to the left (s < 0) 1-shocks and shocks propagating to the right (s > 0)
2-shocks.

8.2 The Hugoniot Locus

The set of points U in state space that may be joined to a fixed point Ū by a shock is
called the Hugoniot locus of Ū . It has a simple geometric structure in the vicinity of
any point U of strict hyperbolicity of the system.

8.2.1 Theorem. For a given state Ū ∈ O, assume that the characteristic speed λi (Ū )

is a simple eigenvalue of DF(Ū ). Then there is a C3 curve U = Wi (τ ) in state space,
called the i-shock curve through Ū , and a C2 function s = si (τ ), both defined for τ
in some neighborhood of 0, with the following property: A state U can be joined to Ū
by an i-shock of moderate strength and speed s if and only if U = Wi (τ ), s = si (τ ),
for some τ . Furthermore, Wi (0) = Ū and

(8.2.1) si (0) = λi (Ū ),

(8.2.2) ṡi (0) = 1
2 Dλi (Ū )Ri (Ū ),

(8.2.3) Ẇi (0) = Ri (Ū ),

(8.2.4) Ẅi (0) = DRi (Ū )Ri (Ū ).

The more explicit notation Wi (τ ; Ū ), si (τ ; Ū ) shall be employed when one needs to
identify the point of origin of this shock curve.
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Proof. Recall the notation developed in Section 8.1 and, in particular, Equations
(8.1.7), (8.1.8). A state U may be joined to Ū by an i-shock of speed s if and only if

(8.2.5) U = Ū + τ Si (Ū ,U ),

(8.2.6) s = µi (Ū ,U ).

Accordingly, we consider the function

(8.2.7) H(U, τ ) = U − Ū − τ Si (Ū ,U ),

defined on O × IR, and note that H(Ū , 0) = 0 , DH(Ū , 0) = I . Consequently,
by the implicit function theorem, there is a curve U = Wi (τ ) in state space, with
Wi (0) = Ū , such that H(U, τ ) = 0 for τ near 0 if and only if U = Wi (τ ). We then
define

(8.2.8) si (τ ) = µi (Ū ,Wi (τ )).

In particular, si (0) = µi (Ū , Ū ) = λi (Ū ). Furthermore, differentiating (8.2.5) with
respect to τ and setting τ = 0, we deduce Ẇi (0) = Si (Ū , Ū ) = Ri (Ū ). To establish
the remaining equations (8.2.2) and (8.2.4), we appeal to (8.1.5) and (8.1.6) to get

(8.2.9) si (τ ) = λi (
1
2 (Ū +Wi (τ )))+ O(τ 2)

= λi (Ū )+ 1
2τDλi (Ū )Ri (Ū )+ O(τ 2),

(8.2.10) Wi (τ ) = Ū + τ Ri (
1
2 (Ū +Wi (τ )))+ O(τ 3)

= Ū + τ Ri (Ū )+ 1
2τ

2DRi (Ū )Ri (Ū )+ O(τ 3).

This completes the proof.

In particular, if Ū is a point of strict hyperbolicity of the system (8.1.1), Theorem
8.2.1 implies that the Hugoniot locus of Ū is the union of n shock curves, one for
each characteristic family.

The shock curve constructed above is generally confined in the regime of shocks
of moderate strength, because of the use of the implicit function theorem, which
applies only when the strength of the shock, measured by |τ |, is sufficiently small:
|τ | < δ with δ depending on the C1 norm of Si , which in turn can be estimated in
terms of the C1 norm of DF and the inverse of the gap between λi and the other char-
acteristic speeds. Nevertheless, in special systems one may often use more delicate
analytical or topological arguments or explicit calculation to extend shock curves to
the range of strong shocks. For example, in the case of the system (7.1.8), combining
(8.1.10) with (8.1.11) we deduce that the Hugoniot locus of any point (ū, v̄) in state
space consists of two curves
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(8.2.11) v = v̄ ±√[σ(u)− σ(ū)](u − ū) ,

defined on the whole range of u.
The i-shock curves introduced here have common features with the i-rarefaction

wave curves defined in Section 7.6. Indeed, recalling Theorems 7.6.5 and 8.2.1, and,
in particular, comparing (7.6.14) with (8.2.3), (8.2.4), we deduce

8.2.2 Theorem. Assume Ū ∈ O is a point of genuine nonlinearity of the i-
characteristic family of the hyperbolic system (8.1.1) of conservation laws, and
λi (Ū ) is a simple eigenvalue of DF(Ū ). Normalize Ri so that (7.6.13) holds on
some neighborhood of Ū . Then the i-rarefaction wave curve Vi , defined through
Theorem 7.6.5, and the i-shock curve Wi , defined through Theorem 8.2.1, have a
second order contact at Ū .

Recall that, by Theorem 7.6.6, i-Riemann invariants are constant along i-
rarefaction wave curves. At the same time, as shown above, i-shock curves are very
close to i-rarefaction wave curves. It is then to be expected that i-Riemann invariants
vary very slowly along i-shock curves. Indeed,

8.2.3 Theorem. The jump of any i-Riemann invariant across a weak i-shock is of
third order in the strength of the shock.

Proof. Assume λi (Ū ) is a simple eigenvalue of DF(Ū ) and consider the i-shock
curve Wi through Ū . For any i-Riemann invariant w, differentiating along the curve
Wi (·),
(8.2.12) ẇ = DwẆi ,

(8.2.13) ẅ = Ẇ�
i D2wẆi + DwẄi .

By virtue of (8.2.3) and (7.3.1), ẇ = 0 at τ = 0.
We now apply D to (7.3.1) and then multiply the resulting equation from the right

by Ri to deduce the identity

(8.2.14) R�i D2wRi + DwDRi Ri = 0.

Combining (8.2.13), (8.2.3), (8.2.4) and (8.2.14), we conclude that ẅ = 0 at τ = 0.
This completes the proof.

In the special case where the system (8.1.1) is endowed with a coordinate system
(w1, · · · , wn) of Riemann invariants, we may calculate the leading term in the jump
of w j across a weak i-shock, i �= j , as follows. The Rankine-Hugoniot condition
reads

(8.2.15) F(Wi (τ ))− F(Ū ) = si (τ )[Wi (τ )− Ū ].
Differentiating with respect to τ yields
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(8.2.16) [DF(Wi (τ ))− si (τ )I ]Ẇi (τ ) = ṡi (τ )[Wi (τ )− Ū ].
Multiplying (8.2.16), from the left, by Dw j (Wi ) gives

(8.2.17) (λ j − si )ẇ j = ṡi Dw j [Wi − Ū ].
Next we differentiate (8.2.17), with respect to τ , thus obtaining

(8.2.18) (λ j − si )ẅ j + (λ̇ j − 2ṡi )ẇ j = s̈i Dw j [Wi − Ū ] + ṡi Ẇ�
i D2w j [Wi − Ū ].

We differentiate (8.2.18), with respect to τ , and then set τ = 0. We use (8.2.1),
(8.2.2), (8.2.3), (7.3.12) and that both ẇ j and ẅ j vanish at 0, by virtue of Theorem
8.2.3, to conclude

(8.2.19)
···
w j= 1

2

1

λ j − λi

∂λi

∂wi
R�i D2w j Ri ,

where
···
w j is evaluated at 0 and the right-hand side is evaluated at Ū .

Returning to the general case, we next investigate how the shock speed func-
tion si (τ ) evolves along the i-shock curve. We multiply (8.2.16), from the left, by
Li (Wi (τ )) to get

(8.2.20) [λi (Wi (τ ))− si (τ )]Li (Wi (τ ))Ẇi (τ ) = ṡi (τ )Li (Wi (τ ))[Wi (τ )− Ū ].
For τ sufficiently close to 0, but τ �= 0,

(8.2.21) Li (Wi (τ ))Ẇi (τ ) > 0, τ Li (Wi (τ ))[Wi (τ )− Ū ] > 0,

by virtue of (8.2.3). In the applications it turns out that (8.2.21) continue to hold
for a broad range of τ , often extending to the regime of strong shocks. In that case,
(8.2.20) and (8.2.16) immediately yield the following

8.2.4 Lemma. Assume (8.2.21) hold. Then

(8.2.22) ṡi (τ ) > 0 i f and only i f τ [λi (Wi (τ ))− si (τ )] > 0,

(8.2.23) ṡi (τ ) = 0 i f and only i f λi (Wi (τ )) = si (τ ).

Moreover, ṡi (τ ) = 0 implies that Ẇi (τ ) is collinear to Ri (Wi (τ )).

In order to see how si varies across points where ṡi vanishes, we differentiate
(8.2.20) with respect to τ and then evaluate the resulting expression at any τ where
ṡi (τ ) = 0. Since si (τ ) = λi (Wi (τ )) and Ẇi (τ ) = a Ri (Wi (τ )), upon recalling
(7.2.3) we deduce

(8.2.24) s̈i (τ )Li
(
Wi (τ )

)[
Wi (τ )− Ū

] = a2Dλi
(
Wi (τ )

)
Ri
(
Wi (τ )

)
,

whence it follows that at points where ṡi = 0, s̈i has the same sign as τDλi Ri .
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By Lemma 8.2.4, si constant implies that the i-shock curve is an integral curve
of the vector field Ri , along which λi is constant. Consequently, all points along
such a shock curve are states of linear degeneracy of the i-characteristic family. The
converse of this statement is also valid:

8.2.5 Theorem. Assume the i-characteristic family of the hyperbolic system (8.1.1) of
conservation laws is linearly degenerate and λi (Ū ) is a simple eigenvalue of DF(Ū ).
Then the i-shock curve Wi through Ū is the integral curve of Ri through Ū . In fact,
under the proper parametrization, Wi is the solution of the differential equation

(8.2.25) Ẇi = Ri (Wi )

with initial condition Wi (0) = Ū . Along Wi , the characteristic speed λi and all
i-Riemann invariants are constant. The shock speed function si is also constant:

(8.2.26) si (τ ) = λi (Wi (τ )) = λi (Ū ).

Proof. Let Wi denote the solution of (8.2.25) with initial condition Wi (0) = Ū . Then

(8.2.27) [DF(Wi (τ ))− λi (Wi (τ ))I ]Ẇi (τ ) = 0.

Since Dλi (U )Ri (U ) = 0, λ̇i = 0 and so λi (Wi (τ )) = λi (Ū ). Integrating (8.2.27)
from 0 to τ yields

(8.2.28) F(Wi (τ ))− F(Ū ) = λi (Ū )[Wi (τ )− Ū ],
which establishes that Wi is the i-shock curve through Ū , with corresponding shock
speed function si given by (8.2.26). This completes the proof.

The following important implication of Theorem 8.2.5 provides an alternative
characterization of linear degeneracy:

8.2.6 Corollary. When the i-characteristic family of the hyperbolic system (8.1.1) is
linearly degenerate, there exist traveling wave solutions

(8.2.29) U (x, t) = V (x − σ t),

for any σ in the range of the i-characteristic speed λi .

Proof. Let σ = λi (Ū ), for some state Ū . Consider the i-shock curve Wi through Ū ,
which satisfies (8.2.25). Take any C1 function τ = τ(ξ) and define U by (8.2.29),
with V (ξ) = Wi (τ (ξ)). By account of (8.2.25) and (8.2.26),

(8.2.30) ∂tU + ∂x F(U ) = dτ

dξ

[
DF
(
Wi (τ )

)− λi
(
Wi (τ )

)
I
]

Ri
(
Wi (τ )

) = 0.

The proof is complete.
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It is natural to inquire whether an i-shock curve may be an integral curve of the
vector field Ri in the absence of linear degeneracy. It turns out that this may only
occur under very special circumstances:

8.2.7 Theorem. For the hyperbolic system (8.1.1), assume Ū is a state of gen-
uine nonlinearity for the i-characteristic family and λi (Ū ) is a simple eigenvalue
of DF(Ū ). The i-shock curve through Ū coincides with the integral curve of the field
Ri (i.e. the i-rarefaction wave curve) through Ū if and only if the latter is a straight
line in state space.

Proof. If the i-shock curve Wi through Ū coincides with the integral curve of Ri

through Ū , then Ẇi (τ ) must be collinear to Ri (Wi (τ )). In that case, (8.2.16) imples

(8.2.31) [λi (Wi (τ ))− si (τ )]Ẇi (τ ) = ṡi (τ )[Wi (τ )− Ū ].
For τ near 0, but τ �= 0, it is λi (Wi (τ )) �= si (τ ), by genuine nonlinearity. Therefore,
(8.2.31) implies that the graph of Wi is a straight line through Ū .

Conversely, assume the integral curve of Ri through Ū is a straight line, which
may be parametrized as U = Wi (τ ), where Wi is some smooth function satisfying
Wi (0) = Ū , as well as (8.2.3) and (8.2.4) (note that DRi (Ū )Ri (Ū ) is necessarily
collinear to Ri (Ū )). We may then determine a scalar-valued function si (τ ) such that

(8.2.32) F(Wi (τ ))− F(Ū ) =
∫ τ

0
DF(Wi (ζ ))Ẇi (ζ )dζ

=
∫ τ

0
λi (Wi (ζ ))Ẇi (ζ )dζ = si (τ )[Wi (τ )− Ū ].

Thus Wi is the i-shock curve through Ū . This completes the proof.

Special as it may be, the class of hyperbolic systems of conservation laws with
coinciding shock and rarefaction wave curves of each characteristic family includes
some noteworthy examples. Consider, for instance, the system (7.3.18) of elec-
trophoresis. Notice that, for i = 1, · · · , n, the level surfaces of the i-Riemann in-
variant Wi , determined through (7.3.21) or (7.3.22), are hyperplanes. In particular,
for i = 1, · · · , n, the integral curves of the vector field Ri are the straight lines pro-
duced by the intersection of the level hyperplanes of the n − 1 Riemann invariants
w1, · · · , wi−1, wi+1, · · · , wn . Consequently, the conditions of Theorem 8.2.7 apply
to the system (7.3.18).

In the presence of multiple characteristic speeds, the Hugoniot locus may con-
tain multi-dimensional varieties, in the place of shock curves. In that connection it
is instructive to consider the model system (7.2.11), for which the origin is an um-
bilic point. When a state (ū, v̄) is joined to a state (u, v) by a shock of speed s, the
Rankine-Hugoniot condition reads

(8.2.33)

⎧⎨⎩ (u
2 + v2)u − (ū2 + v̄2)ū = s(u − ū)

(u2 + v2)v − (ū2 + v̄2)v̄ = s(v − v̄).
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Notice that when (ū, v̄) �= (0, 0), the Hugoniot locus of (ū, v̄) consists of the cir-
cle u2 + v2 = ū2 + v̄2, along which the shock speed is constant, s = ū2 + v̄2,
and the straight line v̄u = ūv, which connects (ū, v̄) to the origin. Thus, the 1-
characteristic family provides an example of the application of Theorem 8.2.5 while
the 2-characteristic family satisfies the assumptions of Theorem 8.2.7. On the other
hand, the Hugoniot locus of the umbilic point (0, 0) is the entire plane, because any
point (u, v) can be joined to (0, 0) by a shock of speed s = u2 + v2.

Not all systems in which strict hyperbolicity fails exhibit the same behavior. For
instance, for the system

(8.2.34)

⎧⎨⎩ ∂t u + ∂x [2(u2 + v2)u] = 0

∂tv + ∂x [(u2 + v2)v] = 0,

in which strict hyperbolicity also fails at the origin, the Hugoniot locus of (0, 0)
consists of two lines, namely the u-axis and the v-axis.

8.3 The Lax Shock Admissibility Criterion;
Compressive, Overcompressive and Undercompressive Shocks

An i-shock of speed s which joins the state U− , on the left, to the state U+ , on the
right, is said to satisfy the Lax E-condition if

(8.3.1) λi (U−) ≥ s ≥ λi (U+).

In particular, when the left or the right part of (8.3.1) is satisfied as an equality, the
shock is called a left or a right i-contact discontinuity; and when both parts of (8.3.1)
hold as equalities, the shock is called an i-contact discontinuity. For example, by
account of Theorem 8.2.5, any weak shock associated with a linearly degenerate
characteristic family is necessarily a contact discontinuity. Notice that, with the ex-
ception of contact discontinuities, (8.3.1) induces an irreversibility condition that
fixes the roles of U− and U+ as left and right states of the shock.

When the above shock is embedded in an otherwise smooth solution, the meaning
of (8.3.1) is that i-characteristics from the left catch up with i-characteristics from
the right and they collide at the shock. Thus “information” from the past propagat-
ing along i-characteristics is absorbed and lost into admissible shocks. In contrast,
shocks that violate (8.3.1) become sources of new “information” which is then car-
ried along i-characteristics into the future. Postulating the Lax E-condition may ap-
pear ad hoc at this point, but justification is provided by its implications for stability
of weak solutions as well as through its connection with other, physically motivated,
shock admissibility criteria. These issues will be discussed at length in following
sections.

Let us begin the investigation with the scalar conservation law (7.1.2). The char-
acteristic speed is λ(u) = f ′(u) and so (8.3.1) takes the form
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(8.3.2) f ′(u−) ≥ s ≥ f ′(u+),

where s is the shock speed computed through the Rankine-Hugoniot jump condition:

(8.3.3) s = f (u+)− f (u−)
u+ − u−

.

The reader will immediately realize the geometric interpretation of (8.3.2) upon
noticing that f ′(u−) and f ′(u+) are the slopes of the graph of f at the points
(u−, f (u−)) and (u+, f (u+)) while s is the slope of the chord that connects
(u−, f (u−)) with (u+, f (u+)). In particular, when (7.1.2) is genuinely nonlinear,
i.e., f ′′(u) �= 0 for all u, then (8.3.2) reduces to u− < u+ if f ′′(u) < 0, and
u− > u+ if f ′′(u) > 0.

Next we consider the system (7.1.8) of isentropic elasticity. The characteristic
speeds are recorded in (7.2.4) and the shock speeds in (8.1.11), so that (8.3.1) as-
sumes the form

(8.3.4)

σ ′(u−) ≤ σ(u+)− σ(u−)
u+ − u−

≤ σ ′(u+) or σ ′(u−) ≥ σ(u+)− σ(u−)
u+ − u−

≥ σ ′(u+),

for 1-shocks or 2-shocks, respectively. The geometric interpretation of (8.3.4) is
again clear. When (7.1.8) is genuinely nonlinear, i.e., σ ′′(u) �= 0 for all u, (8.3.4)
reduces to u− < u+ or u− > u+ if σ ′′(u) > 0, and to u− > u+ or u− < u+
if σ ′′(u) < 0. Equivalently, in terms of velocity, by virtue of (8.1.10): v− < v+ if
σ ′′(u) > 0 and v− > v+ if σ ′′(u) < 0, for both shock families.

A similar analysis applies to the system (7.1.10) of isentropic flow of a polytropic
gas, with characteristic speeds given by (7.2.10), and yields that a 1-shock (or 2-
shock) that joins the state (ρ−, v−), on the left, to the state (ρ+, v+), on the right,
satisfies the Lax E-condition if and only if ρ− < ρ+ (or ρ− > ρ+). In other words,
the passing of an admissible shock front compresses the gas.

When λi is a simple eigenvalue of DF and we are dealing with i-shocks of (at
most) moderate strength, the remaining characteristic speeds are well-separated and
do not interfere, i.e., (8.3.1) may be extended into

(8.3.5) λ j (U±) > λi (U−) ≥ s ≥ λi (U+) > λk(U±), j > i > k.

Because classical gas dynamics has served as the prototype for the development
of the general theory, shocks that satisfy (8.3.5) as strict inequalities are called
compressive. Thus, n + 1 characteristics are impinging on compressive shocks. In
many special systems, such as those considered above, (8.3.5) may hold even in the
realm of strong shocks. On the other hand, in the presence of umbilic points and/or
strong shocks, one may encounter the situation in which a shock satisfies the Lax
E-condition simultaneously for two distinct characteristic families i and j , say

(8.3.6) λ j (U−) > λi (U−) > s > λ j (U+) > λi (U+),
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in which case more than n + 1 characteristics are impinging on the shock. Such
shocks are called overcompressive. An example is provided by system (7.2.11). Re-
calling the form of the Hugoniot locus, described in Section 8.2, we consider a
shock of speed s, joining, on the left, a state (u−, v−), lying on the unit circle, to
a state (u+, v+) = a(u−, v−), on the right, where a is some constant. From (7.2.12),
λ1(u−, v−) = 1, λ2(u−, v−) = 3, λ1(u+, v+) = a2, λ2(u+, v+) = 3a2. Further-
more, the Rankine-Hugoniot condition (8.2.33) yields s = a2 + a + 1. Therefore, if
a ∈ (− 1

2 , 0),

(8.3.7) λ2(u−, v−) > λ1(u−, v−) > s > λ2(u+, v+) > λ1(u+, v+),

i.e., the shock is overcompressive.
The opposite case of undercompressive shocks, in which fewer than n+1 charac-

teristics impinge on the shock, may arise as well. In that situation all j-characteristics
are crossing the shock, from right to left for j = 1, . . . , i and from left to right for
j = i+1, . . . , n. Therefore, the Rankine-Hugoniot conditions must be supplemented
with an additional jump condition, which is dubbed “kinetic relation”.

The occurrence of overcompressive or undercompressive shocks raises serious
difficulties in the theory, which, at the time of this writing, have only been partially
resolved. To avoid such complications, we shall limit our investigation to the range of
shock strength in which the assumptions of Theorem 8.2.2 are satisfied. In particular,
this will encompass the case of weak shocks. Thus, with reference to the system
(8.1.1), let us consider a state U− , on the left, which is joined to a state U+ , on the
right, by an i-shock of speed s. Assuming λi (U−) is a simple eigenvalue of DF(U−),
let Wi denote the i-shock curve through U− (cf. Theorem 8.2.1), so that U− = Wi (0)
and U+ = Wi (τ ). Furthermore, λi (U−) = si (0) and s = si (τ ). We show that if
τ < 0 and ṡi (·) ≥ 0 on (τ, 0), then the shock satisfies the Lax E-condition. Indeed,
ṡi (·) ≥ 0 implies s = si (τ ) ≤ si (0) = λi (U−), which is the left half of (8.3.1). At
the same time, so long as (8.2.22) and (8.2.23) hold at τ, ṡi (·) ≥ 0 implies, by virtue
of Theorem 8.2.4, that s = si (τ ) ≥ λi (Wi (τ )) = λi (U+), namely, the right half of
(8.3.1). A similar argument demonstrates that the Lax E-condition also holds when
τ > 0 and ṡi (·) ≤ 0 on (0, τ ), but it is violated if either τ < 0 and ṡi (·) < 0 on
(τ, 0) or τ > 0 and ṡi (·) > 0 on (0, τ ). The implications of the above statements to
the genuine nonlinear case, in which, by virtue of (8.2.2), ṡi (·) does not change sign
across 0, are recorded in the following

8.3.1 Theorem. Assume U− is a point of genuine nonlinearity of the i-characteristic
family of the system (8.1.1), with Dλi (U−)Ri (U−) > 0 (or < 0). Suppose λi (U−)
is a simple eigenvalue of DF(U−) and let Wi denote the i-shock curve through U− ,
with U− = Wi (0). Then a weak i-shock that joins U− to a state U+ = Wi (τ ) satisfies
the Lax E-condition if and only if τ < 0 (or τ > 0).

Thus, in the genuinely nonlinear case, one half of the shock curve is compatible
with the Lax E-condition (8.3.1), as strict inequalities, and the other half is incom-
patible with it. When U− is a point of linear degeneracy of the i-characteristic field,
so that ṡi (0) = 0, the situation is more delicate: If s̈i (0) < 0, ṡi (τ ) is positive for
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τ < 0 and negative for τ > 0, so that weak i-shocks that join U− to U+ = Wi (τ )

are admissible, regardless of the sign of τ . On the other hand, if s̈i (0) > 0, ṡi (τ ) is
negative for τ < 0 and positive for τ > 0, in which case all (sufficiently) weak i-
shocks violate the Lax E-condition. As noted above, when the i-characteristic family
itself is linearly degenerate, i-shocks are i-contact discontinuities satisfying (8.3.1)
as equalities.

Experience indicates that the primary role of the Lax E-condition is to secure
the stability of the interaction of the shock, as an entity, with its adjacent “smoother”
parts of the solution. This view is corroborated by the following

8.3.2 Theorem. Assume the system (8.1.1) is strictly hyperbolic. Consider initial
data U0 such that U0(x) = UL(x) for x in (−∞, 0) and U0(x) = UR(x) for x
in (0,∞), where UL and UR are smooth functions that are bounded, together with
their first derivatives, on (−∞,∞). Assume, further, that the state U− = UL(0), on
the left, is joined to the state U+ = UR(0), on the right, by an i-shock of moderate
strength and speed s, which satisfies the strict Lax E-condition

(8.3.8) λi (U−) > s > λi (U+).

Then there exist: T > 0; a smooth function x = χ(t) on [0, T ), with χ(0) = 0;
and a function U on (−∞,∞) × [0, T ) with initial values U0 and the following
properties. U is smooth and satisfies (8.1.1), in the classical sense, for any (x, t), with
t ∈ [0, T ) and x �= χ(t). Furthermore, for t ∈ [0, T ) one-sided limits U (χ(t)−, t)
and U (χ(t)+, t) exist and are joined by a weak i-shock of speed χ̇ (t), which satisfies
the Lax E-condition.

The proof, which is found in the references cited in Section 8.8, employs point-
wise bounds on U and its derivatives, obtained by monitoring the evolution of these
functions along characteristics; i.e., it is of the same genre as the proof of Theorem
7.8.1. One may gain some insight from the very simple special case n = 1.

We thus consider the scalar conservation law (7.1.2) and assign initial data u0
such that u0(x) = uL(x) for x ∈ (−∞, 0) and u0(x) = u R(x) for x ∈ (0,∞), where
uL and u R are bounded and uniformly Lipschitz continuous functions on (−∞,∞).
Furthermore, u− = uL(0) and u+ = u R(0) satisfy

(8.3.9) f ′(u−) >
f (u+)− f (u−)

u+ − u−
> f ′(u+).

Let u−(x, t) and u+(x, t) be the classical solutions of (7.1.2) with initial data uL(x)
and u R(x), respectively, which exist on (−∞,∞)×[0, T ), for some T > 0, by virtue
of Theorem 6.1.1. On [0, T ) we define the function χ as solution of the ordinary
differential equation

(8.3.10)
dx

dt
= f (u+(x, t))− f (u−(x, t))

u+(x, t)− u−(x, t)

with χ(0) = 0. Finally, we define the function u on (−∞,∞)× [0, T ) by
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(8.3.11) u(x, t) =
⎧⎨⎩u−(x, t), t ∈ [0, T ), x < χ(t)

u+(x, t), t ∈ [0, T ), x > χ(t).

Clearly, u satisfies (7.1.2), in the classical sense, for any (x, t) with t ∈ [0, T ) and
x �= χ(t). Furthermore, u(χ(t)−, t) and u(χ(t)+, t) are joined by a shock of speed
χ̇(t). Finally, for T sufficiently small, the Lax E-condition

(8.3.12) f ′(u(χ(t)−, t)) > χ̇(t) > f ′(u(χ(t)+, t)), t ∈ [0, T ),

holds by continuity, since it is satisfied at t = 0. Notice that it is because of the
Lax E-condition that the solution u solely depends on the initial data, i.e., it is inde-
pendent of the “extraneous” information carried by uL(x) for x > 0 and u R(x) for
x < 0.

It turns out that the assertion of Theorem 8.3.2 remains valid even in the more
general situation where the states U− and U+ are joined by a strong i-shock, provided
that, in addition to the strong Lax E-condition (8.3.8), the following shock stability
conditions hold:

(8.3.13) λi+1(U+) > s > λi−1(U−),

(8.3.14) det[R1(U−), . . . , Ri−1(U−),U+ −U−, Ri+1(U+), . . . , Rn(U+)] �= 0.

For shocks of moderate strength, (8.3.13) follows from (8.3.8), by strict hyperbol-
icity, and (8.3.14) holds automatically, as U+ − U− is nearly collinear to Ri (U±).
Assumption (8.3.14) is a version of the Lopatinski condition, which plays a pivotal
role in the stability theory of shock fronts and boundary-value problems.

As noted in Section 7.1, one-dimensional systems of conservation laws arise ei-
ther in connection to media that are inherently one-dimensional or in the context of
multispace-dimensional media wherein the fields stay constant in all but one spatial
dimension. In the latter situation, Theorem 8.3.2 establishes the stability of planar
shock fronts, albeit only for perturbations that likewise vary solely in the normal
spatial direction. Naturally, it is important to investigate the stability of multispace-
dimensional planar shocks under a broader class of perturbations and, more gener-
ally, the stability of non-planar shock fronts in IRm .

The type of problem addressed by Theorem 8.3.2 may be formulated for hyper-
bolic systems (4.1.1) of conservation laws in IRm as follows. Let UL ,UR be smooth
functions on IRm , and F a smooth (m − 1)-dimensional hypersurface embedded in
IRm and oriented by means of its unit normal vector field ν. Assume that the traces
U− and U+ of UL and UR on F satisfy the Rankine-Hugoniot jump condition (4.3.5).
Denote by U0 the function on IRm which coincides with UL on the negative side of
F and with UR on the positive side of F . It is required to construct an m-dimensional
hypersurface S embedded in IRm × [0, T ), with trace F at t = 0, together with a
piecewise smooth solution U of (4.1.1) on IRm ×[0, T ), with initial values U0 , such
that U is smooth for (x, t) /∈ S. Thus S will be a shock evolving out of F .
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The above problem has been solved under the following assumptions. The sys-
tem (4.1.1) is endowed with a uniformly convex entropy and satisfies a certain struc-
tural condition, valid in particular for the Euler equations of isentropic or nonisen-
tropic gas dynamics. At each point of F , where the unit normal is ν, the Lax E-
condition (8.3.8) together with the stability conditions (8.3.13) and (8.3.14) hold,
with λ j (ν;U ) and R j (ν;U ) in the place of λ j (U ) and R j (U ). Finally, a compli-
cated set of compatibility conditions, involving the normal derivatives ∂ pUL/∂ν

p

and ∂ pUR/∂ν
p of UL and UR , up to a certain order depending on m, is satisfied on

F . These are needed in order to avert the emission of spurious waves from F .
The construction of S and U is performed within the framework of Sobolev

spaces and involves quite sophisticated tools (pseudodifferential operators, paradif-
ferential calculus, etc.). The relevant references are listed in Section 8.8.

Another serious issue of concern is the internal stability of shocks. It turns out
that the Lax E-condition is effective in that direction as well, so long as the system is
genuinely nonlinear and the shocks are weak; however, it is insufficient in more gen-
eral situations. For that purpose, we have to consider additional, more discriminating
shock admissibility criteria, which will be introduced in the following sections.

8.4 The Liu Shock Admissibility Criterion

The Liu shock admissibility test is more discriminating than the Lax E-condition
and strives to capture the internal stability of shocks. By its very design, it makes
sense only in the context of shocks joining states that may be connected by shock
curves. Thus, for general systems, its applicability is limited to shocks of moderate
strength. Nevertheless, in special systems it also applies to strong shocks.

For a given state U− , assume λi (U−) is a simple eigenvalue of DF(U−) so that
the i-shock curve Wi (τ ;U−) through U− is well defined, by Theorem 8.2.1. An i-
shock that joins U− , on the left, to a state U+ = Wi (τ+;U−), on the right, of speed
s, satisfies the Liu E-condition if

(8.4.1) s = si (τ+;U−) ≤ si (τ ;U−), for all τ between 0 and τ+ .

Similar to the Lax E-condition, the justification of the above admissibility cri-
terion will be established a posteriori, through its connection to other, physically
motivated, shock admissibility criteria, as well as by its role in the construction of
stable solutions to the Riemann problem, in Chapter IX.

As U− and U+ are joined by an i-shock, U− must also lie on the i-shock curve
emanating from U+ , say U− = Wi (τ−;U+). So long as (8.2.21) holds along the
above shock curves, (8.4.1) is equivalent to the dual statement

(8.4.2) s = si
(
τ−;U+

) ≥ si
(
τ ;U+

)
, for all τ between 0 and τ− .

We proceed to verify that (8.4.1) implies (8.4.2) under the hypothesis that all min-
ima of the function si (τ ;U−) are nondegenerate. (The general case may be reduced
to the above by a perturbation argument, and the proof of the converse statement
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is similar.) For definiteness, we assume that τ+ > 0, in which case τ− < 0. From
(8.4.1) it follows that either ṡi (τ+;U−) < 0 or ṡi (τ+;U−) = 0 and s̈i (τ+;U−) > 0.
Thus, by virtue of (8.2.22), (8.2.23) and (8.2.24), either λi (U+) < s or λi (U+) = 0
and Dλi (U+)Ri (U+) > 0. In either case, recalling (8.2.1) and (8.2.2), we de-
duce that si (τ ;U+) < s for τ < 0, near zero. If (8.4.2) is violated for some
τ ∈ (τ−, 0), si (τ ;U+) − s must be changing sign across some τ0 ∈ (τ−, 0). Let
U0 = si (τ0;U+). Since both U− and U0 are joined to U+ by shocks of speed s, U−
and U0 can also be joined to each other by a shock of speed s, i.e., U0 = Wi (τ1;U−),
for some τ1 ∈ (0, τ+), and si (τ1;U−) = s. Thus, (8.4.1) implies ṡi (τ1;U−) = 0
and s̈i (τ1;U−) > 0, and so, by account of (8.2.23) and (8.2.24), λi (U0) = s and
Dλi (U0)Ri (U0) > 0. But then (8.2.23) and (8.2.24) again yield ṡi (τ0;U+) = 0 and
s̈i (τ0;U+) < 0 so that, contrary to our hypothesis, si (τ ;U+)− s cannot change sign
across τ0 .

In particular, applying (8.4.1) and (8.4.2) for τ = 0 and recalling (8.2.1), we
arrive at (8.3.1). We have thus established

8.4.1 Theorem. Within the range where (8.2.21) holds, any shock satisfying the Liu
E-condtion also satisfies the Lax E-condition.

When the system is genuinely nonlinear, these two criteria coincide, at least in
the realm of weak shocks:

8.4.2 Theorem. Assume the i-characteristic family is genuinely nonlinear and λi is
a simple characteristic speed. Then weak i-shocks satisfy the Liu E-condition if and
only if they satisfy the Lax E-condition.

Proof. The Liu E-condition implies the Lax E-condition by Theorem 8.4.1. To
show the converse, assume the state U− , on the left, is joined to the state U+ =
Wi (τ+;U−), on the right, by a weak i-shock of speed s, which satisfies the Lax
E-condition (8.3.1). Suppose, for definiteness, Dλi (U−)Ri (U−) > 0 (the case
of the opposite sign is similar). By virtue of Theorem 8.3.1, τ+ < 0. Since the
shock is weak, by Theorem 8.2.1, ṡi (τ ;U−) > 0 on the interval (τ+, 0). Then
s = si (τ+;U−) < si (τ ;U−) for τ ∈ (τ+, 0), i.e., the Liu E-condition holds. This
completes the proof.

When the system is not genuinely nonlinear and/or the shocks are not weak, the
Liu E-condition is stricter than the Lax E-condition. This will be demonstrated by
means of the following examples.

Let us first consider the scalar conservation law (7.1.2). The shock curve is the
u-axis and we may use u as the parameter ξ . The shock speed is given by (8.3.3). It is
then clear that a shock joining the states u− and u+ will satisfy the Liu E-condition
(8.4.1), (8.4.2) if and only if

(8.4.3)
f (u0)− f (u−)

u0 − u−
≥ f (u+)− f (u−)

u+ − u−
≥ f (u+)− f (u0)

u+ − u0
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holds for every u0 between u− and u+ . This is the celebrated Oleinik E-condition.
It is easily memorized as a geometric statement: When u− < u+ (or u− > u+) the
shock that joins u− , on the left, to u+ , on the right, is admissible if the arc of the
graph of f with endpoints (u−, f (u−)) and (u+, f (u+)) lies above (or below) the
chord that connects the points (u−, f (u−)) and (u+, f (u+)). Letting u0 converge
to u− and to u+ , we deduce that (8.4.3) implies (8.3.2). The converse, of course, is
generally false, unless f is convex or concave. We have thus demonstrated that in
the scalar conservation law the Liu E-condition is stricter than the Lax E-condition
when f contains inflection points. In the genuinely nonlinear case, the Liu and Lax
E-conditions are equivalent.

We now turn to the system (7.1.8) of isentropic elasticity. The shock curves are
determined by (8.2.11) so we may use u as parameter instead of ξ . The shock speed
is given by (8.1.11). Therefore, a shock joining the states (u−, v−) and (u+, v+) will
satisfy the Liu E-condition (8.4.1), (8.4.2) if and only if

(8.4.4)
σ (u0)− σ(u−)

u0 − u−
≤
>

σ(u+)− σ(u−)
u+ − u−

≤
>

σ(u+)− σ(u0)

u+ − u0

holds for all u0 between u− and u+ , where “≤” applies for 1-shocks and “≥” applies
for 2-shocks. This is called the Wendroff E-condition. In geometric terms, it may be
stated as follows: When s(u+ − u−) < 0 (or > 0) the shock that joins (u−, v−),
on the left, to (u+, v+), on the right, is admissible if the arc of the graph of σ with
endpoints (u−, σ (u−)) and (u+, σ (u+)) lies below (or above) the chord that con-
nects the points (u−, σ (u−)) and (u+, σ (u+)). Clearly, there is close analogy with
the Oleinik E-condition. Letting u0 in (8.4.4) converge to u− and to u+ , we deduce
that the Wendroff E-condition implies the Lax E-condition (8.3.4). The converse is
true when σ is convex or concave, but false otherwise. Thus, for the system (7.1.8)
the Liu E-condition is stricter than the Lax E-condition when σ contains inflection
points. In the genuinely nonlinear case, the Liu and Lax E-conditions are equivalent.

As we shall see, the Oleinik E-condition and the Wendroff E-condition fol-
low naturally from other admissibility criteria. To a great extent these special E-
conditions provided the motivation for postulating the general Liu E-condition.

8.5 The Entropy Shock Admissibility Criterion

The idea of employing entropy inequalities to weed out spurious weak solutions of
general hyperbolic systems of conservation laws was introduced in Section 4.5 and
was used repeatedly in Chapters IV, V, and VI. It was observed that in the context of
BV weak solutions the entropy condition reduces to the set of inequalities (4.5.5),
to be tested at every point of the shock set. For the system (8.1.1), in one-space
dimension, (4.5.5) assumes the form

(8.5.1) −s[η(U+)− η(U−)] + q(U+)− q(U−) ≤ 0,

where (η, q) is an entropy-entropy flux pair satisfying (7.4.1), Dq = DηDF . The
quantity on the left-hand side of (8.5.1) will be called henceforth the entropy produc-
tion across the shock.
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The fact that the entropy condition reduces to a pointwise test on shocks has
played a dominant role in shaping the prevailing view that admissibility need be
tested only at the level of shocks, i.e., that a general BV weak solution will be ad-
missible if and only if each one of its shocks is admissible.

In setting up an entropy admissibility condition (8.5.1), the first task is to des-
ignate the appropriate entropy-entropy flux pair (η, q). Whenever (8.1.1) arises in
connection to physics, the physically appropriate entropy should always be desig-
nated. In particular, the pairs (7.4.9), (7.4.10) and (7.4.11) must be designated for the
systems (7.1.5), (7.1.8) and (7.1.10), respectively1.

In the absence of guidelines from physics, or when the entropy-entropy flux pair
supplied by physics is inadequate to rule out all spurious shocks, additional entropy-
entropy flux pairs must be designated (whenever available), motivated by other ad-
missibility criteria, such as viscosity. In that connection, we should bear in mind that,
as demonstrated in earlier chapters, convexity of the entropy function is a desirable
feature.

Let us begin the investigation with the scalar conservation law (7.1.2). The shock
speed s is given by (8.3.3). In accordance with the discussion in Chapter VI, admis-
sible shocks must satisfy (8.5.1) for all convex functions η. However, as explained in
Section 6.2, (8.5.1) need only be tested for the family (6.2.5) of entropy-entropy flux
pairs, namely

(8.5.2) η(u; ū) = (u − ū)+ , q(u; ū) = sgn(u − ū)+[ f (u)− f (ū)].
It is immediately seen that (8.5.1) will be satisfied for every (η, q) in the family
(8.5.2) if and only if (8.4.3) holds for all u0 between u− and u+ . We have thus re-
derived the Oleinik E-condition encountered in Section 8.4. This implies that, for the
scalar conservation law, the entropy admissibility condition, applied for all convex
entropies, is equivalent to the Liu E-condition.

It is generally impossible to recover the Oleinik E-condition from the entropy
condition (8.5.1) for a single entropy-entropy flux pair. Take for example

(8.5.3) η(u) = 1
2 u2 , q(u) =

∫ u

0
ω f ′(ω)dω.

By virtue of (8.3.3) and after a short calculation, (8.5.1) takes the form

(8.5.4) 1
2 [ f (u+)+ f (u−)](u+ − u−)−

∫ u+

u−
f (ω)dω ≤ 0.

Notice that the entropy production across the shock is here measured by the signed
area of the domain bordered by the arc of the graph of f with endpoints (u−, f (u−)),

1 In applying (8.5.1) to the system (7.1.5), with entropy-entropy flux pair (7.4.9), one should
not confuse s in (7.4.9), namely the physical entropy, with s in (8.5.1), the shock speed.
Since q = 0, (8.5.1) here states that “after a shock passes, the physical entropy must in-
crease.” The reader is warned that this statement is occasionally misinterpreted as a general
physical principle and is applied even when it is no longer appropriate.
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(u+, f (u+)), and the chord that connects (u−, f (u−)) with (u+, f (u+)). Clearly,
the Oleinik E-condition (8.4.3) implies (8.5.4) but the converse is generally false.
Moreover, neither (8.5.4) generally implies the Lax E-condition (8.3.2) nor the other
way around. However, when f is convex or concave, (8.5.4), (8.4.3) and (8.3.2) are
all equivalent.

Next we turn to the system (7.1.8) of isentropic elasticity. We employ the entropy-
entropy flux pair (η, q) given by (7.4.10). An interesting, rather lengthy, calculation,
which involves the Rankine-Hugoniot condition (8.1.10), shows that (8.5.1) here re-
duces to

(8.5.5) s{ 1
2 [σ(u+)+ σ(u−)](u+ − u−)−

∫ u+

u−
σ(ω)dω} ≤ 0.

The quantity in braces on the left-hand side of (8.5.5) measures the signed area of the
set bordered by the arc of the graph of σ with endpoints (u−, σ (u−)) , (u+, σ (u+))
and the chord that connects (u−, σ (u−)) with (u+, σ (u+)). Hence, the Wendroff E-
condition (8.4.4) implies (8.5.5) but the converse is generally false. Neither (8.5.5)
necessarily implies the Lax E-condition (8.3.4) nor the other way around. However,
when σ is convex or concave, (8.5.5), (8.4.4) and (8.3.4) are all equivalent. Of course,
the system (7.1.8) is endowed with a rich collection of entropies, so one may employ
additional entropy-entropy flux pairs to recover the Wendroff E-condition from the
entropy condition, but this shall not be attempted here.

We now consider the entropy shock admissibility condition (8.5.1) for a general
system (8.1.1), under the assumption that U− and U+ are connected by a shock
curve. In particular, this will encompass the case of shocks of moderate strength.
We thus assume λi (U−) is a simple characteristic speed, consider the i-shock curve
Wi (τ ;U−) through U− , and let U+ = Wi (τ+;U−), s = si (τ+;U−). The entropy
production along the i-shock curve is given by

(8.5.6) E(τ ) = −si (τ )[η(Wi (τ ))− η(U−)] + q(Wi (τ ))− q(U−) .

Differentiating (8.5.6) and using (7.4.1) yields

(8.5.7) Ė = −ṡi [η(Wi )− η(U−)] − si Dη(Wi )Ẇi + Dη(Wi )DF(Wi )Ẇi .

Combining (8.5.7) with (8.2.16) (for Ū = U−), we deduce

(8.5.8) Ė = −ṡi {η(Wi )− η(U−)− Dη(Wi )[Wi −U−]} .
Notice that the right-hand side of (8.5.8) is of quadratic order in the strength of

the shock. Therefore, the entropy production E(τ+) across the shock, namely the
integral of Ė(τ ) from 0 to τ+ , is of cubic order in τ+ . We have thus established the
following

8.5.1 Theorem. The entropy production across a weak shock is of third order in the
strength of the shock.
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When U− is a point of linear degeneracy of the i-characteristic family, ṡi (0;U−)
vanishes and so the entropy production across the shock will be of (at most) fourth
order in the strength of the shock. In particular, when the i-characteristic family is
linearly degenerate, ṡi vanishes identically, by Theorem 8.2.5, and so

8.5.2 Theorem. When the i-characteristic family is linearly degenerate, the entropy
production across any i-shock (i-contact discontinuity) is zero.

Turning now to the issue of admissibility of the shock, we observe that when
η is a convex function the expression in braces on the right-hand side of (8.5.8) is
nonpositive. Thus Ė and ṡi have the same sign. Consequently, the entropy admissi-
bility condition E(τ+) ≤ 0 will hold if τ+ < 0 and ṡi ≥ 0 on (τ+, 0), or if τ+ > 0
and ṡi ≤ 0 on (0, τ+); while it will be violated when either τ+ < 0 and ṡi < 0 on
(τ+, 0) or τ+ > 0 and ṡi > 0 on (0, τ+). Recalling our discussion in Section 8.3,
we conclude that the entropy admissibility condition and the Lax E-condition are
equivalent in the range of τ , on either side of 0, where ṡi (τ ) does not change sign. In
particular, this will be the case when the characteristic family is genuinely nonlinear
and the shocks are weak:

8.5.3 Theorem. When the i-characteristic family is genuinely nonlinear and λi is
a simple characteristic speed, the entropy admissibility condition and the Lax E-
condition for weak i-shocks are equivalent.

In order to escape from the realm of genuine nonlinearity and weak shocks, let
us consider the condition

(8.5.9) τ Ẇ�
i (τ ;U−)D2η(Wi (τ ;U−))[Wi (τ ;U−)−U−] ≥ 0.

Recalling (7.4.3), (7.4.4) and Theorem 8.2.1, we conclude that when the entropy η
is convex (8.5.9) will always hold for weak i-shocks; it will also be satisfied for
shocks of moderate strength when i-shock curves extend into that regime; and may
even hold for strong shocks, so long as Ẇi and Wi −U− keep pointing nearly in the
direction of Ri .

8.5.4 Theorem. Assume that the i-shock curve Wi (τ ;U−) through U− , and corre-
sponding shock speed function si (τ ;U−), are defined on an interval (α, β) contain-
ing 0, and satisfy (8.5.9) for τ ∈ (α, β), where η is a convex entropy of the system.
Then any i-shock joining U− , on the left, to U+ = Wi (τ+;U−), on the right, with
speed s, which satisfies the Liu E-condition (8.4.1) also satisfies the entropy admis-
sibility condition (8.5.1).

Proof. We set

(8.5.10) Q(τ ) = η(Wi (τ ;U−))− η(U−)− Dη(Wi (τ ;U−))[Wi (τ ;U−)−U−].
By virtue of (8.5.9),
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(8.5.11) τ Q̇(τ ) ≤ 0.

Integrating (8.5.8) from 0 to τ+ , integrating by parts and using (8.5.10), (8.5.11)
and (8.4.1) we obtain

(8.5.12) E(τ+) = −
∫ τ+

0
ṡi (τ ;U−)Q(τ )dτ = −s Q(τ+)+

∫ τ+

0
si (τ ;U−)Q̇(τ )dτ

≤ −s Q(τ+)+ s
∫ τ+

0
Q̇(τ )dτ = 0,

which shows that the shock satisfies (8.5.1). This completes the proof.

8.6 Viscous Shock Profiles

The idea of using the vanishing viscosity approach for identifying admissible weak
solutions of hyperbolic systems of conservation laws was introduced in Section 4.6.
In the present setting of one-space dimension, for the system (8.1.1), Equation (4.6.1)
reduces to

(8.6.1) ∂tU (x, t)+ ∂x F(U (x, t)) = µ∂x [B(U (x, t))∂xU (x, t)].
As already explained in Section 4.6, the selection of the n × n matrix-valued

function B may be suggested by the physical context of the system or it may just be
an artifact of the analysis. Consider for example the dissipative systems

(8.6.2) ∂t u + ∂x f (u) = µ∂2
x u,

(8.6.3)

⎧⎨⎩
∂t u − ∂xv = 0

∂tv − ∂xσ(u) = µ∂x (u−1∂xv),

(8.6.4)

⎧⎨⎩ ∂t u + ∂x [(u2 + v2)u] = µ∂2
x u

∂tv + ∂x [(u2 + v2)v] = µ∂2
x v,

associated with the hyperbolic systems (7.1.2), (7.1.8), and (7.2.11). In so far as
(7.1.8) is interpreted as the system of isentropic gas dynamics, the selection of vis-
cosity in (8.6.3) is dictated by physics2. On the other hand, in (8.6.2) and (8.6.4) the
viscosity is artificial.

In contrast to the entropy criterion, it is not at all clear that admissibility of weak
solutions by means of the vanishing viscosity criterion is decided solely at the level

2 Compare with (4.6.2). The variable viscosity coefficient µu−1 is adopted so that in the
spatial setting, where measurements are usually performed, viscosity will be constant µ.
Of course this will make sense only when u > 0.
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of the shock set. However, taking that premise for granted, it will suffice to test
admissibility in the context of solutions in the simple form

(8.6.5) U (x, t) =
⎧⎨⎩U− , x < st

U+ , x > st,

namely a shock of constant speed s joining the constant state U− , on the left, to the
constant state U+ , on the right. Presumably, functions (8.6.5) may be approximated,
as µ ↓ 0, by a family of solutions Uµ of (8.6.1) in the form of traveling waves,
namely functions of the single variable x − st . Taking advantage of the scaling in
(8.6.1), we seek a family of solutions in the form

(8.6.6) Uµ(x, t) = V

(
x − st

µ

)
.

Substituting in (8.6.1), we deduce that V should satisfy the ordinary differential
equation

(8.6.7) [B(V (τ ))V̇ (τ )]· = Ḟ(V (τ ))− sV̇ (τ ),

where the overdot denotes differentiation with respect to τ = (x − ct)/µ. We are
interested in solutions in which V̇ vanishes at V = U− and so, upon integrating
(8.6.7) once with respect to τ ,

(8.6.8) B(V )V̇ = F(V )− F(U−)− s[V −U−].
Notice that the right-hand side of (8.6.8) vanishes on the set of V that may be joined
to U− by a shock of speed s. This set includes, in particular, the state U+ .

We say that U− , on the left, is connected to U+ , on the right, by a viscous shock
profile if there is a smooth arc joining U− to U+ which is an invariant set for the
differential equation (8.6.8) and, in addition, at any point where there is motion, the
flow is directed from U− to U+ .

The shock that joins U− , on the left, to U+ , on the right, is said to satisfy the
viscous shock admissibility criterion if U− can be connected to U+ by a viscous
shock profile.

Determining viscous shock profiles is important not only because they shed light
on the issue of admissibility but also because they provide information (at least when
the matrix B is physically motivated) on the nature of the sharp transition modelled
by the shock, the so-called structure of the shock. Indeed, the stretching of coordi-
nates involved in (8.6.6), as µ ↓ 0, allows one, as it were, to observe the shock under
the microscope.

Any contact discontinuity associated with a linearly degenerate characteristic
family satisfies the viscous shock admissibility criterion. Indeed, in that case, by
virtue of Theorem 8.2.5, the shock curve itself serves as the viscous shock profile
and all of its points are equilibria of the differential equation (8.6.8). The opposite
extreme arises when U− and U+ are the only equilibrium points on the viscous shock
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profile, in which case U− is the α-limit set and U+ is the ω-limit set of an orbit of
the differential equation (8.6.8). In general, the viscous shock profile may contain
a (finite or infinite) number of equilibrium points with any two consecutive ones
connected by orbits of (8.6.8).

Let us illustrate the above by means of the scalar conservation law (7.1.2) and the
corresponding dissipative equation (8.6.2). System (8.6.8) now reduces to the scalar
equation

(8.6.9) u̇ = f (u)− f (u−)− s(u − u−).

It is clear that u− will be connected to u+ by a viscous shock profile if and only if
the right-hand side of (8.6.9) does not change sign between u− and u+, and indeed
it is nonnegative when u− < u+ and nonpositive when u− > u+ . Recalling (8.3.3),
we conclude that in the scalar conservation law (7.1.2) a shock satisfies the viscous
shock admissibility criterion if and only if the Oleinik E-condition (8.4.3) holds.
When (8.4.3) holds as a strict inequality for any u0 (strictly) between u− and u+ ,
then u− is connected to u+ with a single orbit. By contrast, when (8.4.3) becomes
equality for a set of intermediate u0 , we need more than one orbit and perhaps even
a number of contact discontinuities in order to build the viscous shock profile. In that
case one may prefer to visualize the shock as a composite of several shocks and/or
contact discontinuities, all travelling with the same speed.

Next we turn to the system (7.1.8) and the corresponding dissipative system
(8.6.3). In that case (8.6.8) reads

(8.6.10)

⎧⎨⎩
0 = −v + v− − s(u − u−)

u−1v̇ = −σ(u)+ σ(u−)− s(v − v−).

The reason we end up here with a combination of algebraic and differential equa-
tions, rather than just differential equations, is that B is a singular matrix. In any
event, upon eliminating v between the two equations in (8.6.10), we deduce

(8.6.11) su−1u̇ = σ(u)− σ(u−)− s2(u − u−).

Since u > 0, (u−, v−)will be connected to (u+, v+) by a viscous shock profile if and
only if the right-hand side of (8.6.11) does not change sign between u− and u+ and
is in fact nonnegative when s(u+ − u−) > 0 and nonpositive when s(u+ − u−) < 0.
In view of (8.1.11), we conclude that in the system (7.1.8) of isentropic elasticity a
shock satisfies the viscous shock admissibility criterion if and only if the Wendroff
E-condition (8.4.4) holds.

It was the Oleinik E-condition and the Wendroff E-condition, originally derived
through the above argument, that motivated the general Liu E-condition. We now
proceed to show that the viscous shock admissibility criterion is generally equivalent
to the Liu E-condition, at least in the range of shocks of moderate strength. For
simplicity, only the special case B = I will be discussed here; the case of more
general B is treated in the references cited in Section 8.8.
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8.6.1 Theorem. Assume λi is a simple eigenvalue of DF . Then an i-shock of mod-
erate strength satisfies the viscous shock admissibility criterion, with B = I , if and
only if it satisfies the Liu E-condition.

Proof. Assume the state U− , on the left, is joined to the state U+ , on the right, by
an i-shock of moderate strength and speed s. In order to apply the viscous shock
admissibility test, the first task is to construct a curve in state space that connects U+
with U− and is invariant under the flow generated by (8.6.8), for B = I . To that end,
we embed (8.6.8) into a larger, autonomous, system by introducing a new (scalar)
variable r :

(8.6.12)

⎧⎨⎩ V̇ = F(V )− F(U−)− r [V −U−]

ṙ = 0.

Notice that the Jacobian matrix of the right-hand side of (8.6.12), evaluated at the
equilibrium point V = U− , r = λi (U−), is

(8.6.13) J =

⎛⎜⎜⎝
DF(U−)− λi (U−)I 0

0 0

⎞⎟⎟⎠ ,

with eigenvalues λ j (U−)− λi (U−), j = 1, · · · , n, and 0; the corresponding eigen-
vectors being

(8.6.14)

⎛⎝ R j (U−)

0

⎞⎠ , j = 1, · · · , n, and

⎛⎝0

1

⎞⎠ .

We see that J has two zero eigenvalues, associated with a two-dimensional
eigenspace, while the remaining eigenvalues are nonzero real numbers. The cen-
ter manifold theorem then implies that any trajectory of (8.6.12) that is confined
in a small neighborhood of the point (U−, λi (U−)) must lie on a two-dimensional
manifold M, which is invariant under the flow generated by (8.6.12), and may be
parametrized by

(8.6.15) V = �(ζ, r) = U− + ζ Ri (U−)+ S(ζ, r), r = r,

with

(8.6.16) S(0, λi (U−)) = 0, Sζ (0, λi (U−)) = 0, Sr (0, λi (U−)) = 0.

In particular, the equilibrium point (U+, s) of (8.6.12) must lie on M, in which case
U+ = �(ρ, s), for some ρ near zero. Thus U− and U+ are connected by the curve
V = �(ζ, s), for ζ between 0 and ρ, and this curve is invariant under the flow
generated by (8.6.8), for B = I .

The flow induced by (8.6.12)1 along the invariant curve V = �(·, r) is repre-
sented by a function ζ = ζ(·) which satisfies the scalar ordinary differential equation
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(8.6.17) ζ̇ = g(ζ, r),

with g defined through

(8.6.18) g(ζ, r)�ζ (ζ, r) = F(�(ζ, r))− F(U−)− r [�(ζ, r)−U−].
In particular, recalling (8.6.15) and (8.6.16),

(8.6.19) g(0, r) = 0, gζ (0, r) = λi (U−)− r.

Clearly, the viscous shock admissibility criterion will be satisfied if and only if
ρg(ζ, s) ≥ 0 for all ζ between 0 and ρ.

Suppose now the shock satisfies the Liu E-condition. Thus, if Wi denotes the
i-shock curve through U− and si is the corresponding shock speed function, so that
U− = Wi (0), U+ = Wi (τ+), s = si (τ+), we must have si (τ ) ≥ s for τ between
0 and ρ. For definiteness, let us assume U+ − U− points nearly in the direction of
Ri (U−), in which case both ρ and τ+ are positive.

We fix r < s, with s−r very small, consider the curve �(·, r) and identify κ > 0
such that [�(κ, r) − U+]�Ri (U−) = 0. We show that g(ζ, r) > 0, 0 < ζ < κ .
Indeed, if g(ζ, r) = 0 for some ζ , 0 < ζ < κ , then, by virtue of (8.6.18), the
state �(ζ, r) may be joined to the state U− by a shock of speed r . Thus, �(ζ, r)
lies on the shock curve Wi , say �(ζ, r) = Wi (τ ), for some τ . By the construction
of κ , since 0 < ζ < κ , it is necessarily 0 < τ < τ+ . However, in that case it is
r = si (τ ) ≥ s, namely, a contradiction to our assumption r < s. This establishes
that g(ζ, r) does not change sign on (0, κ). At the same time, on account of (8.6.19),
gζ (0, r) = si (0) − r ≥ s − r > 0, which shows that g(ζ, r) > 0, 0 < ζ < κ .
Finally, we let r ↑ s, in which case κ → ρ. Hence g(ζ, s) ≥ 0 for ζ ∈ (0, ρ).

By a similar argument one shows the converse, namely that ρg(ζ, s) ≥ 0, for ζ
between 0 and ρ, implies si (τ ) ≥ s, for τ between 0 and τ+ . This completes the
proof.

Combining Theorems 8.4.1, 8.4.2 and 8.6.1, we conclude that the viscous shock
admissibility criterion generally implies the Lax E-condition but the converse is gen-
erally false, unless the system is genuinely nonlinear and the shocks are weak.

Our next task is to compare the viscous shock admissibility criterion with the
entropy shock admissibility criterion. We thus assume that the system (8.1.1) is
equipped with an entropy-entropy flux pair (η, q), satisfying (7.4.1), Dq = DηDF .
The natural compatibility condition between the entropy and the viscosity matrix
B was already discussed in Section 4.6. We write (a weaker form of) the condition
(4.6.7) in the present, one-dimensional setting:

(8.6.20) H�D2η(U )B(U )H ≥ 0, H ∈ IRn, U ∈ O.

As already noted in Section 4.6, when B = I , (8.6.20) will hold if and only if η is
convex.

8.6.2 Theorem. When (8.6.20) holds, any shock that satisfies the viscous shock ad-
missibility criterion also satisfies the entropy shock admissibility criterion.
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Proof. Consider a shock of speed s which joins the state U− , on the left, with the
state U+ , on the right, and satisfies the viscous shock admissibility condition.

Assume first U− is connected to U+ with a single orbit of (8.6.8), i.e., there is a
function V which satisfies (8.6.8), and thereby also (8.6.7), on (−∞,∞), together
with the conditions V (τ ) → U± , as τ → ±∞. We multiply (8.6.7), from the left,
by Dη(V (τ )) and use (7.4.1) to get

(8.6.21) [Dη(V )B(V )V̇ ]· − V̇�D2η(V )B(V )V̇ = q̇(V )− sη̇(V ).

Integrating (8.6.21) over (−∞,∞) and using (8.6.20), we arrive at (8.5.1). We have
thus proved that the shock satisfies the entropy condition.

In the general case where the viscous shock profile contains intermediate equi-
librium points, we realize the shock as a composite of a (finite or infinite) number of
simple shocks of the above type and/or contact discontinuities, all propagating with
the same speed s. As shown above, the entropy production across each simple shock
is nonpositive. On the other hand, by Theorem 8.5.2, the entropy production across
any contact discontinuity will be zero. Therefore, combining the partial entropy pro-
ductions we conclude that the total entropy production (8.5.1) is nonpositive. This
completes the proof.

The converse of Theorem 8.6.2 is generally false. Consider for example the sys-
tem (7.1.8) of isentropic elasticity, with corresponding dissipative system (8.6.3) and
entropy-entropy flux pair (7.4.10), which satisfy the compatibility condition (8.6.20).
As shown in Section 8.5, the entropy shock admissibility criterion is tested through
the inequality (8.5.5), which follows from, but does not generally imply, the Wen-
droff E-condition (8.4.4).

One may plausibly argue that mere existence of a viscous shock profile should
not constitute grounds for admissibility of the shock unless the profile itself is stable
under perturbations of the states U± and perhaps even under perturbations of the flux
function F . For simplicity, let us focus attention to the case B = I and let us consider
weak shocks, of speed s, joining U− , on the left, to U+ , on the right, with shock
profile consisting of a single connecting orbit of (8.6.8). Clearly, the shock profile
must lie on the intersection of the unstable manifold U of (8.6.8) at U− and the stable
manifold S of (8.6.8) at U+ . The Jacobian of the right-hand side of (8.6.8) is the
matrix DF(V )− s I , with eigenvalues λ1(V )− s, · · · , λn(V )− s, and corresponding
eigenvectors R1(V ), · · · , Rn(V ). Therefore, U is equidimensional, and tangential at
U− , to the subspace spanned by R j (U−) for all j = 1, · · · , n with λ j (U−) > s; and
S is equidimensional, and tangential at U+ , to the subspace spanned by Rk(U+) for
all k = 1, · · · , n with λk(U+) < s. In a strictly hyperbolic system with weak shocks,
we have λ1(U±) < λ2(U±) < · · · < λn(U±) and so the Lax E-condition

(8.6.22) λn(U−) > · · · > λi (U−) > s > λi (U+) > · · · > λ1(U+)

implies dimU + dimS = n+ 1, in which case U and S intersect transversely to pro-
duce a unique shock profile joining U− with U+ , which is stable under perturbations
of U± and F . By contrast, when the shock is overcompressive or undercompressive,
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dimU+dimS is larger or smaller than n+1, and thus the existence, uniqueness and
stability of viscous shock profiles is no longer guaranteed. In particular, for systems
of two conservation laws, a compressive shock profile connects a node with a sad-
dle, an overcompressive shock profile connects two nodes, and an undercompressive
shock profile connects two saddles. Later in this section, it will be shown by means
of an example that admissibility of undercompressive shocks depends sensitively on
the particular selection of the viscosity matrix B.

One may argue, further, that viscous shock profiles employed to test the admis-
sibility of shocks must derive from traveling wave solutions of the system (8.6.1)
that are asymptotically stable. This issue has been investigated thoroughly in recent
years and a complete theory has emerged, warranting the writing of a monograph on
the subject. A detailed presentation would lie beyond the scope of the present book,
so only the highlights shall be reported here. For details and proofs the reader may
consult the references cited in Section 8.8.

For simplicity, we limit our discussion to viscosity matrix B = I and normalize
(8.6.1) by setting µ = 1. We consider a weak i-shock, joining the states U− , on
the left, and U+ , on the right, which admits a viscous shock profile V . A change
of variable x �→ x + st renders the shock stationary. The viscous shock profile V
is called asymptotically stable if the solution U (x, t) of (8.6.1) with initial values
U (x, 0) = V (x) + U0(x), where U0 is a “small” perturbation decaying at ±∞,
satisfies

(8.6.23) U (x, t)→ V (x + h), as t →∞,

for some appropriate phase shift h ∈ IR.
Motivated by the observation that the total mass of solutions of (8.6.1) is con-

served, it seems natural to require that the convergence in (8.6.23) be in L1(−∞,∞).
In particular, this would imply that V (x + h) carries the excess mass introduced by
the perturbation:

(8.6.24)
∫ ∞

−∞
U0(x)dx =

∫ ∞

−∞
[V (x + h)− V (x)]dx = h[U+ −U−].

In the scalar case, n = 1, any viscous shock profile is asymptotically stable in
L1(−∞,∞), under arbitrary perturbations U0 ∈ L1(−∞,∞), with h determined
through (8.6.24).

For systems, n ≥ 2, the single scalar parameter h is generally inadequate
to balance the vectorial equation (8.6.24), in which case (8.6.23) cannot hold in
L1(−∞,∞), as no h-translate of V alone may carry the excess mass. Insightful
analysis of the asymptotics of (8.6.1) suggests that, for large t , the solution U should
develop a viscous shock profile accompanied by a family of so-called diffusion
waves, which share the burden of carrying the mass:

(8.6.25)

U (x, t) ∼ V (x + h)+W (x, t)+
∑
j<i

θ j (x, t)R j (U−)+
∑
j>i

θ j (x, t)R j (U+) .



8.6 Viscous Shock Profiles 231

The j-term in the summation on the right-hand side of (8.6.25) represents a decou-
pled j-diffusion wave. The scalar function θ j is a self-similar solution,

(8.6.26) θ j (x, t) = 1√
t
φ j

(
x − λ j t√

t

)
,

of the nonlinear diffusion equation

(8.6.27) ∂tθ j + ∂x

[
λ jθ j + 1

2 (Dλ j R j )θ
2
j

]
= ∂2

x θ j .

In (8.6.26) and (8.6.27), λ j ,Dλ j and R j are evaluated at U− , for j = 1, · · · , i − 1,
or at U+ , for j = i + 1, · · · , n. Thus the j-diffusion wave has a bell-shaped profile

which propagates at characteristic speed λ j ; its peak decays like O(t− 1
2 ), while its

mass stays constant, say m j R j . The remaining term W on the right-hand side of
(8.6.25) represents the coupled diffusion wave, which satisfies a complicated linear
diffusion equation, decays at the same rate as the uncoupled diffusion waves, but
carries no mass. Therefore, mass conservation as t → ∞ yields, in lieu of (8.6.24),
the equation

(8.6.28)
∫ ∞

−∞
U0(x)dx =

∑
j<i

m j R j (U−)+ h[U+ −U−] +
∑
j>i

m j R j (U+),

which dictates how the excess mass is distributed among the viscous shock profile
and the decoupled diffusion waves. Since U+−U− and Ri (U±) are nearly collinear,
(8.6.28) determines explicitly and uniquely the phase shift h of the viscous shock
profile as well as the masses m j of the j-diffusion waves.

It has been established that the viscous shock profile V is asymptotically stable
(8.6.23) in L∞(−∞,∞), for the h determined through (8.6.28), under any perturba-
tion U0 ∈ H1(−∞,∞) of V with

(8.6.29)
∫ ∞

−∞
|U0(x)|dx +

∫ ∞

−∞
(1+ x2)|U0(x)|2dx << 1,

provided only that the eigenvalue λi is simple and the shock satisfies the strict form
of the Lax E-condition. It should be noted that this assertion holds even when the
i-characteristic family fails to be genuinely nonlinear.

The orderly structure depicted above disintegrates when dealing with overcom-
pressive or undercompressive shocks, and occasionally even with strong compres-
sive shocks. In order to catch a glimpse of the geometric complexity that may arise
in such cases, let us discuss the construction of viscous shock profiles for 2-shocks
of the simple system (7.2.11), with dissipative form (8.6.4). The properties of shocks
were already discussed in Section 8.3. Taking advantage of symmetry under rota-
tions and scaling properties of the system, we may fix, without loss of generality, the
left state (u−, v−) at the point (1, 0). The right state (u+, v+) will be located at a
point (a, 0), with a ∈ (− 1

2 , 0). In that case, as shown in Section 8.3, the shock speed
is s = a2 + a + 1 and the shock is overcompressive (8.3.7). Notice that the state
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(b, 0), where b = −1− a, is also joined to (1, 0) by a 2-shock of the same speed s,
which satisfies the Lax E-condition, is not overcompressive, but does not satisfy the
Liu E-condition.

The system (8.6.8) associated with (8.6.4) reads:

(8.6.30)

⎧⎨⎩ u̇ = −s(u − 1)+ u(u2 + v2)− 1

v̇ = −sv + v(u2 + v2);
or, equivalently, in polar coordinates (ρ, θ), u = ρ cos θ, v = ρ sin θ :

(8.6.31)

⎧⎨⎩ ρ̇ = ρ(ρ2 − s)+ (s − 1) cos θ

ρθ̇ = −(s − 1) sin θ.

Notice that (8.6.30) possesses three equilibrium points: (a) (1, 0)which is an unstable
node; (b) (a, 0) which is a stable node; and (c) (b, 0) which is a saddle. The phase
portrait, which may be easily determined through elementary analysis of (8.6.30) and
(8.6.31), is depicted in Fig. 8.6.1.

(1, 0)(b, 0) (a, 0)
u

v

Fig. 8.6.1

Even though the shock joining (1, 0) to (b, 0) violates the Liu E-condition, these
states are connected by two viscous shock profiles, symmetric with respect to the
u-axis. By contrast, the states (1, 0) and (a, 0) are connected by infinitely many
viscous shock profiles. To test the asymptotic stability of any one of these viscous
shock profiles, say (ū(τ ), v̄(τ )), in the light of our discussion above, we introduce
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a small perturbation (u0(x), v0(x)) and inquire whether the solution (u, v)(x, t) of
(8.6.4) with initial values

(8.6.32) (u, v)(x, 0) =
(

ū(
x

µ
)+ u0(x), v̄(

x

µ
)+ v0(x)

)
satisfies

(8.6.33) (u, v)(x, t)→
(

û

(
x − st

µ

)
, v̂

(
x − st

µ

))
, as t →∞,

where (û(τ ), v̂(τ )) is a (generally different) viscous shock profile. Because no dif-
fusion waves are possible here, the convergence in (8.6.33) must be in L1(−∞,∞).
In particular, the v-component of the excess mass conservation yields

(8.6.34)∫ ∞

−∞
v0(x)dx =

∫ ∞

−∞

[
v̂

(
x − st

µ

)
− v̄

(
x − st

µ

)]
dx = µ

∫ ∞

−∞
[
v̂(τ )− v̄(τ )

]
dτ.

It may be shown that the integral on the right-hand side of (8.6.34) is uniformly
bounded, independently of the choice of v̄ and v̂. Consequently, when v0 is fixed
so that

∫
v0dx �= 0, (8.6.34) cannot hold when µ is sufficiently small. Thus, inso-

far as shock admissibility hinges on stability of the connecting shock profiles, the
overcompressive shocks of the system (7.2.11) should be termed inadmissible.

The following simple example demonstrates how sensitively the admissibility of
shocks may depend on the particular choice of viscosity matrix when strict hyper-
bolicity fails. Consider the simple system

(8.6.35) ∂t (u, v, w)
� + ∂x (u

2, v2, w2)� = 0,

which consists of three uncoupled copies of the Burgers equation. The undercom-
pressive shock joining the state (−3, 7,−1)� , on the left, with the state (5,−5, 3)� ,
on the right, and propagating with speed s = 2, violates the Lax E-condition and
also the viscous shock admissibility criterion when the viscosity matrix is B = I .
However, this shock does satisfy the viscous shock admissibility condition for the
symmetric and positive definite viscosity matrix

(8.6.36) B =

⎛⎜⎜⎜⎜⎝
9 8 2

8 9 2

2 2 1

⎞⎟⎟⎟⎟⎠ .

Indeed, the corresponding viscous shock profile is given by

(8.6.37) V (τ ) = (1, 1, 1)� + tanh(2τ)(4,−6, 2)� , −∞ < τ <∞.
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A very technical theory of linear stability for multispace-dimensional viscous
shock profiles has emerged in recent years, paralleling the corresponding theory for
multispace-dimensional shocks, briefly outlined at the end of Section 8.3. Exposi-
tions are found in the references cited in Section 8.8.

As pointed out in Section 4.6, in certain cases the physically relevant admissibil-
ity condition is provided not by the viscosity criterion but by the viscosity-capillarity
criterion, in which (8.6.1) is replaced by

(8.6.38)

∂tU (x, t)+∂x F(U (x, t)) = µ∂x [B(U (x, t))∂xU (x, t)]+ν∂x [H(U (x, t))∂2
x U (x, t)].

In general, diffusion is dominant when ν = o(µ2), while dispersion prevails if
µ = o(

√
ν). The two effects are balanced when ν = µ2. In that case, shock profiles

are governed by the ordinary differential equation

(8.6.39) H(V )V̈ + B(V )V̇ = F(V )− F(U−)− s[V −U−],
replacing (8.6.8). A theory of these profiles is gradually emerging in the literature.

8.7 Nonconservative Shocks

In continuum physics one occasionally encounters quasilinear hyperbolic systems

(8.7.1) ∂tU (x, t)+ A(U (x, t))∂xU (x, t) = 0

that are not in conservative form. In that case, it is not possible to characterize weak
solutions within the setting of the theory of distributions. It is still possible, however,
to introduce a notion of weak solution within the class BV of functions of bounded
variation by postulating jump conditions that play the role of the Rankine-Hugoniot
jump condition (8.1.2) at the points of approximate jump discontinuity.

Appropriate jump conditions can be motivated by prior information on shock
profiles, deriving from the vanishing viscosity approach, the vanishing viscosity-
capillarity argument, or from (so-called) kinetic relations in the theory of phase tran-
sitions. The formulation of this theory proceeds along the following lines.

To (8.7.1) one links a function V (τ ;U−,U+), defined on (−∞,∞)× IRn × IRn

and taking values in IRn , which has the following properties:

(8.7.2) V (−∞;U−,U+) = U− , V (∞;U−,U+) = U+ ,

(8.7.3) V (τ ;U,U ) = U,

(8.7.4) |∂τV (τ ;U−,U+)− ∂τV (τ ; Ū−, Ū+)| ≤ a|(U+ − Ū+)− (U− − Ū−)|,
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for all U,U−,U+, Ū−, Ū+ in IRn , any τ ∈ (−∞,∞), and some a > 0. One then
requires that a shock joining the state U− , on the left, with the state U+ , on the right,
and propagating with speed s must satisfy the jump condition

(8.7.5)

∞∫
−∞

A(V (τ ;U−,U+))∂τV (τ ;U−,U+)dτ = s[U+ −U−].

In the above setting, V (· ;U−,U+) represents the shock profile. Notice that in the
conservative case, A(U ) = DF(U ), (8.7.5) reduces to the Rankine-Hugoniot jump
condition (8.1.2), regardless of the particular choice of V .

The literature cited in Section 8.8 explains how the above device naturally leads
to a notion of weak solution to (8.7.1), within the framework of BV functions.

8.8 Notes

The study of shock waves originated in the context of gas dynamics. The book by
Courant and Friedrichs [1], already cited in Chapter III, presented a coherent, mathe-
matical exposition of material from the physical and engineering literature, accumu-
lated over the past 150 years, paving the way for the development of a general theory
by Lax [2].

For as long as gas dynamics remained the prototypical example, the focus of
the research effort was set on strictly hyperbolic, genuinely nonlinear systems. The
intricacy of shock patterns in nonstrictly hyperbolic systems was not recognized until
recently, and this subject is currently undergoing active development.

Expositions of many of the topics covered in this chapter are also contained in
the books of Smoller [3] and Serre [11].

The notion of Hugoniot locus, in gas dynamics, may be traced back to the work
of Riemann [1] and Hugoniot [2]; but the definition of shock curves in the general
setting is due to Lax [2], who first established the properties stated in Theorems 8.2.1,
8.2.2 and 8.2.3. The elegant proof of Theorem 8.2.1 is here taken from Serre [11].
The significance of systems with coinciding shock and rarefaction wave curves was
first recognized by Temple [3], who conducted a thorough study of their noteworthy
properties. A detailed discussion is also contained in Serre [11].

For gas dynamics, the statement that admissible shocks should be subsonic rel-
ative to their left state and supersonic relative to their right state is found in the
pioneering paper of Riemann [1]. This principle was postulated as a general shock
admissibility criterion, namely the Lax E-condition, by Lax [2], who also proved
Theorem 8.3.1. A proof of Theorem 8.3.2 is given in Li and Yu [1]. See also Hsiao
and Chang [1]. A different connection between the Lax E-condition and stability is
established in Smoller, Temple and Xin [1].

The construction of multispace-dimensional shocks and their stability theory was
pioneered by Majda [2,3,4]. This seminal work has been further developed and ex-
tended in various directions and now encompasses compressive, undercompressive
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and overcompressive shocks for hyperbolic systems, as well as phase boundaries
for systems that change type. By a suitable change of variables, the construction
of the shock is reduced to solving an initial-boundary-value problem. Accordingly,
Lopatinski type conditions, touched upon in Section 5.6, play a prominent role in the
theory. A small sample of relevant references out of a voluminous literature includes
Benzoni-Gavage [2,3], Corli and Sablé-Tougeron [1], Franchéteau and Métivier [1],
Freistühler [8], Godin [1], Métivier [2], Serre [18], and Coulombel [1]. Detailed ex-
positions are found in the English edition of the book by Serre [11] and in the survey
article by Métivier [3], while Benzoni-Gavage, Rousset, Serre and Zumbrun [1] pro-
vides informative historical perspective.

Shock admissibility in the absense of genuine nonlinearity was first discussed
by Bethe [1] and Weyl [1], for the system of gas dynamics. The Liu E-condition
and related Theorems 8.4.1, 8.4.2 and 8.5.4 are due to Liu [2]. The motivation was
provided by the Oleinik E-condition, derived in Oleinik [4], and the Wendroff E-
condition, established in Wendroff [1]. This admissibility criterion seems to have
been anticipated in the 1960’s by Chang and Hsiao [1,2] (see also Hsiao and Zhang
[1]) but their work was not published until much later.

The entropy shock admissibility condition has been part of the basic theory of
continuum thermomechanics for over a century. The form (8.5.1), for general sys-
tems (8.1.1), was postulated by Lax [4], who established Theorems 8.5.1, 8.5.3, and
8.6.2. The proofs of Theorems 8.5.1, 8.5.2, 8.5.3 and 8.5.4 here, based on Equation
(8.5.8), are taken from Dafermos [10]. Stricter versions of the entropy admissibility
criterion, that are equivalent to the Liu E-condition, have been proposed by Dafer-
mos (see Section 9.7) and by Liu and Ruggeri [1].

The notion of viscous shock profile was introduced to gas dynamics by Rankine
[1], Rayleigh [3] and G.I. Taylor [1]. For the physical background, see e.g. Zeldovich
and Raizer [1]. A seminal reference is Gilbarg [1]. The general form (8.6.8), for sys-
tems (8.1.1), was first written down by Gelfand [1]. Theorem 8.6.1 is due to Majda
and Pego [1]. See also Conlon [2]. An earlier paper by Foy [1] had established the
result in the special case where the system is genuinely nonlinear and the shocks
are weak. Also Mock [1] has proved a similar result under the assumption that the
system is genuinely nonlinear and it is endowed with a uniformly convex entropy.
The issue of characterizing appropriate viscosity matrices B has been discussed by
several authors, including Conley and Smoller [1,3], Majda and Pego [1], Pego [1],
and Serre [11]. See also Conley and Smoller [2] for an early study of profiles in-
duced by viscosity combined with capillarity. For a detailed study of viscous shock
profiles in isentropic (or isothermal) elastodynamics, under physically appropriate
assumptions, see Antman and Malek-Madani [1]. The case of general, nonisentropic
gas dynamics, with nonconvex equation of state, was investigated by Pego [2], who
established that strong shocks satisfying the Liu E-condition do not necessarily admit
viscous shock profiles when heat conductivity dominates viscosity.

The literature on asymptotic stability of viscous shock profiles is so vast that it
would be impossible to provide here a comprehensive list of references. An infor-
mative presentation is contained in the book by Serre [11]. Of the seminal papers
in that area, it will suffice to cite Ilin and Oleinik [1], on the scalar case; Goodman
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[1], on systems for perturbations with zero excess mass; Liu [19], which introduces
the decoupled diffusion waves; and Szepessy and Xin [1], which adds the coupled
diffusion waves. For further developments, dealing with the case of contact disconti-
nuities, rarefaction waves, undercompressive shocks, boundary effects on stationary
shocks, nonstrictly hyperbolic systems, and various types of physical viscosity and
relaxation, see Liu [20,26], Liu and Nishihara [1], Liu and Xin [2,3], Liu and Yu [1],
Liu and Zeng [1,2], Liu and Zumbrun [1], Chern and Liu [1], Goodman, Szepessy
and Zumbrun [1], Kawashima and Matsumura [1], Xin [1,3], Zeng [1,2,3], and Luo
and Serre [1]. A definitive treatment of the scalar case is found in the survey pa-
per by Serre [11], which presents, among other topics, the original contributions of
Freistühler and Serre [1,2] on the subject. The most general result on the stability
of weak shocks that merely satisfy the Lax E-condition, without any assumption of
genuine nonlinearity of the system, is due to Fries [1,2].

A parallel theory is currently emerging on the stability of shock profiles in the
context of solutions to the Boltzmann equation. See Caflisch and Nicolaenko [1] and
Liu and Yu [4].

The stability theory of multispace-dimensional viscous shock profiles is currently
undergoing rapid development and extensive bibliography is already available. A de-
tailed exposition of the stability of planar viscous shocks, together with an exhaustive
list of references, is found in the survey article by Zumbrun [3]. For an investiga-
tion of the stability of curved viscous shocks, which is very technical, see Gues and
Williams [1] and Gues, Métivier, Williams and Zumbrun [1,2]. Other interesting con-
tributions include Gardner and Zumbrun [1], Zumbrun and Howard [1], Freistühler
and Szmolyan [2], and Zumbrun and Serre [1]. A parallel stability theory of capil-
lary or viscocapillary shock profiles is also under development; see Benzoni-Gavage
[4,5]. Closely related to the above is the stability theory of shock profiles associ-
ated with finite difference systems resulting from discretizing hyperbolic systems of
conservation laws; see Liu and Yu [2] and Benzoni-Gavage [6].

The class of hyperbolic systems of conservation laws with rotational invariance
has interesting mathematical structure as well as applications to elasticity and mag-
netohydrodynamics. Various aspects of the existence and stability of shock waves in
that class are discussed in Brio and Hunter [1], Freistühler [1,2,3,4,5,6], Freistühler
and Liu [1], and Freistühler and Szmolyan [1].

The admissibility of overcompressive and undercompressive shocks has been in-
vestigated in great detail, especially in the context of systems of two conservation
laws, with quadratic or cubic flux functions, which are not strictly hyperbolic. Vis-
cosity or viscosity-capillarity conditions, as well as kinetic relations have been em-
ployed as admissibility criteria. The standard test for success is whether the selection
renders the Riemann problem well-posed. This will be discussed in Chapter IX. Out
of an extensive body of literature, a sample is Shearer [2], Schaeffer and Shearer [1],
Schecter and Shearer [1], Jacobs, MacKinney and Shearer [1], Schulze and Shearer
[1], and Čanić and Plohr [1]. For additional, relevant references, see Section 9.12.
In particular, the discussion here of the stability of overcompressive shocks for the
system (7.2.11) was borrowed from Liu [24]; (see also Liu [27]). Furthermore, the
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system (8.6.35) with viscosity matrix (8.6.36) is treated in detail by Mailybaev and
Marchesin [1].

The question of admissibility of jump discontinuities that represent phase bound-
aries or transonic shocks arises in systems of conservation laws of mixed, elliptic-
hyperbolic type which govern phase transitions or transonic gas flow. A prototypical
example is the system (7.1.8) with nonmonotone σ(u); in particular the classical
van der Waals fluid. Entropy, viscosity and viscosity-capillarity admissibility criteria
have been tried in that context, in combination with a new criterion based on “kinetic
relations” motivated by considerations at the microscale. Shocks induced by such
kinetic relations are typically undercompressive. See Abeyaratne and Knowles [1,2],
Asakura [2], Bedjaoui and LeFloch [1], Benzoni-Gavage [2,3,4,5], Benzoni-Gavage
and Freistühler [1], Fan [3,4], Freistühler [8], Hagan and Slemrod [1], Hatton and
Mischaikow [1], Hayes and LeFloch [2,3], Hayes and Shearer [3], Hoff and Khodja
[1], R.D. James [1], Keyfitz [2], Keyfitz and Warnecke [1], Pego [3], Pence [1],
Rosakis [1], Shearer [2], Slemrod [1,2,3], and Truskinovsky [1,2]. An informative
discussion and a comprehensive list of references are found in the survey article and
monograph by LeFloch [4,5].

The notion of weak solution for quasilinear hyperbolic systems that are not in
conservative form, outlined in Section 8.7, was introduced by LeFloch [2] and Dal
Maso, LeFloch and Murat [1]. For developments and applications of these ideas, see
Amadori, Baiti, LeFloch and Piccoli [1], Hayes and LeFloch [2,3], and LeFloch and
Tzavaras [1,2]. For a survey, see LeFloch [4]. See also Xiao-Biao Lin [1].



IX

Admissible Wave Fans and the Riemann Problem

The property of systems of conservation laws to be invariant under uniform stretch-
ing of the space-time coordinates induces the existence of self-similar solutions,
which stay constant along straight-line rays emanating from some focal point in
space-time. Such solutions depict a collection of waves converging to the focal point
and interacting there to produce a jump discontinuity which is in turn resolved into
an outgoing wave fan.

This chapter investigates the celebrated Riemann problem, whose object is the
resolution of jump discontinuities into wave fans. A solution will be constructed
in three different ways, namely: (a) by the classical method of piecing together
elementary centered solutions encountered in earlier chapters, i.e., constant states,
shocks joining constant states, and centered rarefaction waves bordered by constant
states or contact discontinuities; (b) by minimizing the total entropy production of
the outgoing wave fan; and (c) by a vanishing viscosity approach which employs
time-dependent viscosity so that the resulting dissipative system is invariant under
stretching of coordinates, just like the original hyperbolic system. A new type of
discontinuity, called a delta shock, will emerge in the process.

The issue of admissibility of wave fans will be raised. In particular, it will be
examined whether shocks contained in solutions constructed by any one of the above
methods are necessarily admissible.

Next, the wave fan that best approximates the complex wave pattern generated
by the interaction of two wave fans will be determined.

A system will be exhibited in which bounded initial data generate a resonating
wave pattern that drives the solution amplitude to infinity, in finite time.

The chapter will close with a brief introduction to the theory of self-similar solu-
tions to hyperbolic systems of conservation laws in two space dimensions.

9.1 Self-similar Solutions and the Riemann Problem

The hyperbolic system of conservation laws
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(9.1.1) ∂tU + ∂x F(U ) = 0

is invariant under uniform stretching of coordinates: (x, t) �→ (αx, αt); hence it
admits self-similar solutions, defined on the space-time plane and constant along
straight-line rays emanating from the origin. Since (9.1.1) is also invariant under
translations of coordinates: (x, t) �→ (x + x̄, t + t̄), the focal point of self-similar
solutions may be translated from the origin to any fixed point (x̄, t̄) in space-time.

If U is a (generally weak) self-similar solution of (9.1.1), focused at the origin,
its restriction to t > 0 admits the representation

(9.1.2) U (x, t) = V

(
x

t

)
, −∞ < x <∞, 0 < t <∞,

where V is a bounded measurable function on (−∞,∞), which satisfies the ordinary
differential equation

(9.1.3) [F(V (ξ))− ξV (ξ)]· + V (ξ) = 0,

in the sense of distributions. Indeed, if U is given by (9.1.2) and φ is any C∞ test
function with compact support on (−∞,∞)×(0,∞), then, after a short calculation,

(9.1.4)
∫ ∞

0

∫ ∞

−∞
[∂tφ(x, t)U (x, t)+ ∂xφ(x, t)F(U (x, t))]dxdt

=
∫ ∞

−∞
{ψ̇(ξ)[F(V (ξ))− ξV (ξ)] − ψ(ξ)V (ξ)}dξ,

where

(9.1.5) ψ(ξ) =
∫ ∞

0
φ(ξ t, t)dt, −∞ < ξ <∞.

The restriction of U to t < 0 similarly admits a representation like (9.1.2), for a
(generally different) function V , which also satisfies (9.1.3).

From (9.1.3) we infer that F(V )− ξV is Lipschitz continuous on (−∞,∞) and
(9.1.3) holds, in the classical sense, at any Lebesgue point ξ of V .

Henceforth, we shall consider self-similar solutions U of class BVloc . In that
case, the function V , above, has bounded variation on (−∞,∞). We assume V is
normalized, as explained in Section 1.7, so that one-sided limits V (ξ±) exist for
every ξ ∈ (−∞,∞) and V (ξ) = V (ξ−) = V (ξ+) except possibly on a countable
set of ξ .

By account of Theorem 1.7.5, (9.1.3) may be written as

(9.1.6) [D̃F(V )− ξ I ]V̇ = 0,

in the sense of measures, with

(9.1.7) D̃F(V )(ξ) =
∫ 1

0
DF(τV (ξ−)+ (1− τ)V (ξ+))dτ.
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Furthermore, as a function of bounded variation V is differentiable almost every-
where on (−∞,∞) and (9.1.6) will be satisfied at any point ξ of continuity of V
where V̇ (ξ) exists.

In view of the above, (−∞,∞) is decomposed into the union of three pairwise
disjoint sets C,S and W as follows:

C is the maximal open subset of (−∞,∞) on which the measure V̇ vanishes,
i.e., it is the complement of the support of V̇ . Thus C is the (at most) countable union
of disjoint open intervals, on each of which V is constant.

S is the (at most) countable set of points of jump discontinuity of V . The
Rankine-Hugoniot jump condition

(9.1.8) F(V (ξ+))− F(V (ξ−)) = ξ [V (ξ+)− V (ξ−)]
holds at any ξ ∈ S. This may be inferred from the continuity of F(V ) − ξV , noted
above, or it may be deduced by comparing (9.1.6), (9.1.7) with (8.1.3), (8.1.4).

W is the (possibly empty) set of points of continuity of V that lie in the support
of the measure V̇ . When ξ ∈W , then

(9.1.9) λi (V (ξ)) = ξ,

for some i ∈ {1, · · · , n}. Indeed, if ξ is the limit of a sequence {ξm} in S, then
V (ξm+) − V (ξm−) → 0, as m → ∞, and (9.1.9) follows from the Rankine-
Hugoniot condition (9.1.8). On the other hand, if ξ is in the interior of the set of
points of continuity of V , and (9.1.9) fails for i = 1, · · · , n, then λi (V (ζ )) �= ζ for
ζ ∈ (ξ − ε, ξ + ε) and i = 1, · · · , n, in which case, by virtue of (9.1.6), the measure
V̇ would vanish on (ξ − ε, ξ + ε), contrary to our hypothesis that ξ ∈ spt V̇ . If ξ is
a point of differentiability of V , (9.1.6) implies

(9.1.10) V̇ (ξ) = b(ξ)Ri (V (ξ)),

where the scalar b(ξ) is determined by combining (9.1.9) with (9.1.10):

(9.1.11) [Dλi (V (ξ))Ri (V (ξ))]b(ξ) = 1.

In particular, V (ξ) is a point of genuine nonlinearity of the i-characteristic family.
We have thus shown that self-similar solutions are composites of constant states,

shocks, and centered simple waves. The simple waves will be centered rarefaction
waves, when V is an outgoing wave fan, or centered compression waves, when V
depicts a focusing collection of waves. The two configurations are differentiated by
time irreversibility, induced by admissibility conditions on weak solutions. More
stringent conditions are imposed on outgoing wave fans, so these are generally sim-
pler.

Of central importance will be to understand how a jump discontinuity at the
origin, introduced by the initial data, is resolved into an outgoing wave fan. This is
the object of the

9.1.1 Riemann Problem: Determine a self-similar (generally weak) solution U
of (9.1.1) on (−∞,∞)× (0,∞), with initial condition
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(9.1.12) U (x, 0) =
⎧⎨⎩UL , for x < 0

UR , for x > 0,

where UL and UR are given states in O.

Following our discussion, above, we shall seek a solution of the Riemann prob-
lem in the form (9.1.2), where V satisfies the ordinary differential equation (9.1.3),
on (−∞,∞), together with boundary conditions

(9.1.13) V (−∞) = UL , V (∞) = UR .

The specter of nonuniqueness raises again the issue of admissibility, which will be
the subject of discussion in the following sections.

9.2 Wave Fan Admissibility Criteria

Various aspects of admissibility have already been discussed, for general weak solu-
tions, in Chapter IV, and for single shocks, in Chapter VIII. We have thus encountered
a number of admissibility criteria and we have seen that they are strongly interrelated
but not quite equivalent. As we shall see later, the most discriminating among these
criteria, namely viscous shock profiles and the Liu E-condition, are sufficiently pow-
erful to weed out all spurious solutions, so long as we are confined to strictly hyper-
bolic systems and shocks of moderate strength. However, once one moves to systems
that are not strictly hyperbolic and/or to solutions with strong shocks, the situation
becomes murky. The question of admissibility is still open.

Any rational new admissibility criterion should adhere to certain basic principles,
the fruits of the long experience with the subject. They include:

9.2.1 Localization: The test of admissibility of a solution should apply individ-
ually to each point (x̄, t̄) in the domain and should thus involve only the restric-
tion of the solution to an arbitrarily small neighborhood of (x̄, t̄), say the circle
{(x, t) : |x − x̄ |2 + |t − t̄ |2 < r2} where r is fixed but arbitrarily small. This is
compatible with the general principle that solutions of hyperbolic systems should
have the local dependence property.

9.2.2 Evolutionarity: The test of admissibility should be forward-looking, with-
out regard for the past. Thus, admissibility of a solution at the point (x̄, t̄) should de-
pend solely on its restriction to the semicircle {(x, t) : |x− x̄ |2+|t−t̄ |2 < r2 , t ≥ t̄}.
This is in line with the principle of time irreversibility, which pervades the admissi-
bility criteria we have encountered thus far, such as entropy, viscosity, etc.

9.2.3 Invariance under translations: A solution U will be admissible at (x̄, t̄)
if and only if the translated solution Ū , Ū (x, t) = U (x + x̄, t + t̄), is admissible at
the origin (0, 0).
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9.2.4 Invariance under dilations: A solution U will be admissible at (0, 0) if
and only if, for each α > 0, the dilated solution Ūα , Ūα(x, t) = U (αx, αt), is
admissible at (0, 0).

Let us focus attention to weak solutions U with the property that, for each fixed
point (x̄, t̄) in the domain, the limit

(9.2.1) Ū (x, t) = lim
α↓0

U (x̄ + αx, t̄ + αt)

exists in L1
loc((−∞,∞) × (0,∞)). Notice that in that case Ū is necessarily a self-

similar solution of (9.1.1). In the spirit of the principles listed above, one may use
the admissibility of Ū at the origin as a test for the admissibility of U at the point
(x̄, t̄). Since Ū depicts a fan of waves radiating from the origin, such tests constitute
wave fan admissibility criteria.

Passing to the limit in (9.2.1) amounts to observing, so to say, the solution U
under a microscope focused at the point (x̄, t̄). When U ∈ BVloc , the limit exists, by
virtue of Theorem 1.7.4, except possibly on the set of irregular points (x̄, t̄), which
has one-dimensional Hausdorff measure zero. In particular, if (x̄, t̄) is a point of ap-
proximate continuity of U , then Ū (x, t) will be a constant state U0 , while if (x̄, t̄)
is a point of approximate jump discontinuity, then Ū (x, t) = U− , for x < st , and
Ū (x, t) = U+ , for x > st , where U± are the approximate one-sided limits of U , and
s is the slope of the jump discontinuity at (x̄, t̄). Whether the limit will also exist at
the irregular points (x̄, t̄) of U , where the resulting wave fan Ū should be more com-
plex, will be investigated in Chapter XI, for genuinely nonlinear scalar conservation
laws, in Chapter XII, for genuinely nonlinear systems of two conservation laws, and
in Chapter XIV, for general genuinely nonlinear systems of conservation laws.

As we saw in Section 9.1, the wave fan Ū is generally a composite of constant
states, shocks, and centered rarefaction waves. The simplest wave fan admissibility
criterion postulates that the fan is admissible if each one of its shocks, individually,
satisfies the shock admissibility conditions discussed in Chapter VIII. As we shall
see in the following section, this turns out to be adequate in many cases. Other fan
admissibility criteria, which regard the wave fan as an entity rather than as a col-
lection of individual waves, include the entropy rate condition and the viscous fan
profile test. These will be discussed later.

9.3 Solution of the Riemann Problem via Wave Fan Curves

The aim here is to construct a solution of the Riemann problem by piecing together
constant states, centered rarefaction waves, and admissible shocks. We limit our in-
vestigation to the case where wave speeds of different characteristic families are
strictly separated. This will cover waves of small amplitude in general strictly hyper-
bolic systems as well as waves of any amplitude in special systems such as (7.1.8),
in which all 1-waves travel to the left and all 2-waves travel to the right.
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Let us then consider an outgoing wave fan (9.1.2), of bounded variation. Fol-
lowing the discussion in Section 9.1, (−∞,∞) is decomposed into the union of the
shock set S, the rarefaction wave set W and the constant state set C. Since the wave
speeds of distinct characteristic families are strictly separated, S = ⋃n

i=1 Si and
W = ⋃n

i=1 Wi , where Si is the (at most countable) set of points of jump disconti-
nuity of V that are i-shocks and Wi is the (possibly empty) set of points of continuity
of V in the support of the measure V̇ that satisfy (9.1.9). The set Si

⋃Wi is closed
and contains points in the range of wave speeds of the i-characteristic family.

We now assume that the shocks satisfy the Lax E-condition, i.e., for all ξ ∈ Si ,

(9.3.1) λi (V (ξ−)) ≥ ξ ≥ λi (V (ξ+)).
Then Si

⋃Wi is necessarily a closed interval [αi , βi ]. Indeed, suppose Si
⋃Wi is

disconnected. Then there is an open interval (ξ1, ξ2) ⊂ C with endpoints ξ1 and ξ2
contained in Si

⋃Wi . In particular, V (ξ1+) = V (ξ2−). On the other hand, by virtue
of (9.1.9) and (9.3.1), ξ1 ≥ λi (V (ξ1+)), ξ2 ≤ λi (V (ξ2−)), which is a contradiction
to ξ1 < ξ2 . Notice further that any ξ ∈ Si with ξ > αi (or ξ < βi ) is the limit of
an increasing (or decreasing) sequence of points of Wi and so λi (V (ξ−)) = ξ (or
λi (V (ξ+)) = ξ). We have thus established the following

9.3.1 Theorem. Assume the wave speeds of distinct characteristic families are
strictly separated. Any self-similar solution (9.1.2) of the Riemann Problem (9.1.1),
(9.1.12), with shocks satisfying the Lax E-condition, comprises n+1 constant states
UL = U0,U1, · · · ,Un−1,Un = UR . For i = 1, · · · , n , Ui−1 is joined to Ui by an
i-wave fan, namely a composite of centered i-rarefaction waves and/or i-shocks with
the property that i-shocks bordered from the left (and/or the right) by i-rarefaction
waves are left (and/or right) i-contact discontinuities (Fig. 9.3.1).

It will be shown in the following two sections that the locus of states that may
be joined on the right (or left) of a fixed state Ū ∈ O by an admissible i-wave
fan, composed of i-rarefaction waves and admissible i-shocks, is a Lipschitz curve
�i (τ ; Ū ) (or 
i (τ ; Ū )), called the forward (or backward) i-wave fan curve through
Ū , which may be parametrized so that

(9.3.2) �i (τ ; Ū ) = Ū + τ Ri (Ū )+ Pi (τ ; Ū ),

(9.3.3) 
i (τ ; Ū ) = Ū + τ Ri (Ū )+ Qi (τ ; Ū ),

where Pi and Qi are Lipschitz continuous functions of (τ,U ) that vanish at τ = 0,
and their Lipschitz constant becomes arbitrarily small if τ is restricted to a suffi-
ciently small neighborhood of the origin.

Taking, for the time being, the existence of wave fan curves with the above prop-
erties for granted, we note that to solve the Riemann problem we have to determine
an n-tuple ε = (ε1, · · · , εn), realized as a vector in IRn , such that, starting out from
U0 = UL and computing successively Ui = �i (εi ;Ui−1), i = 1, · · · , n, we end up
with Un = UR . Accordingly, we define the function
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Fig. 9.3.1

(9.3.4) "(ε; Ū ) = �n(εn;�n−1(εn−1; · · ·�1(ε1; Ū ) · · ·)).
Clearly,

(9.3.5) "(ε; Ū ) = Ū +
n∑

i=1

εi Ri (Ū )+ G(ε; Ū ),

where G is a Lipschitz function that vanishes at ε = 0 and whose Lipschitz constant
becomes arbitrarily small when ε is confined to a sufficiently small neighborhood
of the origin. When UR is sufficiently close to UL , there exists a unique ε near 0
such that "(ε;UL) = UR . Indeed, this ε may be constructed through the iteration
scheme: ε(0) = 0 and for m = 1, 2, . . .

(9.3.6) ε
(m)
i = Li (UL)

[
UR −UL

]− Li (UL)G
(
ε(m−1);UL

)
, i = 1, . . . , n,

which converges by an obvious contraction argument. This generates a solution to the
Riemann problem that is unique within the class of self-similar solutions with waves
of moderate strength. The wave fan joining UL with UR is conveniently identified
by its left state UL and the n-tuple ε = (ε1, . . . , εn). The value of εi determines the
i-wave amplitude and |εi | measures the i-wave strength.

In the special case where the �i are C2,1, we shall see that

(9.3.7) �̇i (0; Ū ) = Ri (Ū ), �̈i (0; Ū ) = DRi (Ū )Ri (Ū ).

Then " is also C2,1. Since "(0, · · · , 0, εi , 0, · · · , 0; Ū ) = �i (εi ; Ū ),

(9.3.8)
∂"

∂εi
(0; Ū ) = Ri (Ū ), 1 ≤ i ≤ n,
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(9.3.9)
∂2"

∂ε2
i

(0; Ū ) = DRi (Ū )Ri (Ū ), 1 ≤ i ≤ n.

Moreover, for j<k,"(0, · · · , 0, ε j , 0, · · · , 0, εk, 0, · · · , 0; Ū )= �k
(
εk;� j

(
ε j ; Ū

))
and so

(9.3.10)
∂2"

∂ε j∂εk
(0; Ū ) = DRk(Ū )R j (Ū ), 1 ≤ j < k ≤ n.

By virtue of (9.3.8), (9.3.9) and (9.3.10),

(9.3.11) UR = UL +
n∑

i=1

εi Ri (UL)+ 1
2

n∑
i=1

ε2
i DRi (UL)Ri (UL)

+
n∑

j=1

n∑
k= j+1

ε jεkDRk(UL)R j (UL)+ O
(|ε|3).

Clearly, we may also synthesize the solution of the Riemann problem in the
reverse order, starting out from Un = UR and computing successively the states
Ui−1 = 
i (εi ;Ui ) , i = n, · · · , 1, until we reach U0 = UL . Under certain
circumstances, a mixed strategy may be advantageous. For example, the most ef-
ficient procedure for solving the Riemann problem for a system of two conserva-
tion laws, n = 2, is to draw the forward 1-wave curve �1(ε1;UL) through the left
state UL and the backward 2-wave curve 
2(ε2;UR) through the right state UR .
The intersection of these two curves will determine the intermediate constant state:
UM = �1(ε1;UL) = 
2(ε2;UR).

9.4 Systems with Genuinely Nonlinear
or Linearly Degenerate Characteristic Families

Our project here is to construct the wave fan curves for systems in which wave fans
are particularly simple. When the i-characteristic family is linearly degenerate, no
centered i-rarefaction waves exist and hence, by Theorem 8.2.5, any i-wave fan is
necessarily an i-contact discontinuity. In that case the forward and backward i-wave
fan curves coincide with the shock curve Wi in Theorem 8.2.5, namely, we have
�i (τ ; Ū ) = 
i (τ ; Ū ) = Wi (τ ; Ū ).

When the i-characteristic family is genuinely nonlinear, i-contact discontinuities
are ruled out by Theorem 8.2.1, and so any i-wave fan of small amplitude must
be either a single centered i-rarefaction wave or a single compressive i-shock. Let
us normalize the field Ri so that (7.6.13) holds, Dλi Ri = 1. The states that may
be joined to Ū by a weak i-shock lie on the i-shock curve Wi (τ ; Ū ) described by
Theorem 8.2.1. On account of Theorem 8.3.1, the shock that joins Ū , on the left,
with Wi (τ ; Ū ), on the right, is compressive if and only if τ < 0. On the other hand,
by Theorem 7.6.5, the state Ū may be joined on the right (or left) by centered i-
rarefaction waves to states Vi (τ ; Ū ) for τ > 0 (or τ < 0). It then follows that we



9.4 Systems with Genuinely Nonlinear 247

may construct the forward i-wave fan curve by �i (τ ; Ū ) = Wi (τ ; Ū ), for τ < 0,
and �i (τ ; Ū ) = Vi (τ ; Ū ), for τ > 0. Similarly, the backward i-wave fan curve is
defined by 
i (τ ; Ū ) = Vi (τ ; Ū ), for τ < 0, and 
i (τ ; Ū ) = Wi (τ ; Ū ), for τ > 0.
These curves are C2,1, by account of Theorem 8.2.2, and satisfy (9.3.2), (9.3.3) and
(9.3.7), by Theorem 8.2.1.

In view of the above discussion, we have now established the existence of solu-
tion to the Riemann problem for systems with characteristic families that are either
genuinely nonlinear or linearly degenerate:

9.4.1 Theorem. Assume the system (9.1.1) is strictly hyperbolic and each charac-
teristic family is either genuinely nonlinear or linearly degenerate. For |UR − UL |
sufficiently small, there exists a unique self-similar solution (9.1.2) of the Riemann
problem (9.1.1), (9.1.12), with small total variation. This solution comprises n + 1
constant states UL = U0,U1, · · · ,Un−1,Un = UR . When the i-characteristic fam-
ily is linearly degenerate, Ui is joined to Ui−1 by an i-contact discontinuity, while
when the i-characteristic family is genuinely nonlinear, Ui is joined to Ui−1 by either
a centered i-rarefaction wave or a compressive i-shock.

In particular, Theorem 9.4.1 establishes the existence of solutions, with small
total variation, to the Riemann problem for the system (7.1.9) of isentropic gas dy-
namics, when 2p′(ρ) + ρp′′(ρ) > 0, so that both characteristic families are gen-
uinely nonlinear; also for the system (7.1.5) of adiabatic thermoelasticity, under the
assumption σuu(u, s) �= 0, in which case the 1- and the 3-characteristic families
are genuinely nonlinear while the 2-characteristic family is linearly degenerate. As
noted earlier, shock and rarefaction wave curves for the above systems exist even in
the range of strong shocks, and thus one may attempt to construct solutions of the
Riemann problem even when UL and UR are far apart. The range of UL and UR for
which the construction is possible depends on the asymptotic behavior of shock and
rarefaction wave curves as the state variables ρ and u approach the boundary points
of their physical range, namely zero and infinity. This will be discussed in Section
9.6. For the time being, in order to illustrate the above ideas by means of a simple ex-
ample, let us consider the system (7.1.8), assuming that σ(u) is defined on (−∞,∞)

and 0 < a ≤ σ ′(u) ≤ b <∞, σ ′′(u) < 0. It is convenient to reparametrize the wave
curves, employing u as the new parameter. In that case, the forward 1-wave curve �1
and the backward 2-wave curve 
2 through the typical point (ū, v̄) of the state space
may be represented as v = ϕ(u; ū, v̄) and v = ψ(u; ū, v̄), respectively. Recalling
the form of the Hugoniot locus (8.2.11) and rarefaction wave curves (7.6.15) for this
system, we deduce that

(9.4.1) ϕ(u; ū, v̄) =

⎧⎪⎪⎨⎪⎪⎩
v̄ −√[σ(u)− σ(ū)](u − ū) , u ≤ ū

v̄ +
∫ u

ū

√
σ ′(ω)dω, u > ū
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(9.4.2) ψ(u; ū, v̄) =

⎧⎪⎪⎨⎪⎪⎩
v̄ +√[σ(u)− σ(ū)](u − ū) , u ≤ ū

v̄ −
∫ u

ū

√
σ ′(ω)dω, u > ū.

Figure 9.4.1 depicts a solution of the Riemann problem that comprises a compressive
1-shock and a centered 2-rarefaction wave. The intermediate constant state (uM , vM )

is determined on the u-v plane as the intersection of the forward 1-wave fan curve�1
through (uL , vL) with the backward 2-wave fan curve 
2 through (u R, vR), namely
by solving the equation

(9.4.3) vM = ϕ(uM ; uL , vL) = ψ(uM ; u R, vR).
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For systems of two conservation laws it is often expedient to perform the con-
struction of the intermediate constant state on the plane of Riemann invariants rather
than in the original state space. The reason is that, as noted in Section 7.6, in the
plane of Riemann invariants rarefaction wave curves become straight lines parallel
to the coordinate axes. This facilitates considerably the task of locating the inter-
section of wave curves of different characteristic families. Figure 9.4.2 depicts the
configuration of the wave curves of Fig. 9.4.1 in the planew-z of Riemann invariants.

9.5 General Strictly Hyperbolic Systems

Our next task is to describe admissible wave fans, and construct the corresponding
wave fan curves, for systems with characteristic families that are neither genuinely
nonlinear nor linearly degenerate. In that case, the Lax E-condition is no longer
sufficiently selective to single out a unique solution to the Riemann problem so the
more stringent Liu E-condition will be imposed on shocks.
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We begin with the scalar conservation law (7.1.2), where f (u) may have in-
flection points. The Liu E-condition is now expressed by the Oleinik E-condition
(8.4.3). By Theorem 9.3.1, the solution of the Riemann problem comprises two
constant states uL and u R joined by a wave fan that is a composite of shocks
and/or centered rarefaction waves. There exists precisely one such wave fan with
shocks satisfying Oleinik’s E-condition, and it is constructed by the following pro-
cedure: When uL < u R (or uL > u R), we let g denote the convex (or concave)
envelope of f over the interval [uL , u R] (or [u R, uL ]); namely, g(u) is the infi-
mum (or supremum) of all convex combinations θ1 f (u1) + θ2 f (u2), with θ1 ≥ 0,
θ2 ≥ 0, θ1 + θ2 = 1, u1, u2 ∈ [uL , u R] (or [u R, uL ]) and θ1u1 + θ2u2 = u. Thus
the graph of g may be visualized as the configuration of a flexible string anchored
at the points (uL , f (uL)), (u R, f (u R)) and stretched under (or over) the “obstacle”
{(u, v) : uL ≤ u ≤ u R, v ≥ f (u)} (or {(u, v) : u R ≤ u ≤ uL , v ≤ f (u)}). The
slope ξ = g′(u) is a continuous nondecreasing (or nonincreasing) function whose
inverse u = ω(ξ) generates the wave fan u = ω(x/t). In particular, the flat parts of
g′(u) give rise to the shocks while the intervals over which g′(u) is strictly monotone
generate the rarefaction waves. Figure 9.5.1 depicts an example in which the result-
ing wave fan consists of a centered rarefaction wave bordered by one-sided contact
discontinuities.

To prepare the ground for the investigation of systems, we construct wave fans,
and corresponding wave fan curves, for the simple system (7.1.8), where σ(u)
may have inflection points. The Liu E-condition here reduces to the Wendroff
E-condition (8.4.4). Similar to the genuinely nonlinear case, we shall employ u
as parameter and determine the forward 1-wave fan curve �1 and the backward
2-wave fan curve 
2 , through the state (ū, v̄), in the form v = ϕ(u; ū, v̄) and
v = ψ(u; ū, v̄), respectively. Recalling the equations (8.2.11) for the Hugoniot lo-
cus, the equations (7.6.15) for the rarefaction wave curves, and (8.4.4), one easily
verifies that
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(9.5.1) ϕ(u; ū, v̄) = v̄ +
∫ u

ū

√
g′(ω; u, ū)dω,

(9.5.2) ψ(u; ū, v̄) = v̄ −
∫ u

ū

√
g′(ω; u, ū)dω,

where g′(ω; u, ū) is the derivative, with respect to ω, of the monotone increasing,
continuously differentiable function g(ω; u, ū) which is constructed by the follow-
ing procedure: For fixed u ≤ ū (or u ≥ ū), g(·, u, ū) is the convex (or concave) en-
velope of σ(·) over the interval [u, ū] (or [ū, u]). Indeed, as in the case of the scalar
conservation law discussed above, the states (ū, v̄) and (u, v), v = φ(u; ū, v̄), are
joined by a 1-wave fan (ω(x/t), υ(x/t)), where ω(ξ) is the inverse of the function
ξ = √g′(ω; u, ū) and

(9.5.3) v(ξ) = v̄ +
∫ ω(ξ)

ū

√
g′(ω; u, ū)dω.

Again, the flat parts of g′ give rise to shocks while the intervals over which g′ is
strictly monotone generate the rarefaction waves. In the genuinely nonlinear case,
σ ′′(u) < 0, (9.5.1) and (9.5.2) reduce to (9.4.1) and (9.4.2). Once φ and ψ have
been determined, the Riemann problem is readily solved, as in the genuinely nonlin-
ear case, by locating the intermediate constant state (uM , vM ) through the equation
(9.4.3).

After this preparation, we continue with a somewhat sketchy and informal de-
scription of the construction of wave fan curves for general systems. To avoid aggra-
vating complications induced by various degeneracies, we limit the investigation to i-
characteristic families that are piecewise genuinely nonlinear in the sense that if U is
a state of linear degeneracy, Dλi (U )Ri (U ) = 0, then D(Dλi (U )Ri (U ))Ri (U ) �= 0.
This implies, in particular, that the set of states of linear degeneracy of the i-
characteristic family is locally a smooth manifold of codimension one, which is
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transversal to the vector field Ri . The scalar conservation law (7.1.2) and the sys-
tem (7.1.8) of isentropic elasticity will satisfy this assumption when the functions
f (u) and σ(u) have isolated, nondegenerate inflection points, i.e., f ′′′(u) and σ ′′′(u)
are nonzero at any point u where f ′′(u) and σ ′′(u) vanish. Even after these simplifi-
cations, the construction is complicated. The ideas may become more transparent if
the reader refers back to the model system (7.1.8) to illustrate each step. Familiarity
with Lemma 8.2.4 and the remarks following its statement will also prove helpful.

Assuming the i-characteristic family is piecewise genuinely nonlinear, we con-
sider the forward i-wave fan curve �i (τ ; Ū ) through a point Ū of genuine nonlin-
earity, say Dλi (Ū )Ri (Ū ) = 1. Then �i starts out as in the genuinely nonlinear
case, namely, for τ positive small it coincides with the i-rarefaction wave curve
Vi (τ ; Ū ) through Ū , while for τ negative, near zero, it coincides with the i-shock
curve Wi (τ ; Ū ) through Ū . In particular, (9.3.7) holds. We shall follow �i along the
positive τ -direction; the description for τ < 0 is quite analogous.

For τ > 0,�i (τ ; Ū ) will stay with the i-rarefaction wave curve Vi (τ ; Ū ) for as
long as the latter sojourns in the region of genuine nonlinearity: Dλi (Vi )Ri (Vi ) > 0.
Suppose now Vi (τ ; Ū ) first encounters the set of states of linear degeneracy of the
i-characteristic family at the state Ũ = Vi (τ̃ ; Ū ) : Dλi (Ũ )Ri (Ũ ) = 0. The set of
states of linear degeneracy in the vicinity of Ũ forms a manifold M of codimension
1, transversal to the vector field Ri ; see Fig. 9.5.2 (a,b).

The extension of �i beyond Ũ is constructed as follows: For τ ∗ < τ̃ , with τ̃−τ∗
small, we draw the i-shock curve Wi (ζ ;U∗) through the state U∗ = Vi (τ

∗, Ū ). By
account of (8.2.1), si (0;U∗) = λi (U∗) and since Dλi (U∗)Ri (U∗) > 0, (8.2.2) im-
plies that for ζ negative, near 0, ṡi (ζ ;U∗) > 0 and si (ζ ;U∗) < λi (Wi (ζ ;U∗)).
However, after crossing M,Wi (ζ ;U∗) enters the region where Dλi (U )Ri (U ) < 0
and thus λi (Wi (ζ ;U∗)) will become decreasing. Eventually, ζ ∗ will be reached
where si (ζ

∗;U∗) = λi (Wi (ζ
∗;U∗)). For ζ < ζ ∗, by virtue of Lemma 8.2.4,

si (ζ,U∗) > λi (Wi (ζ ;U∗)) and ṡi (ζ,U∗) < 0. Finally, a value ζ % will be attained
with si (ζ

%;U∗) = λi (U∗). Then the state U % = Wi (ζ
%;U∗), on the right, is joined

to U∗, on the left, by a left i-contact discontinuity with speed λi (U∗). This shock
satisfies the Liu E-condition, since si (ζ ;U∗) > λi (U∗) for ζ < ζ %. In particular,
λi (U∗) = si (ζ

%;U∗) > λi (U %). Consequently, Ū , on the left, is joined to U %, on
the right, by an admissible i-wave fan, comprising the i-rarefaction wave that joins
U∗ to Ū and the admissible left i-contact discontinuity that joins U % to U∗. It can
be shown that as U∗ moves along the curve Vi (τ ; Ū ) from Ũ towards Ū , the corre-
sponding U % traces a curve, say �. If U∗ = Ũ , then U % = Ũ so � starts out from Ũ .
Also � at Ũ is tangential to Ri (Ũ ). We adjoin � to Vi (τ ; Ū ) and consider it as the
continuation of �i (τ ; Ū ) beyond Ũ , with the proper parametrization.

�i (τ ; Ū ) will stay with � up until a state Û is reached at which one of the
following two alternatives first occurs:

One possibility is depicted in Fig. 9.5.2(a): � crosses another manifold N
of states of linear degeneracy of the i-characteristic family, entering the region
Dλi (U )Ri (U ) > 0, and eventually U∗ backs up to a position U 0 so that the cor-
responding U %, denoted by Û , satisfies λi (Û ) = λi (U 0). In that case, �i (τ ; Ū )

is extended beyond Û as the i-rarefaction curve Vi (ζ ; Û ) through Û , properly
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reparametrized. Any state U on that curve is joined, on the right, to Ū by a wave
fan comprising an i-rarefaction wave that joins U 0 to Ū , an i-contact discontinuity
that joins Û to U 0 and a second i-rarefaction wave that joins U to Û .

The alternative is depicted in Fig. 9.5.2(b): U∗ backs up all the way to Ū and the
corresponding U %, denoted by Û , satisfies λi (Û ) < λi (Ū ). In that case Û lies on
the i-shock curve through Ū , say Û = Wi (τ̂ ; Ū ). As si (τ̂ ; Ū ) = λi (Ū ) > λi (Û ),
Lemma 8.2.4 implies ṡi (τ̂ ; Ū ) < 0. Then �i (τ ; Ū ) is extended beyond Û along the
i-shock curve Wi (τ ; Ū ). Any state U on this arc of the curve is joined, on the right,
to Ū by a single shock that satisfies the Liu E-condition.

By continuing this process we complete the construction of �i (τ ; Ū ) within the
range of waves of moderate strength, and for certain systems even for strong waves.
Furthermore, careful review of the construction verifies that the graph of �i contains
all states in a small neighborhood of Ū that may be joined to Ū by an admissible
i-wave fan.

As we saw earlier, before crossing any manifold of states of linear degeneracy,
�i is C2,1. Its regularity may be reduced to C1,1 after the first crossing with such a
manifold, and it may become merely Lipschitz beyond a second crossing (references
in Section 9.12). Nevertheless, (9.3.2) will still hold, within the realm of waves of
moderate strength so that the range of τ for which the Lipschitz constant of Pi (τ ;U )
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is small transcends the manifolds of states of linear degeneracy, and does not depend
on their number. Consequently, one may trace wave fan curves for any strictly hy-
perbolic system whose flux may be realized as the C1 limit of a sequence of fluxes
with characteristic families that are piecewise genuinely nonlinear.

Later on, in Section 9.8, we will encounter an alternative construction of wave fan
curves, for general strictly hyperbolic systems, without any requirement of piecewise
genuine nonlinearity, which resembles the construction for the scalar conservation
law described earlier in this section.

Once wave fan curves satisfying (9.3.2) are in place, one may employ the con-
struction of the solution to the Riemann problem, described above, thus arriving at
the following generalization of Theorem 9.4.1:

9.5.1 Theorem. Assume the system (9.1.1) is strictly hyperbolic. For |UR − UL |
sufficiently small, there exists a unique self-similar solution (9.1.2) of the Riemann
problem (9.1.1), (9.1.12), with small total variation. This solution comprises n + 1
constant states UL = U0,U1, · · · ,Un−1,Un = UR , and Ui is joined to Ui−1 by
an admissible i-wave fan, composed of i-rarefaction waves and (at most countable)
i-shocks which satisfy the Liu E-condition.

9.6 Failure of Existence or Uniqueness;
Delta Shocks and Transitional Waves

The orderly picture painted by Theorem 9.5.1 breaks down when one leaves the
realm of strictly hyperbolic systems and waves of small amplitude.

The following exemplifies the difficulties that may be encountered in the con-
struction of solutions. We consider the isentropic flow of an infinitely long column of
a polytropic gas, with equation of state p = 1

γ
ργ , γ > 1, under the following initial

conditions. The density is constant ρ̄ > 0, throughout the length of the column. The
right half of the column is subjected to a uniform impulse ρ̄v̄ > 0, while the left half
is subjected to an equal and opposite impulse−ρ̄v̄. Thus, in Lagrangian coordinates,
we have to solve the Riemann problem for the system (7.1.8), with σ(u) = − 1

γ
u−γ

for initial data
(
uL , vL

) = (ū,−v̄) and
(
u R, vR

) = (ū, v̄), where ū = 1/ρ̄.
With reference to (9.4.1) and (9.4.2), it is clear that any intersection of the for-

ward 1-wave curve through (ū,−v̄) with the backward 2-wave curve through (ū, v̄)
will take place at uM > ū, so that the jump discontinuity at the origin will be resolved
into two rarefaction waves. In that range,

(9.6.1)

⎧⎪⎨⎪⎩
ϕ
(
u; ū, v̄

) = 2
1−γ
(
u

1−γ
2 − w

)
, u ≥ ū,

ψ
(
u; ū, v̄

) = − 2
1−γ
(
u

1−γ
2 − w

)
, u ≥ ū,

where we have set

(9.6.2) w = ū
1−γ

2 + 1−γ
2 v̄.
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Fig. 9.6.1

The form of the solution will depend on the sign of w. Figure 9.6.1 depicts the wave
curves when w > 0, w = 0 or w < 0.

When w > 0, the wave curves intersect at uM = w
2

1−γ , vM = 0, and the
Riemann problem admits the solution

(9.6.3)

(u(ξ), v(ξ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ū,−v̄), −∞ <ξ ≤ −ξF(
|ξ |− 2

γ+1 , − 2
γ−1 |ξ |

γ−1
γ+1 + 2

γ−1 |ξ0|
γ−1
γ+1

)
, −ξF <ξ ≤ −ξS(

uM , 0
)
, − ξS < ξ < ξS(

|ξ |− 2
γ+1 , 2

γ−1 |ξ |
γ−1
γ+1 − 2

γ−1 |ξ0|
γ−1
γ+1

)
, ξS ≤ ξ < ξF(

ū, v̄
)
, ξF ≤ ξ <∞,

where ξF = ū−
γ+1

2 and ξS = w
γ+1
γ−1 .

When w = 0, the two wave curves intersect at infinity. As w ↓ 0, (u(ξ), v(ξ)) of
(9.6.3) reduces to

(9.6.4) (u(ξ), v(ξ)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ū,−v̄), −∞ <ξ ≤ −ξF(
|ξ |− 2

γ+1 , 2
γ−1 sgnξ |ξ | γ−1

γ+1

)
, −ξF < ξ < ξF(

ū, v̄
)
, ξF ≤ ξ <∞.
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Notice that the singularity of u at ξ = 0 is integrable while v is continuous. It is
then easy to check that (u(ξ), v(ξ)), defined by (9.6.4), satisfies, in the sense of
distributions, (9.1.3) for the system (7.1.8), namely

(9.6.5)

⎧⎪⎨⎪⎩
(−v − ξu)· + u = 0(

1
γ

u−γ − ξv
)· + v = 0,

and thus solves the Riemann problem for w = 0. That u(0) = ∞ simply means that
the density ρ vanishes along the line x = 0.

When w < 0, the two wave curves fail to intersect, even at infinity, and no
standard solution to the Riemann problem may thus be constructed. The phys-
ical problem is of course still solvable. Indeed, we may reformulate and solve
it, in Eulerian coordinates, as a Riemann problem for the system (7.1.10), where
κ = 1/γ , with data: ρ(x, 0) = ρ̄, x ∈ (−∞,∞); v(x, 0)= −v̄, x ∈ (−∞, 0); and
v(x, 0) = v̄, x ∈ (0,∞). The solution comprises two rarefaction waves whose tail
ends recede from each other with respective speeds± 2

γ−1w, leaving in the wake be-
tween them a vacuum state where ρ vanishes. The discussion of Section 2.2 does not
cover the mapping of this flow to Lagrangian coordinates, because the determinant
ρ−1 of the deformation gradient is unbounded on the vacuum state. In fact, under this
change of coordinates the full sector in physical space-time occupied by the vacuum
state is mapped to the single line x = 0 in the reference space-time. Consequently,
u = ρ−1 becomes very singular at ξ = 0:

(9.6.6)

(u(ξ), v(ξ)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ū,−v̄), −∞ < ξ ≤ −ξF(
|ξ |− 2

γ+1 − 4
γ−1wδ0,

2
γ−1 sgnξ

[
|ξ | γ−1

γ+1 − w
])
, −ξF < ξ < ξF(

ū, v̄
)
, ξF ≤ ξ <∞,

where δ0 denotes the Dirac delta function at the origin. In fact, (u(ξ), v(ξ)) of (9.6.6)
is a distributional solution of (9.6.5), providing one regards u−γ (ξ) as a continuous
function which vanishes at the origin ξ = 0. In the (x, t) coordinates, (9.6.6) in-
duces the stationary singularity − 4

γ−1wtδ0 on u, along the t-axis. This new type of
singularity that supports point masses is called a delta shock.

One might argue that the delta shock appeared here because we employed La-
grangian coordinates, which are ill suited for this problem. It turns out, however,
that delta shocks are often present in solutions of the Riemann problem, especially
for systems that are not strictly hyperbolic. Relevant references are cited in Section
9.12. As we shall see in Section 9.8, the method of vanishing viscosity contributes
insight into the formation of delta shocks.

Failure of strict hyperbolicity is also a source of difficulties in regard to unique-
ness of solutions to the Riemann problem. The Liu E-condition is no longer suffi-
ciently discriminating to single out a unique solution. To illustrate this, let us consider
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the Riemann problem for the model system (7.2.11), with data (uL , vL) = (1, 0) and
(u R, vR) = (a, 0), where a ∈ (− 1

2 , 0). One solution comprises the two constant
states (1, 0) and (a, 0) joined by an overcompressive shock, of speed s = 1+a+a2,
which satisfies the Liu E-condition. There is, however, another solution comprising
three constant states, (1, 0), (−1, 0) and (a, 0), where (−1, 0) is joined to (1, 0) by
a 1-contact discontinuity of speed 1 and (a, 0) is joined to (−1, 0) by a 2-shock
of speed s = 1 − a + a2. Both shocks satisfy the Liu E-condition. Following the
discussion on this system in Section 8.6, one may be inclined to disqualify overcom-
pressive shocks, in which case the second solution of the Riemann problem emerges
as the admissible one. This of course hinges on the premise that (8.6.4) is the proper
dissipative form of (7.2.11).

The issue of nonuniqueness also arises in the context of (usually not strictly hy-
perbolic) systems that admit undercompressive shocks. Consider, for definiteness,
such a system of two conservation laws. Any undercompressive shock is crossed
by both 1-characteristics, from right to left, and 2-characteristics, from left to right.
Consequently, such a shock may be incorporated into a wave fan that contains a com-
pressive 1-shock, or 1-rarefaction wave, on its left, and a compressive 2-shock, or
2-rarefaction wave, on its right. In that capacity, the undercompressive shock serves
as a “bridge” joining the two characteristic families and so is dubbed a transitional
wave. It is also possible to have rarefaction transitional waves that are composites
of a 1-rarefaction and a 2-rarefaction and may occur when the 1-rarefaction wave
curve and the 2-rarefaction wave curve meet tangentially on the line along which
strict hyperbolicity fails, λ1(U ) = λ2(U ). The possibility of including transitional
waves renders the family of solutions to the Riemann problem richer and thereby the
issue of uniqueness thornier. As pointed out in Chapter VIII, viscosity or viscosity-
capillarity conditions, as well as kinetic relations are being used as admissibility cri-
teria for these undercompressive shocks. The importance of working with genuine
physical systems cannot be overemphasized at this point.

9.7 The Entropy Rate Admissibility Criterion

According to the entropy shock admissibility criterion, the entropy production across
shocks, defined by the left-hand side of (8.5.1), must be negative, so in particular the
total entropy shall be decreasing. We have seen, however, that this requirement is
generally insufficiently discriminating to rule out all spurious solutions. A wave fan
admissibility criterion will be introduced here, which is a strengthened version of the
entropy admissibility condition, as it stipulates that the combined entropy production
of all shocks in the fan is not just negative but as small as possible, or equivalently,
as it turns out, that the total entropy is not just decreasing but actually decreasing at
the highest allowable rate.

We assume that our system (9.1.1) is endowed with a designated entropy-entropy
flux pair (η(U ), q(U )), and consider the admissibility of wave fans U (x, t) =
V (x/t), with prescribed end-states V (−∞) = UL and V (∞) = UR . The combined
entropy production of the shocks in V is given by
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(9.7.1) PV =
∑
ξ

{q(V (ξ+))− q(V (ξ−))− ξ [η(V (ξ+))− η(V (ξ−))]} ,

where the summation runs over the at most countable set of points ξ of jump discon-
tinuity of V .

Because of the Rankine-Hugoniot jump condition (9.1.8), for any A ∈ IM1×n

and a ∈ IR, the entropy-entropy flux pair (η(U )+ AU + a, q(U )+ AF(U )) yields
the same value for the combined entropy production as (η(U ), q(U )). One may thus
assume, without loss of generality, that

(9.7.2) η
(
UL
) = η

(
UR
) = 0.

After this normalization, the rate of change of the total entropy in the wave fan is
given by

(9.7.3) ḢV = d

dt

∞∫
−∞

η(U (x, t))dx = d

dt

∞∫
−∞

η

(
V

(
x

t

))
dx =

∞∫
−∞

η(V (ξ))dξ.

Actually, PV and ḢV are related through

(9.7.4) ḢV = PV + q
(
U�

)− q
(
Ur
)
.

To verify this, begin with the identity

(9.7.5) η(V (ξ)) = [ξη(V (ξ))− q(V (ξ))]· + q̇(V (ξ))− ξ η̇(V (ξ)),

which holds in the sense of measures, and note that the generalized chain rule, The-
orem 1.7.5, yields

(9.7.6) q̇(V )− ξ η̇(V ) = [D̃q(V )− ξ D̃η(V )
]
V̇ .

From (9.7.6),(7.4.1) and (9.1.6) it follows that the measure q̇(V )− ξ η̇(V ) is concen-
trated in the set of points of jump discontinuity of V . Therefore, combining (9.7.1),
(9.7.2), (9.7.3) and (9.7.5), one arrives at (9.7.4).

9.7.1 Definition. A wave fan U (x, t) = V (x/t), with end-states V (−∞) = UL ,

V (∞) = UR , satisfies the entropy rate admissibility criterion if PV ≤ PV̄ , or
equivalently ḢV ≤ ḢV̄ , holds for any other wave fan Ū (x, t) = V̄ (x/t) with the
same end-states V̄ (−∞) = UL , V̄ (∞) = UR .

In its connection to continuum physics, the entropy rate admissibility criterion is
a more stringent version of the Second Law of thermodynamics: Not only should the
physical entropy increase, but it should be increasing at the maximum rate allowed
by the balance laws of mass, momentum and energy. The kinetic theory seems to
lend some credence to that thesis, at least for waves of small amplitude (references
in Section 9.12). However, the status of the entropy rate principle shall ultimately
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be judged on the basis of its implications in the context of familiar systems, and its
comparison to other, firmly established, admissibility conditions. This will be our
next task.

We begin our investigation by testing the entropy rate criterion on the scalar
conservation law:

9.7.2 Theorem. For the scalar conservation law (7.1.2), with designated entropy-
entropy flux pair (8.5.3), a wave fan satisfies the entropy rate admissibility criterion
if and only if every shock satisfies the Oleinik E-condition.

Proof. Let us fix some wave fan u(x, t) = ω(x/t), with end-states ω(−∞) =
uL , ω(∞) = u R . As ξ runs from −∞ to +∞, y = ω(ξ) traces, on the graph
of y = f (u), a (finite or infinite) number of “arcs”, separated by gaps induced by the
shocks: When ξ is a point of jump discontinuity of ω, f (ω) jumps from f (ω(ξ−))
to f (ω(ξ+)). We produce a continuous curve by filling these gaps with the chord
that connects (ω(ξ−), f (ω(ξ−)) with (ω(ξ+), f (ω(ξ+))). This may be effected
by the following procedure: We let v(ξ) denote the variation of ω over the inter-
val (−∞, ξ). Note that v is a left-continuous nondecreasing function. We now con-
struct the curve y = γω(τ), τ ∈ [0, v(∞)], as follows: If τ = v(ξ), for some
ξ ∈ (−∞,∞), then γω(τ) = f (ω(ξ)). On the other hand, if v(ξ−) < τ < v(ξ+),
for some ξ ∈ (−∞,∞), then

(9.7.7) γω(τ ) = v(ξ+)− τ

v(ξ+)− v(ξ−) f (ω(ξ−))+ τ − v(ξ−)
v(ξ+)− v(ξ−) f (ω(ξ+)).

Notice that γω is a (possibly self-intersecting) curve with endpoints (uL , f (uL))

and (u R, f (u R)) having the property that, as τ runs from 0 to v(∞), the u-slope
d+γω/du = (d+γω/dτ)(du/dτ)−1 is nondecreasing.

We recall, from Section 8.5, that the entropy production of a shock that joins
u− , on the left, to u+ , on the right, is given by the left-hand side of (8.5.4), which
measures the signed area of the domain bordered by the arc of the graph of f
with endpoints (u−, f (u−)), (u+, f (u+)), and the chord that connects (u−, f (u−)),
(u+, f (u+)). It follows that the entropy production Pω of the wave fanω is measured
by the signed area of the domain bordered by the arc of the graph of f with endpoints
(uL , f (uL)), (u R, f (u R)) and the graph of the curve γω . Consequently, the differ-
ence Pω − Pω̃ in the entropy production of two wave fans ω and ω̄ with the same
end-states, uL and u R , is measured by the signed area of the domain bordered by
the corresponding curves γω and γω̃ . We conclude that a wave fan u(x, t) = ω(x/t)
with given end-states uL and u R , such that uL < u R (or uL > u R), minimizes the
total entropy production if and only if the curve γω is the convex (or concave) enve-
lope of f over the interval [uL , u R] (or [u R, uL ]). As we saw already in Section 9.5,
this is the unique wave fan whose shocks satisfy the Oleinik E-condition. The proof
is complete.

It is interesting that just one entropy suffices to rule out all spurious solutions.
The situation is similar with the system (7.1.8) of isentropic elasticity:
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9.7.3 Theorem. For the system (7.1.8), with designated entropy-entropy flux pair
(7.4.10), a wave fan satisfies the entropy rate admissibility criterion if and only if
every shock satisfies the Wendroff E-condition (8.4.4).

The proof of the above theorem, which can be found in the references cited in
Section 9.12, is based on the observation that the entropy production of a shock is
given by the left-hand side of (8.5.5) and thus, as in the case of the scalar conservation
law, may be interpreted as an area.

We now turn to general strictly hyperbolic systems but limit our investigation to
shocks with small amplitude:

9.7.4 Theorem. For any strictly hyperbolic system (9.1.1) of conservation laws, with
designated entropy-entropy flux pair (η, q), where η is (locally) uniformly convex, a
wave fan with waves of moderate strength may satisfy the entropy rate admissibility
criterion only if every shock satisfies the Liu E-condition.

Proof. The assertion is established by contradiction: Assuming some shock in a wave
fan U (x, t) = V (x/t) violates the Liu E-condition, one constructs another wave fan
Ū (x, t) = V̄ (x/t), with the same end-states, UL ,UR , but lower entropy production,
PV̄ < PV . Here it will suffice to illustrate the idea in the special case where V
consists of just a single i-shock joining constant states UL , on the left, and UR , on
the right. The general proof is found in the literature cited in Section 9.12.

Let Wi (·) denote the i-shock curve through UL and let si (·) be the corresponding
shock speed function, with properties listed in Theorem 8.2.1. In particular, UL =
Wi (0), UR = Wi (τ ) and the speed of the shock is s = si (τ ). For definiteness,
assume τ > 0. When the shock violates the Liu E-condition, there are ξ in (0, τ )
with si (ξ) < s. The case where si (ξ) < s for all ξ ∈ (0, τ ) is simpler; so let us
consider the more interesting situation where there is ξ0 ∈ (0, τ ) such that si (ξ) > s
for ξ ∈ (0, ξ0), si (ξ0) = s, and ṡi (ξ0) < 0. We identify the state UM = Wi (ξ0).
Since UL may be joined to both UM and UR by shocks of speed s, it follows that UM

and UR can also be joined by a shock of speed s. Consequently, one may visualize
the shock that joins UL and UR as a composite of two shocks, one that joins UL and
UM and one that joins UM and UR , both propagating with the same speed s. The
plan of the proof is to perform a perturbation that splits the original shock into two
shocks, one with speed slightly lower than s, the other with speed slightly higher
than s, and to show that the resulting wave fan has lower entropy production.

To that end, we construct n + 2 families of constant states U0(ε) = UL ,

U1(ε), · · · ,Ui−1(ε),U∗(ε),Ui (ε), · · · ,Un(ε) = UR , depending smoothly on the
parameter ε that takes values in a small neighborhood (−a, a) of 0, having the fol-
lowing properties: U j (0) = UL , for j = 0, · · · , i − 1;U∗(0) = UM ;U j (0) = UR ,
for j = i, · · · , n. For j = 1, · · · , i − 1, i + 1, · · · , n,U j−1(ε) is joined to U j (ε) by
a (not necessarily admissible) j-shock with speed σ j (ε);Ui−1(ε) is joined to U∗(ε)
by an i-shock with speed s−(ε); and U∗(ε) is joined to Ui (ε) by an i-shock with
speed s+(ε). The corresponding Rankine-Hugoniot conditions read
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(9.7.8)

F(U j (ε))−F(U j−1(ε)) = σ j (ε)[U j (ε)−U j−1(ε)] , j = 1, · · · , i−1, i+1, · · · , n,

(9.7.9) F(U∗(ε))− F(Ui−1(ε)) = s−(ε)[U∗(ε)−Ui−1(ε)],

(9.7.10) F(Ui (ε))− F(U∗(ε)) = s+(ε)[Ui (ε)−U∗(ε)].
In particular, σ j (0) = λ j (UL), for j = 1, · · · , i − 1; s−(0) = s+(0) = s; and
σ j (0) = λ j (UR), for j = i, · · · , n. The construction may be effected by the method
employed in Section 9.3 for constructing solutions to the Riemann problem, with j-
shock curves playing here the role of the wave fan curves � j used there. The implicit
function theorem here yields a one-parameter family of states (rather than a single
state, as in Section 9.3), because of the additional degree of freedom, namely the
intermediate state U∗ . We choose the parametrization so that s′−(0) = −1. Here and
below the prime denotes differentiation with respect to ε.

Our first task is to show that, for ε positive small, the constant states U0(ε), · · · ,
Ui−1(ε),U∗(ε),Ui (ε), · · · ,Un(ε), together with the connecting shocks, may be as-
sembled into a wave fan Vε . For that purpose it suffices to prove that s−(ε) < s+(ε).
We differentiate (9.7.8), (9.7.9), (9.7.10) with respect to ε and set ε = 0 to get

(9.7.11) [DF(U−)− λ j (U−)I ][U ′
j (0)−U

′
j−1(0)] = 0, j = 1, · · · , i − 1,

(9.7.12) [DF(U+)− λ j (U+)I ][U ′
j (0)−U

′
j−1(0)] = 0, j = i + 1, · · · , n,

(9.7.13) [DF(UM )− s I ]U ′
∗(0)− [DF(UL)− s I ]U ′

i−1(0) = s′−(0)[UM −UL ],

(9.7.14) [DF(UR)− s I ]U ′
i (0)− [DF(UM )− s I ]U ′

∗(0) = s′+(0)[UR −UM ].
Upon combining (9.7.13) with (9.7.14) we deduce

(9.7.15) s′−(0)[UM −UL ] + s′+(0)[UR −UM ]

= [DF(UR)− s I ]U ′
i (0)− [DF(UL)− s I ]U ′

i−1(0).

Both vectors on the left-hand side of (9.7.15) are nearly collinear to Ri (UL) and
Ri (UR). On the other hand, by virtue of (9.7.11), U

′
i−1(0) lies in the span of

{R1(UL), · · · , Ri−1(UL)}, while by account of (9.7.12), U
′
i (0) lies in the span of

{Ri+1(UR), · · · , Rn(UR)}. Therefore, the right-hand side of (9.7.15) is nearly or-
thogonal to Li (UL) and Li (UR). Let us set � = |UM − UL |. Recalling that
s′−(0) = −1, we deduce that in (9.7.15) both terms on the right-hand side are o(�)
and thus the two terms on the left-hand side must cancel each other out to leading
order. In particular, s′+(0) > 0 so that, for ε positive small, s−(ε) < s < s+(ε),
which establishes the desired separation of shocks.
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The total entropy production of the wave fan Vε is

(9.7.16)

P(ε) =
∑
j �=i

{q(U j (ε))− q(U j−1(ε))− σ j (ε)[η(U j (ε))− η(U j−1(ε))]}

+ q(U∗(ε))− q(Ui−1(ε))− s−(ε)[η(U∗(ε))− η(Ui−1(ε))]

+ q(Ui (ε))− q(U∗(ε))− s+(ε)[η(Ui (ε))− η(U∗(ε))].
To establish that for ε positive small the wave fan Vε dissipates entropy at a higher
rate than V , it suffices to show that P ′

(0) < 0. The derivative, with respect to ε, of
the summation term on the right-hand side of (9.7.16), evaluated at ε = 0, reduces to

i−1∑
j=1

[Dq(UL)− λ j (UL)Dη(UL)][U ′
j (0)−U

′
j−1(0)]

(9.7.17)

+
n∑

j=i+1

[Dq(UR)− λ j (UR)Dη(UR)][U ′
j (0)−U

′
j−1(0)],

which vanishes by virtue of (7.4.1), (9.7.11) and (9.7.12). We evaluate, at ε = 0, the
derivative of the remaining terms on the right-hand side of (9.7.16). After a straight-
forward calculation, making use of (7.4.1), (9.7.13) and (9.7.14), we conclude

(9.7.18)

P ′
(0) = −s′−(0)[η(UM )− η(UL)− Dη(UM )(UM −UL)]

− s′+(0)[η(UR)− η(UM )− Dη(UM )(UR −UM )]

+ [Dη(UM )− Dη(UL)][DF(UL)− s I ]U ′
i−1(0)

+ [Dη(UR)− Dη(UM )][DF(UR)− s I ]U ′
i (0).

We examine the four terms on the right-hand side of (9.7.18), in the light of the scal-
ing analysis of (9.7.15), discussed earlier in the proof. Considering that η is convex,
s′−(0) = −1, s′+(0) > 0 and |UM−UL | = �, it follows that the first term is majorized
by −β�2 and the second term is majorized by −β�|UR −UM |, for some β > 0. On
the other hand, the third term is o(�)� and the fourth term is o(�)|UR −UM |. Conse-
quently, for � sufficiently small, P ′

(0) < 0. This completes the proof.

Beyond the range of shocks of moderate strength, the entropy rate admissibil-
ity criterion is no longer generally equivalent to the Liu E-condition. The issue
has been discussed in detail (references in Section 9.12) in the context of the sys-
tem (7.1.5) of adiabatic thermoelasticity for a polytropic gas with internal energy
ε = esu1−γ , which induces, by (7.1.6), pressure p = −σ = (γ − 1)esu−γ . The des-
ignated entropy-entropy flux pair is given by (7.4.9), namely (−s, 0). For this system,
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with 1- and 3-characteristic families that are genuinely nonlinear and 2-characteristic
family that is linearly degenerate, the Lax E-condition and the Liu E-condition are
equivalent.

It has been shown that when γ ≥ 5/3 a wave fan, of arbitrary strength, satisfies
the entropy rate admissibility criterion if and only if its shocks satisfy the Lax E-
condition. The reader should note that 5/3 is the value for the adiabatic exponent γ
predicted by the kinetic theory in the case of a monatomic ideal gas.

When γ < 5/3 (polyatomic gases), the situation is different. Consider a wave
fan comprising three constant states (uL , vL , sL), (uM , vM , sM ) and (u R, vR, sR),
where the first two are joined by a stationary 2-contact discontinuity, while the sec-
ond and the third are joined by a 3-rarefaction wave. In particular, we must have
vM = vL , p(uM , sM ) = p(uL , sL), sM = sR , and z(uM , vM , sM ) = z(u R, vR, sR),
where z(u, v, s) denotes the second 3-Riemann invariant listed in (7.3.4). The total
entropy production of this wave fan is of course zero. For u R/uL in a certain range,
there is a second wave fan with the same end-states, which comprises four constant
states (uL , vL , sL), (u1, v1, s1), (u2, v2, s2) and (u R, vR, sR), where the first two are
joined by a 1-shock that satisfies the Lax E-condition, the second is joined to the
third by a 2-contact discontinuity, while the last two are joined by a 3-shock that
violates the Lax E-condition. It turns out that when uM/uL is not too large, i.e., the
contact discontinuity is not too strong, the total entropy production of the second
wave fan is positive, and hence the first wave fan has lower entropy rate. By contrast,
when uM/uL is sufficiently large, the total entropy production of the second wave
fan is negative and so the first wave fan no longer satisfies the entropy rate criterion.

Similar issues arise for systems that are not strictly hyperbolic. Let us consider
our model system (7.2.11). Recall the two wave fans with the same end-states (1, 0)
and (a, 0), a ∈ (− 1

2 , 0), described in Section 9.6: The first one comprises the states
(1, 0) and (a, 0), joined by an overcompressive shock of speed 1+a+a2. The second
comprises three states, (1, 0), (−1, 0) and (a, 0), where the first two are joined by
a 1-contact discontinuity of speed 1, while the second is joined to the third by a
2-shock of speed 1− a + a2. If we designate the entropy-entropy flux pair

(9.7.19) η = 1
2 (u

2 + v2), q = 3
4 (u

2 + v2)2,

the entropy production of the overcompressive shock is 1
4 (a

2 − 1)(1− a)2 while the
entropy production of the second wave fan is 1

4 (a
2 − 1)(1 + a)2. Thus the entropy

rate criterion favors the overcompressive shock, even though, as we saw in Section
8.6, this is incompatible with the stable shock profile condition. The reader should
bear in mind, however, that these conclusions are tied to our selections for artificial
viscosity and entropy. Whether (8.6.4) is the proper dissipative form and (9.7.19)
is the natural entropy-entropy flux pair for (7.2.11) may only be decided when this
system is considered in the context of some physical model.

In addition to providing a wave fan admissibility criterion, the entropy rate prin-
ciple, Definition 9.7.1, suggests an alternative method for constructing solutions to
the Riemann problem (9.1.1), (9.1.12), namely by minimizing the functional ḢV ,
defined by (9.7.3), over the set of BV solutions V (ξ) of the boundary-value problem
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(9.1.3), (9.1.13). In order to simplify the analysis, we shall perform the minimiza-
tion here over the more narrow class of BV solutions V (ξ) of (9.1.3), (9.1.13) with
monotone i-wave fans; that is, for any i = 1, · · · , n, if [ζi , ξi ] is the interval corre-
sponding to the i-wave fan, then [V (ξ+)− V (ζ−)] · Ri (UL) does not change sign,
for all ζi ≤ ζ ≤ ξ ≤ ξi . This additional restriction is actually superfluous, as it can
be shown that any minimizer of ḢV , over all BV solutions of (9.1.3), (9.1.13), has
necessarily monotone i-wave fans. It should also be noted that all solutions to the
Riemann problem constructed in Sections 9.4 and 9.5 have monotone i-wave fans.
The same holds true for solutions involved in the proof of Theorem 9.7.4.

For arbitrary strictly hyperbolic systems (9.1.1), when |UR − UL | is sufficiently
small, there are solutions to the Riemann problem (9.1.1), (9.1.12) with monotone
i-wave fans. For example, one may easily synthesize such a solution, in which each
i-wave fan is just a single (not necessarily admissible) i-shock, by simply repeating
the construction described in Section 9.3, with i-shock curves Wi in the place of the
i-wave fan curve �i used there. One should also recall that if V (ξ) is a solution of
(9.1.3), (9.1.13) with small oscillation and if [ζi , ξi ] is the interval corresponding
to the i-wave fan, then for any ζi ≤ ζ ≤ ξ ≤ ξi , the vector V (ξ+) − V (ζ−) is
nearly parallel to Ri (UL). Hence, when |UR − UL | is sufficiently small, the family
of solutions to (9.1.3), (9.1.13) with monotone i-wave fans have uniformly bounded
total variation over (−∞,∞). Then Helly’s theorem yields the compactness that
induces the existence of a minimizer to the functional ḢV = ∫

η(V (ξ))dξ . This
together with Theorem 9.7.4 implies

9.7.5 Theorem. Consider any strictly hyperbolic system (9.1.1) that is endowed with
a uniformly convex entropy η(U ). When |UR −UL | is sufficiently small, there exists
a solution U (x, t) = V (x/t) of the Riemann problem (9.1.1), (9.1.12) where V (ξ)
minimizes the entropy rate ḢV , or equivalently the total entropy production PV , over
all wave fans with monotone i-wave fans and end-states UL , UR . Furthermore, this
solution coincides with the unique solution established by Theorem 9.5.1.

9.8 Viscous Wave Fans

The viscous shock admissibility criterion, introduced in Section 8.6, characterizes
admissible shocks for the hyperbolic system of conservation laws (9.1.1) as µ ↓ 0
limits of traveling wave solutions of the associated dissipative system (8.6.1). The
aim here is to extend this principle from single shocks to general wave fans. The dif-
ficulty is that, in contrast to (9.1.1), the system (8.6.1) is not invariant under uniform
stretching of the space-time coordinates and thus it does not possess traveling wave
fans as solutions. As a remedy, it has been proposed that in the place of (8.6.1) one
should employ a system with time-varying viscosity,

(9.8.1) ∂tU (x, t)+ ∂x F(U (x, t)) = µt∂2
x U (x, t),

which is invariant under the transformation (x, t) �→ (αx, αt). It is easily seen that
U = Vµ(x/t) is a self-similar solution of (9.8.1) if and only if Vµ(ξ) satisfies the
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ordinary differential equation

(9.8.2) µV̈µ(ξ) = Ḟ(Vµ(ξ))− ξ V̇µ(ξ).

A self-similar solution U = V (x/t) of (9.1.1) is said to satisfy the viscous wave
fan admissibility criterion if V is the almost everywhere limit, as µ ↓ 0, of a uni-
formly bounded family of solutions Vµ of (9.8.2).

In addition to serving as a test of admissibility, the viscous wave fan criterion
suggests an alternative approach for constructing solutions to the Riemann problem
(9.1.1), (9.1.12). Towards that end, one has to show that for any fixed µ > 0 there
exists some solution Vµ(ξ) of (9.8.2) on (−∞,∞), with boundary conditions

(9.8.3) Vµ(−∞) = UL , Vµ(+∞) = UR ,

and then prove that the family {Vµ(ξ) : 0 < µ < 1} has uniformly bounded vari-
ation on (−∞,∞). In that case, by Helly’s theorem (cf. Section 1.7), a convergent
sequence {Vµm } may be extracted, with µm ↓ 0 as m →∞, whose limit V induces
the solution U (x, t) = V (x/t) to the Riemann problem.

The above program has been implemented successfully under a variety of con-
ditions. One may solve the Riemann problem under quite general data UL and UR

albeit for special systems, most notably for pairs of conservation laws. Alternatively,
one may treat general systems but only in the context of weak waves, requiring that
|UR −UL | be sufficiently small. Let us consider this last situation first. The analysis
is lengthy and technical so only the main ideas shall be outlined. For the details, the
reader may consult the references cited in Section 9.12.

The crucial step is to establish a priori bounds on the total variation of Vµ(ξ)
over (−∞,∞), independent of µ. To prepare the ground for systems, let us begin
with the scalar conservation law (7.1.2). Setting λ(u) = f

′
(u) and V̇µ(ξ) = a(ξ),

we write (9.8.2) in the form

(9.8.4) µȧ + [ξ − λ(Vµ(ξ))]a = 0.

The solution of (9.8.4) is a(ξ) = τφ(ξ), where

(9.8.5) φ(ξ) = exp[− 1
µ

g(ξ)]∫∞
−∞ exp[− 1

µ
g(ζ )]dζ ,

(9.8.6) g(ξ) =
∫ ξ

s
[ζ − λ(Vµ(ζ ))]dζ.

The lower limit of integration s is selected so that g(ξ) ≥ 0 for all ξ in (−∞,∞).
The amplitude τ is determined with the help of the boundary conditions, that is
Vµ(−∞) = uL , Vµ(∞) = u R , τ = u R − uL . From (9.8.5) it follows that the L1

norm of a(ξ) is bounded, uniformly in µ, and so the family {Vµ : 0 < µ < 1} has
uniformly bounded variation on (−∞,∞).
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Turning now to general strictly hyperbolic systems (9.1.1), we realize Vµ(ξ) as
the composition of wave fans associated with distinct characteristic families, by writ-
ing

(9.8.7) V̇µ(ξ) =
n∑

j=1

a j (ξ)R j (Vµ(ξ)).

We substitute V̇µ from (9.8.7) into (9.8.2). Upon multiplying the resulting equation,
from the left, by Li (Vµ(ξ)), we deduce

(9.8.8) µȧi + [ξ − λi (Vµ(ξ))]ai = µ

n∑
j,k=1

βi jk(Vµ(ξ))a j ak ,

where

(9.8.9) βi jk(U ) = −Li (U )DR j (U )Rk(U ).

In (9.8.8), the left-hand side coincides with the left-hand side of (9.8.4), for the scalar
conservation law, while the right-hand side accounts for the interactions of distinct
characteristic families. The reader should notice the analogy between (9.8.8) and
(7.8.6). It should also be noted that when our system is endowed with a coordinate
system (w1, · · · , wn) of Riemann invariants, ai (ξ) = ẇi (Vµ(ξ)). In that case, as
shown in Section 7.3, for j �= k, DR j Rk lies in the span of {R j , Rk} and so (9.8.9)
implies βi jk = 0 when i �= j �= k �= i . For special systems, such as (7.3.18),
with coinciding shock and rarefaction wave curves, DR j R j is collinear to R j and so
βi jk = 0 even when i �= j = k so that the equations in (9.8.8) decouple. In general,
the thrust of the analysis is to demonstrate that in the context of solutions with small
oscillation, i.e., ai small, the effect of interactions, of quadratic order, will be even
smaller.

The solution of (9.8.8) may be partitioned into

(9.8.10) ai (ξ) = τiφi (ξ)+ θi (ξ),

where

(9.8.11) φi (ξ) =
exp[− 1

µ
gi (ξ)]∫∞

−∞ exp[− 1
µ

gi (ζ )]dζ
,

(9.8.12) gi (ξ) =
∫ ξ

si

[ζ − λi (Vµ(ζ ))]dζ,

and θi (ξ) satisfies the equation

(9.8.13)

µθ̇i + [ξ − λi (Vµ(ξ))]θi = µ

n∑
j,k=1

βi jk(Vµ(ξ))[τ jφ j (ξ)+ θ j ][τkφk(ξ)+ θk].
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The differential equations (9.8.13) may be transformed into an equivalent system
of integral equations by means of the variation of parameters formula:

(9.8.14)

θi (ξ) = φi (ξ)

∫ ξ

ci

φ−1
i (ζ )βi jk(Vµ(ζ ))[τ jφ j (ζ )+ θ j (ζ )][τkφk(ζ )+ θk(ζ )]dζ.

Careful estimation shows that

(9.8.15) |θi (ξ)| ≤ c(τ 2
1 + · · · + τ 2

n )

n∑
j=1

φ j (ξ),

which verifies that, in (9.8.10), θi is subordinate to τiφi , i.e., the characteristic fami-
lies decouple to leading order.

It can be shown, by means of a contraction argument, that for any fixed
(τ1, · · · , τn) in a small neighborhood of the origin, there exists some solution Vµ(ξ)
of (9.8.2) on (−∞,∞), which satisfies (9.8.7), (9.8.10) and (9.8.15). To solve the
boundary-value problem (9.8.2), (9.8.3), the (τ1, · · · , τn) have to be selected so that

(9.8.16)
n∑

j=1

∫ ∞

−∞
[τ jφ j (ξ)+ θ j (ξ)]R j (Vµ(ξ))dξ = UR −UL .

It has been proved that (9.8.16) admits a unique solution (τ1, · · · , τn), at least when
|UR −UL | is sufficiently small. The result is summarized in the following

9.8.1 Theorem. Assume the system (9.1.1) is strictly hyperbolic on O and fix any
state UL ∈ O. There is δ > 0 such that for any UR ∈ O with |UR − UL | < δ and
everyµ > 0, the boundary-value problem (9.8.2), (9.8.3) possesses a solution Vµ(ξ),
which admits the representation (9.8.7), (9.8.10) with (τ1, · · · , τn) close to the origin
and θi obeying (9.8.15). Moreover, the family {Vµ(ξ) : 0 < µ < 1} of solutions has
uniformly bounded (and small) total variation on (−∞,∞). In particular, one may
extract a sequence {Vµm (ξ)}, with µm ↓ 0 as m →∞, which converges, boundedly
almost everywhere, to a function V (ξ) such that the wave fan U = V (x/t) solves
the Riemann problem (9.1.1), (9.1.12).

Careful analysis of the process that generates V (ξ) as the limit of the sequence
{Vµm (ξ)} reveals that V (ξ) has the structure described in Theorem 9.3.1. Further-
more, for any point ξ of jump discontinuity of V, V (ξ−), on the left, is connected
to V (ξ+), on the right, by a viscous shock profile, and so the viscous shock admis-
sibility criterion is satisfied (with B = I ), as discussed in Section 8.6. In particular,
any shock of V satisfies the Liu E-condition and thus V coincides with the unique
solution established by Theorem 9.5.1.

The construction of the solution Vµ(ξ) to the boundary-value problem (9.8.2),
(9.8.3) and the derivation of the bound on the total variation of the family {Vµ},
asserted by Theorem 9.8.1, do not depend on the fact that the system (9.8.1) is con-
servative but apply equally well to any system
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(9.8.17) µV̈µ(ξ) = A(Vµ(ξ))V̇µ(ξ)− ξ V̇µ(ξ),

so long as the matrix A(U ) has real distinct eigenvalues. If V (ξ) is the µ ↓ 0 limit
of Vµ(ξ), the function U (x, t) = V (x/t) may be interpreted as a solution of the
Riemann problem for the strictly hyperbolic, nonconservative system

(9.8.18) ∂tU + A(U )∂xU = 0,

even though it does not necessarily satisfy that system in the sense of distributions.
Viscous wave fans induce an alternative, implicit construction of wave fan curves

for general strictly hyperbolic systems (9.1.1), without any requirement of piecewise
genuine nonlinearity.

To trace the forward i-wave curve that emanates from some fixed state Ū , assume
that a state Û , on the right, is connected to Ū , on the left, by an i-wave fan of
moderate strength. Suppose this wave fan is the µ ↓ 0 limit of a family of viscous
wave fans Vµ(ξ). Thus Vµ is defined for ξ in a small neighborhood of ξ̄ = λi (Ū ),
it takes values near Ū , and µV̇µ(ξ) is small. We stretch the domain by rescaling
the variable, ξ = µζ . We also rescale the a j in the expansion (9.8.7) by setting
w j = µa j , and assemble the vector W = (w1, · · · , wn). Then we may recast (9.8.7),
(9.8.8) into an autonomous first order system

(9.8.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ′ =
n∑

j=1

w j R j (V )

w′j = [λ j (V )− ξ ]w j +
n∑

k,�=1

β jk�(V )wkw� , j = 1, · · · , n

ξ ′ = µ

µ′ = 0,

where the prime denotes differentiation with respect to ζ .
Linearization of (9.8.19) about the equilibrium point V = Ū , W = 0, ξ = λi (Ū ),

µ = 0 yields the system

(9.8.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ′ =
n∑

j=1

w j R j (Ū )

w′j = [λ j (Ū )− ξ ]w j , j = 1, · · · , n

ξ ′ = µ

µ′ = 0.

The center subspace N of this system consists of all vectors (V,W, ξ, µ) ∈ IR2n+2

with w j = 0 for j �= i , and therefore has dimension n + 3. By the center manifold
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theorem, any solution of (9.8.19) that sojourns in the vicinity of the above equilib-
rium point must lie on a (n + 3)-dimensional manifold M, which is tangential to N
at the equilibrium point, is invariant under the flow generated by (9.8.19), and admits
the local representation

(9.8.21) w j = ϕ j (V, ω, ξ ;µ), j �= i,

where ω stands for wi . By the theory of skew-product flows, the functions ϕ j can be
selected so that ϕ j (V, 0, ξ ;µ) = 0, for all V, ξ and µ close to Ū , λi (Ū ) and 0. We
may thus set

(9.8.22) w j = ωψ j (V, ω, ξ ;µ), j �= i,

where ψ j (Ū , 0, λi (ū); 0) = 0, since M is tangential to N at the equilibrium point.
We also introduce a new variable τ such that

(9.8.23)
d

dτ
= 1

ω

d

dζ
.

In order to see how the components (Vµ, ωµ, ξµ) of our solution evolve on M as
functions of τ , we combine (9.8.19), (9.8.22) and (9.8.23) to deduce

(9.8.24)
dVµ
dτ

= Pµ(Vµ, ωµ, ξµ),

(9.8.25)
dωµ
dτ

= pµ(Vµ, ωµ, ξµ)− ξµ ,

where we have set

(9.8.26) Pµ(V, ω, ξ) = Ri (V )+
∑
j �=i

ψ j (V, ω, ξ ;µ)R j (V ),

(9.8.27) pµ(V, ω, ξ) = λi (V )+
n∑

k,�=1

ωβik�(V )ψk(V, ω, ξ ;µ)ψ�(V, ω, ξ ;µ).

In particular, P0(Ū , 0, λi (Ū )) = Ri (Ū ), p0(Ū , 0, λi (Ū )) = λi (Ū ).
To derive an equation for ξµ(τ), we note that (9.8.23) together with (9.8.19)3

yield dξµ/dτ = ξ ′µ/ω = µ/ω. We differentiate this relation with respect to τ and
use (9.8.25) to get

(9.8.28) µ
d2ξµ

dτ 2
= −

(
dξµ
dτ

)2

[pµ(Vµ, ωµ, ξµ)− ξµ].

As µ ↓ 0, (Vµ, ωµ, ξµ) converge uniformly to (V, ω, ξ). In particular, we have
V (0) = Ū , ω(0) = 0 and V (s) = Û , for some, say positive, small s. By virtue of
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(9.8.28), [0, s] is the union of an at most countable family of τ -intervals, associated
with shocks, over which dξ/dτ = 0, and τ -intervals, associated with rarefaction
waves, over which ξ = p0(V, ω, ξ). Furthermore, at points of transition from shock
to rarefaction (or rarefaction to shock) d2ξµ/dτ 2 should be nonnegative (or nonpos-
itive). It then follows that

(9.8.29) ξ(τ ) = dg

dτ
(τ ), 0 ≤ τ ≤ s,

where g is the convex envelope, over [0, s], of the function

(9.8.30) f (τ ) =
τ∫

0

p0(V (σ ), ω(σ ), ξ(σ ))dσ, 0 ≤ τ ≤ s,

i.e., g(τ ) = inf{θ1 f (τ1) + θ2 f (τ2) : θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2=1, 0 ≤ τ1 ≤ τ2 ≤ s,
θ1τ1 + θ2τ2 = τ }. Then (9.8.24) and (9.8.25) yield

(9.8.31) V (t) = Ū +
τ∫

0

P0(V (σ ), ω(σ ), ξ(σ ))dσ, 0 ≤ τ ≤ s,

(9.8.32) ω(τ) = f (τ )− g(τ ), 0 ≤ τ ≤ s.

It can be shown that, once P0(V, ω, ξ) and p0(V, ω, ξ) are specified, the system
of equations (9.8.29), (9.8.31) and (9.8.32) can be solved by Picard iteration to yield
the functions V (τ ),ω(τ) and ξ(τ ), over [0, s], for any small positive s. The treatment
of negative s is similar, except that now g is the concave envelope of f over [s, 0].
Hence, these equations provide an implicit representation of the i-wave fan curve �i

emanating from Ū , by setting �i (s; Ū ) = V (s). By its definition through (9.8.23),
τ is nearly equal to the projection of V − Ū on Ri . Thus, the above construction of
the i-wave fan curve closely resembles the construction of the wave fan for the scalar
conservation law described at the opening of Section 9.5.

Our next project is to construct, by the method of viscous wave fans, solutions to
the Riemann problem for systems of just two conservation laws,

(9.8.33)

{
∂t u + ∂x f (u, v) = 0

∂tv + ∂x g(u, v) = 0,

albeit under unrestricted initial data

(9.8.34)
(
u(x, 0), v(x, 0)

) = {(uL , vL
)
, x < 0(

u R, vR
)
, x > 0.

The crucial restriction will be that fv and gu have the same sign, say for definiteness

(9.8.35) fv(u, v) < 0, gu(u, v) < 0, for all (u, v).



270 IX Admissible Wave Fans and the Riemann Problem

In particular, the system is strictly hyperbolic. Coupled symmetric systems and the
system (7.1.8) of isentropic elastodynamics are typical representatives of this class.
The analysis will demonstrate how delta shocks may emerge as “concentrations” in
the limit of viscous profiles.

Equations (9.8.2), (9.8.3) here take the form

(9.8.36)

⎧⎨⎩µüµ(ξ) = ḟ
(
uµ(ξ), vµ(ξ)

)− ξ u̇µ(ξ)

µv̈µ(ξ) = ġ
(
uµ(ξ), vµ(ξ)

)− ξ v̇µ(ξ),

(9.8.37)
(
uµ(−∞), vµ(−∞)

) = (uL , vL
)
,
(
uµ(∞), vµ(∞)

) = (u R, vR
)
.

The importance of the assumption (9.8.35) stems from the following

9.8.2 Lemma. Let
(
uµ(ξ), vµ(ξ)

)
be a solution of (9.8.36),(9.8.37) on

(−∞,∞). Then one of the following holds:

(a) Both uµ(ξ) and vµ(ξ) are constant on (−∞,∞).
(b) uµ(ξ) is strictly increasing (or decreasing), with no critical points on (−∞,∞);
vµ(ξ) has at most one critical point on (−∞,∞), which is necessarily a maxi-
mum (or minimum).

(c) vµ(ξ) is strictly increasing (or decreasing), with no critical points on (−∞,∞);
uµ(ξ) has at most one critical point on (−∞,∞), which is necessarily a maxi-
mum (or minimum).

Proof. Notice that u̇µ
(
ξ0
) = 0 and üµ

(
ξ0
) = 0 imply v̇µ

(
ξ0
) = 0; similarly

v̇µ
(
ξ0
) = 0 and v̈µ

(
ξ0
) = 0 imply u̇µ

(
ξ0
) = 0. Therefore, by uniqueness of so-

lutions to the initial-value problem for ordinary differential equations, if either one
of uµ(ξ), vµ(ξ) has degenerate critical points, then both these functions must be
constant on (−∞,∞).

Turning to nondegenerate critical points, note that u̇µ
(
ξ0
) = 0 and üµ

(
ξ0
)
< 0

(or üµ
(
ξ0
)
> 0) imply v̇µ

(
ξ0
)
> 0 (or v̇µ

(
ξ0
)
< 0); similarly, v̇µ

(
ξ0
) = 0 and

v̈µ
(
ξ0
)
< 0 (or v̈µ

(
ξ0
)
> 0) imply u̇µ

(
ξ0
)
> 0 (or u̇µ

(
ξ0
)
< 0).

Suppose now vµ(ξ) has more than one nondegenerate critical points and pick two
consecutive ones, a maximum at ξ1 and a minimum at ξ2 . For definiteness, assume
ξ1 < ξ2 . Then v̇µ

(
ξ1
) = 0, v̈µ

(
ξ1
)
< 0, v̇µ

(
ξ2
) = 0, v̈µ

(
ξ2
)
> 0 and v̇µ(ξ) < 0

for ξ ∈ (ξ1, ξ2
)
. Hence, u̇µ

(
ξ1
)
> 0 and u̇µ

(
ξ2
)
< 0. Therefore, there exists ξ0 in(

ξ1, ξ2
)

such that u̇µ
(
ξ0
) = 0 and üµ

(
ξ0
)
< 0. But this implies v̇µ

(
ξ0
)
> 0, which is

a contradiction. The case ξ1 > ξ2 also leads to a contradiction. The same argument
shows that uµ(ξ) may have at most one nondegenerate critical point.

Finally, suppose both uµ(ξ) and vµ(ξ) have nondegenerate critical points, say at
ξ1 and ξ2 , respectively. For definiteness, assume ξ1 < ξ2 and ξ2 is a maximum of
vµ(ξ). Then v̇µ(ξ) > 0 for ξ ∈ (−∞, ξ2

)
and v̇µ

(
ξ2
) = 0, v̈µ

(
ξ2
)
< 0. This implies

u̇µ
(
ξ2
)
> 0. But then, ξ1 is necessarily a minimum of uµ(ξ), with u̇µ

(
ξ1
) = 0,
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üµ
(
ξ1
)
> 0. This in turn implies v̇µ

(
ξ1
)
< 0, which is a contradiction. All other

possible combinations lead to similar contradictions. The proof is complete.

Because of the very special configuration of the graphs of uµ(ξ) and vµ(ξ), it
is relatively easy to establish existence of solutions to (9.8.36), (9.8.37). Indeed, it
turns out that for that purpose it is sufficient to bound a priori the unique “peak”
attained by uµ(ξ) or vµ(ξ), in terms of the given data

(
uL , vL

)
,
(
u R, vR

)
, and the

parameter µ. The reader may find the derivation of such estimates, and resulting
proof of existence, in the literature cited in Section 9.12, under the assumption that
either the growth of f (u, v) and g(u, v) is restricted by

(9.8.38) | f (u, v)| ≤ h(v)(1+ |u|)p, |g(u, v)| ≤ h(u)(1+ |v|)p,

where h is a continuous function and p < 2, or the system (9.8.33) is endowed
with an entropy η(u, v), with the property that the eigenvalues of the Hessian matrix
D2η(u, v) are bounded from below by (1+ |u|)−p(1+ |v|)−p, for some p < 3. The
first class of systems contains in particular (7.1.8), and the second class includes all
symmetric systems.

Assuming (uµ, vµ) exist, we pass to the limit, as µ ↓ 0, in order to obtain solu-
tions of the Riemann problem. For that purpose, we shall need estimates independent
of µ. Let us consider, for definiteness, the case where vµ(ξ) is strictly increasing on
(−∞,∞), while uµ(ξ) is strictly increasing on

(−∞, ξµ
)
, attains its maximum at

ξµ , and is strictly decreasing on
(
ξµ,∞

)
. All other possible configurations may be

treated in a similar manner.
Let us set ū = max{uL , u R} and identify the points ξ� ∈

(−∞, ξµ
) ∪ {−∞}

and ξr ∈
(
ξµ,∞

) ∪ {∞} with the property u
(
ξ�
) = u

(
ξr
) = ū. For any interval

(a, b) ⊂ (−∞,∞), using (9.8.36)1 and (9.8.35), we deduce

(9.8.39)

b∫
a

[
uµ(ξ)− ū

]
dξ ≤

ξr∫
ξ�

[
uµ(ξ)− ū

]
dξ = −

ξr∫
ξ�

ξ u̇µ(ξ)dξ

= µu̇µ
(
ξr
)− µu̇µ (ξ�)− f

(
ū, vµ(ξr )

)+ f
(
ū, vµ(ξ�)

)
≤ f

(
ū, vL

)− f
(
ū, vR

)
.

By virtue of (9.8.39), there is a sequence {µk}, µk ↓ 0 as k → 0, such that
{ξµk } converges to some point ξ0 ∈ (−∞,∞) ∪ {−∞,∞}, {vµk (ξ)} converges,
pointwise on (−∞,∞), to a monotone increasing function v(ξ), and {uµk (ξ)} con-
verges, pointwise on

(−∞, ξ0
) ∪ (ξ0,∞

)
, to a locally integrable function u(ξ),

which is monotone increasing on (−∞, ξ0) and monotone decreasing on (ξ0,∞).
Furthermore, it is easily seen that u(−∞) = uL , u(∞) = u R, v(−∞) = vL and
v(∞) = vR .

When ξ0 = −∞ (or ξ0 = ∞), u(ξ) is a monotone increasing (or decreasing)
function on (−∞,∞), in which case (u(ξ), v(ξ)) is a standard solution to the Rie-
mann problem. The situation becomes interesting when ξ0 ∈ (−∞,∞). In that case,
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as k → ∞, uµk → u + ωδξ0 , in the sense of distributions, where δξ0 denotes the
Dirac delta function at ξ0 and ω ≥ 0.

We multiply both equations in (9.8.36) by a test function ϕ ∈ C∞0 (−∞,∞),
integrate the resulting equations over (−∞,∞) and integrate by parts to get

(9.8.40)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

{
µuµϕ̈ +

[
f
(
uµ, vµ

)− ξuµ
]
ϕ̇ − uµϕ

}
dξ = 0,

∞∫
−∞

{
µvµϕ̈ +

[
g
(
uµ, vµ

)− ξvµ
]
ϕ̇ − vµϕ

}
dξ = 0.

We apply (9.8.40) for test functions that are constant over some open interval con-
taining ξ0 and let µ ↓ 0 along the sequence {µk} thus obtaining

(9.8.41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

[ f (u(ξ), v(ξ))− ξu(ξ)]ϕ̇(ξ)dξ =
∞∫

−∞
u(ξ)ϕ(ξ)dξ + ωϕ

(
ξ0
)
,

∞∫
−∞

[g(u(ξ), v(ξ))− ξv(ξ)]ϕ̇(ξ)dξ =
∞∫

−∞
v(ξ)ϕ(ξ)dξ.

By shrinking the support of ϕ around ξ0, one deduces that

(9.8.42)

⎧⎪⎪⎨⎪⎪⎩
lim
ξ↑ξ0
[ f (u(ξ), v(ξ))− ξu(ξ)] − lim

ξ↓ξ0
[ f (u(ξ), v(ξ))− ξu(ξ)] = ω,

lim
ξ↑ξ0
[g(u(ξ), v(ξ))− ξv(ξ)] − lim

ξ↓ξ0
[g(u(ξ), v(ξ))− ξv(ξ)] = 0,

where all four limits exist (finite). In particular, this implies that the functions
f (u(ξ), v(ξ)) and g(u(ξ), v(ξ)) are locally integrable on (−∞,∞), and (9.8.41)
holds for arbitrary ϕ ∈ C∞0 (−∞,∞). Equivalently,

(9.8.43)

⎧⎨⎩ [ f (u, v)− ξu]· + u + ωδξ0 = 0,

[g(u, v)− ξv]· + v = 0,

in the sense of distributions. We thus conclude that when ω = 0 then (u(ξ), v(ξ)) is
a standard solution of the Riemann problem, possibly with u

(
ξ0
) = ∞, just like the

solution (9.6.4) for the system (7.1.8). Whereas, when ω > 0,
(
u(ξ) + ωδξ0 , v(ξ)

)
may be interpreted as a nonstandard solution to the Riemann problem, containing a
delta shock at ξ0, like the solution (9.6.6) for the system (7.1.8).

We now assume that the system is endowed with an entropy-entropy flux pair
(η, q), where η(u, v) is convex, with superlinear growth,
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(9.8.44)
η(u, v)

|u| + |v| → ∞, as |u| + |v| → ∞,

and show that (u(ξ), v(ξ)) is a standard solution to the Riemann problem, i.e.,ω = 0.
We multiply (9.8.36)1 by ηu

(
uµ, vµ

)
, (9.8.36)2 by ηv

(
uµ, vµ

)
, and add the resulting

two equations to get

(9.8.45) µη̈
(
uµ, vµ

)− µ
[
ηuuu̇2

µ + 2ηuv u̇µv̇µ + ηvvv̇
2
µ

]
= q̇

(
uµ, vµ

)− ξ η̇
(
uµ, vµ

)
.

We let η̄=max{η(uL , vL
)
, η
(
u R, vR

)} and then identify the greatest number ξL in(−∞, ξ0
) ∪ {−∞} and the smallest number ξR in

(
ξ0,∞

) ∪ {∞} with the property
that η(uµ(ξL), vµ(ξL)) = η

(
uµ
(
ξR
)
, vµ
(
ξR
)) = η̄. Using (9.8.45),

(9.8.46)

ξR∫
ξL

[
η
(
uµ, vµ

)− η̄
]
dξ = −

ξR∫
ξL

ξ η̇
(
uµ, vµ

)
dξ

≤ q
(
uµ
(
ξL
)
, vµ
(
ξL
))− q

(
uµ
(
ξR
)
, vµ
(
ξR
))
.

The right-hand side of (9.8.46) is bounded, uniformly in µ > 0. Therefore, com-
bining (9.8.46) with (9.8.44) yields

(9.8.47)
∫

{uµ≥ū}
uµ(ξ)dξ → 0, as ū →∞,

uniformly in µ > 0, and hence ω = 0.
It is clear that the same argument applies to all possible configurations of(

uµ(ξ), vµ(ξ)
)
. We have thus established

9.8.3 Theorem. Assume that the system (9.8.33), where fvgu > 0, is endowed with
a convex entropy η(u, v), exhibiting superlinear growth (9.8.44). Then sequences
{(uµk , vµk

)} of solutions to (9.8.36), (9.8.37), with µk → 0 as k → ∞, converge
pointwise, as well as in the sense of distributions, to standard solutions (u, v) of
the Riemann problem (9.8.33), (9.8.34). At least one of the functions u(ξ), v(ξ) is
monotone on (−∞,∞), while the other may have at most one extremum, which may
be bounded or unbounded.

In particular, any symmetric system of two conservation laws, with fv = gu �= 0,
satisfies the assumptions of the above theorem. In the literature cited in Section 9.12,
the reader will find assumptions on f and g under which the resulting solution to the
Riemann problem is necessarily bounded. It has also been shown that any shock in
these solutions satisfies the viscous shock admissibility criterion and thereby the Liu
E-condition.
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Following up on the discussion in Section 8.6, one may argue that wave fan
solutions of the Riemann problem, with end-states UL and UR , should not be termed
admissible unless they are captured through the t →∞ asymptotics of solutions of
parabolic systems (8.6.1), under initial data U0(x)which decay sufficiently fast to UL

and UR , as x → ∓∞. In fact, the results reported in Section 8.6 on the asymptotic
stability of viscous shock profiles address a special case of the above issue. The
complementary special case, the asymptotic stability of rarefaction waves, has also
been studied extensively (references in Section 9.12). The task of combining the
above two ingredients so as to synthesize the full solution of the Riemann problem,
has not yet been accomplished in a definitive manner.

9.9 Interaction of Wave Fans

Up to this point, we have exploited the invariance of systems of conservation laws
under uniform rescaling of the space-time coordinates in order to perform stretch-
ings that reveal the local structure of solutions. However, one may also operate at
the opposite end of the scale by performing contractions of the space-time coordi-
nates that will provide a view of solutions from a large distance from the origin. It
is plausible that initial data U0(x) which converge sufficiently fast to states UL and
UR , as x → −∞ and x → ∞, generate solutions that look from afar like centered
wave fans joining the state UL , on the left, with the state UR , on the right. Actually,
as we shall see in later chapters, this turns out to be true. Indeed, it seems that the
quintessential property of hyperbolic systems of conservation laws in one-space di-
mension is that the Riemann problem describes the asymptotics of solutions at both
ends of the time scale: instantaneous and long-term.

The purpose here is to discuss a related question, which, as we shall see in Chap-
ter XIII, is of central importance in the construction of solutions by the random
choice method. We consider three wave fans: the first, joining a state UL , on the
left, with a state UM , on the right; the second, joining the state UM , on the left,
with a state UR , on the right; and the third, joining the state UL , on the left, with
the state UR , on the right. These may be identified by their left states UL ,UM and
UL , together with the respective n-tuples α = (α1, · · · , αn), β = (β1, · · · , βn)

and ε = (ε1, · · · , εn) of wave amplitudes. Based on the arguments presented
above, it is natural to regard the wave fan ε as the result of the interaction of
the wave fan α, on the left, with the wave fan β, on the right. Recalling (9.3.4),
UM = "(α;UL),UR = "(β;UM ) and UR = "(ε;UL) whence we deduce

(9.9.1) "(ε;UL) = "(β;"(α;UL )).

This determines implicitly the relation

(9.9.2) ε = E(α;β;UL).

Our task is to study the properties of the function E in the vicinity of (0; 0;UL).
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Let us first consider systems with characteristic families that are either genuinely
nonlinear (7.6.13) or linearly degenerate (7.5.2), in which case the wave fan curves
�i , and thereby " and E , are all C2,1 functions. Since "(0; Ū ) = Ū ,

(9.9.3) E(α; 0;UL ) = α, E(0;β;UL) = β,

whence

(9.9.4)
∂Ek

∂αi
(0; 0;UL) = δik ,

∂Ek

∂β j
(0; 0;UL) = δ jk ,

namely, the Kronecker delta.
Starting from the identity

(9.9.5) E(α;β;UL )− E(α; 0;UL)− E(0;β;UL)+ E(0; 0;UL)

=
n∑

i, j=1

{E(α1, · · · , αi , 0, · · · , 0; 0, · · · , 0, β j+1, · · · , βn;UL)

−E(α1, · · · , αi−1, 0, · · · , 0; 0, · · · , 0, β j+1, · · · , βn;UL)

−E(α1, · · · , αi , 0, · · · , 0; 0, · · · , 0, β j , · · · , βn;UL)

+E(α1, · · · , αi−1, 0, · · · , 0; 0, · · · , 0, β j , · · · , βn;UL)},
one immediately deduces

(9.9.6) E(α;β;UL ) = α + β

+
n∑

i, j=1

αiβ j

∫ 1

0

∫ 1

0

∂2 E

∂αi∂β j
(α1, · · · , αi−1, ραi , 0, · · · , 0;

0, · · · , 0, σβ j , β j+1, · · · , βn;UL)dρdσ.

We say the i-wave of the wave fan α and the j-wave of the wave fan β are ap-
proaching when either (a) i > j or (b) i = j , the i-characteristic family is genuinely
nonlinear, and at least one of αi , βi is negative, i.e., corresponds to a shock. The
amount of wave interaction of the fans α and β will be measured by the quantity

(9.9.7) D(α, β) =
∑
app

|αi ||β j |,

where
∑

app denotes summation over all pairs of approaching waves. The crucial
observation is that when the wave fans α and β do not include any approaching
waves, i.e., D(α, β) = 0, then the wave fan ε is synthesized by “glueing together”
the wave fan α, on the left, and the wave fan β, on the right; that is, ε = α + β. In
particular, whenever the i-wave of α and the j-wave of β are not approaching, either
because i < j or because i = j and both αi and βi are positive (i.e., they correspond
to rarefaction waves) then
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(9.9.8) E(α1, · · · , αi , 0, · · · , 0; 0, · · · , 0, β j , · · · , βn;UL)

= (α1, · · · , αi , 0, · · · , 0)+ (0, · · · , 0, β j , · · · , βn),

whence it follows that the corresponding (i, j)-term in the summation on the right-
hand side of (9.9.6) vanishes. Thus (9.9.6) reduces to

(9.9.9) ε = α + β +
∑
app

αiβ j
∂2 E

∂αi∂β j
(0; 0;UL)+ D(α, β)O(|α| + |β|).

The salient feature of (9.9.9), which will play a key role in Chapter XIII, is that
the effect of wave interaction is induced solely by pairs of approaching waves and
vanishes in the absence of such pairs. In order to determine the leading interaction
term, of quadratic order, we first differentiate (9.9.1) with respect to β j and set β = 0.
Upon using (9.3.8), this yields

(9.9.10)
n∑

k=1

∂Ek

∂β j
(α; 0;UL)

∂"

∂εk
(E(α; 0;UL);UL) = R j ("(α;UL)).

Next we differentiate (9.9.10) with respect to αi and set α = 0. Recall that we are in-
terested only in the case where the i-wave of α and the j-wave of β are approaching,
so in particular i ≥ j . Therefore, upon using (9.9.3), (9.9.4), (9.3.8), (9.3.9), (9.3.10)
and (7.2.15), we conclude

(9.9.11)
n∑

k=1

∂2 Ek

∂αi∂β j
(0; 0;UL)Rk(UL) = −[Ri (UL), R j (UL)],

whence

(9.9.12)
∂2 Ek

∂αi∂β j
(0; 0;UL) = −Lk(UL)[Ri (UL), R j (UL)].

In particular, when the system is endowed with a coordinate system of Riemann
invariants, under the normalization (7.3.8) the Lie brackets [Ri , R j ] vanish (cf.
(7.3.10)), and hence the quadratic term in (9.9.9) drops out.

Upon combining (9.9.9) with (9.9.12) we arrive at

9.9.1 Theorem. In a system with characteristic families that are either genuinely
nonlinear or linearly degenerate, let ε = (ε1, · · · , εn) be the wave fan generated
by the interaction of the wave fan α = (α1, · · · , αn), on the left, with the wave fan
β = (β1, · · · , βn), on the right. Then

(9.9.13) ε = α + β −
∑
i> j

αiβ j L[Ri , R j ] + D(α, β)O(|α| + |β|),

where L denotes the n × n matrix with k-row vector the left eigenvector Lk , and
D(α, β) is the amount of wave interaction of α and β. When the system is endowed
with a coordinate system of Riemann invariants, the quadratic term vanishes.
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We now consider wave interactions for systems with characteristic families that
may be merely piecewise genuinely nonlinear, so that the incoming and outgoing
wave fans will be composed of i-wave fans, each one comprising a finite sequence of
i-shocks and i-rarefactions, which henceforth will be dubbed the elementary waves.
There are two obstacles to overcome. The first is technical: As noted in Section 9.5,
the wave fan curves �i , and thereby the functions " and E , may now be merely
Lipschitz continuous. Thus, the derivation, above, of (9.9.13) is no longer valid, as it
relies on Taylor expansion. The most serious difficulty, however, is how to identify
approaching waves. It is clear that an i-wave, on the left, and a j-wave, on the right,
will be approaching if i > j and not approaching if i < j . The situation is more
delicate when both incoming waves belong to the same characteristic family. Recall
that in the genuinely nonlinear case two incoming i-waves always approach when
at least one of them is a shock and never approach when both are rarefactions. By
contrast, here two incoming i-wave fans may include pairs of non-approaching i-
shocks as well as pairs of approaching i-rarefaction waves. Consequently, the analog
of Theorem 9.9.1 for such systems is quite involved:

9.9.2 Theorem. In a system with characteristic families that are either piecewise
genuinely nonlinear or linearly degenerate, let ε = (ε1, . . . , εn) be the wave fan
generated by the interaction of the wave fan α = (α1, . . . , αn), on the left, with the
wave fan β = (β1, . . . , βn), on the right. Then

(9.9.14) ε = α + β + O(1)D(α, β),

where

(9.9.15) D(α, β) =
∑

θ |γ ||δ|,
with the summation running over all pairs of elementary waves, such that the first
one, with amplitude γ , is part of an i-wave fan incoming from the left, while the
second one, with amplitude δ, is part of a j-wave fan incoming from the right; and
the weighting factor θ is selected according to the following rules.

(a) When i < j , then θ = 0.
(b) When either i > j or i = j and γ δ < 0, then θ = 1.
(c) When i = j and γ δ > 0, then θ is determined as follows:
(c)1 If both incoming elementary waves are i-shocks, with respective speeds σL and

σR , then

(9.9.16)1 θ = (σL − σR)
+ .

(c)2 If the elementary wave incoming from the left is an i-shock with speed σL , while
the elementary wave incoming from the right is an i-rarefaction, joining states UR

and Vi (τR;UR), then

(9.9.16)2 θ = 1

τR

τR∫
0

[σL − λi (Vi (τ ;UR))]+dτ.
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(c)3 If the elementary wave incoming from the left is an i-rarefaction, joining states
UL and Vi (τL ;UL), while the elementary wave incoming from the right is an
i-shock with speed σR , then

(9.9.16)3 θ = 1

τL

τL∫
0

[λi (Vi (τ
′;UL))− σR]+dτ ′.

(c)4 If, finally, both incoming elementary waves are i-rarefactions, with the one on
the right joining UR and Vi (τR;UR) and the one on the left joining UL and
Vi (τL ;UL), then

(9.9.16)4 θ = 1

τLτR

τL∫
0

τR∫
0

[λi (Vi (τ
′;UL))− λi (Vi (τ ;UR))]+dτdτ ′.

Sketch of Proof. The objective here is to explain why and how the weighting factor
θ comes into play. For the case where an i-elementary wave, incoming from the
left, is interacting with a j-elementary wave, incoming from the right, it is easy to
understand, based on our earlier discussions in this section, why it should be θ = 0
when i < j and θ = 1 when i > j ; the real difficulty arises when i = j .

It should be noted that if one accepts (9.9.16)1 as the correct value for the weight-
ing factor θ in the case of interacting shocks, then (9.9.16)2 , (9.9.16)3 and (9.9.16)4 ,
which concern rarefaction waves, may be derived as follows. Any i-rarefaction wave
is visualized as a fan of infinitely many (nonadmissible) i-rarefaction shocks, each
with infinitesimal amplitude and characteristic speed, and then its contribution to
the amount of wave interaction is evaluated by tallying the contributions of these
infinitesimal shocks, using (9.9.16)1 .

In what follows, it will be shown that (9.9.16)1 does indeed provide the correct
value for the weighting factor when each incoming wave fan consists of a single
i-shock. The proof for general incoming wave fans, which can be found in the refer-
ences cited in Section 9.12, is long and technical.

Assume the i-shock incoming from the left joins UL with UM and has amplitude
γ and speed σL , while the i-shock incoming from the right joins UM with UR and
has amplitude δ and speed σR . By the Lax E-condition, σL ≥ λi (UM ) ≥ σR , so that
the relative speed θ = σL − σR of the two incoming shocks is nonnegative. Notice
that θ essentially measures the angle between these two shocks; accordingly, θ is
dubbed the incidence angle.

The collision of the two incoming shocks will generate an outgoing wave fan
ε = (ε1, . . . , εn), which is determined by solving the Riemann problem with end-
states UL and UR . For simplicity, we assume that the i-wave fan of ε consists of a
single i-shock, joining ŪL with ŪR , having amplitude εi and speed σ .

There are two distinct possible wave configurations, as depicted in Fig. 9.9.1 (a)
and (b), depending on whether γ and δ have the same or opposite signs. In either case
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Fig. 9.9.1 (a) Fig. 9.9.1 (b)

ε = ε(γ, δ;UL), where ε(0, δ;UL ) = (0, . . . , 0, δ, 0, . . . , 0) and ε(γ, 0;UL) =
(0, . . . , 0, γ, 0, . . . , 0). Therefore, εi = γ + δ + O(γ δ) and ε j = O(γ δ), for j �= i .
This relatively crude bound, O(γ δ), for the amount of wave interaction will suffice
for the intended applications, in Chapter XIII, when γ δ < 0, as in that case the
cancellation in the linear term dominates. By contrast, when γ δ > 0 a more refined
estimate is needed. It is at this point that the incidence angle θ will come into play,
as a measure of the rate the shock speed varies along the shock curve.

Recalling the discussion in Section 9.3,

(9.9.17) ŪL = UL +
∑
j<i

ε j R j (UM )+ O(|εL |)γ + o(|εL |),

(9.9.18) ŪR = UR +
∑
j>i

ε j R j (UM )+ O(|εR |)δ + o(|εR |),

(9.9.19) F(ŪL) = F(UL)+
∑
j<i

ε jλ j (UM )R j (UM )+ O(|εL |)δ + o(|εL |),

(9.9.20) F(ŪR) = F(UR)+
∑
j>i

ε jλ j (UM )R j (UM )+ O(|εR |)δ + o(|εR |),
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where εL and εR stand for (ε1, . . . , εi−1, 0, . . . , 0) and (0, . . . , 0, εi+1, . . . , εn), re-
spectively.

For convenience, we measure the amplitude of i-shocks by the projection of
their jump on the left eigenvector Li (UM ). Thus

(9.9.21)

γ = Li (UM )[UM −UL ], δ = Li (UM )[UR −UM ], εi = Li (UM )[ŪR − ŪL ].
Starting out from the equation

(9.9.22) [ŪR − ŪL ] − [UM −UL ] − [UR −UM ] = [ŪR −UR] − [ŪL −UL ],
multiplying it from the left by Li (UM ), and using (9.9.17), (9.9.18) and (9.9.21), we
deduce

(9.9.23) εi = γ + δ + O(|εL | + |εR |)(γ + δ)+ o(|εL | + |εR |).
Similarly, we consider the equation

(9.9.24)

σ [ŪR−ŪL ]−σL [UM−UL ]−σR[UR−UM ] = [F(ŪR)−F(UR)]−[F(ŪL)−F(UL)],
which we get by combining the Rankine-Hugoniot jump conditions for the three
shocks; we multiply it from the left by Li (UM ) and use (9.9.19) and (9.9.20) to get

(9.9.25) σεi = σLγ + σRδ + O(|εL | + |εR |)(γ + δ)+ o(|εL | + |εR |).
Recalling that σL − σR = θ (9.9.25) together with (9.9.23) yield

(9.9.26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σL = σ + δθ

γ + δ
+ O(|εL | + |εR |)+ o(|εL | + |εR |)(γ + δ)−1

σR = σ − γ θ

γ + δ
+ O(|εL | + |εR |)+ o(|εL | + |εR |)(γ + δ)−1.

Substituting σL and σR from (9.9.26) into (9.9.24) and using (9.9.22), (9.9.17),
(9.9.18), (9.9.19) and (9.9.20), we obtain

(9.9.27)
∑
j �=i

ε j |λ j (UM )− σ |R j (UM )

= −δθ
γ + δ

[UM−UL ]+ γ θ

γ + δ
[UR−UM ]+O(|εL |+|εR |)(γ +δ)+o(|εL |+|εR |).
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Multiplying the above equation, from the left, by L j (UM ), j �= i , and noting that

(9.9.28) L j (UM )[UM −UL ] = O(γ 2), L j (UM )[UR −UM ] = O(δ2),

we deduce

(9.9.29) ε j = O(1)θγ δ, j �= i.

Equations (9.9.23) and (9.9.25) then give

(9.9.30) εi = γ + δ + O(1)θγ δ,

(9.9.31) σεi = σLγ + σRδ + O(1)θγ δ.

We have thus established the assertion of the theorem, for the special case considered
here.

One may regard the amplitude of a shock as its “mass” and the product of the
amplitude with the speed of a shock as its “momentum”. Thus, one may interpret
(9.9.30) as balance of “mass” and (9.9.31) as balance of “momentum” under collision
of two shocks. Equation (9.9.14) may then be interpreted as balance of “mass” under
collision of wave fans. Similarly, one may define the “momentum” of an i-wave fan
comprising, say, M i-shocks with amplitude γI and speed σI , I = 1, . . . , M , and
N i-rarefaction waves, joining states UJ and Vi (τJ ;UJ ) by tallying the “momenta”
of its constituent elementary waves:

(9.9.32) �i =
M∑

I=1

σIγI +
N∑

J=1

τJ∫
0

λi (Vi (τ ;UJ ))dτ.

Then (9.9.31) admits the following extension. When two incoming wave fans α and β
interact, the “momentum” �i of the outgoing i-wave fan is related to the “momenta”
�−i and �+i of the incoming i-wave fans by

(9.9.33) �i = �−i + �+i + O(1)D(α, β), i = 1, . . . , n.

9.10 Breakdown of Weak Solutions

As we saw in the previous section, wave collisions may induce wave amplification.
The following example shows that, as a result, there exist resonating wave patterns
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that drive the oscillation and/or total variation of weak solutions to infinity, in finite
time.

Consider the system

(9.10.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t u + ∂x (uv + w) = 0

∂tv + ∂x (
1
16v

2) = 0

∂tw + ∂x (u − uv2 − vw) = 0.

The characteristic speeds are λ1 = −1, λ2 = 1
8v, λ3 = 1, so that strict hyperbolicity

holds for−8 < v < 8. The first and third characteristic families are linearly degener-
ate, while the second characteristic family is genuinely nonlinear. Clearly, the system
is partially decoupled: The second, Burgers-like, equation by itself determines v.

The Rankine-Hugoniot jump conditions for a shock of speed s, joining the state
(u−, v−, w−), on the left, with the state (u+, v+, w+), on the right, here read

(9.10.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u+v+ − u−v− + w+ − w− = s(u+ − u−)

1
16v

2+ − 1
16v

2− = s(v+ − v−)

u+ − u− − u+v2+ + u−v2− − v+w+ + v−w− = s(w+ − w−).

One easily sees that 1-shocks are 1-contact discontinuities, with s = −1, v− = v+
and

(9.10.3)1 w+ − w− = −(v± + 1)(u+ − u−).

Similarly, 3-shocks are 3-contact discontinuities, with s = 1, v− = v+ and

(9.10.3)3 w+ − w− = −(v± − 1)(u+ − u−).

Finally, for 2-shocks, s = 1
16 (v− + v+), and v+ < v− , in order to satisfy the Lax

E-condition.
Collisions between any two shocks, joining constant states, induce a jump dis-

continuity, which can be resolved by solving simple Riemann problems. In particular,
when a 1-shock or a 3-shock collides with a 2-shock, the 2-shock remains undis-
turbed, as (9.10.1)2 is decoupled from the other two equations of the system. This
collision, however, produces both a 1- and a 2-outgoing shock, which may be inter-
preted as the “transmitted” and the “reflected” part of the incident 1- or 2-shock.

We now construct a piecewise constant, admissible solution of (9.10.1) with
wave pattern depicted in Fig. 9.10.1: Two 2-shocks issue from the points (−1, 0)
and (1, 0), with respective speeds 1

4 and − 1
4 . On the left of the left 2-shock, v = 4;

on the right of the right 2-shock, v = −4; and v = 0 between the two 2-shocks. A
1-shock issues from the origin (0, 0), and upon colliding with the left 2-shock it is
partly transmitted as a 1-shock and partly reflected as a 3-shock. This 3-shock, upon
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Fig. 9.10.1

impinging on the right 2-shock, is in turn partly transmitted as a 3-shock and partly
reflected as a 1-shock, and the process is repeated ad infinitum.

By checking the Rankine-Hugoniot conditions (9.10.2), one readily verifies that,
for instance, initial data

(9.10.4) (u(x, 0), v(x, 0), w(x, 0)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−65, 4, 225), −∞ < x < −1

(15, 0,−15), −1 < x < 0

(−15, 0, 15), 0 < x < 1

(−63,−4,−225), 1 < x <∞
generate a solution with the above structure.

The aim is to demonstrate that each reflection increases the strength of the shock
by a constant factor. With collisions becoming progressively more frequent as the
distance between the two 2-shocks is decreasing, until finally vanishing at t = 4, the
conclusion will then be that the oscillation of the solution explodes as t ↑ 4. It will
be convenient to measure the strength of 1- and 3-shocks by the size of the jump of
u across them.

Let us first examine the interaction depicted in Fig. 9.10.2, where a 1-shock hits
the left 2-shock, from the right.

We need to compare the strength |u3 − u2| of the reflected 3-shock with the
strength |u3−u4| of the incident 1-shock. We write the Rankine-Hugoniot conditions,
(9.10.2) or (9.10.3), as applicable, for the five shocks involved in the interaction:



284 IX Admissible Wave Fans and the Riemann Problem

(u

(u (u

(u

(u

0

1 2

3

4

, 4, w

, 4, w , 0, w

, 0, w

, 0, w

3

1) 2)

0)

)4

)
(u

(u )

)

(u 4, 0, w4)

2 2, 0, w

3 3, 0, w )0, -4, w0(u

(u 1 , -4, w1)

Fig. 9.10.2 Fig. 9.10.3

(9.10.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w3 − w4 = −(u3 − u4)

w1 − w0 = −5(u1 − u0)

w3 − w2 = u3 − u2

−4u0 + w4 − w0 = 1

4
(u4 − u0)

u4 − u0 + 16u0 + 4w0 = 1

4
(w4 − w0)

−4u1 + w2 − w1 = 1

4
(u2 − u1)

u2 − u1 + 16u1 + 4w1 = 1

4
(w2 − w1).

After elementary eliminations, one arrives at

(9.10.6) u3 − u2 = −10

9
(u3 − u4),

which shows that as the 1-shock is reflected into a 3-shock the strength increases by
a factor 10/9.

Next we examine the interaction depicted in Fig. 9.10.3, where a 3-shock hits
the right 2-shock from the left. By writing again the Rankine-Hugoniot conditions,
completely analogous to (9.10.5), and after straightforward eliminations, one ends
up once more with (9.10.6). Thus, the strength |u2 − u3| of the reflected 1-shock
exceeds the strength |u4 − u3| of the incident 3-shock by a factor 10/9.

We have now confirmed that the oscillation of the solution blows up as t ↑ 4.
The above setting, which renders the calculation particularly simple, may appear at
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first as a singular, isolated example. However, after some reflection one realizes that
the wave resonance persists under small perturbations of the equations and/or initial
data, i.e., this kind of catastrophe is sort of generic.

Catastrophes of a different nature may occur as well: The total variation may
blow up even though the oscillation remains bounded. This may be demonstrated in
the context of the system

(9.10.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t u + ∂x (uv2 + w) = 0

∂tv + ∂x (
1
16v

2) = 0

∂tw + ∂x (u − uv4 − v2w) = 0,

which has the same characteristic speeds as (9.10.1), and similarly admits piecewise
constant solutions with the wave pattern depicted in Fig. 9.10.1. It is possible to
adjust the speeds of the two 2-shocks in such a manner that after any two successive
reflections 1- and 3-shocks regain their original left and right states, i.e., the solution
takes values in a finite set of states. On the other hand, as t approaches from below the
time t∗ of collision of the two 2-shocks, the number of shocks, of fixed strength, that
cross the t-time line grows without bound thus driving the total variation to infinity.
Details may be found in the references cited in Section 9.12.

In view of the above, it is hopeless to expect global existence of weak solutions
to the Cauchy problem, for general systems of conservation laws and general initial
data. Consequently, the aim of the theory should be to establish existence in the
large, either for general systems under “small” initial data, or for special systems
under general initial data. The hope is that this special class will include the systems
arising in continuum physics, which are endowed with special features.

9.11 Self-similar Solutions for Multidimensional
Conservation Laws

A vehicle for probing the behavior of hyperbolic systems of conservation laws in
several space dimensions is the study of self-similar solutions, in which the number
of variables is reduced. Self-similarity may be induced by the invariance of the sys-
tem under uniform stretching of the space-time coordinates and/or by symmetries
reflecting isotropy of the underlying continuous medium. The theory of self-similar
solutions is currently in a stage of active development, and voluminous literature is
already available, including a number of specialized monographs, cited in Section
9.12. The aim here is to offer the reader a glimpse of that area, by outlining a small
sample of relevant results.
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Let us begin with a scalar conservation law in two space dimensions,

(9.11.1) ∂t u + ∂x f (u)+ ∂y g(u) = 0,

and seek self-similar solutions u(x, y, t) = v(x/t, y/t). If we define ξ = x/t and
ζ = y/t , v(ξ, ζ ) satisfies the equation

(9.11.2) −ξvξ + f (v)ξ − ζvζ + g(v)ζ = 0.

The characteristics of (9.11.2), along which v is constant, are determined by the
ordinary differential equation

(9.11.3) [ f ′(v(ξ, ζ ))− ξ ]dζ − [g′(v(ξ, ζ ))− ζ ]dξ = 0.

Notice the set of singular points

(9.11.4) B = {(ξ, ζ ) : ξ = f ′(v), ζ = g′(v)},
parametrized by v. For simplicity, we make the assumption

(9.11.5) f ′′(u) > 0, g′′(u) > 0, [ f ′′(u)/g′′(u)]′ > 0,

in which case B is a strictly increasing, concave curve ζ = ζ(ξ).
The Rankine-Hugoniot jump condition across a shock curve reads

(9.11.6) [λ(u−, u+)− ξ ]dζ − [µ(u−, u+)− ζ ]dξ = 0,

where

(9.11.7) λ(u−, u+) = f (u+)− f (u−)
u+ − u−

, µ(u−, u+) = g(u+)− g(u−)
u+ − u−

.

Notice that any shock curve joining two fixed states u− and u+ lies on some straight
line emanating from the nodal point ξ = λ(u−, u+), ζ = µ(u−, u+). Under the
convention that the normal vector (dζ,−dξ) is pointing towards the (+) side of
shock curves, admissible shocks should satisfy Oleinik’s E-condition, namely

(9.11.8) [λ(u−, u0)− λ(u−, u+)]dζ − [µ(u−, u0)− µ(u−, u+)]dξ ≥ 0,

for any u0 between u− and u+ .
The objective is to construct BV solutions of (9.11.2) on IR2 that satisfy assigned

boundary conditions at infinity: v(r cos θ, r sin θ)→ h(θ), as r →∞. In particular,
a natural extension of the classical Riemann problem to two space dimensions is to
determine a self-similar solution of (9.11.1) with initial values

(9.11.9) u(x, y, 0) =

⎧⎪⎪⎨⎪⎪⎩
uN E 0 < x <∞, 0 < y <∞
uSE 0 < x <∞, −∞ < y < 0
uN W −∞ < x < 0, 0 < y <∞
uSW −∞ < x < 0, −∞ < y < 0,

where uN E , uSE , uN W and uSW are given constants.
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If u = v(x/t, y/t) is the solution of (9.11.1), (9.11.9), then for large ξ (or −ξ ),
v depends solely on ζ and depicts an admissible shock or rarefaction wave that joins
the states uN E and uSE (or uSW and uN W ) and propagates in the y-direction. Sim-
ilarly, for large ζ (or −ζ ), v depends solely on ξ and depicts an admissible shock
or rarefaction wave that joins the states uN W and uN E (or uSW and uSE ) and prop-
agates in the x-direction. An interesting wave pattern emerges in the region of the
ξ -ζ plane where the above four waves interact. In fact, depending on the relative
positions of uN E , uSE , uN W and uSW on the real axis, there are 32 distinct wave
configurations, which are described and classified in the literature cited in Section
9.12. For illustration, the two simplest cases will be recorded below.

Assume first uSW < uN W < uSE < uN E . In that case the solution is Lipschitz
continuous on IR2, with level curves depicted in Figure 9.11.1. Indeed, the pairs
of states (uN W , uN E ), (uSW , uSE ), (uN E , uSE ) and (uN W , uSW ) are all connected
by rarefaction waves. The line B of singular points, defined by (9.11.4), marks the
border between these rarefaction waves, and serves as a “roof valley” allowing for
Lipschitz continuous transition of the solution across it.

= =

==

Fig. 9.11.1

Assume next uSW > uSE > uN W > uN E . In that case the solution com-
prises constant states joined by admissible shocks, as depicted in Figure 9.11.2.
Indeed, the pairs of states (uN W , uN E ) and (uN W , uSW ) are connected by two
shocks which collide at the point A = (λ(uN E , uN W ), µ(uN W , uSW )); and the
pairs of states (uSW , uSE ) and (uSE , uN E ) are similarly connected by two shocks
which collide at the point B = (λ(uSW , uSE ), µ(uN E , uSE )). The wave pattern
is completed by two shocks joining uN E with uSW . Both emanate from the node
O = (λ(uN E , uSW ), µ(uN E , uSW )); one terminates at the point A and the other at
the point B.
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=
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=

Fig. 9.11.2

The remaining cases involve combinations of shocks and rarefaction waves,
which may interact to generate more complex wave patterns. In the absence of condi-
tions (9.11.5), the wave configuration is even more intricate. See the references cited
in Section 9.12.

It is not to be expected that multi-dimensional Riemann problems will play as
pivotal a role as their one-dimensional counterparts. Nevertheless, they are valuable,
as they provide a graphic illustration of the geometric complexity of solutions of
systems of conservation laws in several space dimensions.

The difficulty in dealing with self-similar solutions to systems of hyperbolic con-
servation laws in two space variables stems from the fact that the resulting equations
on the ξ -ζ plane are no longer hyperbolic, but they are of mixed elliptic-hyperbolic
type. A typical example is the system that governs self-similar solutions of the Euler
equations (3.3.17) for isentropic flow, with zero body force, which reads

(9.11.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ρu)ξ + (ρw)ζ = −2ρ

(ρu2 + p(ρ))ξ + (ρuw)ζ = −3ρu

(ρuw)ξ + (ρw2 + p(ρ))ζ = −3ρw,

where u and w are the components of the velocity relative to the moving frame
x = ξ t , y = ζ t of spatial coordinates, i.e., u = v1−ξ ,w = v2−ζ . The characteristic
speeds of this system are λ0 = w/u and

(9.11.11) λ± = uw ± c
√

u2 + w2 − c2

u2 − c2
,

where c is the sonic speed, c2 = p′(ρ). Thus, the system is hyperbolic in the region
u2 + w2 > c2 (supersonic flow) and elliptic-hyperbolic in the region u2 + w2 < c2

(subsonic flow). The equation u2 + w2 = c2 determines the sonic curve of the flow.
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Because of the analytical difficulties posed by (9.11.10), there has been exper-
imentation with simpler systems, such as the system of pressureless gas dynamics
and the so-called pressure gradient system, which exhibit similar features. Both these
systems derive from the Euler equations (3.3.21), the former by setting p ≡ 0 and the
latter by dropping the convective terms div(ρv�) and div(ρvv�). The even simpler
system of unsteady transonic small disturbance equations has also been extensively
investigated.

A two-pronged attack is currently under way on problems involving self-similar
solutions of the system (9.11.10), its simplified versions, and their extensions to non-
isentropic flow. On the one hand, a research program is in progress which aims at ob-
taining a detailed description of the geometric structure of solutions to the Riemann
problem, by a combination of analytical and numerical methods. In parallel, the issue
of existence of solutions is being probed by qualitative methods from the theory of
partial differential equations of mixed type. The principal objective of the analysis is
to locate the sonic curve, which appears as a free boundary. Similar issues arise, and
similar techniques are used, for treating multi-dimensional steady transonic flows.

9.12 Notes

The Riemann problem was originally formulated, and solved, by Riemann [1], in the
context of the system (7.1.9) of isentropic gas dynamics. The method of shock and
rarefaction wave curves was gradually developed in order to solve special Riemann
problems, for the system of isentropic or adiabatic gas dynamics, describing wave
interactions and shock tube experiments. This early research is surveyed in Courant
and Friedrichs [1]. The distillation of that work led to the solution, by Lax [2], of the
Riemann problem, with weak waves, for strictly hyperbolic systems of conservation
laws with characteristic families that are genuinely nonlinear or linearly degener-
ate (Theorem 9.4.1). Detailed expositions of the solution to the Riemann problem
for the system of adiabatic (nonisentropic) gas dynamics are found in the texts by
Smoller [3], Serre [11], Godlewski and Raviart [2], and especially in the monograph
by Chang and Hsiao [3]. Early references addressing the issue of large data include
Smoller [1,2], Smith [1] and Sever [1,2].

Dealing with systems that are not genuinely nonlinear required additional effort.
Following the prescription of the Oleinik E-condition, the form of the solution of the
Riemann problem for the general scalar conservation law was described by Gelfand
[1], through an example. Subsequently, Wendroff [1] solved the Riemann problem
for the systems (7.1.8) and (7.1.5), when σuu may change sign. The construction of
the solution for (7.1.2) and (7.1.8) described in this section, which employs the con-
vex or concave envelope of f and σ , is found in Dafermos [2] and Leibovich [1].
The above results were apparently anticipated by research in China, in the 1960’s,
which did not circulate in the international scientific community until much later,
e.g. Chang and Hsiao [1,2] and Hsiao and Zhang [1]. The monograph by Chang
and Hsiao [3] provides a detailed exposition and many references. The study of spe-
cial systems motivated the solution by Liu [1] of the Riemann problem for arbitrary
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piecewise genuinely nonlinear, strictly hyperbolic systems of conservation laws. A
more thorough analysis, by Iguchi and LeFloch [1], of the structure of wave fan
curves associated with piecewise genuinely nonlinear characteristic families has led
to the solution of the Riemann problem for more general strictly hyperbolic systems
of conservation laws, not necessarily piecewise genuinely nonlinear. See also Liu
and Yang [6]. The observation that wave fan curves may be merely Lipschitz is due
to Bianchini [6].

For systems with flux functions that are merely Lipschitz continuous, the Rie-
mann problem is solved by Correia, LeFloch and Thanh [1]. The Riemann problem
for balance laws is discussed in Goatin and LeFloch [4].

For early references on delta shocks, consult Keyfitz and Kranzer [2,3,4]. A de-
tailed discussion of the theory of delta shocks in the context of the system of pres-
sureless gas dynamics, in one or two space dimensions, is contained in Li, Zhang
and Yang [1]. See also Ercole [1], Joseph [1], Hayes and LeFloch [1], Tan [1], Tan,
Zhang and Zheng [1], Sheng and Zhang [1], Li and Yang [1] and Sever [4]. Chen and
Hailiang Liu [1,2] demonstrate that in the limit, as the response of the pressure on the
density relaxes to zero, solutions of the Riemann problem for the system of isentropic
or nonisentropic gas dynamics reduce to solutions of the equations of pressureless
gas dynamics with delta shocks.

The entropy rate admissibility criterion was proposed by Dafermos [3]. For mo-
tivation from the kinetic theory, see Ferziger and Kaper [1, §5.5] and Kohler [1].
Additional motivation is provided by the vanishing viscosity approach; see Bethuel,
Despres and Smets [1]. Theorems 9.7.2 and 9.7.3 are taken from Dafermos [3], while
Theorem 9.7.4 is found in Dafermos [15]. For a detailed proof of Theorem 9.7.5,
see Dafermos [23]. In the context of the system of adiabatic (nonisentropic) gas
dynamics, the entropy rate criterion is discussed by Hsiao [1]. The efficacy of the
entropy rate criterion has also been tested on systems that change type, modeling
phase transitions (Hattori [1,2,3,4,5,6,7], Pence [2]). See also Sever [3] and Krejčı́
and Straskraba [1]. An alternative characterization of the solution of the Riemann
problem by means of an entropy inequality is due to Heibig and Serre [1]. For an
interesting entropy minimization property in (multidimensional) gas dynamics, see
Tadmor [1].

The study of self-similar solutions of hyperbolic systems of conservation laws as
limits of self-similar solutions of dissipative systems with time-dependent artificial
viscosity was initiated, independently, by Kalasnikov [1], Tupciev [1,2], and Dafer-
mos [4]. This approach has been employed to solve the Riemann problem for systems
of two conservation laws that may be strictly hyperbolic (Dafermos [4,5], Dafer-
mos and DiPerna [1], Yong Jung Kim [1], Slemrod and Tzavaras [1,2], Tzavaras
[1,2]), nonstrictly hyperbolic with delta shocks (Ercole [1], Keyfitz and Kranzer
[3,4], Joseph [1], Tan [1], Tan, Zhang and Zheng [1], Sheng and Zhang [1], and
Li and Yang [1]), or of mixed type (Slemrod [4], Fan [1,2]). See also Slemrod [5],
for solutions with spherical symmetry to the system of isentropic gas dynamics. For
recent results indicating that any structurally stable solution of a Riemann problem,
even in the presence of strong or undercompressive shocks, may be approximated by
viscous wave fans, see Schecter [1,2], Lin and Schecter [1], Schecter and Szmolyan
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[1], and Weishi Liu [1]. For numerical computations, see Schecter, Marchesin and
Plohr [3]. The method has also been applied successfully to the system of pressure-
less gas dynamics in two space dimensions. See the book by Li, Zhang and Yang [1].
The treatment of general strictly hyperbolic systems of conservation laws outlined
in Section 9.8 follows Tzavaras [2]; the earliest complete construction of solutions
to the Riemann problem without any assumption of piecewise genuine nonlinearity
(Theorem 9.8.1) appeared in that paper. See also Tzavaras [4]. Joseph and LeFloch
[1,2,3,4] use a similar approach for solving the Riemann problem on a half-plane, as
well as on a quarter-plane, even for more general viscosity matrices. These authors
also apply a variant of the method in which time-dependent viscosity is replaced
by time-dependent relaxation, while LeFloch and Rohde [1] replace time-dependent
viscosity with time-dependent viscosity-capillarity. The construction of the wave fan
curves by the method of viscous wave fans, in Section 9.8, imitates a similar con-
struction, by the standard vanishing viscosity approach, due to Bianchini and Bressan
[5] and Bianchini [6]. In particular, the derivation of (9.8.22) was explained to the
author by John Mallet-Paret. An alternative construction of the wave fan curves by
the method of viscous wave fans is found in Joseph and LeFloch [4]. The discussion
of systems (9.8.33) of two conservation laws is adapted from Dafermos and DiPerna
[1]. Single rarefaction waves were constructed by the standard vanishing viscosity
approach in Lin and Yang [1].

The current status of the theory of the Riemann problem for systems that are not
strictly hyperbolic is far from definitive. Both existence and admissibility of solutions
raise thorny issues, as wave fans may comprise a great variety of exotic waves such
as overcompressive or undercompressive shocks, delta shocks and oscillations. It is
futile to aim for an all-encompassing theory; one should focus, instead, on specific
systems arising in continuum physics, most notably elasticity and multi-phase flows.
Progress has been made on the classification of such systems and on the existence
and uniqueness of admissible solutions; see Glimm [2], Azevedo and Marchesin [1],
Azevedo, Marchesin, Plohr and Zumbrun [1,2], Freistühler [3], Isaacson, Marchesin
and Plohr [1], Isaacson, Marchesin, Plohr and Temple [1], Isaacson and Temple [2],
Schaeffer and Shearer [2], Schecter, Marchesin and Plohr [1,2], M. Shearer [4,5],
Shearer, Schaeffer, Marchesin and Paes-Leme [1], Schecter and Shearer [1], Schulze
and Shearer [1], Tang and Ting [1], Zhu and Ting [1], Čanić [1,2], Čanić and Peters
[1], Peters and Čanić [1], Ercole [1], Keyfitz and Kranzer [1,2,3], Tan [1], and Tan,
Zhang and Zheng [1].

The solution of the Riemann problem for systems of mixed type, employed to
model phase transitions, comprises phase boundaries, in addition to classical shocks
and rarefaction waves. As already noted in Section 8.8, the admissibility of phase
boundaries is dictated by kinetic relations. Solutions of Riemann problems of this
type are found in Fan [1,2,5,6], Frid and Liu [1], Hattori [1,2,3,4,7], Holden [1],
Hsiao [2], Hsiao and DeMottoni [1], Keyfitz [1], LeFloch and Thanh [1], Mercier
and Piccoli [1], Pence [2], M. Shearer [1,3], Shearer and Yang [1], and Slemrod
[4]. For an informative discussion and additional references see the monograph by
LeFloch [5].
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The Riemann problem has also been posed for quasilinear hyperbolic systems
(9.8.18) that are not in conservative form, and solved either by piecing together
rarefaction waves and shocks defined by the approach outlined in Section 8.7 (see
LeFloch and Liu [1] and LeFloch and Tzavaras [1]) or via the vanishing viscosity
approach (Bianchini and Bressan [5], Bianchini [6]). Equally well, one may employ
a construction via viscous wave fans, as explained in Section 9.8. For applications,
see Andrianov and Warnecke [1,2], LeFloch and Thanh [2] and LeFloch and Shearer
[1].

The asymptotic stability of viscous rarefaction waves is discussed in Liu, Mat-
sumura and Nishihara [1], Liu and Xin [1], Szepessy and Zumbrun [1], and Xin [2].
The asymptotic stability of viscous wave fans, containing both shocks and rarefac-
tion waves, is under investigation.

The study of interactions of wave fans and the original proof of Theorem 9.9.1,
for genuinely nonlinear systems, is due to Glimm [1]. The derivation presented here
is taken from Yong [1]. For systems that are not genuinely nonlinear, wave interaction
estimates were originally obtained by Liu [15], who was the first to realize the key
role of the incidence angle. For recent detailed and rigorous expositions see Iguchi
and LeFloch [1] and Liu and Yang [6]. For a description of actual wave interactions,
see Greenberg [1,2] for the system of isentropic elasticity, Liu and Zhang [1] for a
scalar combustion model, and Luo and Yang [1] for the Euler equations of isentropic
gas flow with frictional damping.

The example of breakdown of weak solutions presented in Section 9.10 is taken
from Jenssen [1]. Additional examples were constructed by Baiti and Jenssen [3],
R. Young [5,6], and Young and Szeliga [1]. In particular, it is shown that even so-
lutions starting out from initial data with arbitrarily small total variation may blow
up in finite time when the characteristic speeds of distinct families are not uniformly
separated on the range of the solution. For earlier work indicating rapid magnifica-
tion, or even blowing up, in the supremum or the total variation of solutions; see
Jeffrey [2], R. Young [2] and Joly, Métivier and Rauch [2]. No instability has been
detected thus far in solutions of systems with physical interest. It is conceivable that
the special structure of these systems may offset the agents of instability.

Detailed constructions of solutions to the Riemann problem (and other self-
similar solutions) for the scalar conservation law, Euler’s equations, the pressure
gradient system and the equations of pressureless gas dynamics, in two space dimen-
sions, are found in the monographs by Chang and Hsiao [3], Li, Zhang and Yang [1]
and Yuxi Zheng [1]. Research papers in that area include Guckenheimer [2], Wag-
ner [1], Lindquist [1], Zhang and Zhang [1], Zhang, Li and Zhang [1], Zhang and
Zheng [1,2], Tan and Zhang [1], Chen, Li and Tan [1], Chang, Chen and Yang [1],
Shuxin Chen [1], Schulz-Rinne [1], Yang and Huang [1], Xiaozhou Yang [1], Serre
[9,10] and Lien and Liu [1].

For construction of transonic flows via qualitative methods for partial differential
equations that change type, see Čanić and Keyfitz [1,2], Čanić, Keyfitz and Lieber-
man [1], Čanić, Keyfitz and Kim [1,2,3], and Chen and Feldman [1,2,3]. An informa-
tive survey of the current status of this research program, together with an extensive
list of references, are found in Keyfitz [3].
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There is voluminous literature on transonic steady flow. A classical reference
is Courant and Friedrichs [1]. The relevant issue of oblique shock reflexion, and
in particular of Mach reflexion, was discussed early by von Neumann [1,2,3]. For
more recent references on these topics, which lie beyond the scope of this book,
see Schaeffer [2], Shuxin Chen [2,3,4], Yongqian Zhang [1,2], Chen and Feldman
[1,2,3], and Morawetz [1].

Self-similar, spherically symmetric solutions in gas dynamics are discussed in the
books by Courant and Friedrichs [1] and Yuxi Zheng [1]. For self-similar, radially
symmetric solutions representing cavitation in elastodynamics and gas dynamics, see
Pericak-Spector and Spector [1,2] and Yan [1]. Radially symmetric solutions for the
complex Burgers equation are constructed in Noelle [2].



X

Generalized Characteristics

As already noted in Section 7.9, the function space of choice for weak solutions of
hyperbolic systems of conservation laws in one-space dimension is BV , since it is
within its confines that one may discern shocks and study their propagation and inter-
actions. The notion of characteristic, introduced in Section 7.2 for classical solutions,
will here be extended to the framework of BV weak solutions. It will be established
that generalized characteristics propagate with either classical characteristic speed or
with shock speed. In particular, it will be shown that the extremal backward charac-
teristics, emanating from any point in the domain of an admissible solution, always
propagate with classical characteristic speed. The implications of these properties to
the theory of weak solutions will be demonstrated in following chapters.

10.1 BV Solutions

We consider the strictly hyperbolic system

(10.1.1) ∂tU + ∂x F(U ) = 0

of conservation laws. Throughout this chapter, U will denote a bounded measur-
able function on (−∞,∞) × (0,∞), of class BVloc , which is a weak solution of
(10.1.1). Following the general theory of BV functions in Section 1.7, we infer that
(−∞,∞)× (0,∞) = C

⋃
J
⋃

I where C is the set of points of approximate con-
tinuity of U,J denotes the set of points of approximate jump discontinuity (shock
set) of U , and I stands for the set of irregular points of U . The one-dimensional
Hausdorff measure of I is zero : H1(I) = 0. The shock set J is essentially covered
by the (at most) countable union of C1 arcs. With any (x̄, t̄) ∈ J are associated one-
sided approximate limits U± and a “tangent” line of slope (shock speed) s which, as
shown in Section 1.8, are related by the Rankine-Hugoniot jump condition (8.1.2).

We shall be assuming throughout that the Lax E-condition, introduced in Section
8.3, holds here in a strong sense: each shock is compressive but not overcompressive.
That is, if U± are the one-sided limits and s is the corresponding shock speed asso-
ciated with any point of the shock set, then there is i ∈ {1, · · · , n} such that
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(10.1.2) λi−1(U±) < λi (U+) ≤ s ≤ λi (U−) < λi+1(U±).

In (10.1.2), the first inequality is not needed when i = 1 and the last inequality is
unnecessary when i = n. Moreover, since (10.1.1) is strictly hyperbolic, the first
and the last inequalities will hold automatically whenever the oscillation of U is
sufficiently small.

For convenience, we normalize U as explained in Section 1.7. In particular, at
every point (x̄, t̄) ∈ C , U (x̄, t̄) equals the corresponding approximate limit U0 .
Recalling that H1(I) = 0 and using Theorem 1.7.2, we easily conclude that there
is a subset N of (0,∞), of measure zero, having the following properties. For any
fixed t̄ �∈ N , the function U (·, t̄) has locally bounded variation on (−∞,∞), and
(x̄, t̄) ∈ C if and only if U (x̄−, t̄) = U (x̄+, t̄), while (x̄, t̄) ∈ J if and only if
U (x̄−, t̄) �= U (x̄+, t̄). In the latter case, U− = U (x̄−, t̄) and U+ = U (x̄+, t̄).

The above properties of U follow just from membership in BV . The fact that U
is also a solution of (10.1.1) should induce additional structure. Based on experience
with special systems, to be discussed in later chapters, it seems plausible to expect
the following: U should be (classically) continuous on C and the one-sided limits U±
at points of J should be attained in the classical sense. Moreover, I should be the (at
most) countable set of endpoints of the arcs that comprise J . Uniform stretching of
the (x, t) coordinates about any point of I should yield, in the limit, a wave fan with
the properties described in Section 9.1, i.e., I should consist of shock generation
and shock interaction points. To what extent the picture painted above accurately
describes the structure of solutions of general hyperbolic systems of conservation
laws will be discussed in later chapters.

10.2 Generalized Characteristics

Characteristics associated with classical, Lipschitz continuous, solutions were intro-
duced in Section 7.2, through Definition 7.2.1. They provide one of the principal
tools of the classical theory for the study of analytical and geometric properties of
solutions. It is thus natural to attempt to extend the notion to the framework of weak
solutions.

Here we opt to define characteristics of the i-characteristic family, associated
with the weak solution U , exactly as in the classical case, namely as integral curves
of the ordinary differential equation (7.2.7), in the sense of Filippov:

10.2.1 Definition. A generalized i-characteristic for the system (10.1.1), associated
with the (generally weak) solution U , on the time interval [σ, τ ] ⊂ [0,∞), is a
Lipschitz function ξ : [σ, τ ] → (−∞,∞) which satisfies the differential inclusion

(10.2.1) ξ̇ (t) ∈ �i (ξ(t), t), a.e. on [σ, τ ],
where

(10.2.2) �i (x̄, t̄) :=
⋂
ε>0

[ ess inf[x̄−ε,x̄+ε] λi (U (x, t̄)) , ess sup
[x̄−ε,x̄+ε]

λi (U (x, t̄)) ] .
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From the general theory of contingent equations like (10.2.1), one immediately
infers the following

10.2.2 Theorem. Through any fixed point (x̄, t̄) ∈ (−∞,∞)×[0,∞) pass two (not
necessarily distinct) generalized i-characteristics, associated with U and defined
on [0,∞), namely the minimal ξ−(·) and the maximal ξ+(·), with ξ−(t) ≤ ξ+(t) for
t ∈ [0,∞). The funnel-shaped region confined between the graphs of ξ−(·) and ξ+(·)
comprises the set of points (x, t) that may be connected to (x̄, t̄) by a generalized i-
characteristic associated with U .

Other standard properties of solutions of differential inclusions also have useful
implications for the theory of generalized characteristics: If {ξm(·)} is a sequence of
generalized i-characteristics, associated with U and defined on [σ, τ ], which con-
verges to some Lipschitz function ξ(·), uniformly on [σ, τ ], then ξ(·) is necessarily
a generalized i-characteristic associated with U . In particular, if ξm(·) is the mini-
mal (or maximal) generalized i-characteristic through a point (xm, t̄) and xm ↑ x̄ (or
xm ↓ x̄), as m → ∞, then {ξm(·)} converges to the minimal (or maximal) general-
ized i-characteristic ξ−(·) (or ξ+(·)) through the point (x̄, t̄).

In addition to classical i-characteristics, i-shocks that satisfy the Lax E-condition
are obvious examples of generalized i-characteristics. In fact, it turns out that these
are the only possibilities. Indeed, even though Definition 10.2.1 would seemingly
allow ξ̇ to select any value in the interval �i , the fact that U is a solution of (10.1.1)
constrains generalized i-characteristics associated with U to propagate either with
classical i-characteristic speed or with i-shock speed:

10.2.3 Theorem. Let ξ(·) be a generalized i-characteristic, associated with U and
defined on [σ, τ ]. The following holds for almost all t ∈ [σ, τ ] : When (ξ(t), t) ∈ C,
then ξ̇ (t) = λi (U0) with U0 = U (ξ(t)±, t). When (ξ(t), t) ∈ J , then ξ̇ (t) = s,
where s is the speed of the i-shock that joins U− , on the left, to U+ , on the right,
with U± = U (ξ(t)±, t). In particular, s satisfies the Rankine-Hugoniot condition
(8.1.2) as well as the Lax E-condition (10.1.2).

Proof. Let us recall the properties of BV solutions recorded in Section 10.1. It is
then clear that for almost all t ∈ [σ, τ ] with (ξ(t), t) ∈ C the interval �i (ξ(t), t)
reduces to the single point λi (U (ξ(t)±, t)) and so ξ̇ (t) = λi (U (ξ(t)±, t)), by virtue
of (10.2.1).

Applying the measure equality (10.1.1) to arbitrary subarcs of the graph of ξ , and
using Theorem 1.7.8 (in particular Equation (1.7.12)), yields

(10.2.3) F(U (ξ(t)+, t))− F(U (ξ(t)−, t)) = ξ̇ (t)[U (ξ(t)+, t)−U (ξ(t)−, t)],
almost everywhere on [σ, τ ]. Consequently, for almost all t ∈ [σ, τ ] with (ξ(t), t)
in J , we have ξ̇ (t) = s, where s is the speed of a shock that joins the states U− =
U (ξ(t)−, t) and U+ = U (ξ(t)+, t). Because of the structure of solutions, there is
j ∈ {1, · · · , n} such that λ j−1(U±) < λ j (U+) ≤ s ≤ λ j (U−) < λ j+1(U±). On
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the other hand, (10.2.1) implies that s lies in the interval with endpoints λi (U−) and
λi (U+). Therefore, j = i and (10.1.2) holds. This completes the proof.

The above theorem motivates the following terminology:

10.2.4 Definition. A generalized i-characteristic ξ(·), associated with U and defined
on [σ, τ ], is called shock-free if U (ξ(t)−, t) = U (ξ(t)+, t), for almost all t in [σ, τ ].

A consequence of the proof of Theorem 10.2.3 is that (10.2.1) is equivalent to

(10.2.4) ξ̇ (t) ∈ [λi (U (ξ(t)+, t)) , λi (U (ξ(t)−, t))], a.e. on [σ, τ ].
In what follows, an important role will be played by the special generalized charac-
teristics that manage to propagate at the maximum or minimum allowable speed:

10.2.5 Definition. A generalized i-characteristic ξ(·), associated with U and defined
on [σ, τ ], is called a left i-contact if

(10.2.5) ξ̇ (t) = λi (U (ξ(t)−, t)), a.e. on [σ, τ ],
and/or a right i-contact if

(10.2.6) ξ̇ (t) = λi (U (ξ(t)+, t)), a.e. on [σ, τ ].

Clearly, shock-free i-characteristics are left and right i-contacts. Note that, since
they are generalized i-characteristics, left (or right) i-contacts should also satisfy
the assertion of Theorem 10.2.3, namely ξ̇ (t) = s for almost all t ∈ [σ, τ ] with
(ξ(t), t) ∈ J . Of course this is impossible in systems that do not admit left (or
right) contact discontinuities. In any such system, left (or right) contacts are nec-
essarily shock-free. In particular, recalling Theorem 8.2.1, we conclude that when
the i-characteristic family for the system (10.1.1) is genuinely nonlinear and the
oscillation of U is sufficiently small, then any left or right i-contact is necessarily
shock-free.

10.3 Extremal Backward Characteristics

With reference to some point (x̄, t̄) ∈ (−∞,∞) × [0,∞), a generalized charac-
teristic through (x̄, t̄) is dubbed backward when defined on [0, t̄], or forward when
defined on [t̄,∞). The extremal, minimal and maximal, backward and forward gen-
eralized characteristics through (x̄, t̄) propagate at extremal speeds and are thus nat-
ural candidates for being contacts. This turns out to be true, at least for the backward
extremal characteristics, in consequence of the Lax E-condition:

10.3.1 Theorem. The minimal (or maximal) backward i-characteristic, associated
with U , emanating from any point (x̄, t̄) of the upper half-plane is a left (or right)
i-contact.
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Proof. Let ξ(·) denote the minimal backward i-characteristic emanating from (x̄, t̄)
and defined on [0, t̄]. We fix ε > 0 and select t̄ = τ0 > τ1 > · · · > τk = 0,
for some k ≥ 1, through the following algorithm: We start out with τ0 = t̄ . As-
suming τm > 0 has been determined, we let ξm(·) denote the minimal backward
i-characteristic emanating from (ξ(τm) − ε, τm). If ξm(t) < ξ(t) for 0 < t ≤ τm ,
we set τm+1 = 0,m + 1 = k and terminate. Otherwise, we locate τm+1 ∈ (0, τm)

with the property ξm(t) < ξ(t) for τm+1 < t ≤ τm and ξm(τm+1) = ξ(τm+1).
Clearly, this algorithm will terminate after a finite number of steps. Next we construct
a left-continuous, piecewise Lipschitz function ξε(·) on [0, t̄], with jump discontinu-
ities (when k ≥ 2) at τ1, · · · , τk−1, by setting ξε(t) = ξm(t) for τm+1 < t ≤ τm,

with m = 0, 1, · · · , k − 1, and ξε(0) = ξk−1(0). Then

(10.3.1) ξε(t̄)− ξε(0) = (k − 1)ε +
k−1∑
m=0

∫ τm

τm+1

ξ̇m(t)dt ≥
∫ t̄

0
λi (U (ξε(t)+, t))dt.

By standard theory of contingent equations like (10.2.1), ξε(t) ↑ ξ(t) as ε ↓ 0,
uniformly on [0, t̄]. Therefore, letting ε ↓ 0, (10.3.1) yields

(10.3.2) ξ(t̄)− ξ(0) ≥
∫ t̄

0
λi (U (ξ(t)−, t))dt.

On the other hand, ξ̇ (t) ≤ λi (U (ξ(t)−, t)), almost everywhere on [0, t̄], and so
ξ̇ (t) = λi (U (ξ(t)−, t)) for almost all t ∈ [0, t̄], i.e., ξ(·) is a left i-contact.

Similarly one shows that the maximal backward i-characteristic emanating from
(x̄, t̄) is a right i-contact. This completes the proof.

In view of the closing remarks in Section 10.2, Theorem 10.3.1 has the following
corollary:

10.3.2 Theorem. Assume the i-characteristic family for the system (10.1.1) is gen-
uinely nonlinear and the oscillation of U is sufficiently small. Then the minimal and
the maximal backward i-characteristics, emanating from any point (x̄, t̄) of the up-
per half-plane, are shock-free.

The implications of the above theorem will be seen in following chapters.
For future use, it will be expedient to introduce here a special class of backward

characteristics emanating from infinity:

10.3.3 Definition. A minimal (or maximal) i-separatrix, associated with the solution
U , is a Lipschitz function ξ : [0, t̄) → (−∞,∞) such that ξ(t) = limm→∞ ξm(t),
uniformly on compact time intervals, where ξm(·) is the minimal (or maximal) back-
ward i-characteristic emanating from a point (xm, tm), with tm → t̄ , as m → ∞.
In particular, when t̄ = ∞, the i-separatrix ξ(·) is called a minimal (or maximal)
i-divide.

Note that the graphs of any two minimal (or maximal) i-characteristics may run
into each other but they cannot cross. Consequently, the graph of a minimal (or max-
imal) backward i-characteristic cannot cross the graph of any minimal (or maximal)
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i-separatrix. Similarly, the graphs of any two minimal (or maximal) i-separatrices
cannot cross. In particular, any minimal (or maximal) i-divide divides the upper half-
plane into two parts in such a way that no forward i-characteristic may cross from
the left to the right (or from the right to the left).

Minimal or maximal i-separatrices are necessarily generalized i-characteristics,
which, by virtue of Theorem 10.3.1, are left or right i-contacts. In particular, when
the i-characteristic family is genuinely nonlinear and the oscillation of U is suffi-
ciently small, Theorem 10.3.2 implies that minimal or maximal i-separatrices are
shock-free.

One should not expect that all solutions possess i-divides. An important class that
always do, are solutions that are periodic in x , U (x+L , t) = U (x, t) for some L > 0
and all (x, t) ∈ (−∞,∞) × (0,∞). Indeed, in that case, given any sequence {tm},
with tm →∞ as m →∞, it is always possible to locate {xm} with the property that
the minimal or maximal backward i-characteristic ξm(·) emanating from (xm, tm)
will be intercepted by the x-axis at a point lying inside any fixed interval of length
L , say ξm(0) ∈ [0, L) , m = 1, 2, · · ·. The Arzela theorem then implies that {ξm(·)}
contains convergent subsequences whose limits are necessarily i-divides.

This chapter will close with the following remark: Generalized characteristics
were introduced here in connection to BV solutions of (10.1.1) defined on the entire
upper half-plane. It is clear, however, that the notion and many of its properties are of
purely local nature and thus apply to BV solutions defined on arbitrary open subsets
of IR2.

10.4 Notes

The presentation of the theory of generalized characteristics in this chapter follows
Dafermos [16]. An exposition of the general theory of differential inclusions is found
in the monograph by Filippov [1]. An early paper introducing generalized character-
istics (for scalar conservation laws) as solutions of the classical characteristic equa-
tions, in the sense of Filippov, is Wu [1]. See also Hörmander [1]. Glimm and Lax
[1] employ an alternative definition of generalized characteristics, namely Lipschitz
curves propagating either with classical characteristic speed or with shock speed,
constructed as limits of a family of “approximate characteristics”. In view of The-
orem 10.2.3, the two notions are closely related. This will be discussed in Chapter
XIII.

The notion of divide was introduced in Dafermos [18].
Generalized characteristics in several space dimensions are considered by

Poupaud and Rascle [1], in the context of linear transport equations with discon-
tinuous coefficients.
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Genuinely Nonlinear Scalar Conservation Laws

Despite its apparent simplicity, the genuinely nonlinear scalar conservation law in
one-space dimension possesses a surprisingly rich theory, which deserves attention
not only for its intrinsic interest but also because it provides valuable insight in the
behavior of systems. The discussion here will employ the theory of generalized char-
acteristics developed in Chapter X. From the standpoint of this approach, the special
feature of genuinely nonlinear scalar conservation laws is that the extremal backward
generalized characteristics are essentially classical characteristics, that is, straight
lines along which the solution is constant. This property induces such a heavy con-
straint that one is able to derive very precise information on regularity and large time
behavior of solutions.

Solutions are (classically) continuous at points of approximate continuity and
locally Lipschitz continuous in the interior of the set of points of continuity. Points
of approximate jump discontinuity lie on classical shocks. The remaining, irregular,
points are at most countable and are formed by the collision of shocks and/or the
focussing of compression waves. Generically, solutions with smooth initial data are
piecewise smooth.

Genuine nonlinearity gives rise to a host of dissipative mechanisms that affect the

large time behavior of solutions. Entropy dissipation induces O(t−
p

p+1 ) decay of so-
lutions with initial data in L p(−∞,∞). When the initial data have compact support,
spreading of characteristics generates N -wave profiles. Confinement of characteris-
tics under periodic initial data induces O(t−1) decay in the total variation per period
and the formation of sawtoothed profiles.

Another important feature of admissible weak solutions of the Cauchy problem
for the genuinely nonlinear scalar conservation law is that they are related explicitly
to their initial values, through the Lax function. This property, which will be estab-
lished here by the method of generalized characteristics, may serve alternatively as
the starting point for developing the general theory of solutions to the Cauchy prob-
lem.

Additional insight is gained from comparison theorems on solutions. It will be
shown that the lap number of any admissible solution is nonincreasing with time.
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Moreover, the L1 distance of any two solutions is generally nonincreasing, but typi-
cally conserved, whereas a properly weighted L1 distance is strictly decreasing.

One of the advantages of the method of generalized characteristics is that it read-
ily extends to inhomogeneous, genuinely nonlinear balance laws. This theory will
be outlined here and two examples will be presented in order to demonstrate how
inhomogeneity and source terms may affect the large time behavior of solutions.

11.1 Admissible BV Solutions and Generalized Characteristics

We consider the scalar conservation law

(11.1.1) ∂t u(x, t)+ ∂x f (u(x, t)) = 0,

which is genuinely nonlinear, f ′′(u) > 0, −∞ < u <∞. Throughout this chapter
we shall be dealing with admissible weak solutions u on (−∞,∞)× [0,∞) whose
initial values u0 are bounded and have locally bounded variation on (−∞,∞). By
virtue of Theorem 6.2.6, u is in BVloc and for any t ∈ [0,∞) the function u(·, t) has
locally bounded variation on (−∞,∞).

As noted in Section 8.5, the entropy shock admissibility criterion will be satis-
fied almost everywhere (with respect to one-dimensional Hausdorff measure) on the
shock set J of the solution u, for any entropy-entropy flux pair (η, q) with η convex.
This in turn implies that the Lax E-condition will also hold almost everywhere on
J . Consequently, we have

(11.1.2) u(x+, t) ≤ u(x−, t),

for almost all t ∈ (0,∞) and all x ∈ (−∞,∞).
By account of Theorem 10.2.3, a Lipschitz curve ξ(·), defined on the time interval

[σ, τ ] ⊂ [0,∞), will be a generalized characteristic, associated with the solution u,
if for almost all t ∈ [σ, τ ]
(11.1.3)

ξ̇ (t) =

⎧⎪⎪⎨⎪⎪⎩
f ′(u(ξ(t)±, t)), when u(ξ(t)+, t) = u(ξ(t)−, t)

f (u(ξ(t)+, t))− f (u(ξ(t)−, t))

u(ξ(t)+, t)− u(ξ(t)−, t)
, when u(ξ(t)+, t) < u(ξ(t)−, t).

The special feature of genuinely nonlinear scalar conservation laws is that general-
ized characteristics that are shock-free are essentially classical characteristics:

11.1.1 Theorem. Let ξ(·) be a generalized characteristic for (11.1.1), associated
with the admissible solution u, shock-free on the time interval [σ, τ ]. Then there is a
constant ū such that

(11.1.4) u(ξ(τ )+, τ ) ≤ ū ≤ u(ξ(τ )−, τ ),
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(11.1.5) u(ξ(t)+, t) = ū = u(ξ(t)−, t), σ < t < τ ,

(11.1.6) u(ξ(σ )−, σ ) ≤ ū ≤ u(ξ(σ )+, σ ).
In particular, the graph of ξ(·) is a straight line with slope f ′(ū).

Proof. Fix r and s, σ ≤ r < s ≤ τ . For ε > 0, we integrate the measure equality
(11.1.1) over the set {(x, t) : r < t < s, ξ(t) − ε < x < ξ(t)} and use Green’s
theorem to get

(11.1.7)
∫ ξ(s)

ξ(s)−ε
u(x, s)dx −

∫ ξ(r)

ξ(r)−ε
u(x, r)dx

=
∫ s

r
{ f (u(ξ(t)−ε+, t))− f (u(ξ(t)−, t))− ξ̇ (t)[u(ξ(t)−ε+, t)−u(ξ(t)−, t)]}dt.

By virtue of Definition 10.2.4, ξ̇ (t) = f ′(u(ξ(t)−, t)) , a.e. on [r, s]. Since f is
convex, this implies that the right-hand side of (11.1.7) is nonnegative. Consequently,
multiplying (11.1.7) by 1/ε and letting ε ↓ 0 yields

(11.1.8) u(ξ(s)−, s) ≥ u(ξ(r)−, r), σ ≤ r < s ≤ τ.

Next we apply (11.1.1) to the set {(x, t) : r < t < s, ξ(t) < x < ξ(t)+ ε} and
repeat the above procedure to deduce

(11.1.9) u(ξ(s)+, s) ≤ u(ξ(r)+, r), σ ≤ r < s ≤ τ.

We now fix t1 and t2, σ < t1 < t2 < r , such that u(ξ(t1)−, t1) = u(ξ(t1)+, t1),
u(ξ(t2)−, t2) = u(ξ(t2)+, t2); then fix any t ∈ (t1, t2). We apply (11.1.8) and
(11.1.9) first with r = t1 , s = t2 , then with r = t1 , s = t , and finally with
r = t, s = t2 . This yields (11.1.5). To complete the proof, we apply (11.1.8),
(11.1.9) for s = τ, r ∈ (σ, τ ), to obtain (11.1.4), and for r = σ, s ∈ (σ, τ ), to
deduce (11.1.6).

11.1.2 Corollary. Assume ξ(·) and ζ(·) are distinct generalized characteristics for
(11.1.1), associated with the admissible weak solution u, which are shock-free on the
time interval [σ, τ ]. Then ξ(·) and ζ(·) cannot intersect for any t ∈ (σ, τ ).

The above two propositions have significant implications on extremal backward
characteristics:

11.1.3 Theorem. Let ξ−(·) and ξ+(·) denote the minimal and maximal backward
characteristics, associated with some admissible solution u, emanating from any
point (x̄, t̄) ∈ (−∞,∞)× (0,∞). Then

(11.1.10)

⎧⎨⎩u(ξ−(t)−, t) = u(x̄−, t̄) = u(ξ−(t)+, t)
0 < t < t̄,

u(ξ+(t)−, t) = u(x̄+, t̄) = u(ξ+(t)+, t)
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(11.1.11)

⎧⎨⎩u0(ξ−(0)−) ≤ u(x̄−, t̄) ≤ u0(ξ−(0)+)

u0(ξ+(0)−) ≤ u(x̄+, t̄) ≤ u0(ξ+(0)+).
In particular, u(x̄+, t̄) ≤ u(x̄−, t̄) holds for all (x̄, t̄) ∈ (−∞,∞) × (0,∞) and
ξ−(·), ξ+(·) coincide if and only if u(x̄+, t̄) = u(x̄−, t̄).

Proof. By virtue of Theorem 10.3.2, both ξ−(·) and ξ+(·) are shock-free on [0, t̄].
We may then apply Theorem 11.1.1, with σ = 0 and τ = t̄ . When u(x̄+, t̄) =
u(x̄−, t̄), ū = u(x̄±, t̄), by account of (11.1.4), and thus ξ−(·), ξ+(·) coincide. In
the general case, consider an increasing (or decreasing) sequence {xn}, converging
to x̄ , such that u(xn+, t̄) = u(xn−, t̄), n = 1, 2, · · ·. Let ξn(·) denote the unique
backward characteristic emanating from (xn, t̄). Then u(ξn(t)±, t) = u(xn±, t̄) for
all t ∈ (0, t̄). As noted in Section 10.2, the sequence {ξn(·)} converges from below (or
above) to ξ−(·) (or ξ+(·)). Consequently, u(ξ−(t)−, t) = lim u(xn±, t̄) = u(x̄−, t̄)
(or u(ξ+(t)+, t) = lim u(xn±, t̄) = u(x̄+, t̄)). The proof is complete.

We now turn to the properties of forward characteristics:

11.1.4 Theorem. A unique forward generalized characteristic, associated with an
admissible solution u, issues from any point (x̄, t̄) ∈ (−∞,∞)× (0,∞).

Proof. Suppose two distinct forward characteristics φ(·) and ψ(·) issue from (x̄, t̄),
such that φ(s) < ψ(s) for some s > t̄ . Let ξ(·) denote the maximal back-
ward characteristic emanating from (φ(s), s) and ζ(·) denote the minimal back-
ward characteristic emanating from (ψ(s), s), both being shock-free on [0, s]. For
t ∈ [t̄, s], ξ(t) ≥ φ(t) and ζ(t) ≤ ψ(t); hence ξ(·) and ζ(·) must intersect at some
t ∈ [t̄, s), in contradiction to Corollary 11.1.2. This completes the proof.

Note that, by contrast, multiple forward characteristics may issue from points
lying on the x-axis. In particular, the focus of any centered rarefaction wave must
necessarily lie on the x-axis.

The next proposition demonstrates that, once they form, jump discontinuities
propagate as shock waves for eternity:

11.1.5 Theorem. Let χ(·) denote the unique forward generalized characteristic, as-
sociated with the admissible solution u, issuing from a point (x̄, t̄) such that t̄ > 0
and u(x̄+, t̄) < u(x̄−, t̄). Then u(χ(s)+, s) < u(χ(s)−, s) for all s ∈ [t̄,∞).

Proof. Let ξ−(·) and ξ+(·) denote the minimal and maximal backward characteris-
tics emanating from (x̄, t̄). Since u(x̄+, t̄) < u(x̄−, t̄), ξ−(·) and ξ+(·) are distinct:
ξ−(0) < ξ+(0).

Fix any s ∈ [t̄,∞) and consider the minimal and maximal backward char-
acteristics ζ−(·) and ζ+(·) emanating from (χ(s), s). For t ∈ [0, t̄], necessarily
ζ−(t) ≤ ξ−(t) and ζ+(t) ≥ ξ+(t). Thus ζ−(0) < ζ+(0) so that ζ−(·) and ζ+(·)
are distinct. Consequently, u(χ(s)+, s) < u(χ(s)−, s). This completes the proof.
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In view of the above, it is possible to identify the points from which shocks
originate:

11.1.6 Definition. We call (x̄, t̄) ∈ (−∞,∞) × [0,∞) a shock generation point
if some forward generalized characteristic χ(·) issuing from (x̄, t̄) is a shock, i.e.,
u(χ(t)+, t) < u(χ(t)−, t), for all t > t̄ , while every backward characteristic ema-
nating from (x̄, t̄) is shock-free.

When (x̄, t̄) is a shock generation point with t̄ > 0, there are two possibilities:
u(x̄+, t̄) = u(x̄−, t̄) or u(x̄+, t̄) < u(x̄−, t̄). In the former case, the shock starts
out at (x̄, t̄) with zero strength and develops as it evolves. In the latter case, distinct
minimal and maximal backward characteristics ξ−(·) and ξ+(·) emanate from (x̄, t̄).
The sector confined between the graphs of ξ−(·) and ξ+(·) must be filled by charac-
teristics, connecting (x̄, t̄) with the x-axis, which, by definition, are shock-free and
hence are straight lines. Thus in that case the shock is generated at the focus of a
centered compression wave, so it starts out with positive strength.

11.2 The Spreading of Rarefaction Waves

We are already familiar with the destabilizing role of genuine nonlinearity: Com-
pression wave fronts get steeper and eventually break, generating shocks. It turns
out, however, that at the same time genuine nonlinearity also exerts a regularizing
influence by inducing the spreading of rarefaction wave fronts. It is remarkable that
this effect is purely geometric and is totally unrelated to the regularity of the initial
data:

11.2.1 Theorem. For any admissible solution u,

(11.2.1)
f ′(u(y±, t))− f ′(u(x±, t))

y − x
≤ 1

t
, −∞ < x < y <∞, 0 < t <∞.

Proof. Fix x, y and t with x < y and t > 0. Let ξ(·) and ζ(·) denote the maximal
or minimal backward characteristics emanating from (x, t) and (y, t), respectively.
By virtue of Theorem 11.1.3, ξ(0) = x − t f ′(u(x±, t)), ζ(0) = y − t f ′(u(y±, t)).
Furthermore, ξ(0) ≤ ζ(0), on account of Corollary 11.1.2. This immediately implies
(11.2.1). The proof is complete.

Notice that (11.2.1) establishes a one-sided Lipschitz condition for f ′(u(·, t)),
with Lipschitz constant independent of the initial data. By the general theory of scalar
conservation laws, presented in Chapter VI, admissible solutions of (11.1.1) with ini-
tial data in L∞(−∞,∞)may be realized as a.e. limits of sequences of solutions with
initial data of locally bounded variation on (−∞,∞). Consequently, (11.2.1) should
hold even for admissible solutions with initial data that are merely in L∞(−∞,∞).
Clearly, (11.2.1) implies that, for fixed t > 0 , f ′(u(·, t)), and thereby also u(·, t),
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have bounded variation over any bounded interval of (−∞,∞). We have thus shown
that, due to genuine nonlinearity, solutions are generally smoother than their initial
data:

11.2.2 Theorem. Admissible solutions of (11.1.1), with initial data in
L∞(−∞,∞), are in BVloc on (−∞,∞) × (0,∞) and satisfy the one-sided Lip-
schitz condition (11.2.1).

11.3 Regularity of Solutions

The properties of generalized characteristics established in the previous section lead
to a precise description of the structure and regularity of admissible weak solutions.

11.3.1 Theorem. Let χ(·) be the unique forward generalized characteristic and
ξ−(·), ξ+(·) the extremal backward characteristics, associated with an admissible so-
lution u, emanating from any point (x̄, t̄) ∈ (−∞,∞)×(0,∞). Then (x̄, t̄) is a point
of continuity of the function u(x−, t) relative to the set {(x, t) : 0 ≤ t ≤ t̄, x ≤ ξ−(t)
or t̄ < t < ∞, x ≤ χ(t)} and also a point of continuity of the function u(x+, t)
relative to the set {(x, t) : 0 ≤ t ≤ t̄, x ≥ ξ+(t) or t̄ < t < ∞, x ≥ χ(t)}.
Furthermore, χ(·) is differentiable from the right at t̄ and

(11.3.1)
d+

dt
χ(t̄) =

⎧⎪⎪⎨⎪⎪⎩
f ′(u(x̄±, t̄)), i f u(x̄+, t̄) = u(x̄−, t̄)

f (u(x̄+, t̄))− f (u(x̄−, t̄))

u(x̄+, t̄)− u(x̄−, t̄)
, i f u(x̄+, t̄) < u(x̄−, t̄).

Proof. Take any sequence {(xn, tn)} in the set {(x, t) : 0 ≤ t < t̄, x ≤ ξ−(t) or
t̄ < t < ∞, x ≤ χ(t)}, which converges to (x̄, t̄) as n → ∞. Let ξn(·) denote
the minimal backward characteristic emanating from (xn, tn). Clearly, ξn(t) ≤ ξ−(t)
for t ≤ t̄ . Thus, as n → ∞, {ξn(·)} converges from below to ξ−(·). Consequently,
{u(xn−, tn)} converges to u(x̄−, t̄).

Similarly, for any sequence {(xn, tn)} in the set {(x, t) : 0 ≤ t < t̄, x ≥ ξ+(t) or
t̄ < t <∞, x ≥ χ(t)}, converging to (x̄, t̄), the sequence {u(xn+, tn)} converges to
u(x̄+, t̄).

For ε > 0,

(11.3.2)
1

ε
[χ(t̄ + ε)− χ(t̄)] = 1

ε

∫ t̄+ε

t̄
χ̇ (t)dt,

where χ̇ (t) is determined through (11.1.3), with ξ ≡ χ . As shown above, χ̇ (t) is
continuous from the right at t̄ and so, letting ε ↓ 0 in (11.3.2), we arrive at (11.3.1).
This completes the proof.

The above theorem has the following corollary:
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11.3.2 Theorem. Let u be an admissible solution and assume u(x̄+, t̄) = u(x̄−, t̄),
for some (x̄, t̄) ∈ (−∞,∞) × (0,∞). Then (x̄, t̄) is a point of continuity of u. A
unique generalized characteristic χ(·), associated with u, defined on [0,∞), passes
through (x̄, t̄). Furthermore, χ(·) is differentiable at t̄ and χ̇ (t̄) = f ′(u(x̄±, t̄)).

Next we focus attention on points of discontinuity.

11.3.3 Theorem. Let u be an admissible solution and assume u(x̄+, t̄) < u(x̄−, t̄),
for some (x̄, t̄) ∈ (−∞,∞) × (0,∞). When the extremal backward characteristics
ξ−(·), ξ+(·) are the only backward generalized characteristics emanating from (x̄, t̄)
that are shock-free on (0, t̄), then (x̄, t̄) is a point of jump discontinuity of u in the
following sense: There is a generalized characteristic χ(·), associated with u, defined
on [0,∞) and passing through (x̄, t̄), such that (x̄, t̄) is a point of continuity of the
function u(x−, t) relative to {(x, t) : 0 < t < ∞, x ≤ χ(t)} and also a point of
continuity of the function u(x+, t) relative to {(x, t) : 0 < t < ∞, x ≥ χ(t)}.
Furthermore, χ(·) is differentiable at t̄ and

(11.3.3) χ̇(t̄) = f (u(x̄+, t̄))− f (u(x̄−, t̄))

u(x̄+, t̄)− u(x̄−, t̄)
.

Proof. Fix any point on the x-axis, in the interval (ξ−(0), ξ+(0)), and connect it to
(x̄, t̄) by a characteristic χ(·). Extend χ(·) to [t̄,∞) as the unique forward charac-
teristic issuing from (x̄, t̄).

Take any sequence {(xn, tn)} in the set {(x, t) : 0 < t < ∞, x ≤ χ(t)}, that
converges to (x̄, t̄), as n →∞. Let ξn(·) denote the minimal backward characteristic
emanating from (xn, tn). As n →∞, {ξn(·)}, or a subsequence thereof, will converge
to some backward characteristic emanating from (x̄, t̄), which is a straight line and
shock-free. Since ξn(t) ≤ χ(t), this implies that {ξn(·)} must necessarily converge
to ξ−(·). Consequently, {u(xn−, tn)} converges to u(x̄−, t̄), as n →∞.

Similarly, for any sequence {(xn, tn)} in {(x, t) : 0 < t < ∞, x ≥ χ(t)},
converging to (x̄, t̄), the sequence {u(xn+, tn)} converges to u(x̄+, t̄).

To verify (11.3.3), we start out again from (11.3.2), where now ε may be positive
or negative. As shown above, t̄ is a point of continuity of χ̇ (t) and so, letting ε→ 0,
we arrive at (11.3.3). This completes the proof.

11.3.4 Theorem. The set of irregular points of any admissible solution u is (at
most) countable. (x̄, t̄) ∈ (−∞,∞) × (0,∞) is an irregular point if and only
if u(x̄+, t̄) < u(x̄−, t̄) and, in addition to the extremal backward characteristics
ξ−(·), ξ+(·), there is at least another, distinct, backward characteristic ξ(·), associ-
ated with u, emanating from (x̄, t̄), which is shock-free on (0, t̄). Irregular points are
generated by the collision of shocks and/or by the focusing of centered compression
waves.

Proof. Necessity follows from Theorems 11.3.2 and 11.3.3. To show sufficiency,
consider the subset X of the interval [ξ−(0), ξ+(0)]with the property that, for x ∈ X ,
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the straight line segment connecting the points (x, 0) and (x̄, t̄) is a characteristic
associated with u, which is shock-free on (0, t̄).

When X ≡ [ξ−(0), ξ+(0)] , (x̄, t̄) is the focus of a centered compression
wave and the assertion of the theorem is clearly valid. In general, however, X will
be a closed proper subset of [ξ−(0), ξ+(0)], containing at least the three points
ξ−(0), ξ(0) and ξ+(0). The complement of X relative to [ξ−(0), ξ+(0)] will then
be the (at most) countable union of disjoint open intervals. Let (α−, α+) be one
of these intervals, contained, say in (ξ−(0), ξ(0)). The straight line segments con-
necting the points (α−, 0) and (α+, 0) with (x̄, t̄) will be shock-free character-
istics ζ−(·) and ζ+(·) along which u is constant, say u− and u+ . Necessarily,
u(x̄−, t̄) ≥ u− > u+ > u(x̄+, t̄). Consider a characteristic χ(·) connecting a
point of (α−, α+) with (x̄, t̄). Then ζ−(t) < χ(t) < ζ+(t), 0 ≤ t < t̄ . Take any
sequence {(xn, tn)} in the set {(x, t) : 0 ≤ t < t̄, ζ−(t) ≤ x ≤ χ(t)}, converging to
(x̄, t̄), as n → ∞. If ξn(·) denotes the minimal backward characteristic emanating
from (xn, tn), the sequence {ξn(·)} will necessarily converge to ζ−(·). In particular,
this implies u(xn−, tn) −→ u− , as n → ∞. Similarly one shows that if {(xn, tn)}
is any sequence in the set {(x, t) : 0 ≤ t < t̄, χ(t) ≤ x ≤ ζ+(t)} converging to
(x̄, t̄), then u(xn+, tn) −→ u+ , as n → ∞. Thus, near t̄ χ(·) is a shock, which is
differentiable from the left at t̄ with

(11.3.4)
d−

dt
χ(t̄) = f (u+)− f (u−)

u+ − u−
.

Since f ′(u−) > d−
dt χ(t̄) > f ′(u+), we conclude that (x̄, t̄) is an irregular point of u.

We have thus shown that (x̄, t̄) is a point of collision of shocks, one for each
open interval of the complement of X , and centered compression waves, when the
measure of X is positive.

For fixed positive ε, we consider irregular points (x̄, t̄), as above, with the addi-
tional property ξ+(0) − ξ(0) > ε, ξ(0) − ξ−(0) > ε. It is easy to see that one may
fit an at most finite set of such points in any bounded subset of the upper half-plane.
This in turn implies that the set of irregular points of any admissible solution is (at
most) countable. The proof is complete.

The effect of genuine nonlinearity, reflected in the properties of characteristics, is
either to smooth out solutions by rarefaction or to form jump discontinuities through
compression. Aspects of this polarizing influence, which inhibits the existence of
solutions with “intermediate” regularity, are manifested in the following Theorems
11.3.5, 11.3.6 and 11.3.10.

To begin with, every admissible BV solution is necessarily a special function of
bounded variation, in the sense of Definition 1.7.9:

11.3.5 Theorem. There is an (at most) countable set T ⊂ [0,∞) such that, for
any t ∈ [0,∞)\T , u(·, t) belongs to SBVloc(−∞,∞). Furthermore, u belongs to
SBVloc

(
(−∞,∞)× [0,∞)

)
.

The proof of the above proposition is found in the literature cited in Section
11.12.
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Next, we shall see that continuity is automatically upgraded to Lipschitz conti-
nuity:

11.3.6 Theorem. Assume the set C of points of continuity of an admissible solution
u has nonempty interior C0. Then u is locally Lipschitz on C0.

Proof. Fix any point (x̄, t̄) ∈ C0 and assume that the circle Br of radius r , cen-
tered at (x̄, t̄), is contained in C0. Consider any point (x, t) at a distance ρ < r
from (x̄, t̄). The (unique) characteristics, associated with u, passing through (x̄, t̄)
and (x, t) are straight lines with slopes f ′(u(x̄, t̄)) and f ′(u(x, t)), respectively,
which cannot intersect inside the circle Br . Elementary trigonometric estimations
then imply that | f ′(u(x, t)) − f ′(u(x̄, t̄))| cannot exceed cρ/r , where c is any up-
per bound of 1 + f ′(u)2 over Br . Hence, if a > 0 is a lower bound of f ′′(u) over
Br , |u(x, t)− u(x̄, t̄)| ≤ c

ar ρ. This completes the proof.

The reader should be aware that admissible solutions have been constructed
whose set of points of continuity has empty interior.

We now investigate the regularity of admissible solutions with smooth initial
data. In what follows, it shall be assumed that f is Ck+1 and u is the admissible
solution with Ck initial data u0 , for some k ∈ {1, 2, · · · ,∞}.

For (x, t) ∈ (−∞,∞)×(0,∞), we let y−(x, t) and y+(x, t) denote the intercep-
tors on the x-axis of the minimal and maximal backward characteristics, associated
with u, emanating from the point (x, t). In particular,

(11.3.5) x = y−(x, t)+ t f ′(u0(y−(x, t)) = y+(x, t)+ t f ′(u0(y+(x, t)),

(11.3.6) u(x−, t) = u0(y−(x, t)), u(x+, t) = u0(y+(x, t)).

For fixed t > 0, both y−(·, t) and y+(·, t) are monotone nondecreasing and the
first one is continuous from the left while the second is continuous from the right.
Consequently,

(11.3.7) 1+ t
d

dy
f ′(u0(y)) ≥ 0, y = y±(x, t),

holds for all (x, t) ∈ (−∞,∞)× (0,∞).
Any point (x̄, t̄) ∈ (−∞,∞) × (0,∞) of continuity of u is necessarily also

a point of continuity of y±(x, t) and y−(x̄, t̄) = y+(x̄, t̄). Therefore, by virtue of
(11.3.5), (11.3.6) and the implicit function theorem we deduce

11.3.7 Theorem. If (x̄, t̄) ∈ (−∞,∞)× (0,∞) is a point of continuity of u and

(11.3.8) 1+ t̄
d

dy
f ′(u0(y)) > 0, y = y±(x̄, t̄),

then u is Ck on a neighborhood of (x̄, t̄).
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With reference to Theorem 11.3.3, if (x̄, t̄) is a point of jump discontinuity of
u, then (x̄, t̄) is a point of continuity of y−(x, t) and y+(x, t) relative to the sets
{(x, t) : 0 < t < ∞, x ≤ χ(t)} and {(x, t) : 0 < t < ∞, x ≥ χ(t)}, re-
spectively. Consequently, the implicit function theorem together with (11.3.5) and
(11.3.6) yields

11.3.8 Theorem. If (11.3.8) holds at a point (x̄, t̄) ∈ (−∞,∞) × (0,∞) of jump
discontinuity of u, then, in a neighborhood of (x̄, t̄), the shock χ(·) passing through
(x̄, t̄) is Ck+1 and u is Ck on either side of the graph of χ(·).

Next we consider shock generation points, introduced by Definition 11.1.6.

11.3.9 Theorem. If (x̄, t̄) ∈ (−∞,∞)× (0,∞) is a shock generation point, then

(11.3.9) 1+ t̄
d

dy
f ′(u0(y)) = 0, y−(x̄, t̄) ≤ y ≤ y+(x̄, t̄).

Furthermore, when k ≥ 2,

(11.3.10)
d2

dy2
f ′(u0(y)) = 0, y−(x̄, t̄) ≤ y ≤ y+(x̄, t̄).

Proof. Recall that there are two types of shock generation points: points of continuity,
in which case y−(x̄, t̄) = y+(x̄, t̄), and foci of centered compression waves, with
y−(x̄, t̄) < y+(x̄, t̄). When (x̄, t̄) is a point of continuity, (11.3.9) is a consequence
of (11.3.7) and Theorem 11.3.7. When (x̄, t̄) is the focus of a compression wave,
x̄ = y + t̄ f ′(u0(y)) for any y ∈ [y−(x̄, t̄), y+(x̄, t̄)] and this implies (11.3.9).

When y−(x̄, t̄) < y+(x̄, t̄), differentiation of (11.3.9) with respect to y yields
(11.3.10). To establish (11.3.10) for the case (x̄, t̄) is a point of continuity, we take
any sequence {xn} that converges from below (or above) to x̄ . Then {y−(xn, t̄)} will
approach from below (or above) y±(x̄, t̄). Because of (11.3.7), 1+ t̄ d

dy f ′(u0(y)) ≥ 0
for y = y−(xn, t̄); and this together with (11.3.9) imply that y±(x̄, t̄) is a critical
point of d

dy f ′(u0(y)). The proof is complete.

For k ≥ 3, the set of functions u0 in Ck with the property that d
dy f ′(u0(y)) has

infinitely many critical points in a bounded interval is of the first category. Therefore,
generically, initial data u0 ∈ Ck , with k ≥ 3, induce solutions with a locally finite
set of shock generation points and thereby with a locally finite set of shocks. In other
words,

11.3.10 Theorem. Generically, admissible solutions of (11.1.1) with initial data in
Ck, k ≥ 3, are piecewise Ck smooth functions and do not contain centered compres-
sion waves. In particular, solutions with analytic initial data are always piecewise
analytic.
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11.4 Divides, Invariants and the Lax Formula

The theory of generalized characteristics will be used here to establish interesting
and fundamental properties of admissible solutions of (11.1.1). The starting point
will be a simple but, as we shall see, very useful identity.

Let us consider two admissible solutions u and u∗, with corresponding initial
values u0 and u∗0 , and trace one of the extremal backward characteristics ξ(·), as-
sociated with u, and one of the extremal backward characteristics ξ∗(·), associated
with u∗, that emanate from any fixed point (x, t) ∈ (−∞,∞) × (0,∞). Thus, ξ(·)
and ξ∗(·) will be straight lines, and along ξ(·) u will be constant, equal to u(x−, t)
or u(x+, t), while along ξ∗(·) u∗ will be constant, equal to u∗(x−, t) or u∗(x+, t).
In particular, ξ̇ (τ ) = f ′(u(x±, t)) and ξ̇∗(τ ) = f ′(u∗(x±, t)) , 0 < τ < t .

We write (11.1.1), first for u then for u∗, we subtract the resulting two equations,
we integrate over the triangle with vertices (x, t), (ξ(0), 0), (ξ∗(0), 0), and apply
Green’s theorem thus arriving at the identity

(11.4.1)∫ t

0
{ f (u(x±, t))− f (u∗(ξ(τ )−, τ ))− f ′(u(x±, t))[u(x±, t)− u∗(ξ(τ )−, τ )]}dτ

+
∫ t

0
{ f (u∗(x±, t))− f (u(ξ∗(τ )−, τ ))− f ′(u∗(x±, t))[u∗(x±, t)−u(ξ∗(τ )−, τ )]}dτ

=
∫ ξ(0)

ξ∗(0)
[u0(y)− u∗0(y)]dy.

The usefulness of (11.4.1) lies in that, because of the convexity of f , both integrals
on the left-hand side are nonpositive.

As a first application of (11.4.1), we use it to locate divides associated with an
admissible solution u. The notion of divide was introduced by Definition 10.3.3. In
the context of the genuinely nonlinear scalar conservation law, following the discus-
sion in Section 10.3, divides are shock-free and hence, by virtue of Theorem 11.1.1,
straight lines along which u is constant.

11.4.1 Theorem. A divide, associated with the admissible solution u, with initial
data u0 , along which u is constant ū, issues from the point (x̄, 0) of the x-axis if and
only if

(11.4.2)
∫ z

x̄
[u0(y)− ū]dy ≥ 0, −∞ < z <∞.

Proof. Assume that (11.4.2) holds. We apply (11.4.1) with u∗ ≡ ū, t ∈ (0,∞), and
x = x̄ + t f ′(ū). In particular, ξ∗(τ ) = x̄ + τ f ′(ū) and ξ∗(0) = x̄ . Hence the right-
hand side of (11.4.1) is nonnegative, on account of (11.4.2). But then both integrals
on the left-hand side must vanish, so that u(x±, t) = ū. We have thus established
that the straight line x = x̄ + t f ′(ū) is a shock-free characteristic on [0,∞), which
is a divide associated with u.
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Conversely, assume the straight line x = x̄+ t f ′(ū) is a divide associated with u.
Take any z ∈ (−∞,∞) and fix ũ such that ũ < ū if z > x̄ and ũ > ū if z < x̄ . The
straight lines z+ t f ′(ũ) and x̄+ t f ′(ū) will then intersect at a point (x, t) with t > 0.
We apply (11.4.1) with u∗ ≡ ũ, in which case ξ(0) = x̄, ξ∗(0) = z. The left-hand
side is nonpositive and so

(11.4.3)
∫ x̄

z
[u0(y)− ũ]dy ≤ 0.

Letting ũ → ū we arrive at (11.4.2). This completes the proof.

The above proposition has implications for the existence of important time in-
variants of solutions:

11.4.2 Theorem. Assume u0 is integrable over (−∞,∞) and the maxima

(11.4.4) max
x

∫ −∞

x
u0(y)dy = q− , max

x

∫ ∞

x
u0(y)dy = q+

exist. If u is the admissible solution with initial data u0 , then, for any t > 0,

(11.4.5) max
x

∫ −∞

x
u(y, t)dy = q− , max

x

∫ ∞

x
u(y, t)dy = q+ .

Proof. Notice that q− exists if and only if q+ exists and in fact, by virtue of Theorem
11.4.1, both maxima are attained on the set of x̄ with the property that the straight
line x = x̄ + t f ′(0) is a divide associated with u, along which u is constant, equal to
zero. But then, again by Theorem 11.4.1, both maxima in (11.4.5) will be attained at
x̂ = x̄ + t f ′(0).

We now normalize f by f (0) = 0 and take the integral of (11.1.1), first over the
domain {(y, τ ) : 0 < τ < t, −∞ < y < x̄ + τ f ′(0)} and then also over the domain
{(y, τ ) : 0 < τ < t, x̄ + τ f ′(0) < y <∞}. Applying Green’s theorem, and since u
vanishes along the straight line x = x̄ + τ f ′(0),

(11.4.6)
∫ −∞

x̂
u(y, t)dy =

∫ −∞

x̄
u0(y)dy,

∫ ∞

x̂
u(y, t)dy =

∫ ∞

x̄
u0(y)dy,

which verifies (11.4.5). The proof is complete.

One of the most striking features of genuinely nonlinear scalar conservation laws
is that admissible solutions may be determined explicitly from the initial data by the
following procedure. We start out with the Legendre transform

(11.4.7) g(v) = max
u
[uv − f (u)],

noting that the maximum is attained at u = [ f ′]−1(v). With given initial data u0(·)
we associate the Lax function
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(11.4.8) G(y; x, t) =
∫ y

0
u0(z)dz + tg

(
x − y

t

)
,

defined for (x, t) ∈ (−∞,∞)× (0,∞) and y ∈ (−∞,∞).

11.4.3 Theorem. For fixed (x, t) ∈ (−∞,∞)× (0,∞), the Lax function G(y; x, t)
is minimized at a point ȳ ∈ (−∞,∞) if and only if the straight line segment that
connects the points (x, t) and (ȳ, 0) is a generalized characteristic associated with
the admissible solution u with initial data u0 , which is shock-free on (0, t).

Proof. We fix y and ȳ in (−∞,∞), integrate (11.1.1) over the triangle with vertices
(x, t), (y, 0), (ȳ, 0), and apply Green’s theorem to get

(11.4.9)∫ ȳ

0
u0(z)dz +

∫ t

0

[
x − ȳ

t
u(ȳ + τ

x − ȳ

t
±, τ )− f (u(ȳ + τ

x − ȳ

t
±, τ ))

]
dτ

=
∫ y

0
u0(z)dz +

∫ t

0

[
x − y

t
u(y + τ

x − y

t
±, τ )− f (u(y + τ

x − y

t
±, τ ))

]
dτ.

By virtue of (11.4.7) and (11.4.8), the left-hand side of (11.4.9) is less than or equal
to G(ȳ; x, t), with equality holding if and only if f ′(u(ȳ + τ

x−ȳ
t ±, τ )) = x−ȳ

t ,
almost everywhere on (0, t), i.e., if and only if the straight line segment that con-
nects the points (x, t) and (ȳ, 0) is a shock-free characteristic. Similarly, the right-
hand side of (11.4.9) is less than or equal to G(y; x, t), with equality holding if
and only if the straight line segment that connects the points (x, t) and (y, 0) is a
shock-free characteristic. Assuming then that the straight line segment connecting
(x, t) with (ȳ, 0) is indeed a shock-free characteristic, we deduce from (11.4.9) that
G(ȳ; x, t) ≤ G(y; x, t) for any y ∈ (−∞,∞).

Conversely, assume G(ȳ; x, t) ≤ G(y; x, t), for all y ∈ (−∞,∞). In particular,
pick y so that (y, 0) is the intercept by the x-axis of the minimal backward charac-
teristic emanating from (x, t). As shown above, y is a minimizer of G(·; x, t) and so
G(y; x, t) = G(ȳ; x, t). Moreover, the right-hand side of (11.4.9) equals G(y; x, t)
and so the left-hand side equals G(y; x, t). As explained above, this implies that the
straight line segment connecting (x, t) with (ȳ, 0) is a shock-free characteristic. The
proof is complete.

The above proposition may be used to determine the admissible solution u from
the initial data u0: For fixed (x, t) ∈ (−∞,∞) × (0,∞), we let y− and y+ denote
the smallest and the largest minimizer of G(· ; x, t) over (−∞,∞). We then have

(11.4.10) u(x±, t) = [ f ′]−1
(

x − y±
t

)
.

By account of Theorems 11.3.2, 11.3.3 and 11.3.4, we conclude that (x, t) is a point
of continuity of u if and only if y− = y+ ; a point of jump discontinuity of u if and
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only if y− < y+ and y−, y+ are the only minimizers of G(·; x, t); or an irregular
point of u if and only if y− < y+ and there exist additional minimizers of G(· ; x, t)
in the interval (y−, y+). One may develop the entire theory of the Cauchy problem
for genuinely nonlinear scalar conservation laws on the basis of the above construc-
tion of admissible solutions, in lieu of the approach via generalized characteristics.
It should be noted, however, that the method of generalized characteristics affords
greater flexibility, as it applies to solutions defined on arbitrary open subsets of IR2,
not necessarily on the entire upper half-plane.

The change of variables u = ∂xv, reduces the conservation law (11.1.1) to the
Hamilton-Jacobi equation

(11.4.11) ∂tv(x, t)+ f (∂xv(x, t)) = 0.

In that context, u is an admissible weak solution of (11.1.1) if and only if v is a vis-
cosity solution of (11.4.11); (references in Section 11.12). In fact, Theorems 11.4.2
and 11.4.3 reflect properties of solutions of Hamilton-Jacobi equations rather than of
hyperbolic conservation laws, in that they readily extend to the multi-space dimen-
sional versions of the former though not of the latter.

11.5 Decay of Solutions Induced by Entropy Dissipation

Genuine nonlinearity gives rise to a multitude of dissipative mechanisms which, act-
ing individually or collectively, affect the large time behavior of solutions. In this
section we shall get acquainted with examples in which the principal agent of damp-
ing is entropy dissipation.

11.5.1 Theorem. Let u be the admissible solution with initial data u0 such that

(11.5.1)
∫ x+�

x
u0(y)dy = O(�r ), as �→∞,

for some r ∈ [0, 1), uniformly in x on (−∞,∞). Then

(11.5.2) u(x±, t) = O
(

t−
1−r
2−r

)
, as t →∞,

uniformly in x on (−∞,∞).

Proof. We fix (x, t) ∈ (−∞,∞) × (0,∞) and write (11.4.1) for u∗ ≡ 0. Notice
that ξ(0) − ξ∗(0) = t[ f ′(u(x±, t)) − f ′(0)]. Also recall that both integrals on the
left-hand side are nonpositive. Consequently, using (11.5.1), we deduce

(11.5.3) �(u(x±, t)) = O(tr−1), as t →∞ ,

uniformly in x on (−∞,∞), where we have set
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(11.5.4) �(u) = f (0)− f (u)+ u f ′(u)
| f ′(u)− f ′(0)|r =

∫ u
0 v f ′′(v)dv

| ∫ u
0 f ′′(v)dv|r .

A simple estimation yields �(u) ≥ K |u|2−r , with K > 0, and so (11.5.3) implies
(11.5.2). This completes the proof.

In particular, when u0 ∈ L p (11.5.1) holds with r = 1− 1
p , by virtue of Hölder’s

inequality. Therefore, Theorem 11.5.1 has the following corollary:

11.5.2 Theorem. Let u be the admissible solution with initial data u0 in
L p(−∞,∞), 1 ≤ p <∞. Then

(11.5.5) u(x±, t) = O
(

t−
p

p+1

)
, as t →∞,

uniformly in x on (−∞,∞).

In the above examples, the comparison function was the solution u∗ ≡ 0. Next
we consider the case where the comparison function is the solution of a Riemann
problem comprising two constant states u− and u+ , u− > u+ , joined by a shock,
namely,

(11.5.6) u∗(x, t) =
⎧⎨⎩u− , x < st

u+ , x > st,

where

(11.5.7) s = f (u+)− f (u−)
u+ − u−

.

11.5.3 Theorem. Let u denote the admissible solution with intial data u0 such that
the improper integrals

∫ 0
−∞[u0(y)−u−]dy and

∫∞
0 [u0(y)−u+]dy exist, for u− and

u+ with u− > u+ . Normalize the origin x = 0 so that

(11.5.8)
∫ 0

−∞
[u0(y)− u−]dy +

∫ ∞

0
[u0(y)− u+]dy = 0.

Consider any forward characteristic χ(·) issuing from (0, 0). Then, as t →∞,

(11.5.9) χ(t) = st + o(1),

with s given by (11.5.7), and

(11.5.10) u(x±, t) =
⎧⎨⎩u− + o(t−1/2), uni f ormly f or x < χ(t)

u+ + o(t−1/2), uni f ormly f or x > χ(t).
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Proof. Fix any (x, t) ∈ (−∞,∞) × (0,∞) and write (11.4.1) for the solution u,
with initial data u0 , and the comparison solution u∗ given by (11.5.6). By virtue of
f ′(u−) > s > f ′(u+), as t → ∞, ξ∗(0) → −∞, uniformly in x on (−∞, st),
and ξ∗(0) → ∞, uniformly in x on (st,∞). Similarly, as t → ∞, ξ(0) → −∞,
uniformly in x on (−∞, χ(t)), and ξ(0)→∞ uniformly in x on (χ(t),∞). Indeed,
in the opposite case one would be able to find a sequence {(xn, tn)}, with tn →∞ as
n →∞, such that the intercepts ξn(0) of the minimal backward characteristics ξn(·)
emanating from (xn, tn) are confined in a bounded set. But then some subsequence
of {ξn(·)} would converge to a divide issuing from some point (x̄, 0). However, this
is impossible, because, since u− > u+ , (11.5.8) is incompatible with (11.4.2), for
any x̄ ∈ (−∞,∞) and every ū ∈ (−∞,∞).

In view of the above, (11.5.8) implies that the right-hand side of (11.4.1) is o(1),
as t →∞, uniformly in x on (−∞,∞). The same will then be true for each integral
on the left-hand side of (11.4.1), because they are of the same sign (nonpositive).

Consider first points (x, t) ∈ (−∞,∞)× (0,∞) with x < min{χ(t), st}. Then
ξ(τ ) < sτ, 0 < τ < t , and so the first integral on the left-hand side of (11.4.1)
yields

(11.5.11) t{ f (u(x±, t))− f (u−)− f ′(u(x±, t))[u(x±, t)− u−]} = o(1).

Since f is uniformly convex, (11.5.11) implies u(x±, t)− u− = o(t−1/2).
A similar argument demonstrates that for points (x, t) ∈ (−∞,∞) × (0,∞)

with x > max{χ(t), st} we have u(x±, t)− u+ = o(t−1/2).
Next, consider points (x, t) ∈ (−∞,∞) × (0,∞) with st ≤ x < χ(t). Then

ξ(·) will have to intersect the straight line x = sτ , say at τ = r, r ∈ [0, t], in which
case the first integral on the left-hand side of (11.4.1) gives

(11.5.12) (t − r){ f (u(x±, t))− f (u+)− f ′(u(x±, t))[u(x±, t)− u+]} = o(1),

(11.5.13) r{ f (u(x±, t))− f (u−)− f ′(u(x±, t))[u(x±, t)− u−]} = o(1).

For x < χ(t), it was shown above that ξ(0) → −∞, as t → ∞, and this
in turn implies r → ∞. It then follows from (11.5.13) and the convexity of f
that u(x±, t) = u− + o(1). Then (11.5.12) implies that t − r = o(1) so that
χ(t) − st = o(1) and (11.5.13) yields (11.5.11). From (11.5.11) and the convex-
ity of f we deduce, as before, u(x±, t)− u− = o(t−1/2).

A similar argument establishes that for points (x, t) ∈ (−∞,∞) × (0,∞) with
χ(t) < x ≤ st we have u(x±, t)− u+ = o(t−1/2) and also χ(t)− st = o(1). This
completes the proof.

11.6 Spreading of Characteristics and Development of N-Waves

Another feature of genuine nonlinearity, affecting the large time behavior of solu-
tions, is spreading of characteristics. In order to see the effects of this mechanism,
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we shall study the asymptotic behavior of solutions with initial data of compact sup-
port. We already know, by account of Theorem 11.5.2, that the amplitude decays to
zero as O(t−1/2). The closer examination here will reveal that asymptotically the so-
lution attains the profile of an N-wave, namely, a centered rarefaction wave flanked
from both sides by shocks whose amplitudes decay like O(t−1/2).

11.6.1 Theorem. Let u be the admissible solution with initial data u0 , such that
u0(x) = 0 for |x | > �. Consider the minimal forward characteristic χ−(·) issuing
from (−�, 0) and the maximal forward characteristic χ+(·) issuing from (�, 0). Then

(11.6.1) u(x±, t) = 0, f or t > 0 and x < χ−(t) or x > χ+(t).

As t →∞,

(11.6.2) f ′(u(x±, t)) = x

t
+ O(

1

t
), uni f ormly f or χ−(t) < x < χ+(t),

(11.6.3)

u(x±, t) = 1

f ′′(0)
[ x

t
− f ′(0)] + O(

1

t
), uni f ormly f or χ−(t) < x < χ+(t),

(11.6.4)

⎧⎨⎩χ−(t) = t f ′(0)− [2q−t f ′′(0)]1/2 + O(1)

χ+(t) = t f ′(0)+ [2q+t f ′′(0)]1/2 + O(1),

with q− and q+ given by (11.4.4). Moreover, the decreasing variation of u(·, t) over
the interval [χ−(t), χ+(t)] is O(t−1).

Proof. Since χ−(·) is minimal and χ+(·) is maximal, the extremal backward charac-
teristics emanating from any point (x, t) with t > 0 and x < χ−(t) or x > χ+(t)
will be intercepted by the x-axis outside the support of u0 . This establishes (11.6.1).

On the other hand, the minimal or maximal backward characteristic ξ(·) em-
anating from a point (x, t) with t > 0 and χ−(t) < x < χ+(t) will be inter-
cepted by the x-axis inside the interval [−�, �], i.e., ξ(0) ∈ [−�, �]. Consequently,
as t →∞, x − t f ′(u(x±, t)) = ξ(0) = O(1), which yields (11.6.2).1

By account of Theorem 11.5.2, u is O(t−1/2), as t →∞, and thus, assuming f
is C3 , f ′(u) = f ′(0)+ f ′′(0)u+O(t−1). Therefore, (11.6.3) follows from (11.6.2).

To derive the asymptotics of χ±(t), as t → ∞, we first note that on account
of 0 ≥ χ̇−(t) − f ′(0) ≥ O(t−1/2), 0 ≤ χ̇+(t) − f ′(0) ≤ O(t−1/2) and this in
turn yields 0 ≥ χ−(t) − t f ′(0) ≥ O(t1/2) , 0 ≤ χ+(t) − t f ′(0) ≤ O(t1/2). Next

1 As t → ∞, the ξ(0) accumulate at the set of points from which divides originate. In the
generic case where (11.4.2) holds, with ū = 0, at a single point x̄ , which we normalize so
that x̄ = 0, the ξ(0) accumulate at the origin and hence in (11.6.2) O(t−1) is upgraded to
o(t−1). When, in addition, u0 is C1 and u′0(0) > 0, then in (11.6.2) O(t−1) is improved

to O(t−2) and, for t large, the profile u(·, t) is C1 on the interval (χ−(t), χ+(t)).
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we appeal to Theorem 11.4.2: A divide x = x̄ + t f ′(0) originates from some point
(x̄, 0), with x̄ ∈ [−�, �], along which u is zero, and for any t > 0,

(11.6.5)
∫ χ−(t)

x̄+t f ′(0)
u(y, t)dy = q− ,

∫ χ+(t)

x̄+t f ′(0)
u(y, t)dy = q+ .

In (11.6.5) we insert u from its asymptotic form (11.6.3), and after performing the
simple integration we deduce

(11.6.6)
1

2q±t f ′′(0)
[χ±(t)− t f ′(0)]2 = 1+ O(t−1/2)

whence (11.6.4) follows. The proof is complete.

11.7 Confinement of Characteristics
and Formation of Saw-toothed Profiles

The confinement of the intercepts of extremal backward characteristics in a bounded
interval of the x-axis induces bounds on the decreasing variation of characteristic
speeds and thereby, by virtue of genuine nonlinearity, on the decreasing variation of
the solution itself.

11.7.1 Theorem. Let χ−(·) and χ+(·) be generalized characteristics on [0,∞), as-
sociated with an admissible solution u, and χ−(t) < χ+(t) for t ∈ [0,∞). Then,
for any t > 0, the decreasing variation of the function f ′(u(·, t)) over the interval
(χ−(t), χ+(t)) cannot exceed [χ+(0)−χ−(0)]t−1. Thus the decreasing variation of
u(·, t) over the interval (χ−(t), χ+(t)) is O(t−1) as t →∞.

Proof. Fix t > 0 and consider any mesh χ−(t) < x1 < x2 < · · · < x2m < χ+(t)
such that (xi , t) is a point of continuity of u and also u(x2k−1, t) > u(x2k, t),
k = 1, · · · ,m. Let ξi (·) denote the (unique) backward characteristic emanating from
(xi , t). Then χ−(0) ≤ ξ1(0) ≤ · · · ≤ ξ2m(0) ≤ χ+(0). Furthermore, we have that
ξi (0) = xi − t f ′(u(xi , t)) and so

(11.7.1)
m∑

k=1

t[ f ′(u(x2k−1, t))− f ′(u(x2k, t))] ≤ χ+(0)− χ−(0)

whence the assertion of the theorem follows. This completes the proof.

In particular, referring to the setting of Theorem 11.6.1, we deduce that the de-
creasing variation of the N -wave profile u(·, t) over the interval (χ−(t), χ+(t)) is
O(t−1), as t →∞.

Another corollary of Theorem 11.7.1 is that when the initial data u0 , and thereby
the solution u, are periodic in x , then the decreasing variation, and hence also the
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total variation, of u(·, t) over any period interval is O(t−1) as t → ∞. We may
achieve finer resolution than O(t−1) by paying closer attention to the initial data:

11.7.2 Theorem. Let u be an admissible solution with initial data u0 . Assume
χ−(t) = x− + t f ′(ū) and χ+(t) = x+ + t f ′(ū), x− < x+ , are adjacent divides
associated with u, that is (11.4.2) holds for x̄ = x− and x̄ = x+ but for no x̄ in the
interval (x−, x+). Then

(11.7.2)
∫ χ+(t)

χ−(t)
u(x, t)dx =

∫ x+

x−
u0(y)dy = (x+ − x−)ū, t ∈ [0,∞).

Consider any forward characteristic ψ(·) issuing from the point ( x−+x+
2 , 0). Then,

as t →∞,

(11.7.3) ψ(t) = 1
2 [χ−(t)+ χ+(t)] + o(1),

(11.7.4)

u(x±, t)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ū+ 1

f ′′(ū)
x − χ−(t)

t
+ o

(
1

t

)
, uni f ormly f or χ−(t) < x < ψ(t)

ū+ 1

f ′′(ū)
x − χ+(t)

t
+ o

(
1

t

)
, uni f ormly f or ψ(t) < x < χ+(t).

Moreover, the decreasing variation of u(·, t) over the intervals (χ−(t), ψ(t)) and
(ψ(t), χ+(t)) is o(t−1) as t →∞.

Proof. To verify the first equality in (11.7.2), it suffices to integrate (11.1.1) over the
parallelogram {(x, τ ) : 0 < τ < t, χ−(τ ) < x < χ+(τ )} and then apply Green’s
theorem. The second equality in (11.7.2) follows because (11.4.2) holds for both
x̄ = x− and x̄ = x+ .

For t > 0, we let ξ t−(·) and ξ t+(·) denote the minimal and the maximal back-
ward characteristics emanating from the point (χ(t), t). As t ↑ ∞, ξ t−(0) ↓ x−
and ξ t+(0) ↑ x+ , because otherwise there would exist divides originating at points
(x̄, 0) with x̄ ∈ (x−, x+), contrary to our assumptions. It then follows from Theorem
11.7.1 that the decreasing variation of f ′(u(·, t)), and thereby also the decreasing
variation of u(·, t) itself, over the intervals (χ−(t), ψ(t)) and (ψ(t), χ+(t)) is o(t−1)

as t →∞.
The extremal backward characteristics emanating from any point (x, t) with

χ−(t) < x < ψ(t) (or ψ(t) < x < χ+(t)) will be intercepted by the x-axis inside
the interval [x−, ξ t−(0)] (or [ξ t+(0), x+]) and thus

(11.7.5)

x − t f ′(u(x±, t)) =
⎧⎨⎩ x− + o(t−1), uniformly for χ−(t) < x < ψ(t)

x+ + o(t−1), uniformly for ψ(t) < x < χ+(t).
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Since u(χ−(t), t) = u(χ+(t), t) = ū, Theorem 11.7.1 implies u − ū = O(t−1) and
so, as t →∞, f ′(u) = f ′(ū)+ f ′′(ū)(u− ū)+O(t−2). This together with (11.7.5)
yield (11.7.4).

Finally, introducing u from (11.7.4) into (11.7.2) we arrive at (11.7.3). The proof
is complete.

We shall employ the above proposition to describe the asymptotics of periodic
solutions:

11.7.3 Theorem. When the initial data u0 are periodic, with mean ū, then, as the time
t → ∞, the admissible solution u tends, at the rate o(t−1), to a periodic serrated
profile consisting of wavelets of the form (11.7.4). The number of wavelets (or teeth)
per period equals the number of divides per period or, equivalently, the number of
points on any interval of the x-axis of period length at which the primitive of the
function u0 − ū attains its minimum. In particular, in the generic case where the
minimum of the primitive of u0 − ū is attained at a single point on each period
interval, u tends to a sawtooth shaped profile with a single tooth per period.

Proof. It is an immediate corollary of Theorems 11.4.1 and 11.7.2. If u0 is periodic,
(11.4.2) may hold only when ū is the mean of u0 and is attained at points x̄ where
the primitive of u0 − ū is minimized. The set of such points is obviously invariant
under period translations and contains at least one (generically precisely one) point
in each interval of period length.

11.8 Comparison Theorems and L1 Stability

The assertions of Theorem 6.2.3 will be reestablished here, in sharper form, for the
special case of genuinely nonlinear scalar conservation laws (11.1.1), in one-space
dimension. The key factor will be the properties of the function

(11.8.1) Q(u, v, w) =

⎧⎪⎨⎪⎩
f (v)− f (u)− f (u)− f (w)

u − w
[v − u], if u �= w

f (v)− f (u)− f ′(u)[v − u], if u = w,

defined for u, v and w in IR. Clearly, Q(u, v, w) = Q(w, v, u). Since f is uniformly
convex, Q(u, v, w) will be negative when v lies between u and w, and positive when
v lies outside the interval with endpoints u and w. In particular, for the Burgers
equation (4.2.1), Q(u, v, w) = 1

2 (v − u)(v − w).
The first step is to refine the ordering property:

11.8.1 Theorem. Let u and ū be admissible solutions of (11.1.1), on the upper half-
plane, with respective initial data u0 and ū0 such that

(11.8.2) u0(x) ≤ ū0(x), f or all x ∈ (y, ȳ).
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Let ψ(·) be any forward characteristic, associated with the solution u, issuing from
the point (y, 0), and let ψ̄(·) be any forward characteristic, associated with ū, issuing
from (ȳ, 0). Then, for any t > 0 with ψ(t) < ψ̄(t),

(11.8.3) u(x, t) ≤ ū(x, t), f or all x ∈ (ψ(t), ψ̄(t)).
Proof. We fix any interval (z, z̄) with ψ(t) < z < z̄ < ψ̄(t) and consider the maxi-
mal backward characteristic ξ(·), associated with the solution u, emanating from the
point (z, t), and the minimal backward characteristic ζ̄ (·), associated with ū, ema-
nating from the point (z̄, t). Thus, ξ(0) ≥ y and ζ̄ (0) ≤ ȳ.

Suppose first ξ(0) < ζ̄ (0). We integrate the equation

(11.8.4) ∂t [u − ū] + ∂x [ f (u)− f (ū)] = 0

over the trapezoid {(x, τ ) : 0 < τ < t, ξ(τ ) < x < ζ̄(τ)} and apply Green’s
theorem to get

(11.8.5)
∫ z̄

z
[u(x, t)− ū(x, t)]dx −

∫ ζ̄ (0)

ξ(0)
[u0(x)− ū0(x)]dx

= −
∫ t

0
Q(u(ξ(τ ), τ ), ū(ξ(τ ), τ ), u(ξ(τ ), τ ))dτ

−
∫ t

0
Q(ū(ζ̄ (τ ), τ ), u(ζ̄ (τ ), τ ), ū(ζ̄ (τ ), τ ))dτ.

Both integrals on the right-hand side of (11.8.5) are nonnegative. Hence, by virtue of
(11.8.2), the integral of u(·, t)− ū(·, t) over (z, z̄) is nonpositive.

Supppose now ξ(0) ≥ ζ̄ (0). Then the straight lines ξ(·) and ζ̄ (·) must intersect
at some time s ∈ [0, t). In that case we integrate (11.8.4) over the triangle {(x, τ ) :
s < τ < t, ξ(τ ) < x < ζ̄(τ)} and employ the same argument as above to deduce
that the integral of u(·, t)− ū(·, t) over (z, z̄) is again nonpositive.

Since (z, z̄) is an arbitrary subinterval of (ψ(t), ψ̄(t)), we conclude (11.8.2). The
proof is complete.

As a corollary of the above theorem, we infer that the number of sign changes
of the function u(·, t) − ū(·, t) over (−∞,∞) is nonincreasing with time. Indeed,
assume there are points −∞ = y0 < y1 < · · · < yn < yn+1 = ∞ such that, on
each interval (yi , yi+1), u0(·)− ū0(·) is nonnegative when i is even and nonpositive
when i is odd. Let ψi (·) be any forward characteristic, associated with the solution u,
issuing from the point (yi , 0) with i odd, and ψ̄i (·) any forward characteristic, asso-
ciated with ū, issuing from (yi , 0) with i even. These curves are generally assigned
finite life spans, according to the following prescription. At the time t1 of the earliest
collision between some ψi and some ψ̄ j , these two curves are terminated. Then, at
the time t2 of the next collision between any (surviving) ψk and ψ̄� , these two curves
are likewise terminated; and so on. By virtue of Theorem 11.8.1, u(·, t)− ū(·, t) un-
dergoes n sign changes for any t ∈ [0, t1), n − 2 sign changes for any t ∈ [t1, t2),
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and so on. In particular, the so-called lap number, which counts the crossings of the
graph of the solution u(·, t) with any fixed constant ū, is nonincreasing with time.

By Theorem 6.2.3, the spatial L1 distance of any pair of admissible solutions of
a scalar conservation law is nonincreasing with time. In the present setting, it will
be shown that it is actually possible to determine under what conditions is the L1

distance strictly decreasing and at what rate:

11.8.2 Theorem. Let u and ū be admissible solutions of (11.1.1) with initial data u0
and ū0 in L1(−∞,∞). Thus ‖u(·, t)− ū(·, t)‖L1(−∞,∞) is a nonincreasing function
of t which is locally Lipschitz on (0,∞). For any fixed t ∈ (0,∞), consider the
(possibly empty and at most countable) sets

(11.8.6)

⎧⎨⎩
J = {y ∈ (−∞,∞) : u+ < ū+ ≤ ū− < u−},

J̄ = {y ∈ (−∞,∞) : ū+ < u+ ≤ u− < ū−},
where u± and ū± stand for u(y±, t) and ū(y±, t), respectively. Let

(11.8.7)1 u∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u± if u+ = u− ,

u− if u+ < u− and
f (u+)− f (u−)

u+ − u−
≥ f (ū+)− f (ū−)

ū+ − ū−
,

u+ if u+ < u− and
f (u+)− f (u−)

u+ − u−
<

f (ū+)− f (ū−)
ū+ − ū−

,

(11.8.7)2 ū∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ū± if ū+ = ū− ,

ū− if ū+ < ū− and
f (ū+)− f (ū−)

ū+ − ū−
≥ f (u+)− f (u−)

u+ − u−
,

ū+ if ū+ < ū− and
f (ū+)− f (ū−)

ū+ − ū−
<

f (u+)− f (u−)
u+ − u−

.

Then

(11.8.8)

d+

dt
‖u(·, t)− ū(·, t)‖L1(−∞,∞) = 2

∑
y∈J

Q(u−, ū∗, u+)+ 2
∑
y∈J̄

Q(ū−, u∗, ū+).

Proof. First we establish (11.8.8) for the special case where u(·, t)−ū(·, t) undergoes
a finite number of sign changes on (−∞,∞), i.e., there are points −∞ = y0 <

y1 < · · · < yn < yn+1 = ∞ such that, on each interval (yi , yi+1), u(·, t)− ū(·, t) is
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nonnegative when i is even and nonpositive when i is odd. In particular, any y ∈ J
must be one of the yi , with i odd, and any y ∈ J̄ must be one of the yi , with i even.

Let ψi (·) be the (unique) forward characteristic, associated with the solution u,
issuing from the point (yi , t) with i odd, and let ψ̄i (·) be the forward characteristic,
associated with ū, issuing from (yi , t) with i even. We fix s > t with s − t so small
that no collisions of the above curves may occur on [t, s], and integrate (11.8.4)
over the domains {(x, τ ) : t < τ < s, ψi (τ ) < x < ψ̄i+1(τ )}, for i odd, and
{(x, τ ) : t < τ < s , ψ̄i (τ ) < x < ψi+1(τ )}, for i even. We apply Green’s theorem
and employ Theorem 11.8.1, to deduce

(11.8.9) ‖u(·, s)− ū(·, s)‖L1(−∞,∞) − ‖u(·, t)− ū(·, t)‖L1(−∞,∞)

=
∑

i even

∫ ψi+1(s)

ψ̄i (s)
[u(x, s)− ū(x, s)]dx+

∑
i odd

∫ ψ̄i+1(s)

ψi (s)
[ū(x, s)−u(x, s)]dx

−
∑

i even

∫ yi+1

yi

[u(x, t)− ū(x, t)]dx −
∑
i odd

∫ yi+1

yi

[ū(x, t)− u(x, t)]dx

=
∑
i odd

∫ s

t
{Q(u(ψi (τ )−, τ ), ū(ψi (τ )−, τ ), u(ψi (τ )+, τ ))

+Q(u(ψi (τ )+, τ ), ū(ψi (τ )+, τ ), u(ψi (τ )−, τ ))}dτ
+
∑

i even

∫ s

t
{Q(ū(ψ̄i (τ )−, τ ), u(ψ̄i (τ )−, τ ), ū(ψ̄i (τ )+, τ ))

+Q(ū(ψ̄i (τ )+, τ ), u(ψ̄i (τ )+, τ ), ū(ψ̄i (τ )−, τ ))}dτ.
By virtue of Theorem 11.3.1, as s ↓ t the integrand in the first integral on the right-
hand side of (11.8.9) tends to zero, if yi |∈ J , or to 2Q(u−, ū∗, u+), if yi ∈ J .
Similarly, the integrand in the second integral on the right-hand side of (11.8.9) tends
to zero, if yi |∈ J̄ , or to 2Q(ū−, u∗, ū+), if yi ∈ J̄ . Therefore, upon dividing (11.8.9)
by s − t and letting s ↓ t , we arrive at (11.8.8).

We now turn to the general situation, where u(·, t)−ū(·, t)may undergo infinitely
many sign changes over (−∞,∞). In that case, the open set {x ∈ (−∞,∞) :
u(x±, t) − ū(x±, t) < 0} is the countable union of disjoint open intervals (yi , ȳi ).
For m = 1, 2, · · ·, we let um denote the admissible solution of our conservation law
(11.1.1) on (−∞,∞)× [t,∞), with

(11.8.10) um(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ū(x, t), x ∈

∞⋃
i=m

(yi , ȳi )

u(x, t), otherwise.

Thus um(·, t) − ū(·, t) undergoes a finite number of sign changes over (−∞,∞)

and so, for τ ≥ t, d+
dτ ‖um(·, τ ) − ū(·, τ )‖L1 is evaluated by the analog of (11.8.8).
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Moreover, the function τ �→ d+
dτ ‖um(·, τ ) − ū(·, τ )‖L1 is right-continuous at t and

the modulus of right continuity is independent of m. To verify this, note that the
total contribution of small jumps to the rate of change of ‖um(·, τ ) − ū(·, τ )‖L1 is
small, controlled by the total variation of u(·, t) and ū(·, t) over (−∞,∞), while the
contribution of the (finite number of) large jumps is right-continuous, by account of
Theorem 11.3.1. Therefore, by passing to the limit, as m →∞, we establish (11.8.8)
for general solutions u and ū. The proof is complete.

According to the above theorem, the L1 distance of u(·, t) and ū(·, t) may de-
crease only when the graph of either of these functions happens to cross the graph
of the other at a point of jump discontinuity. More robust contraction is realized in
terms of a new metric which weighs the L1 distance of two solutions by a weight
specially tailored to them.

For v and v̄ in BV (−∞,∞), let

(11.8.11) ρ(v, v̄) =
∫ ∞

−∞
{(V (x)+ V̄ (∞)− V̄ (x))[v(x)− v̄(x)]+

+(V̄ (x)+ V (∞)− V (x))[v̄(x)− v(x)]+}dx,

where the superscript + denotes “positive part”, w+ = max{w, 0}, and V or V̄
denotes the variation function of v or v̄, defined by V (x) = T V(−∞,x)v(·), and
V̄ (x) = T V(−∞,x)v̄(·).

11.8.3 Theorem. Let u and ū be admissible solutions of (11.1.1) with initial data u0
and ū0 in BV (−∞,∞). Then, for any fixed t ∈ (0,∞),

(11.8.12)
d+

dt
ρ(u(·, t), ū(·, t)) ≤ −

∫ ∞

−∞
Q(u(x, t), ū(x, t), u(x, t))dV c

t (x)

−
∫ ∞

−∞
Q(ū(x, t), u(x, t), ū(x, t))dV̄ c

t (x)

−
∑
y∈K

(u− − u+)Q(u−, ū∗, u+)−
∑
y∈K̄

(ū− − ū+)Q(ū−, u∗, ū+)

+ (Vt (∞)+ V̄t (∞)){
∑
y∈J

Q(u−, ū∗, u+)+
∑
y∈J̄

Q(ū−, u∗, ū+)},

where Vt or V̄t is the variation function of u(·, t) or ū(·, t); V c
t or V̄ c

t denotes the
continuous part of Vt or V̄t ; u± or ū± stand for u(y±, t) or ū(y±, t), u∗ and ū∗ are
again determined through (11.8.7)1 and (11.8.7)2; the sets J and J̄ are defined by
(11.8.6) and K or K̄ denotes the set of jump points of u(·, t) or ū(·, t):

(11.8.13)

⎧⎨⎩
K = {y ∈ (−∞,∞) : u+ < u−}

K̄ = {y ∈ (−∞,∞) : ū+ < ū−}.
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Proof. We begin as in the proof of Theorem 11.8.2: We assume there are points
−∞ = y0 < y1 < · · · < yn < yn+1 = ∞ such that, on each interval
(yi , yi+1), u(·, t) − ū(·, t) is nonnegative when i is even and nonpositive when i
is odd. We consider the forward characteristic ψi (·), associated with u, issuing from
each point (yi , t), with i odd, and the forward characteristic ψ̄i (·), associated with ū,
issuing from each (yi , t), with i even.

We focus our attention on some (yi , yi+1) with i even. We shall discuss only the
case −∞ < yi < yi+1 < ∞, as the other cases are simpler. With the exception of
ψ̄i (·), all characteristics to be considered below will be associated with the solution
u. The argument varies somewhat, depending on whether the forward characteristic
χ0 issuing from (yi , t) lies to the left or to the right of ψ̄i (·); for definiteness, we
shall treat the latter case, which is slightly more complicated.

We fix ε positive small and identify all z1, · · · , zN , yi < z1 < · · · < zN < yi+1 ,
such that u(zI−, t) − u(zI+, t) ≥ ε, I = 1, · · · , N . We consider the forward char-
acteristic χI (·) issuing from the point (zI , t), I = 1, · · · , N . Then we select s > t
with s − t so small that the following hold: (a) No intersection of any two of the
characteristics χ0, χ1, · · · , χN , ψi+1 may occur on the time interval [t, s]. (b) For
I = 1, · · · , N , if ζI (·) and ξI (·) denote the minimal and the maximal backward char-
acteristics emanating from the point (χI (s), s), then the total variation of u(·, t) over
the intervals (ζI (t), zI ) and (zI , ξI (t)) does not exceed ε/N . (c) If ζ(·) denotes the
minimal backward characteristic emanating from (ψi+1(s), s), then the total vari-
ation of u(·, t) over the interval (ζ(t), yi+1) does not exceed ε. (d) If ζ0(·) is the
minimal backward characteristic emanating from (ψi (s), s) and ξ0(·) is the maximal
backward characteristic emanating from (χ0(s), s), then the total variation of u(·, t)
over the intervals (ζ0(t), yi ) and (yi , ξ0(t)) does not exceed ε.

For I = 0, · · · , N−1, and some k to be fixed later, we pick a mesh on the interval
[χI (s), χI+1(s)] : χI (s) = x0

I < x1
I < · · · < xk

I < xk+1
I = χI+1(s); and likewise

for [χN (s), ψi+1(s)] : χN (s) = x0
N < x1

N < · · · < xk
N < xk+1

N = ψi+1(s). For
I = 0, · · · , N and j = 1, · · · , k, we consider the maximal backward characteristic
ξ

j
I (·) emanating from the point (x j

I , s) and identify its intercept z j
I = ξ

j
I (t) by the

t-time line. We also set z0
0 = yi , zk+1

N = yi+1 and zk+1
I−1 = z0

I = zI , I = 1, · · · , N .
We now note the identity

(11.8.14) R − S = −D,

where

(11.8.15) R =
∫ χ0(s)

ψ̄i (s)
Vt (yi )[u(x, s)− ū(x, s)]dx

+
N∑

I=0

k∑
j=0

∫ x j+1
I

x j
I

Vt (z
i
I+)[u(x, s)− ū(x, s)]dx,

(11.8.16) S =
N∑

I=0

k∑
j=0

∫ z j+1
I

z j
I

Vt (z
j
I+)[u(x, t)− ū(x, t)]dx,
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(11.8.17)

D=
N∑

I=0

k∑
j=1

∫ s

t
[Vt (z

j
I+)−Vt (z

j−1
I +)]Q(u(ξ j

I (τ ), τ ), ū(ξ j
I (τ )−, τ ), u(ξ j

I (τ ), τ ))dτ

+
N∑

I=1

∫ s

t
[Vt (zI+)− Vt (z

k
I−1+)]Q(u(χI (τ )−, τ ), ū(χI (τ )−, τ ), u(χI (τ )+, τ ))dτ

+
∫ s

t
[Vt (yi+)− Vt (yi )]Q(u(χ0(τ )−, τ ), ū(χ0(τ )−, τ ), u(χ0(τ )+, τ ))dτ

−
∫ s

t
Vt (yi )Q(ū(ψ̄i (τ )−, τ ), u(ψ̄i (τ )+, τ ), ū(ψ̄i (τ )+, τ ))dτ

−
∫ s

t
Vt (z

k
N+)Q(u(ψi+1(τ )−, τ ), ū(ψi+1(τ )−, τ ), u(ψi+1(τ )+, τ ))dτ.

To verify (11.8.14), one first integrates (11.8.4) over the following four domains:
{(x, τ ) : t < τ < s, ψ̄i (τ ) < x < χ0(τ )}, {(x, τ ) : t < τ < s, ξ j

I (τ ) < x <

ξ
j+1
I (τ )}, {(x, τ ) : t < τ < s, χI (τ ) < x < ξ1

I (τ )}, {(x, τ ) : t < τ < s, ξ k
I (τ ) <

x < χI+1(τ )}, {(x, τ ) : t < τ < s, ξ k
N (τ ) < x < ψi+1(τ )} and applies Green’s

theorem; then forms the weighted sum of the resulting equations, with respective
weights Vt (yi ), Vt (z

j
I+), Vt (zI+), Vt (zk

I+), Vt (zk
N+).

To estimate R, we note that Vt (yi ) ≥ Vs(χ0(s)), and Vt (z
j
I+) ≥ Vs(x

j
I+),

I = 0, · · · , N , j = 0, · · · , k. Hence, if we pick the x j+1
I − x j

I sufficiently small, we
can guarantee

(11.8.18) R ≥
∫ ψi+1(s)

ψ̄i (s)
Vs(x)[u(x, s)− ū(x, s)]dx − (s − t)ε.

To estimate S, it suffices to observe that Vt (·) is nondecreasing, and so

(11.8.19) S ≤
∫ ψi+1(t)

ψ̄i (t)
Vt (x)[u(x, t)− ū(x, t)]dx .

To estimate D, the first observation is that, due to the properties of Q, all five
terms are nonnegative. For I = 0, · · · , N and j = 1, · · · , k, Vt (z

j
I+)−Vt (z

j−1
I +) ≥

V c
t (z

j
I )− V c

t (z
j−1
I ). Furthermore,

(11.8.20) Q(u(ξ j
I (τ ), τ ), ū(ξ j

I (τ )−, τ ), u(ξ j
I (τ ), τ ))

= Q(u(z j
I , t), ū(pτ (z

j
I ), t), u(z j

I , t)),

where the monotone increasing function pτ is determined through

(11.8.21) pτ (x) = x + (τ − t)[ f ′(u(x, t))− f ′(ū(pτ (x), t))].
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Upon choosing the x j+1
I − x j

I so small that the oscillation of V c
t (·) over each one of

the intervals (z j
I , z j+1

I ) does not exceed ε, the standard estimates on Stieltjes integrals
imply

(11.8.22)
N∑

I=0

k∑
j=1

[Vt (z
j
I+)− Vt (z

j−1
I +)]Q(u(ξ j

I (τ ), τ ), ū(ξ j
I (τ )−, τ ), u(ξ j

I (τ ), τ ))

≥
∫ yi+1

yi

Q(u(x, t), ū(pτ (x), t), u(x, t))dV c
t (x)− cε.

We now combine (11.8.14) with (11.8.18), (11.8.19), (11.8.17) and (11.8.22),
then we divide the resulting inequality by s− t , we let s ↓ t , and finally we let ε ↓ 0.
This yields

(11.8.23)
d+

dt

∫ ψi+1(t)

ψ̄i (t)
Vt (x)[u(x, t)− ū(x, t)]dx

≤ −
∫ yi+1

yi

Q(u(x, t), ū(x, t), u(x, t))dV c
t (x)

−
∑

(u− − u+)Q(u−, ū∗, u+)

+Vt (yi )Q(ū−, u∗, ū+)+ Vt (yi+1)Q(u−, ū∗, u+),
where the summation runs over all y in K

⋂
(yi , yi+1) and also over yi if yi ∈ K

and χ0 lies to the right of ψ̄i . The u±, ū±, u∗ and ū∗ are of course evaluated at the
corresponding y.

Next we focus attention on intervals (yi , yi+1) with i odd. A completely sym-
metrical argument yields, in the place of (11.8.23),

(11.8.24)
d+

dt

∫ ψ̄i+1(t)

ψi (t)
(Vt (∞)− Vt (x))[ū(x, t)− u(x, t)]dx

≤ −
∫ yi+1

yi

Q(u(x, t), ū(x, t), u(x, t))dV c
t (x)

−
∑

(u− − u+)Q(u−, ū∗, u+)

+ (Vt (∞)− Vt (yi+))Q(u−, ū∗, u+)
+ (Vt (∞)− Vt (yi+1))Q(ū−, u∗, ū+),

where the summation runs over all y in K
⋂
(yi , yi+1), and also over yi+1 if yi+1 ∈ K

and the forward characteristic, associated with u, issuing from the point (yi+1, t) lies
to the left of ψ̄i+1 .

We thus write (11.8.23), for all i even, then (11.8.24), for all i odd, and sum over
i = 0, · · · , n. This yields



328 XI Genuinely Nonlinear Scalar Conservation Laws

(11.8.25)

d+

dt

∫ ∞

−∞
{Vt (x)[u(x, t)− ū(x, t)]+ + (Vt (∞)− Vt (x))[ū(x, t)− u(x, t)]+}dx

≤ −
∫ ∞

−∞
Q(u(x, t), ū(x, t), u(x, t))dV c

t (x)−
∑
y∈K

(u− − u+)Q(u−, ū∗, u+)

+ Vt (∞){
∑
y∈J

Q(u−, ū∗, u+)+
∑
y∈J̄

Q(ū−, u∗, ū+)}.

By employing a technical argument, as in the proof of Theorem 11.8.2, one shows
that (11.8.25) remains valid even when u(·, t)−ū(·, t) is allowed to undergo infinitely
many sign changes on (−∞,∞).

We write the inequality resulting from (11.8.25) by interchanging the roles of
u and ū, and then combine it with (11.8.25). This yields (11.8.12). The proof is
complete.

The estimate (11.8.12) is sharp, in that it holds as equality, at least for piecewise
smooth solutions. All terms on the right-hand side of (11.8.12) are negative, with the
exception of−(u−−u+)Q(u−, ū∗, u+), for y ∈ J , and−(ū−− ū+)Q(ū−, u∗, ū+),
for y ∈ J̄ . However, even these positive terms are offset by the negative terms
Vt (∞)Q(u−, ū∗, u+) and V̄t (∞)Q(ū−, u∗, ū+). Thus, ρ(u(·, t), ū(·, t)) is gener-
ally strictly decreasing.

An analog of the functional ρ will be employed in Chapter XIV for establishing
L1 stability of solutions for systems of conservation laws.

11.9 Genuinely Nonlinear Scalar Balance Laws

The notion of generalized characteristic may be extended in a natural way to gen-
eral systems of balance laws, and may be used, in particular, for deriving a precise
description of the structure of solutions of genuinely nonlinear, scalar balance laws

(11.9.1) ∂t u(x, t)+ ∂x f (u(x, t), x, t)+ g(u(x, t), x, t) = 0.

Extending the analysis from (11.1.1) to (11.9.1) is rather straightforward, so it will
suffice to outline here the main steps, with few proofs.

We assume that f and g are, respectively, C2 and C1 given functions, defined
on (−∞,∞)× (−∞,∞)×[0,∞), and the genuine nonlinearity condition, namely
fuu(u, x, t) > 0 holds for all (u, x, t). We will be dealing with solutions u(x, t)
of (11.9.1), of class BVloc on the upper half-plane (−∞,∞) × [0,∞), such that
u(·, t) has locally bounded variation in x on (−∞,∞), for any fixed t ∈ [0,∞), and
the Lax E-condition (11.1.2) holds for almost all t ∈ [0,∞) and all x ∈ (−∞,∞).
Solutions in this class may be constructed by solving the Cauchy problem with initial
data that are bounded and have locally bounded variation on (−∞,∞), for instance
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by the vanishing viscosity method expounded in Chapter VI. Restrictions have to
be imposed on f and g in order to prevent the blowing up of the solution in finite
time. For that purpose, it is sufficient to assume | fu | ≤ A, for u in bounded intervals,
and fx + gu ≤ B, for all u, uniformly on the upper half-plane. The reader may find
details in the references cited in Section 11.12.

Similar to Definition 10.2.1, a generalized characteristic of (11.9.1), associated
with the solution u, is a Lipschitz curve ξ(·), defined on some closed time interval
[σ, τ ] ⊂ [0,∞), and satisfying the differential inclusion

(11.9.2) ξ̇ (t) ∈ [ fu(u(ξ(t)+, t), ξ(t), t), fu(u(ξ(t)−, t), ξ(t), t)] ,

for almost all t ∈ [σ, τ ]. As in Section 11.1, it can be shown that (11.9.2) is actually
equivalent to

(11.9.3)

ξ̇ (t) =

⎧⎪⎪⎨⎪⎪⎩
fu(u(ξ(t)±, t), ξ(t), t), if u(ξ(t)+, t) = u(ξ(t)−, t)

f (u(ξ(t)+, t), ξ(t), t)− f (u(ξ(t)−, t), ξ(t), t)

u(ξ(t)+, t)− u(ξ(t)−, t)
, if u(ξ(t)+, t) < u(ξ(t)−, t)

for almost all t ∈ [σ, τ ]; compare with (11.1.3).
Similar to Definition 10.2.4, the characteristic ξ(·) is called shock-free on [σ, τ ]

if u(ξ(t)−, t) = u(ξ(t)+, t), almost everywhere on [σ, τ ]. The key result is the
following generalization of Theorem 11.1.1.

11.9.1 Theorem. Let ξ(·) be a generalized characteristic for (11.9.1), associated
with the admissible solution u, which is shock-free on [σ, τ ]. Then there is a C1

function v on [σ, τ ] such that

(11.9.4) u(ξ(τ )+, τ ) ≤ v(τ) ≤ u(ξ(τ )−, τ ),

(11.9.5) u(ξ(t)+, t) = v(t) = u(ξ(t)−, t), σ < t < τ,

(11.9.6) u(ξ(σ )−, σ ) ≤ v(σ ) ≤ u(ξ(σ )+, σ ).
Furthermore, (ξ(·), v(·)) satisfy the classical characteristic equations

(11.9.7)

⎧⎨⎩ ξ̇ = fu(v, ξ, t)

v̇ = − fx (v, ξ, t)− g(v, ξ, t)

on (σ, τ ). In particular, ξ(·) is C1 on [σ, τ ].

Proof. Let I = {t ∈ (σ, τ ) : u(ξ(t)−, t) = u(ξ(t)+, t)}. For any t ∈ I , let us set
v(t) = u(ξ(t)±, t). In particular, (11.9.3) implies

(11.9.8) ξ̇ (t) = fu(v(t), ξ(t), t) , a.e. on (σ, τ ).
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Fix r and s, σ ≤ r < s ≤ τ . For ε > 0, we integrate the measure equality
(11.9.1) over the set {(x, t) : r < t < s, ξ(t) − ε < x < ξ(t)}, apply Green’s
theorem, and use (11.9.8) and fuu > 0 to get

(11.9.9)

ξ(s)∫
ξ(s)−ε

u(x, s)dx −
ξ(r)∫

ξ(r)−ε
u(x, r)dx +

s∫
r

ξ(t)∫
ξ(t)−ε

g(u(x, t), x, t)dx dt

=
s∫

r

{ f (u(ξ(t)− ε+, t), ξ(t)− ε, t)− f (v(t), ξ(t), t)

− fu(v(t), ξ(t), t)[u(ξ(t)− ε+, t)− v(t)]} dt

≥
s∫

r

{ f (u(ξ(t)− ε+, t), ξ(t)− ε, t)− f (u(ξ(t)− ε+, t), ξ(t), t)} dt.

Multiplying (11.9.9) by 1/ε and letting ε ↓ 0 yields

(11.9.10)

u(ξ(s)−, s) ≥ u(ξ(r)−, r)−
s∫

r

{ fx (v(t), ξ(t), t)+ g(v(t), ξ(t), t)} dt.

Next we integrate (11.9.1) over the set {(x, t) : r < t < s, ξ(t) < x < ξ(t)+ ε}
and follow the same procedure, as above, to deduce

(11.9.11)

u(ξ(s)+, s) ≤ u(ξ(r)+, r)−
s∫

r

{ fx (v(t), ξ(t), t)+ g(v(t), ξ(t), t)} dt.

For any t ∈ (σ, τ ), we apply (11.9.10) and (11.9.11), first for r = t, s ∈ I∩(t, τ ),
then for s = t, r ∈ I ∩ (σ, t). This yields u(ξ(t)−, t) = u(ξ(t)+, t). Therefore,
I = (σ, τ ) and (11.9.5) holds. For any r and s in (σ, τ ), (11.9.10) and (11.9.11)
combine into

(11.9.12) v(s) = v(r)−
s∫

r

{ fx (v(t), ξ(t), t)+ g(v(t), ξ(t), t)} dt.

In conjunction with (11.9.8), (11.9.12) implies that (ξ(·), v(·)) are C1 functions on
[σ, τ ] which satisfy the system (11.9.7).
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To verify (11.9.4) and (11.9.6), it suffices to write (11.9.10), (11.9.11), first for
s = τ , r ∈ (σ, τ ) and then for r = σ , s ∈ (σ, τ ). This completes the proof.

11.9.2 Remark. When the balance law is a conservation law, g ≡ 0, and f does not
depend explicitly on t , (11.9.7) implies ḟ (v, ξ) = 0, that is, f stays constant along
shock-free characteristics.

The family of backward generalized characteristics emanating from any point
(x̄, t̄) of the upper half-plane span a funnel bordered by the minimal backward char-
acteristic ξ−(·) and the maximal backward characteristic ξ+(·). Theorem 10.3.2 is
readily extended to systems of balance laws, and in the present context yields that
both ξ−(·) and ξ+(·) are shock-free on (0, t̄). Thus, upon substituting Theorem 11.9.1
for Theorem 11.1.1, one easily derives the following generalization of Theorem
11.1.3:

11.9.3 Theorem. Let u be an admissible solution of (11.9.1) with initial data u0 .
Given any point (x̄, t̄) on the upper half-plane, consider the solutions (ξ−(·), v−(·))
and (ξ+(·), v+(·)) of the system (11.9.7), satisfying initial conditions ξ−(t̄) = x̄,
v−(t̄) = u(x̄−, t̄) and ξ+(t̄) = x̄, v+(t̄) = u(x̄+, t̄). Then ξ−(·) and ξ+(·) are
respectively the minimal and the maximal backward characteristics emanating from
(x̄, t̄). Furthermore,

(11.9.13)

⎧⎨⎩u(ξ−(t)−, t) = v−(t) = u(ξ−(t)+, t)
0 < t < t̄,

u(ξ+(t)−, t) = v+(t) = u(ξ+(t)+, t)

(11.9.14)

⎧⎨⎩ u0(ξ−(0)−) ≥ v−(0) ≥ u0(ξ−(0)+)

u0(ξ+(0)−) ≥ v+(0) ≥ u0(ξ+(0)+).
In particular, u(x̄+, t̄) ≤ u(x̄−, t̄) holds for all (x̄, t̄) ∈ (−∞,∞) × (0,∞) and
ξ−(·), ξ+(·) coincide if and only if u(x̄+, t̄) = u(x̄−, t̄).

The Theorems 11.1.4 and 11.1.5 which describe properties of forward character-
istics for homogeneous conservation laws can also be readily extended to nonhomo-
geneous balance laws:

11.9.4 Theorem. A unique forward generalized characteristic χ(·), associated with
an admissible solution u, issues from any point (x̄, t̄) ∈ (−∞,∞)×(0,∞). Further-
more, if u(x̄+, t̄) < u(x̄−, t̄), then u(χ(s)+, s) < u(χ(s)−, s) for all s ∈ [t̄,∞).

Solutions of the inhomogeneous balance law (11.9.1) have similar structure, and
enjoy similar regularity properties with the solutions of the homogeneous conserva-
tion law (11.1.1), described in Section 11.3. A number of relevant propositions are
stated below. The reader may find the proofs in the literature cited in Section 11.12.

11.9.5 Theorem. Let u be an admissible solution and assume u(x̄+, t̄) = u(x̄−, t̄),
for some (x̄, t̄) ∈ (−∞,∞) × (0,∞). Then (x̄, t̄) is a point of continuity of u. A
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unique generalized characteristic χ(·), associated with u, defined on [0,∞), passes
through (x̄, t̄). Furthermore, χ(·) is differentiable at t̄ and χ̇ (t̄) = fu(u(x̄±, t̄), x̄, t̄).

11.9.6 Theorem. Let u be an admissible solution and assume u(x̄+, t̄) < u(x̄−, t̄),
for some (x̄, t̄) ∈ (−∞,∞) × (0,∞). When the extremal backward characteris-
tics ξ−(·), ξ+(·) are the only backward generalized characteristics emanating from
(x̄, t̄) that are shock-free, then (x̄, t̄) is a point of jump discontinuity of u in the fol-
lowing sense: There is a generalized characteristic χ(·), associated with u, defined
on [0,∞) and passing through (x̄, t̄), such that (x̄, t̄) is a point of continuity of the
function u(x−, t) relative to {(x, t) : 0 < t < ∞, x ≤ χ(t)} and also a point of
continuity of the function u(x+, t) relative to {(x, t) : 0 < t < ∞, x ≥ χ(t)}.
Furthermore, χ(·) is differentiable at t̄ and

(11.9.15) χ̇(t̄) = f (u(x̄+, t̄), x̄, t̄)− f (u(x̄−, t̄), x̄, t̄)

u(x̄+, t̄)− u(x̄−, t̄)
.

11.9.7 Theorem. The set or irregular points of any admissible solution u is (at most)
countable. (x̄, t̄) ∈ (−∞,∞)×(0,∞) is an irregular point if and only if u(x̄+, t̄) <
u(x̄−, t̄) and, in addition to the extremal backward characteristics ξ−(·) , ξ+(·),
there is at least another, distinct, backward characteristic ξ(·), associated with u,
emanating from (x̄, t̄), which is shock-free. Irregular points are generated by the
collision of shocks and/or by the focusing of centered compression waves.

11.9.8 Theorem. Assume that f and g are, respectively, Ck+1 and Ck functions on
(−∞,∞) × (−∞,∞) × [0,∞), for some 3 ≥ k ≥ ∞. Let u be an admissible
solution with initial data u0 in Ck. Then u(x, t) is Ck on the complement of the
closure of the shock set. Furthermore, generically, u is piecewise smooth and does
not contain centered compression waves.

The large time behavior of solutions of inhomogeneous, genuinely nonlinear bal-
ance laws can be widely varied, and the method of generalized characteristics pro-
vides an efficient tool for determining the asymptotic profile. Two typical, very sim-
ple, examples will be presented in the following two sections to demonstrate the ef-
fect of source terms or inhomogeneity on the asymptotics of solutions with periodic
initial data.

11.10 Balance Laws with Linear Excitation

We consider the balance law

(11.10.1) ∂t u(x, t)+ ∂x f (u(x, t))− u(x, t) = 0,

with f ′′(u) > 0, −∞ < u < ∞. For convenience, we normalize f and the space-
time frame so that f (0) = 0 and f ′(0) = 0.
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The aim is to demonstrate that, as a result of the competition between the desta-
bilizing action of the source term and the damping effect of genuine nonlinearity,
periodic solutions with zero mean become asymptotically standing waves of finite
amplitude.

In what follows, u(x, t)will denote an admissible solution of (11.10.1), of locally
bounded variation on the upper half-plane, with initial values u(x, 0) = u0(x) of
locally bounded variation on (−∞,∞).

The system (11.9.7) for shock-free characteristics here takes the form

(11.10.2)

⎧⎨⎩ ξ̇ = f ′(v)

v̇ = v.

In particular, divides are characteristics that are shock-free on [0,∞). Clearly, u
grows exponentially along divides, with the exception of stationary ones, x = x̄ ,
along which u vanishes. The following proposition, which identifies the points of
origin of stationary divides, should be compared with Theorem 11.4.1.

11.10.1 Lemma. The line x = x̄ is a stationary divide, associated with the solution
u, if and only if

(11.10.3)

z∫
x̄

u0(x)dx ≥ 0, −∞ < z <∞,

i.e., x̄ is a minimizer of the primitive of u0(·).
Proof. The reason it is here possible to locate the point of origin of divides with such
precision is that the homogeneous balance law (11.10.1) may be regarded equally
well as an inhomogeneous conservation law:

(11.10.4) ∂t
[
e−t u(x, t)

]+ ∂x
[
e−t f (u(x, t))

] = 0.

Assume first (11.10.3) holds. Fix any t̄ > 0 and consider the minimal backward
characteristic ξ(·) emanating from the point (x̄, t̄). We integrate (11.10.4) over the
set bordered by the graph of ξ(·), the line x = x̄ and the x-axis. Applying Green’s
theorem and using Theorem 11.9.3 and (11.10.2) yields

(11.10.5)

t̄∫
0

e−t { f ′(u(ξ(t), t)u(ξ(t), t)− f (u(ξ(t), t))
}

dt

+
t̄∫

0

e−t f (u(x̄±, t))dt +
z∫

x̄

u0(x)dx = 0.

All three terms on the left-hand side of (11.10.5) are nonnegative and hence they
should all vanish. Thus u(x̄±, t) = 0, t ∈ (0,∞), and x = x̄ is a stationary divide.
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Conversely, assume x = x̄ is a stationary divide, along which u vanishes. Fix
any z < x̄ . For ε > 0, let χ(·) be the curve issuing form the point (z, 0) and having
slope χ̇(t) = f ′

(
εet
)
. Suppose χ(·) intersects the line x = x̄ at time t̄ . We integrate

(11.10.4) over the set {(x, t) : 0 ≤ t ≤ t̄, χ(t) ≤ x ≤ x̄} and apply Green’s theorem.
Upon adding and subtracting terms that depend solely on t , we end up with

(11.10.6)

t̄∫
0

e−t { f
(
εet)− f (u(χ(t)+, t))− f ′

(
εet) [εet − u(χ(t)+, t)

]}
dt

−
t̄∫

0

e−t f
(
εet)dt =

x̄∫
z

[u0(x)− ε] dx .

Both terms on the left-hand side of the above equation are nonpositive, and hence so
also is the right-hand side. Letting ε ↓ 0, we arrive at (11.10.3), for any z < x̄ . The
case z > x̄ is handled by the same method. This completes the proof.

Next we show that between adjacent stationary divides the solution attains
asymptotically a standing wave profile of finite amplitude. The following proposi-
tion should be compared with Theorem 11.7.2.

11.10.2 Lemma. Assume x = x− and x = x+, x− < x+, are adjacent divides,
associated with the solution u, i.e., (11.10.3) holds for x̄ = x− and x̄ = x+ , but not
for any x̄ in the interval

(
x−, x+

)
. Consider any forward characteristic ψ(·) issuing

from the point
(

x−+x+
2 , 0

)
. Then, as t →∞,

(11.10.7) u (x±, t) =
⎧⎨⎩ v−(x)+ o(1), uni f ormly f or x− < x < ψ(t)

v+(x)+ o(1), uni f ormly f or ψ(t) < x < x+ ,

where v−(x) and v+(x) are solutions of the differential equation ∂x f (v) = v, with
v−(x−) = 0 and v+(x+) = 0. Furthermore,

(11.10.8) ψ(t) = x0 + o(1),

where x0 is determined by the condition

(11.10.9)

x0∫
x−

v−(y)dy +
x+∫

x0

v+(y)dy = 0.

In particular, if u0 is differentiable at x± and u′0(x±) > 0, then the order o(1) in
(11.10.7) and (11.10.8) is upgraded to exponential: O

(
e−t
)
.

Proof. As t → ∞, the minimal backward characteristic ζ(·) emanating from the
point (ψ(t), t) converges to a divide which is trapped inside the interval [x−, x+)
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and thus is stationary. Since x− and x+ are adjacent, ζ(·) must converge to x− . In
particular, ζ(0) = x− + o(1), as t →∞.

We fix t > 0 and pick any x ∈ (x−, ψ(t)]. Let ζ(·) denote the minimal backward
characteristic emanating from (x, t); it is intercepted by the x-axis at ξ(0) = ξ0 ,
with x− ≤ ξ0 ≤ ζ(0). In particular, ξ0 = x− + o(1), as t →∞. Recalling Theorem
11.9.3, we integrate the system (11.10.2) to get v(τ) = ūeτ , 0 ≤ τ ≤ t , where
u0 (ξ0−) ≤ ū ≤ u0 (ξ0+), and

(11.10.10) x − ξ0 =
t∫

0

f ′(v(τ ))dτ =
u(x−,t)∫

ū

f ′(v)
v

dv.

Now, (11.10.10) implies u(x−, t) = O(1) whence ū = e−t u(x−, t) = O(e−t ).
In turn, by virtue of ξ0 = x− + o(1) and ū = O

(
e−t
)
, (11.10.10) yields the upper

half of (11.10.7). When u′0(x−) > 0, then ū = O
(
e−t
)

implies in particular that
ξ0 = x− + O

(
e−t
)

and so o(1) is upgraded to O
(
e−t
)
. The lower half of (11.10.7)

is treated by the same method.

Integrating (11.10.1) over [x−, x+] × [0, t], we deduce
x+∫

x−
u(x, t)dx = 0, so that

(11.10.7) yields (11.10.8), (11.10.9). The proof is complete.

When the initial data u0(·) are periodic, with mean M , then the solution u(·, t), at
time t , is also periodic, with mean Met , and thus blows up as t →∞, unless M = 0.
If M = 0, (11.10.3) is satisfied for at least one x̄ in each period interval. Therefore,
Lemma 11.10.2 has the following corollary, akin to Theorem 11.7.3.

11.10.3 Theorem. When the initial data u0 are periodic, with mean zero, then, as
t → ∞, the solution u tends to a periodic serrated profile consisting of wavelets of
the form (11.10.7). The number of wavelets per period equals the number of points x̄
in any period interval for which (11.10.3) holds. In the generic case where (11.10.3)
is satisfied at a single point x̄ in each period interval, u tends to a sawtooth profile
with a single tooth per period.

11.11 An Inhomogeneous Conservation Law

Here we discuss the large time behavior of periodic solutions of an inhomogeneous
conservation law

(11.11.1) ∂t u(x, t)+ ∂x f (u(x, t), x) = 0,

where f is a C2 function with the following properties:

(a) Periodicity in x : f (u, x + 1) = f (u, x), −∞ < u <∞, −∞ < x <∞.
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(b) Genuine nonlinearity: fuu(u, x) ≥ µ > 0, −∞ < u <∞, −∞ < x <∞.

(c) The set of critical points consists of minima and saddles. For some ū in
(−∞,∞), b in (0, 1), xk = b + k and k = 0,±1,±2, . . . the following hold:
fu
(
ū, xk

) = fx
(
ū, xk

) = 0, fuu
(
ū, xk

)
fxx
(
ū, xk

) − f 2
ux

(
ū, xk

)
> 0, and also

fu(0, k) = fx (0, k) = 0, fuu(0, k) fxx (0, k)− f 2
ux (0, k) < 0.

(d) Normalization: f (0, k) = 0, hence f
(
ū, xk

)
< 0.

A typical example of such a function is f (u, x) = u2 − sin2(πx).
The system (11.9.7), for shock-free characteristics, here takes the form

(11.11.2)

⎧⎨⎩ ξ̇ = fu(v, ξ)

v̇ = − fx (v, ξ).

As noted in Remark 11.9.2, orbits of (11.11.2) are level curves of the function
f (u, x). By virtue of the properties of f , the phase portrait of (11.11.2) has the
form depicted in Fig. 11.11.1. Orbits dwelling on level curves f = p, with p > 0,
are unidirectional, from left to right or from right to left. By contrast, orbits dwelling
on level curves f = p, with p < 0, are periodic. Finally, orbits dwelling on the
level curves f = 0 are heteroclinic, joining neighboring saddle points; and in partic-
ular those dwelling on the nonnegative branch, v = v+(x), join (k + 1, 0) to (k, 0),
while those dwelling on the nonpositive branch, v = v−(x), join (k, 0) to (k + 1, 0),
k = 0,±1,±2, . . ..

Fig. 11.11.1

For p ∈ [ f (ū, b),∞)\{0}, we define T (p) as follows: If p < 0, T (p) is the
period around the level curve f = p. If p > 0, T (p) is the time it takes to traverse
a ξ -interval of length two, along the level curve f = p. The flow along any orbit
moves at a swift pace, except near the equilibrium points (k, 0), where it slows down.
In the linearized system about (k, 0), the sojourn in the vicinity of the equilibrium
point, along the orbit on the level p, lasts for−λ−1

0 log |p| time units, where±λ0 are
the eigenvalues of the Jacobian matrix of the vector field ( fu,− fx ), evaluated at the

saddle point (0, k), i.e., λ0 =
[

f 2
ux (k, 0)− fuu(k, 0) fxx (k, 0)

]1/2
. Therefore,
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(11.11.3)
T (p)

log |p| = −
2

λ0
+ o(1), as p → 0.

For any M ∈ (−∞,∞), the equation (11.11.1) admits a unique admissible peri-
odic stationary solution uM (x), with mean M . Let

(11.11.4) M± =
1∫

0

v±(x)dx .

For M ≥ M+ or M ≤ M− , uM (x) is just the unique level curve f = p ≥ 0 with
mean M . By contrast, for M− < M < M+ , uM is a weak solution containing a
single admissible stationary shock per period:

(11.11.5) uM (x) =
⎧⎨⎩ v+(x), k ≤ x < k + a

k = 0,±1,±2, . . .
v−(x), k + a < x < k + 1,

where a ∈ (0, 1) is determined by

(11.11.6)

a∫
0

v+(x)dx +
1∫

a

v−(x)dx = M.

The aim is to show that, as t →∞, 1-periodic solutions of (11.11.1), with mean M ,
converge to uM . We shall only discuss the interesting case M− < M < M+ .

11.11.1 Theorem. Let u(x, t) be the admissible solution of (11.11.1), on the upper
half-plane, with initial data u0(x) which are 1-periodic functions with mean M in
(M−, M+). Then, as t →∞, for any λ < λ0 ,

(11.11.7) f (u(x±, t), x) = o
(
e−λt) , uniformly on (−∞,∞),

(11.11.8)

u(x±, t) =

⎧⎪⎪⎨⎪⎪⎩
v+(x)+ o

(
e− 1

2λt
)
, k ≤ x < χk(t)

k = 0,±1,±2, . . .

v−(x)+ o
(

e− 1
2λt
)
, χk(t) < x ≤ k + 1,

where

(11.11.9) χk(t) = k + a + o
(

e−
1
2λt
)
,

with a determined through (11.11.6).

Proof. We fix any k = 0,±1,±2, . . ., and note that
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(11.11.10)

k+1∫
k

u(x, t)dx = M.

Since M ∈ (M−, M+), (11.10.10) implies that there are x ∈ (k, k + 1) such that
f (u(x−, t), x) = p < 0. For such an x , the minimal backward characteristic ζ(·)
emanating from (x, t) is the restriction to [0, t] of the T (p)-periodic orbit that dwells
on the level curve f = p. The minimal backward characteristic ζ̄ (·) emanating
from the point (x̄, t), where x̄ = x − ε with ε positive and small, will likewise be
the restriction to [0, t] of a periodic orbit dwelling on some level curve f = p̄,
with |p − p̄| small. It is now clear from the phase portrait, Fig. 11.11.1, that if t
is larger than the period T (p) the graphs of ζ(·) and ζ̄ (·) must intersect at some
time τ ∈ (0, t), in contradiction to Theorem 11.9.4. Thus t ≤ T (p) and hence
f (u(x−, t), x)→ 0, at t →∞ by virtue of (11.11.3).

Suppose next there is x ∈ [k, k+1] with f (u(x−, t), x) = p > 0. We fix x̄ such
that x̄ < x < x̄ + 1 and f (u(x̄−, t), x̄) < 0. If ζ(·) and ξ(·) denote the minimal
backward characteristics emanating from the points (x̄, t) and (x, t), respectively,
then ζ(τ ) < ξ(τ) < ζ(τ) + 1, for 0 < τ < t . Hence, |x − ξ(0)| < 2. But then
t ≤ T (p) and hence f (u(x−, t), x)→ 0, as t →∞, in this case as well.

By genuine nonlinearity and f (u(x−, t), x) = o(1), for t large, u(x−, t)must be
close to either v−(x) or v+(x). Since admissible solutions are allowed to jump only
downwards, there exists a characteristic χk(·), with χk(t) ∈ (k, k+1) for t ∈ [0,∞),
such that, for t large, u(x−, t) is close to v−(x) if k ≤ x < χk(t), and close to v+(x)
if χk(t) < x ≤ k+1. Minimal backward characteristics emanating from points (x, t),
with χk−1(t) < x < χk(t) and f (u(x−, t)) = p

>
< 0, are trapped between χk−1(·)

and χk(·), so that our earlier estimate t ≤ T (p) becomes sharper: t ≤ 1
2 T (p)+O(1).

This together with (11.11.3) imply (11.11.7), which in turn yields (11.11.8). Finally,
by combining (11.11.8) with (11.11.10) we arrive at (11.11.9), where a is determined
through (11.11.6). The proof is complete.

A more detailed picture of the asymptotic behavior of the above solution u(x, t)
emerges by locating its divides. By account of (11.11.7), any divide must be dwelling
on the level curve f = 0. We shall see that the point of origin of any divide within
the period intrval [χk−1(0), χk(0)]may be determined explicitly from the initial data.
For that purpose we introduce the function

(11.11.11) vk(x) =
⎧⎨⎩ v+(x), −∞ < x ≤ k

v−(x), k < x <∞,

which is a steady-state solution of (11.11.1):

(11.11.12) ∂tvk(x)+ ∂x f (vk(x), x) = 0.

11.11.2 Theorem. Under the assumptions of Theorem 11.11.1, a divide associated
with the solution u(x, t) issues from the point (x̄, 0), with χk−1(0) ≤ x̄ ≤ χk(0), if
and only if x̄ is a minimizer of the function
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(11.11.13) �k(z) =
z∫

k

[u0(x)− vk(x)] dx,

over (−∞,∞).

Proof. Assume first x̄ ∈ [χk−1(0), χk(0)
]

minimizes �k over (−∞,∞). We con-
struct the characteristic ξ(·), associated with the solution vk , issuing from the point
(x̄, 0). Thus, ξ(·) will be determined by solving the system (11.11.2) with initial
conditions ξ(0) = x̄ and v(0) = v−(x̄) if x̄ ≥ k, or v(0) = v+(x̄) if x̄ < k. In
either case, ξ̇ (t) = fu (vk(ξ(t)), ξ(t)). We fix any t̄ > 0 and consider the minimal
backward characteristic ζ(·), associated with the solution u(x, t), emanating from
the point

(
ξ(t̄), t̄

)
and intercepted by the x-axis at ζ(0) = z ∈ [χk−1(0), χk(0)

]
.

Thus, ζ̇ (t) = fu (u(ζ(t)−, t), ζ(t)). We subtract (11.11.12) from (11.11.1) and inte-
grate the resulting equation over the set bordered by the x-axis and the graphs of ξ(·)
and ζ(·) over [0, t̄]. Applying Green’s theorem yields

(11.11.14)

t̄∫
0

{ f (u(ξ(t)−, t), ξ(t))− f (vk(ξ(t)), ξ(t))

− fu (vk(ξ(t)), ξ(t)) [u(ξ(t)−, t)− vk(ξ(t))]} dt

−
t̄∫

0

{ f (u(ζ(t)−, t), ζ(t))− f (vk(ζ(t)), ζ(t))

− fu(u(ζ(t)−, t), ζ(t)) [u(ζ(t)−, t)− vk(ζ(t))]} dt

=
x̄∫

z

[u0(x)− vk(x)] dx = �k(x̄)−�k(z).

Both terms on the left-hand side of the above equation are nonnegative, while the
right-hand side is nonpositive. Thus, all three terms must vanish and ξ(·) is indeed a
divide associated with u(x, t).

Conversely, assume (x̄, 0) is the point of origin of a divide ξ(·) associated with
the solution u(x, t). Thus ξ(·) will solve the system (11.11.2) with initial conditions
ξ(0) = x̄ and v(0) = v−(x̄) if x̄ ≥ k, or v(0) = v+(x̄) if x̄ < k. In either case,
u(ξ(t)±, t) = vk(ξ(t)), t ∈ (0,∞). We fix any z ∈ (k − 1, k + 1) and construct
the characteristic ζ(·), associated with the solution vk , that issues from the point
(z, 0). Thus, vk(ζ(t)) = v+(ζ(t)) if z ≤ k, or vk(ζ(t)) = v−(ζ(t)) if z ≥ k. In
either case, ζ̇ (t) = fu (vk(ζ(t)), ζ(t)) and ζ(t)− ξ(t)→ 0, as t →∞. We subtract
(11.11.12) from (11.11.1) and integrate the resulting equation over the set bordered
by the x-axis and the graphs of ξ(·) and ζ(·) on [0,∞). Applying Green’s theorem
yields
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(11.11.15)

∞∫
0

{ f (u(ζ(t)−, t), ζ(t))− f (vk(ζ(t)), ζ(t))

− fu (vk(ζ(t)), ζ(t)) [u(ζ(t)−, t)− vk(ζ(t))]} dt

=
z∫

x̄

[u0(x)− vk(x)] dx = �k(z)−�k(x̄).

The left-hand side, and thereby also the right-hand side, of (11.11.15) is nonnegative.
Therefore, x̄ minimizes �k over (k − 1, k + 1), and hence even over (−∞,∞), as
M ∈ (M−, M+). The proof is complete.

As t → ∞, the family of minimal backward characteristics emanating from
points (χk(t), t) converges monotonically to the divide that issues from (x+, 0),
where x+ is the largest of the minimizers of �k . Similarly, the family of maximal
backward characteristics emanating from the points (χk−1(t), t) converges mono-
tonically to the divide that issues from (x−, 0), where x− is the smallest of the mini-
mizers of �k . Generically, �k should attain its minimum at a single point, in which
case x− = x+ .

11.12 Notes

There is voluminous literature on the scalar conservation law in one-space dimen-
sion, especially the genuinely nonlinear case, beginning with the seminal paper of
Hopf [1], on the Burgers equation, already cited in earlier chapters.

In the 1950’s, the qualitative theory was developed by the Russian school, headed
by Oleinik [1,2,4], based on the vanishing viscosity approach as well as on the Lax-
Friedrichs finite difference scheme (Lax [1]). It is in that context that Theorem 11.2.2
was originally established. The reader may find an exposition in the text by Smoller
[3]. The culmination of that approach was the development of the theory of scalar
conservation laws in several space dimensions, discussed in Chapter VI.

In a different direction, Lax [2] discovered the explicit representation (11.4.10)
for solutions to the Cauchy problem and employed it to establish the existence of in-
variants (Theorem 11.4.2), the development of N -waves under initial data of compact
support (Theorem 11.6.1) as well as the formation of sawtooth profiles under peri-
odic initial data (Theorem 11.7.3). The original proof, by Schaeffer [1], that gener-
ically solutions are piecewise smooth was also based on the same method and so is
the proof of Theorem 11.3.5, by Ambrosio and De Lellis [2]. This approach read-
ily extends (Oleinik [1]) to inhomogeneous, genuinely nonlinear scalar conservation
laws, which may also be casted as Hamilton-Jacobi equations, but cannot handle bal-
ance laws. A thorough presentation of the theory of viscosity solutions for Hamilton-
Jacobi equations is found in the monograph by Lions [1].
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The approach via generalized characteristics, pursued in this chapter, is taken
from Dafermos [7], for the homogeneous conservation law, and Dafermos[8], for the
inhomogeneous balance law. In fact, these papers consider the more general situation
where fuu ≥ 0, and one-sided limits u(x±, t) exist for all x ∈ (−∞,∞) and almost
all t ∈ (0,∞), even though u(·, t) may not be a function of bounded variation.

The property that the lap number of solutions of conservation laws (8.6.2) with
viscosity is nonincreasing with time was discovered independently by Nickel [1]
and Matano [1]. The L1 contraction property for piecewise smooth solutions in one-
space dimension was noted by Quinn [1]. The functional (11.8.11), in alternative,
albeit completely equivalent, form was designed by Liu and Yang [3], who employ
it to establish Theorem 11.8.3, for piecewise smooth solutions. For an alternative
derivation, see Goatin and LeFloch [1].

Section 11.10 improves on an earlier result of Lyberopoulos [1], while the ex-
ample discussed in Section 11.11 is new. The effects of inhomogeneity and source
terms on the large time behavior of solutions are also discussed, by the method of
generalized characteristics, in Dafermos [14], Lyberopoulos [2], Fan and Hale [1,2],
Härterich [1], Ehrt and Härterich [1], Mascia and Sinestrari [1] and Fan, Jin and Teng
[1]. Problems of this type are also treated by different methods in Liu [23], Dias and
LeFloch [1] and Sinestrari [1].

So much is known about the scalar conservation and balance law in one-space
dimension that it would be hopeless to attempt to provide comprehensive coverage.
What follows is just a sample of relevant results.

Let us begin with the genuinely nonlinear case. For a probabilistic interpretation
of generalized characteristics, see Rezakhanlou [1]. For an interesting application
of the method of generalized characteristics in elastostatics, under incompressibility
and inextensibility constraints, see Choksi [1].

The optimal convergence rate to N -waves is established by Yong Jung Kim [1].
The interesting, metastable status of N -waves for the Burgers equation with viscosity
is demonstrated in Kim and Tzavaras [1].

An explicit representation of admissible solutions on the quarter-plane, analo-
gous to Lax’s formula for the upper half-plane, is presented in LeFloch [1] and
LeFloch and Nédélec [1]. An analog of Lax’s formula has also been derived for
the special systems with coinciding shock and rarefaction wave curves; see Benzoni-
Gavage [1].

The analog of (11.2.1) holds for scalar conservation laws (6.1.1), in several space
variables, if gα(u) = f (u)vα , where v is a constant vector (Hoff [1]).

For a Chapman-Enskog type regularization of the scalar conservation law, see
Shochet and Tadmor [1].

A kinetic formulation, different from the one discussed in Section 6.7, is pre-
sented in Brenier and Corrias [1].

Panov [1] and, independently, De Lellis, Otto and Westickenberg [2] show that
the entropy inequality for just one uniformly convex entropy suffices for singling out
the unique admissible weak solution in L∞.
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Regularity of solutions in Besov spaces is established in Lucier [2]. For the rate
of convergence of numerical schemes see e.g. Nessyahu and Tadmor [1] and Osher
and Tadmor [1].

The connection of the scalar conservation law with the system of “pressureless
gas” (7.1.11) and the related model of “sticky particles” is investigated in E, Rykov
and Sinai [1], Brenier and Grenier [1], and Bouchut and James [1]. The interesting
theory of the pressureless gas is developed in Wang and Ding [1], Wang, Huang and
Ding [1], Huang and Wang [1], Li and Warnecke [1] and Ding and Huang [1]. See
also Huang [1] and Sever [5,6].

Homogenization effects under random periodic forcing are demonstrated in E
[2,3], E and Serre [1] and E, Khanin, Mazel and Sinai [1].

For boundary control problems associated with the scalar conservation law, see
Ancona and Marson [1,2].

A stochastic scalar conservation law is discussed by Jong Uhn Kim [1].
The case where f (u, x) is piecewise constant in x is discussed in Lyons [1],

Klingenberg and Risebro [1] and Diehl [1].
When f has inflection points, the structure of solutions is considerably more in-

tricate, as a result of the formation of contact discontinuities, which become sources
of signals propagating into the future. The method of generalized characteristics ex-
tends to this case, as well, but the analysis becomes considerably more complicated
(Dafermos[11], Jenssen and Sinestrari [1]). See also Marson [1]. For the construction
of solutions, see Ballou [1]. Regularity is discussed in Ballou [2], Guckenheimer [1],
Dafermos [11] and Cheverry [4]. The large time behavior is investigated in Dafermos
[1,11], Greenberg and Tong [1], Conlon [1], Cheng [1,2,3], Weinberger [1], Sines-
trari [2] and Mascia [1]. See also Baiti and Jenssen [1].

In the special case f (u) = um , the properties of solutions may be studied effec-
tively with the help of the underlying self-similarity transformation; see Bénilan and
Crandall [1] and Liu and Pierre [1]. This last paper also considers initial data that are
merely measures. For recent developments in that direction, see Chasseigne [1]. The
limit behavior as m →∞ is discussed in Xu [1].



XII

Genuinely Nonlinear Systems
of Two Conservation Laws

The theory of solutions of genuinely nonlinear, strictly hyperbolic systems of two
conservation laws will be developed in this chapter at a level of precision comparable
to that for genuinely nonlinear scalar conservation laws, expounded in Chapter XI.
This will be achieved by exploiting the presence of coordinate systems of Riemann
invariants and the induced rich family of entropy-entropy flux pairs. The principal
tools in the investigation will be generalized characteristics and entropy estimates.

The analysis will reveal a close similarity in the structure of solutions of scalar
conservation laws and pairs of conservation laws. Thus, as in the scalar case, jump
discontinuities are generally generated by the collision of shocks and/or the focussing
of compression waves, and are then resolved into wave fans approximated locally by
the solution of associated Riemann problems.

The total variation of the trace of solutions along space-like curves is controlled
by the total variation of the initial data, and spreading of rarefaction waves affects
total variation, as in the scalar case.

The dissipative mechanisms encountered in the scalar case are work here at as
well, and have similar effects on the large time behavior of solutions. Entropy dissi-
pation induces O(t−1/2) decay of solutions with initial data in L1(−∞,∞). When
the initial data have compact support, the two characteristic families asymptotically
decouple, the characteristics spread and form a single N -wave profile for each fam-
ily. Finally, as in the scalar case, confinement of characteristics under periodic initial
data induces O(t−1) decay in the total variation per period and formation of saw-
toothed profiles, one for each characteristic family.

12.1 Notation and Assumptions

We consider a genuinely nonlinear, strictly hyperbolic system of two conservation
laws,

(12.1.1) ∂tU (x, t)+ ∂x F(U (x, t)) = 0,
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on some disk O centered at the origin. The eigenvalues of DF (characteristic speeds)
will here be denoted by λ and µ, with λ(U ) < 0 < µ(U ) for U ∈ O, and the
associated eigenvectors will be denoted by R and S.

The system is endowed with a coordinate system (z, w) of Riemann invariants,
vanishing at the origin U = 0, and normalized according to (7.3.8):

(12.1.2) Dz R = 1, DzS = 0, DwR = 0, DwS = 1.

The condition of genuine nonlinearity is now expressed by (7.5.4), which here reads

(12.1.3) λz < 0, µw > 0.

The direction in the inequalities (12.1.3) has been selected so that z increases across
admissible weak 1-shocks while w decreases across admissible weak 2-shocks.

For definiteness, we will consider systems with the property that the interaction
of any two shocks of the same characteristic family produces a shock of the same
family and a rarefaction wave of the opposite family. Note that this condition is here
expressed by

(12.1.4) S�D2zS > 0, R�D2wR > 0.

Indeed, in conjunction with (8.2.19), (12.1.3) and Theorem 8.3.1, the inequalities
(12.1.4) imply that z increases across admissible weak 2-shocks while w decreases
across admissible weak 1-shocks. Therefore, the admissible shock and rarefaction
wave curves emanating from the state (z̄, w̄) have the shape depicted in Fig. 12.1.1.
Consequently, as seen in Fig. 12.1.2(a), a 2-shock that joins the state (z�, w�), on
the left, with the state (zm, wm), on the right, interacts with a 2-shock that joins
(zm, wm), on the left, with the state (zr , wr ), on the right, to produce a 1-rarefaction
wave, joining (z�, w�), on the left, with a state (z0, w�), on the right, and a 2-shock
joining (z0, w�), on the left, with (zr , wr ), on the right, as depicted in Fig. 12.1.2(b).
Similarly, the interaction of two 1-shocks produces a 1-shock and a 2-rarefaction
wave.

Also for definiteness, we assume

(12.1.5) λw < 0, µz > 0,

or equivalently, by virtue of (7.3.14) and (7.4.15),

(12.1.6) R�D2zS > 0, S�D2wR > 0.

The prototypical example is the system (7.1.8) of isentropic thermoelasticity,
which satisfies all three assumptions (12.1.3), (12.1.4) and (12.1.6), with Riemann
invariants (7.3.2), provided σ ′′(u) < 0, i.e., the elastic medium is a soft spring or
a gas. When the medium is a hard spring, i.e., σ ′′(u) > 0, the sign of the Riemann
invariants in (7.3.2) has to be reversed.
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12.2 Entropy-Entropy Flux Pairs
and the Hodograph Transformation

As explained in Section 7.4, our system is endowed with a rich family of entropy-
entropy flux pairs (η, q), which may be determined as functions of the Riemann
invariants (z, w) by solving the system (7.4.12), namely

(12.2.1) qz = ληz , qw = µηw .

The integrability condition (7.4.13) now takes the form

(12.2.2) ηzw + λw

λ− µ
ηz + µz

µ− λ
ηw = 0.

The entropy η(z, w) will be a convex function of the original state variable U
when the inequalities (7.4.16) hold, that is,
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(12.2.3)

⎧⎨⎩ηzz + (R�D2z R)ηz + (R�D2wR)ηw ≥ 0

ηww + (S�D2zS)ηz + (S�D2wS)ηw ≥ 0 .

In the course of our investigation, we shall face the need to construct entropy-
entropy flux pairs with prescribed specifications, by solving (12.2.1) or (12.2.2)
under assigned side conditions. To verify that the constructed entropy satisfies
the condition (12.2.3), for convexity, it usually becomes necessary to estimate the
second derivatives ηzz and ηww in terms of the first derivatives ηz and ηw . For that
purpose, one may employ the equations obtained by differentiating (12.2.2) with
respect to z and w:

(12.2.4)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ηzzw + λw

λ− µ
ηzz = (µ− λ)λzw + λzλw − 2λwµz

(λ− µ)2
ηz + (λ− µ)µzz − λzµz + 2µ2

z

(λ− µ)2
ηw

ηwwz + µz

µ− λ
ηww = (µ− λ)λww − λwµw + 2λ2

w

(µ− λ)2
ηz + (λ− µ)µzw + µzµw − 2λwµz

(µ− λ)2
ηw .

As an illustration, we consider the important family of Lax entropy-entropy flux
pairs

(12.2.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η(z, w) = ekz

[
φ(z, w)+ 1

k
χ(z, w)+ O

(
1

k2

)]
,

q(z, w) = ekzλ(z, w)

[
ψ(z, w)+ 1

k
θ(z, w)+ O

(
1

k2

)]
,

(12.2.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η(z, w) = ekw

[
α(z, w)+ 1

k
β(z, w)+ O

(
1

k2

)]
,

q(z, w) = ekwµ(z, w)

[
γ (z, w)+ 1

k
δ(z, w)+ O

(
1

k2

)]
,

where k is a parameter. These are designed to vary stiffly with one of the two Rie-
mann invariants so as to be employed for decoupling the two characteristic families.
To construct them, one substitutes η and q from (12.2.5) or (12.2.6) into the system
(12.2.1), thus deriving recurrence relations for the coefficients, and then shows that
the remainder is O(k−2). The recurrence relations for the coefficients of the family
(12.2.5), read as follows:

(12.2.7) ψ = φ,

(12.2.8) λθ + (λψ)z = λχ + λφz ,
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(12.2.9) (λψ)w = µφw .

Combining (12.2.7) with (12.2.9) yields

(12.2.10) (µ− λ)φw = λwφ,

which may be satisfied by selecting

(12.2.11) φ(z, w) = exp
∫ w

0

λw(z, ω)

µ(z, ω)− λ(z, ω)
dω.

In particular, this φ is positive, uniformly bounded away from zero on compact sets.
Hence, for k sufficiently large, the inequalities (12.2.3) will hold, the second one by
virtue of (12.1.4). Consequently, for k large the Lax entropy is a convex function of
U .

Important implications of (12.2.7) and (12.2.8) are the estimates

(12.2.12) q − λη = 1

k
ekz
[
−λzφ + O

(
1

k

)]
,

(12.2.13) q − (λ+ ε)η = −ekz
[
εφ + O

(
1

k

)]
,

whose usefulness will become clear later.
There is a curious formal analogy between maps (z, w) �→ (η, q), that carry

pairs of Riemann invariants into entropy-entropy flux pairs, and hodograph trans-
formations (z, w) �→ (x, t), constructed by the following procedure: Suppose
(z(x, t), w(x, t)) are the Riemann invariants of a C1 solution of (12.1.1), on some do-
main D of the x-t plane. In the vicinity of any point of D where the Jacobian determi-
nant J = zxwt −wx zt does not vanish, the map (x, t) �→ (z, w) admits a C1 inverse
(z, w) �→ (x, t); with derivatives xz = J−1wt , tz = −J−1wx , xw = −J−1zt ,
and tw = J−1zx . Since zt + λzx = 0 and wt + µwx = 0 on D, we deduce
J = (λ− µ)zxwx and

(12.2.14) xz = µtz , xw = λtw ,

which should be compared and contrasted to (12.2.1). Elimination of x between the
two equations in (12.2.14) yields

(12.2.15) tzw + µw

µ− λ
tz + λz

λ− µ
tw = 0,

namely the analog of (12.2.2). One may thus construct (classical) solutions of the
nonlinear system (12.1.1) of two conservation laws by solving the linear system
(12.2.14), or equivalently the linear second order hyperbolic equation (12.2.15). Nu-
merous important special solutions of the system of isentropic gas dynamics, and
other systems of two conservation laws arising in mathematical physics, have been
derived through that process.
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12.3 Local Structure of Solutions

Throughout this chapter, U will denote a function of locally bounded variation, de-
fined on (−∞,∞)× [0,∞) and taking values in a disk of small radius, centered at
the origin, which is a weak solution of (12.1.1) satisfying the Lax E-condition, in
the sense described in Section 10.1. In particular,

(12.3.1) ∂tη(U (x, t))+ ∂x q(U (x, t)) ≤ 0

will hold, in the sense of measures, for any entropy-entropy flux pair (η, q), with η
convex.

The notion of generalized characteristic, developed in Chapter X, will play a
pivotal role in the discussion.

12.3.1 Definition. A Lipschitz curve, with graph A embedded in the upper half-
plane, is called space-like relative to U when every point (x̄, t̄) ∈ A has the following
property: The set {(x, t) : 0 ≤ t < t̄ , ζ(t) < x < ξ(t)} of points confined between
the graphs of the maximal backward 2-characteristic ζ(·) and the minimal backward
1-characteristic ξ(·), emanating from (x̄, t̄), has empty intersection with A.

Clearly, any generalized characteristic, of either family, associated with U , is
space-like relative to U . Similarly, all time lines, t = constant, are space-like.

The solution U will be conveniently monitored through its induced Riemann
invariant coordinates (z, w). In Section 12.5, it is shown that the total variation of
the trace of z and w along space-like curves is controlled by the total variation of
their initial data. In anticipation of that result, we shall be assuming henceforth that,
for any space-like curve t = t∗(x), z(x±, t∗(x)) and w(x±, t∗(x)) are functions of
bounded variation, with total variation bounded by a positive constant θ . Since the
oscillation of the solution is small and all arguments will be local, we may assume
without further loss of generality that θ is small.

In order to describe the local structure of the solution, we associate with the
generic point (x̄, t̄) of the upper half-plane eight, not necessarily distinct, curves (see
Fig. 12.3.1) determined as follows:

For t < t̄ : ξ−(·) and ξ+(·) are the minimal and the maximal backward 1-
characteristics emanating from (x̄, t̄); similarly, ζ−(·) and ζ+(·) are the minimal and
the maximal backward 2-characteristics emanating from (x̄, t̄).

For t > t̄ : φ+(·) is the maximal forward 1-characteristic and ψ−(·) is the min-
imal forward 2-characteristic issuing from (x̄, t̄). To determine the remaining two
curves φ−(·) and ψ+(·), we consider the minimal backward 1-characteristic ξ(·) and
the maximal backward 2-characteristic ζ(·) emanating from the generic point (x, t)
and locate the points ξ(t̄) and ζ(t̄) where these characteristics are intercepted by the
t̄-time line. Then φ−(t) is determined by the property that ξ(t̄) < x̄ when x < φ−(t)
and ξ(t̄) ≥ x̄ when x > φ−(t). Similarly, ψ+(t) is characterized by the property
that ζ(t̄) ≤ x̄ when x < ψ+(t) and ζ(t̄) > x̄ when x > ψ+(t). In particular,
φ−(t) ≤ φ+(t) and if φ−(t) < x < φ+(t) then ξ(t̄) = x̄ . Similarly, ψ−(t) ≤ ψ+(t)
and ψ−(t) < x < ψ+(t) implies ζ(t̄) = x̄ .
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We fix τ > t̄ and let ξτ (·) denote the minimal backward 1-characteristic ema-
nating from the point (φ−(τ ), τ ). We also consider any sequence {xm} converging
from above to φ−(τ ) and let ξm(·) denote the minimal backward 1-characteristic
emanating from (xm, τ ). Then the sequence {ξm(·)}, or some subsequence thereof,
will converge to some backward 1-characteristic ξ̂τ (·) emanating from (φ−(τ ), τ ).
Moreover, for any t̄ ≤ t ≤ τ , it is ξτ (t) ≤ φ−(t) ≤ ξ̂τ (t). In particular, this implies
that φ−(·) is a Lipschitz continuous space-like curve, with slope in the range of λ.
Similarly, ψ+(·) is a Lipschitz continuous space-like curve, with slope in the range
of µ.

Referring again to Fig. 12.3.1, we see that the aforementioned curves border
regions:

(12.3.2) SW = {(x, t) : x < x̄, ζ−1− (x) < t < φ−1− (x)},

(12.3.3) SE = {(x, t) : x > x̄, ξ−1+ (x) < t < ψ−1+ (x)},

(12.3.4) SN = {(x, t) : t > t̄, φ+(t) < x < ψ−(t)},

(12.3.5) SS = {(x, t) : t < t̄, ζ+(t) < x < ξ−(t)}.

12.3.2 Definition. The solution is called locally regular at the point (x̄, t̄) of the
upper half-plane when the following hold:

(a) As (x, t) tends to (x̄, t̄) through any one of the regions SW ,SE ,SN

or SS , (z(x±, t), w(x±, t)) tend to respective limits (zW , wW ), (zE , wE ),

(zN , wN ) or (zS,wS), where, in particular, it is zW = z(x̄−, t̄), wW =w(x̄−, t̄),
zE = z(x̄+, t̄), wE = w(x̄+, t̄).
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(b)1 If p�(·) and pr (·) are any two backward 1-characteristics emanating from (x̄, t̄),
with ξ−(t) ≤ p�(t) < pr (t) ≤ ξ+(t), for t < t̄ , then

(12.3.6)1 zS = lim
t↑t̄

z(ξ−(t)±, t) ≤ lim
t↑t̄

z(p�(t)−, t) ≤ lim
t↑t̄

z(p�(t)+, t)

≤ lim
t↑t̄

z(pr (t)−, t) ≤ lim
t↑t̄

z(pr (t)+, t) ≤ lim
t↑t̄

z(ξ+(t)±, t) = zE ,

(12.3.7)1 wS = lim
t↑t̄

w(ξ−(t)±, t) ≥ lim
t↑t̄

w(p�(t)−, t) ≥ lim
t↑t̄

w(p�(t)+, t)

≥ lim
t↑t̄

w(pr (t)−, t) ≥ lim
t↑t̄

w(pr (t)+, t) ≥ lim
t↑t̄

w(ξ+(t)±, t) = wE .

(b)2 If q�(·) and qr (·) are any two backward 2-characteristics emanating from (x̄, t̄),
with ζ−(t) ≤ q�(t) < qr (t) ≤ ζ+(t), for t < t̄ , then

(12.3.6)2 wW = lim
t↑t̄

w(ζ−(t)±, t) ≥ lim
t↑t̄

w(q�(t)−, t) ≥ lim
t↑t̄

w(q�(t)+, t)

≥ lim
t↑t̄

w(qr (t)−, t) ≥ lim
t↑t̄

w(qr (t)+, t) ≥ lim
t↑t̄

w(ζ+(t)±, t) = wS ,

(12.3.7)2 zW = lim
t↑t̄

z(ζ−(t)±, t) ≤ lim
t↑t̄

z(q�(t)−, t) ≤ lim
t↑t̄

z(q�(t)+, t)

≤ lim
t↑t̄

z(qr (t)−, t) ≤ lim
t↑t̄

z(qr (t)+, t) ≤ lim
t↑t̄

z(ζ+(t)±, t) = zS .

(c)1 If φ−(t) = φ+(t), for t̄ < t < t̄ + s, then zW ≤ zN , wW ≥ wN . On the other
hand, if φ−(t) < φ+(t), for t̄ < t < t̄+s, then wW = wN and as (x, t) tends to
(x̄, t̄) through the region {(x, t) : t > t̄, φ−(t) < x < φ+(t)}, w(x±, t) tends
to wW . Furthermore, if p�(·) and pr (·) are any two forward 1-characteristics
issuing from (x̄, t̄), with φ−(t) ≤ p�(t) ≤ pr (t) ≤ φ+(t), for t̄ < t < t̄ + s,
then

(12.3.8)1 zW = lim
t↓t̄

z(φ−(t)±, t) ≥ lim
t↓t̄

z(p�(t)−, t) = lim
t↓t̄

z(p�(t)+, t)

≥ lim
t↓t̄

z(pr (t)−, t) = lim
t↓t̄

z(pr (t)+, t) ≥ lim
t↓t̄

z(φ+(t)±, t) = zN .

(c)2 If ψ−(t) = ψ+(t), for t̄ < t < t̄ + s, then wN ≥ wE , zN ≤ zE . On the other
hand, if ψ−(t) < ψ+(t), for t̄ < t < t̄ + s, then zN = zE and as (x, t) tends to
(x̄, t̄) through the region {(x, t) : t > t̄, ψ−(t) < x < ψ+(t)}, z(x±, t) tends
to zE . Furthermore, if q�(·) and qr (·) are any two forward 2-characteristics
issuing from (x̄, t̄), with ψ−(t) ≤ q�(t) ≤ qr (t) ≤ ψ+(t), for t̄ < t < t̄ + s,
then

(12.3.8)2 wN = lim
t↓t̄

w(ψ−(t)±, t) ≤ lim
t↓t̄

w(q�(t)−, t) = lim
t↓t̄

w(q�(t)+, t)

≤ lim
t↓t̄

w(qr (t)−, t) = lim
t↓t̄

w(qr (t)+, t) ≤ lim
t↓t̄

w(ψ+(t)±, t) = wE .
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The motivation for the above definition lies in

12.3.3 Theorem. For θ sufficiently small, the solution is locally regular at any point
of the upper half-plane.

The proof will be provided in the next section. However, the following remarks
are in order here. Definition 12.3.2 is motivated by experience with piecewise smooth
solutions. Indeed, at points of local regularity incoming waves of the two character-
istic families collide to generate a jump discontinuity, which is then resolved into
an outgoing wave fan. Statements (b)1 and (b)2 regulate the incoming waves, al-
lowing for any combination of admissible shocks and focussing compression waves.
Statements (c)1 and (c)2 characterize the outgoing wave fan. In particular, (c)1 im-
plies that the state (zW , wW ), on the left, may be joined with the state (zN , wN ),
on the right, by a 1-rarefaction wave or admissible 1-shock; while (c)2 implies
that the state (zN , wN ), on the left, may be joined with the state (zE , wE ), on the
right, by a 2-rarefaction wave or admissible 2-shock. Thus, the outgoing wave fan
is locally approximated by the solution of the Riemann problem with end-states
(z(x̄−, t̄), w(x̄−, t̄)) and (z(x̄+, t̄), w(x̄+, t̄)).

A simple corollary of Theorem 12.3.3 is that φ−(·) is a 1-characteristic while
ψ+(·) is a 2-characteristic.

Definition 12.3.2 and Theorem 12.3.3 apply even to points on the initial line,
t̄ = 0, after discarding the irrelevant parts of the statements, pertaining to t < t̄ .
It should be noted, however, that there is an important difference between t̄ = 0
and t̄ > 0. In the former case, (z(x̄±, 0), w(x̄±, 0)) are unrestricted, being induced
arbitrarily by the initial data, and hence the outgoing wave fan may comprise any
combination of shocks and rarefaction waves. By contrast, when t̄ > 0, statements
(b)1 and (b)2 in Definition 12.3.2 induce the restrictions zW ≤ zE and wW ≥ wE .
This, combined with statements (c)1 and (c)2 , rules out the possibility that both
outgoing waves may be rarefactions.

12.4 Propagation of Riemann Invariants
Along Extremal Backward Characteristics

The theory of the genuinely nonlinear scalar conservation law, expounded in Chapter
XI, owes its simplicity to the observation that extremal backward generalized charac-
teristics are essentially classical characteristics, namely straight lines along which the
solution stays constant. It is thus natural to investigate whether solutions U of sys-
tems (12.1.1) exhibit similar behavior. When U is Lipschitz continuous, the Riemann
invariants z and w stay constant along 1-characteristics and 2-characteristics, respec-
tively, by virtue of Theorem 7.3.4. One should not expect, however, that this will
hold for weak solutions, because Riemann invariants generally jump across shocks
of both characteristic families. In the context of piecewise smooth solutions, Theo-
rem 8.2.3 implies that, under the current normalization conditions, the trace of z (or
w) along shock-free 1-characteristics (or 2-characteristics) is a nonincreasing step
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function. The jumps of z (or w) occur at the points where the characteristic crosses
a shock of the opposite family, and are of cubic order in the strength of the crossed
shock. It is remarkable that this property essentially carries over to general weak
solutions:

12.4.1 Theorem. Let ξ(·) be the minimal (or maximal) backward 1-
characteristic (or 2-characteristic) emanating from any fixed point (x̄, t̄) of the upper
half-plane. Set

(12.4.1) z̄(t) = z(ξ(t)−, t), w̄(t) = w(ξ(t)+, t), 0 ≤ t ≤ t̄ .

Then z̄(·) (or w̄(·)) is a nonincreasing saltus function whose variation is concen-
trated in the set of points of jump discontinuity of w̄(·) (or z̄(·)). Furthermore, if
τ ∈ (0, t̄) is any point of jump discontinuity of z̄(·) (or w̄(·)), then

(12.4.2)1 z̄(τ−)− z̄(τ+) ≤ a[w̄(τ+)− w̄(τ )]3,
or

(12.4.2)2 w̄(τ−)− w̄(τ+) ≤ a[z̄(τ+)− z̄(τ )]3,
where a is a positive constant depending solely on F .

The proof of the above proposition will be intermingled with the proof of The-
orem 12.3.3, on local regularity of the solution, and will be partitioned into several
steps. The assumption that the trace of (z, w) along space-like curves has bounded
variation will be employed only for special space-like curves, namely, generalized
characteristics and time lines, t =constant.

12.4.2 Lemma. When ξ(·) is the minimal (or maximal) backward 1-
characteristic (or 2-characteristic) emanating from (x̄, t̄), z̄(·) (or w̄(·)) is nonin-
creasing on [0, t̄].

Proof. The two cases are quite similar, so it will suffice to discuss the first one,
namely where ξ(·) is a 1-characteristic. Then, by virtue of Theorem 10.3.2, ξ(·) is
shock-free and hence

(12.4.3) ξ̇ (t) = λ(U (ξ(t)±, t)), a.e. on [0, t̄].
We fix numbers τ and s, with 0 ≤ τ < s ≤ t̄ . For ε positive and small, we let

ξε(·) denote the minimal Filippov solution of the ordinary differential equation

(12.4.4)
dx

dt
= λ(U (x, t))+ ε,

on [τ, s], with initial condition ξε(s) = ξ(s) − ε. Applying (12.1.1), as equality of
measures, to arcs of the graph of ξε(·) and using Theorem 1.7.8, we deduce
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(12.4.5)

F(U (ξε(t)+, t))− F(U (ξε(t)−, t))− ξ̇ε(t)[U (ξε(t)+, t)−U (ξε(t)−, t)] = 0,

a.e. on [τ, s]. Therefore, ξε(·) propagates with speed λ(U (ξε(t)±, t)) + ε, at points
of approximate continuity, or with 1-shock speed, at points of approximate jump
discontinuity. In particular, λ(U (ξε(t)+, t)) ≤ λ(U (ξε(t)−, t)), almost everywhere
on [τ, s], and so, by the definition of Filippov solutions of (12.4.4),

(12.4.6) ξ̇ε(t) ≥ λ(U (ξε(t)+, t))+ ε, a.e. on [τ, s].
For any entropy-entropy flux pair (η, q), with η convex, integrating (12.3.1) over

the region {(x, t) : τ < t < s, ξε(t) < x < ξ(t)} and applying Green’s theorem
yields

(12.4.7)
∫ ξ(s)

ξε(s)
η(U (x, s))dx −

∫ ξ(τ )

ξε(τ )

η(U (x, τ ))dx

≤ −
∫ s

τ

{q(U (ξ(t)−, t))− ξ̇ (t)η(U (ξ(t)−, t))}dt

+
∫ s

τ

{q(U (ξε(t)+, t))− ξ̇ε(t)η(U (ξε(t)+, t))}dt.

In particular, we write (12.4.7) for the Lax entropy-entropy flux pair (12.2.5). For
k large, the right-hand side of (12.4.7) is nonpositive, by virtue of (12.4.3), (12.4.6),
(12.2.12), (12.1.3) and (12.2.13). Hence

(12.4.8)
∫ ξ(s)

ξε(s)
η(z(x, s), w(x, s))dx ≤

∫ ξ(τ )

ξε(τ )

η(z(x, τ ), w(x, τ ))dx .

We raise (12.4.8) to the power 1/k and then let k →∞. This yields

(12.4.9) ess sup(ξε(s),ξ(s)) z(·, s) ≤ ess sup(ξε(τ ),ξ(τ )) z(·, τ ).
Finally, we let ε ↓ 0. By standard theory of Filippov solutions, the family {ξε(·)}
contains a sequence that converges, uniformly on [τ, s], to some Filippov solution
ξ0(·) of the equation dx/dt = λ(U (x, t)), with initial condition ξ0(s) = ξ(s). But
then ξ0(·) is a backward 1-characteristic emanating from the point (ξ(s), s). More-
over, ξ0(t) ≤ ξ(t), for τ ≤ t ≤ s. Since ξ(·) is minimal, ξ0(·) must coincide with ξ(·)
on [τ, s]. Thus (12.4.9) implies z̄(s) ≤ z̄(τ ) and so z̄(·) is nonincreasing on [τ, s].
The proof is complete.

12.4.3 Lemma. Let ξ(·) be the minimal (or maximal) backward 1-
characteristic (or 2-characteristic) emanating from (x̄, t̄). Then, for any τ ∈ (0, t̄],
(12.4.10)1 z(ξ(τ )−, τ ) ≤ z̄(τ−) ≤ z(ξ(τ )+, τ ),
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or

(12.4.10)2 w(ξ(τ)−, τ ) ≥ w̄(τ−) ≥ w(ξ(τ)+, τ ).
In particular,

(12.4.11)

z(x−, t) ≤ z(x+, t), w(x−, t) ≥ w(x+, t), −∞ < x <∞, 0 < t <∞.

This will be established in conjunction with

12.4.4 Lemma. Let ξ(·) be the minimal (or maximal) backward 1-
characteristic (or 2-characteristic) emanating from (x̄, t̄). For any τ and s
with 0 < τ < s ≤ t̄ ,

(12.4.12)1 z(ξ(τ )+, τ )− z(ξ(s)+, s) ≤ b osc[τ,s]w̄(·) T V[τ,s]w̄(·),
or

(12.4.12)2 w(ξ(τ)−, τ )− w(ξ(s)−, s) ≤ b osc[τ,s] z̄(·) T V[τ,s] z̄(·),
where b is a positive constant depending on F . Furthermore, if w̄(τ+) > w̄(τ ) (or
z̄(τ+) > z̄(τ )), then (12.4.2)1 (or (12.4.2)2) holds.

Proof. It suffices to discuss the case where ξ(·) is a 1-characteristic. Consider any
convex entropy η with associated entropy flux q . We fix ε positive and small and
integrate (12.3.1) over the region {(x, t) : τ < t < s, ξ(t) < x < ξ(t) + ε}.
Notice that both curves x = ξ(t) and x = ξ(t)+ ε have slope λ(z̄(t), w̄(t)), almost
everywhere on (τ, s). Therefore, Green’s theorem yields

(12.4.13)
∫ ξ(s)+ε

ξ(s)
η(z(x, s), w(x, s))dx −

∫ ξ(τ )+ε

ξ(τ )

η(z(x, τ ), w(x, τ ))dx

≤ −
∫ s

τ

H(z(ξ(t)+ ε+, t), w(ξ(t)+ ε+, t), z̄(t), w̄(t))dt,

under the notation

(12.4.14) H(z, w, z̄, w̄) = q(z, w)− q(z̄, w̄)− λ(z̄, w̄)[η(z, w)− η(z̄, w̄)].
One easily verifies, with the help of (12.2.1), that

(12.4.15) Hz(z, w, z̄, w̄) = [λ(z, w)− λ(z̄, w̄)]ηz(z, w),

(12.4.16) Hw(z, w, z̄, w̄) = [µ(z, w)− λ(z̄, w̄)]ηw(z, w),

(12.4.17) Hzz(z, w, z̄, w̄) = λz(z, w)ηz(z, w)+ [λ(z, w)− λ(z̄, w̄)]ηzz(z, w),
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(12.4.18) Hzw(z, w, z̄, w̄) = λw(z, w)ηz(z, w)+ [λ(z, w)− λ(z̄, w̄)]ηzw(z, w),

(12.4.19) Hww(z, w, z̄, w̄) = µw(z, w)ηw(z, w)+[µ(z, w)−λ(z̄, w̄)]ηww(z, w).
Let us introduce the notation z0 = z(ξ(τ )+, τ ), w0 = w(ξ(τ)+, τ ) = w̄(τ ),

z1 = z(ξ(s)+, s), w1 = w(ξ(s)+, s) = w̄(s) and set δ = osc[τ,s]w̄(·). We then
apply (12.4.13) for the entropy η constructed by solving the Goursat problem for
(12.2.2), with data

(12.4.20)

⎧⎨⎩η(z, w0) = −(z − z0)+ β(z − z0)
2 ,

η(z0, w) = −3βδ(w − w0)+ β(w − w0)
2 ,

where β is a positive constant, sufficiently large for the following to hold on a small
neighborhood of the point (z0, w0):

(12.4.21) η is a convex function of U,

(12.4.22) η(z, w) is a convex function of (z, w),

(12.4.23) H(z, w, z̄, w̄) is a convex function of (z, w).

It is possible to satisfy the above requirements when |z − z0|, |w − w0| and
δ are sufficiently small. In particular, (12.4.21) will hold by virtue of (12.2.3),
(12.1.4), (12.4.20), (12.2.2) and (12.2.4). Similarly, (12.4.22) follows from (12.4.20),
(12.2.2) and (12.2.4). Finally, (12.4.23) is verified by combining (12.4.17), (12.4.18),
(12.4.19), (12.4.20), (12.2.2) and (12.2.4).

By virtue of (12.4.23), (12.4.15) and (12.4.16),

(12.4.24) H(z, w, z̄, w̄) ≥ [µ(z̄, w̄)− λ(z̄, w̄)]ηw(z̄, w̄)[w − w̄].
One may estimate ηw(z̄(t), w̄(t)) by integrating (12.2.2), as an ordinary dif-

ferential equation for ηw , along the line w = w̄(t), starting out from the ini-
tial value ηw(z0, w̄(t)) at z = z0 . Because |w̄(t) − w0| ≤ δ, (12.4.20) gives
−5βδ ≤ ηw(z0, w̄(t)) ≤ −βδ < 0. Since λw < 0 and ηz < 0, (12.2.2) then
implies ηw(z, w̄(t)) < 0, for z ≤ z0 . In anticipation of (12.4.10)1, we now assume
z0 ≥ z̄(τ ), which we already know will apply for almost all choices of τ in (0, s),
namely when z(ξ(τ )−, τ ) = z(ξ(τ )+, τ ). By Lemma 12.4.2, z̄(t) ≤ z̄(τ ) and so
ηw(z̄(τ ), w̄(τ )) < 0, for τ ≤ t ≤ s.

For t ∈ [τ, s], let ζt (·) denote the maximal backward 2-characteristic emanating
from the point (ξ(t) + ε, t) (Fig. 12.4.1). We also draw the maximal forward 2-
characteristic ψ(·), issuing from the point (ξ(τ ), τ ), which collides with the curve
x = ξ(t)+ ε at time r , where 0 < r − τ < c0ε.

For t ∈ (r, s), the graph of ζt (·) intersects the graph of ξ(·) at time σt . By Lemma
12.4.2,
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(12.4.25)
w(ξ(t)+ ε+, t) = w(ζt (t)+, t) ≤ w(ζt (σt )+, σt ) = w(ξ(σt )+, σt ) = w̄(σt ).

Since ηw(z̄(t), w̄(t)) < 0, (12.4.24) and (12.4.25) together imply

(12.4.26) H(z(ξ(t)+ ε+, t), w(ξ(t)+ ε+, t), z̄(t), w̄(t))

≥ [µ(z̄(t), w̄(t))−λ(z̄(t), w̄(t))]ηw(z̄(t), w̄(t))[w̄(σt )−w̄(t)].
Because the two characteristic speeds λ andµ are strictly separated, 0 < t−σt < c1ε

and so (12.4.26) yields

(12.4.27) −
∫ s

r
H(z(ξ(t)+ ε+, t), w(ξ(t)+ ε+, t), z̄(t), w̄(t))dt

≤ c2ε sup(τ,s)|ηw(z̄(·), w̄(·))| N V(τ,s)w̄(·),
with N V denoting negative (i.e., decreasing) variation.

Next, we restrict t to the interval (τ, r). Then, ζt (·) is intercepted by the τ -time
line at ζt (τ ) ∈ [ξ(τ ), ξ(τ )+ ε). By virtue of Lemma 12.4.2,

(12.4.28) w(ξ(t)+ε+, t) = w(ζt (t)+, t) ≤ w(ζt (τ )+, τ ) = w0+o(1) , as ε ↓ 0.

On the other hand, upon setting z+ = z̄(τ+), w+ = w̄(τ+), we readily observe that
z̄(t) = z+ + o(1), w̄(t) = w+ + o(1), as ε ↓ 0. Therefore, combining (12.4.24)
with (12.4.28) yields
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(12.4.29) −
∫ r

τ

H(z(ξ(t)+ ε+, t), w(ξ(t)+ ε+, t), z̄(t), w̄(t))dt

≤ −[µ(z+, w+)−λ(z+, w+)]ηw(z+, w+)[w0−w+](r−τ)+o(ε).

We now multiply (12.4.13) by 1/ε and then let ε ↓ 0. Using (12.4.27), (12.4.28)
and recalling that 0 < r − τ < c0ε, we deduce

(12.4.30) η(z1, w1)− η(z0, w0) ≤ c3 sup(τ,s)|ηw(z̄(·), w̄(·))| N V[τ,s)w̄(·).
In particular, s is the limit of an increasing sequence of τ with the property

z(ξ(τ )−, τ ) = z(ξ(τ )+, τ ), for which (12.4.30) is valid. It follows that η(z1, w1) ≤
η(z̄(s−), w̄(s−)). Now applying (12.4.25) for t = s, and letting ε ↓ 0, yields
w1 ≤ w̄(s−). Also, ηw < 0, ηz < 0. Hence, z̄(s−) ≤ z1. By Lemma 12.4.2,
z̄(s) ≤ z̄(s−) and so z(ξ(s)−, s) = z̄(s) ≤ z̄(s−) ≤ z1 = z(ξ(s)+, s). Since s
is arbitrary, we may write these inequalities for s = τ and this verifies (12.4.10)1 .
Lemma 12.4.3 has now been proved. Furthermore, z0 ≥ z̄(τ ) has been established
and hence (12.4.30) is valid for all τ and s with 0 < τ < s ≤ t̄ .

From (12.4.22) and (12.4.20) it follows

(12.4.31) η(z1, w1)− η(z0, w0) ≥ z0 − z1 − 3βδ(w1 − w0).

Combining (12.4.30) with (12.4.31),

(12.4.32) z0 − z1 ≤ 3βδ(w1 − w0)+ c3 sup(τ,s)|ηw(z̄(·), w̄(·))| N V[τ,s)w̄(·).
To establish (12.4.12)1 for general τ and s, it would suffice to verify it just for τ

and s with s−τ so small that T V[τ,s]w̄(·) < 2δ. For such τ and s, (12.4.32) gives the
preliminary estimate z0− z1 ≤ c4δ, and in fact z0− z̄(t) ≤ c4δ, for all t ∈ (τ, s). But
then, since |ηw(z0, w̄(t))| ≤ 5βδ, (12.2.2) implies sup(τ,s) |ηw(z̄(·), w̄(·))| ≤ c5δ.
Inserting this estimate into (12.4.32), we arrive at (12.4.12)1 , with b = 3β + c3c5 .

Finally, we assume w̄(τ+) > w̄(τ ), say w+ − w0 = δ0 > 0, and proceed to
verify (12.4.2)1 . Keeping τ fixed, we choose s − τ so small that T V[τ,s]w̄(·) < 2δ0
and hence δ < 2δ0 . We need to improve the estimate (12.4.29) and thus we restrict t
to the interval [τ, r ].

By account of (12.4.22), (12.4.15) and (12.4.16),

(12.4.33) H(z(ξ(t)+ ε+, t), w(ξ(t)+ ε+, t), z̄(t), w̄(t))

≥ H(z+, w0, z̄(t), w̄(t))

−[λ(z+, w0)− λ(z̄(t), w̄(t))][z(ξ(t)+ ε+, t)− z+]
−3βδ[µ(z+, w0)− λ(z̄(t), w̄(t))][w(ξ(t)+ ε+, t)− w0].

We have already seen that, as ε ↓ 0, z̄(t) = z++o(1), w̄(t) = w++o(1). In particu-
lar, for ε small, λ(z+, w0)− λ(z̄(t), w̄(t)) > 0, by virtue of (12.1.5). Furthermore, if
ξ̂ (·) denotes the minimal backward 1-characteristic emanating from any point (x, t)
with ξ(t) < x < ξ(t)+2ε, by Lemma 12.4.2 z(x−, t) ≤ z(ξ̂ (τ )−, τ ) = z0+o(1), as
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ε ↓ 0. On the other hand, (12.4.12)1, with s ↓ τ , implies z0 − z+ ≤ bδ2
0 . Therefore,

as ε ↓ 0, z(ξ(t)+ ε+, t) ≤ z+ + bδ2
0 + o(1). Finally, we recall (12.4.28). Collecting

the above, we deduce from (12.4.33):

(12.4.34) H(z(ξ(t)+ ε+, t), w(ξ(t)+ ε+, t), z̄(t), w̄(t))

≥ H(z+, w0, z+, w+)− c6δ
3
0 + o(1), as ε ↓ 0.

To estimate the right-hand side of (12.4.34), let us visualize q as a function of
(z, η). By the chain rule and (12.2.1), we deduce qη = µ, qηη = µw/ηw . For
w ∈ [w0, w+] , qηη < 0. Hence

(12.4.35)
H(z+, w0, z+, w+) ≥ [µ(z+, w0)− λ(z+, w+)][η(z+, w0)− η(z+, w+)].

The next step is to show

(12.4.36)
r − τ

ε
≥ 1

µ(z0, w+)− λ(z+, w+)
+ o(1), as ε ↓ 0.

To see this, let us begin with

(12.4.37) ε = ψ(r)− ξ(r) =
∫ r

τ

[ψ̇(t)− ξ̇ (t)]dt

≤
∫ r

τ

[µ(z(ψ(t)−, t), w(ψ(t)−, t))− λ(z̄(t), w̄(t))]dt.

As shown above, z(ψ(t)−, t) ≤ z0+ o(1), as ε ↓ 0. On the other hand, the maximal
backward 2-characteristic ζ(·), emanating from a point (x, t) with ξ(t) < x < ψ(t),
will intersect the graph of ξ(·) at time σ ∈ (τ, r ] and hence, by Lemma 12.4.2,
w(x+, t) ≤ w̄(σ ). In particular, w(ψ(t)−, t) ≤ w+ + o(1), as ε ↓ 0. Since µz > 0
and µw > 0, (12.4.37) implies ε ≤ (r − τ)[µ(z0, w+)− λ(z+, w+)+ o(1)] whence
(12.4.36) immediately follows.

Once again we multiply (12.4.13) by 1/ε, let ε ↓ 0 and then also let s ↓ τ .
Combining (12.4.27), (12.4.34), (12.4.35) and (12.4.36), we conclude:

(12.4.38)

η(z+, w0)− η(z0, w0) ≤ µ(z0, w+)− µ(z+, w0)

µ(z0, w+)− λ(z+, w+)
[η(z+, w0)− η(z+, w+)] + c7δ

3
0 .

By virtue of (12.4.20), η(z+, w0) − η(z0, w0) ≥ z0 − z+ . The right-hand side of
(12.4.38) is bounded by aδ3

0 , because ηw = O(δ0). Therefore, z0 − z+ ≤ aδ3
0 .

Now z̄(τ−) ≤ z0, by account of (12.4.10)1 . Hence z̄(τ−) − z̄(τ+) ≤ aδ3
0 , which

establishes (12.4.2)1 .
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Since total variation is additive, we deduce immediately

12.4.5 Corollary. In (12.4.12)1 (or (12.4.12)2), osc[τ,s]w̄(·) (or osc[τ,s] z̄(·)) may be
replaced by the local oscillation of w̄(·) (or z̄(·)) in the interval [τ, s], which is mea-
sured by the maximum jump of w̄(·) (or z̄(·)) in [τ, s]. In particular, z̄(·) (or w̄(·)) is
a saltus function whose variation is concentrated in the set of points of jump discon-
tinuity of w̄(·) (or z̄(·)).

We have thus verified all the assertions of Theorem 12.4.1, except that (12.4.2)
has been established under the extraneous assumption w̄(τ ) < w̄(τ+). By Lemma
12.4.3, w̄(τ ) = w(ξ(τ)+, τ ) ≤ w(ξ(τ)−, τ ). On the other hand, when (ξ(τ ), τ ) is
a point of local regularity of the solution, Condition (c)1 of Definition 12.3.2 implies
w̄(τ+) = w(ξ(τ)−, τ ). Hence, by establishing Theorem 12.3.3, we will justify, in
particular, the assumption w̄(τ ) < w̄(τ+).

We thus turn to the proof of Theorem 12.3.3. Our main tool will be the estimate
(12.4.12). In what follows, δ will denote an upper bound of the oscillation of z and w
on the upper half-plane. We fix any point (x̄, t̄) of the upper half-plane and construct
the curves ξ±(·), ζ±(·), φ±(·) and ψ±(·), as described in Section 12.3 and sketched
in Fig. 12.3.1. The first step is to verify the part of Condition (a) of Definition 12.3.2
pertaining to the “western” sector SW .

12.4.6 Lemma. For θ sufficiently small, as (x, t) tends to (x̄, t̄) through the region
SW , defined by (12.3.2), (z(x±, t), w(x±, t)) converge to (zW , wW ), where we set
zW = z(x̄−, t̄), wW = w(x̄−, t̄).

Proof. We shall construct a sequence x0 < x1 < x2 < · · · < x̄ such that, for
m = 0, 1, 2, · · ·,
(12.4.39) oscSW∩{x>xm }z ≤ (3bθ)mδ, oscSW∩{x>xm }w ≤ (3bθ)mδ,

where b is the constant appearing in (12.4.12). Clearly, (12.4.39) will readily imply
the assertion of the proposition, provided 3bθ < 1.

For m = 0, (12.4.39) is satisfied with x0 = −∞. Arguing by induction, let us
assume x0 < x1 < · · · < xk−1 < x̄ have already been fixed so that (12.4.39) holds
for m = 0, · · · , k − 1. We proceed to determine xk . We fix t̂ ∈ (0, t̄) with t̄ − t̂ so
small that ζ−(t̂) > xk−1 and the oscillation of z(ζ−(τ )±, τ ) over the interval [t̂, t̄)
does not exceed 1

3 (3bθ)kδ. Next we locate x̂ ∈ (xk−1, ζ−(t̂)) with ζ−(t̂)− x̂ so small
that the oscillation of w(y−, t̂) over the interval (x̂, ζ−(t̂)] is similarly bounded by
1
3 (3bθ)kδ.

By the construction of φ−(·), the minimal backward 1-characteristic ξ(·) em-
anating from any point (x, t) in SW ∩ {x > xk} stays to the left of the graph of
φ−(·). At the same time, as (x, t) tends to (x̄, t̄) through SW , the maximal backward
2-characteristic ζ(·) emanating from it will tend to some backward 2-characteristic
emanating from (x̄, t̄), which necessarily lies to the right of the minimal character-
istic ζ−(·) or coincides with ζ−(·). It follows that when x̄ − xk is sufficiently small,
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ξ(·) will have to cross the graph of ζ−(·) at some time t∗ ∈ (t̂, t̄), while ζ(·) must
intersect either the graph of ζ−(·) at some time t̃ ∈ (t̂, t̄) or the t̂-time line at some
x̃ ∈ (x̂, ζ−(t̂)].

By virtue of Lemmas 12.4.2 and 12.4.3,

(12.4.40) z(x−, t) ≤ z(ξ(t∗)−, t∗) = z(ζ−(t∗)−, t∗) ≤ z(ζ−(t∗)+, t∗).

By account of (12.4.39), for m = k − 1, and the construction of t̂ , the oscillation of
w(ξ(τ)+, τ ) over the interval [t∗, t] does not exceed (3bθ)k−1δ + 1

3 (3bθ)kδ, which
in turn is majorized by 2(3bθ)k−1δ. Then (12.4.12)1 yields

(12.4.41)

z(x+, t) ≥ z(ξ(t∗)+, t∗)− 2bθ(3bθ)k−1δ = z(ζ−(t∗)+, t∗)− 2

3
(3bθ)kδ.

Recalling that the oscillation of z(ζ−(τ )+, τ ) over [t̂, t̄) is bounded by 1
3 (3bθ)kδ,

(12.4.40) and (12.4.41) together imply the bound (12.4.39) on the oscillation of z,
for m = k.

The argument for w is similar: Assume, for example, that ξ(·) intersects the t̂-
time line, rather than the graph of ζ−(·). By virtue of Lemmas 12.4.2 and 12.4.3,

(12.4.42) w(x+, t) ≤ w(ζ(t̂)+, t̂) = w(x̃+, t̂) ≤ w(x̃−, t̂).

The oscillation of z(ζ(τ )−, τ ) over the interval [t̂, t] does not exceed (3bθ)k−1δ, by
account of (12.4.39), for m = k − 1. Then (12.4.12)2 implies

(12.4.43) w(x−, t) ≥ w(ζ(t̂)−, t̂)− bθ(3bθ)k−1δ = w(x̃−, t̂)− 1

3
(3bθ)kδ.

The bound (12.4.39) on the oscillation of w, for m = k, now easily follows from
(12.4.42), (12.4.43) and the construction of t̂ and x̂ . The proof is complete.

The part of Condition (a) of Definition 12.3.2 pertaining to the “eastern” sector
SE is validated by a completely symmetrical argument. The next step is to check the
part of Condition (a) that pertains to the “southern” sector SS .

12.4.7 Lemma. For θ sufficiently small, as (x, t) tends to (x̄, t̄) through the region
SS , defined by (12.3.5), (z(x±, t), w(x±, t)) tend to a constant state (zS, wS).

Proof. Similar to the proof of Lemma 12.4.6, the aim is to find t0 < t1 < · · · < t̄
such that

(12.4.44) oscSS∩{t>tm }z ≤ (4bθ)mδ, oscSS∩{t>tm }w ≤ (4bθ)mδ,

for m = 0, 1, 2, · · ·. For m = 0, (12.4.44) is satisfied with t0 = 0. Arguing by induc-
tion, we assume t0 < t1 < · · · < tk−1 < t̄ have already been fixed so that (12.4.44)
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holds for m = 0, · · · , k − 1, and proceed to locate tk . We fix t̂ ∈ (tk−1, t̄) with t̄ − t̂
sufficiently small that the oscillation of z(ζ+(τ )−, τ ), w(ζ+(τ )+, τ ), z(ξ−(τ )−, τ ),
w(ξ−(τ )+, τ ) over the interval [t̂, t̄) does not exceed 1

4 (4bθ)kδ. Next we locate x̂ and
x̃ in the interval (ζ+(t̂), ξ−(t̂)) with x̂ − ζ+(t̂) and ξ−(t̂) − x̃ so small that the os-
cillation of z(y−, t̂) over the interval (x̃, ξ−(t̂)] and the oscillation of w(y+, t̂) over
the interval [ζ+(t̂), x̂) do not exceed 1

4 (4bθ)kδ.
Since ξ−(·) is the minimal backward 1-characteristic and ζ+(·) is the maximal

backward 2-characteristic emanating from (x̄, t̄), we can find tk ∈ (t̂, t̄) with t̄ − tk
so small that the following holds for any (x, t) in SS ∩ {t > tk}: (a) the minimal
backward 1-characteristic ξ(·) emanating from (x, t) must intersect either the t̂-time
line at x ′ ∈ (x̃, ξ−(t̂)] or the graph of ξ−(·) at time t ′ ∈ (t̂, t̄); and (b) the maximal
backward 2-characteristic ζ(·) emanating from (x, t) must intersect either the t̂-time
line at x∗ ∈ [ζ+(t̂), x̂) or the graph of ζ+(·) at some time t∗ ∈ (t̂, t̄). One then
repeats the argument employed in the proof of Lemma 12.4.6 to verify the (12.4.44)
is indeed satisfied for m = k, with tk determined as above. The proof is complete.

To conclude the validation of Condition (a) of Definition 12.3.2, it remains to
check the part pertaining to the “northern” sector SN .

12.4.8 Lemma. For θ sufficiently small, as (x, t) tends to (x̄, t̄) through the region
SN , defined by (12.3.4), (z(x±, t), w(x±, t)) tend to a constant state (zN , wN ).

Proof. For definiteness, we treat the typical configuration depicted in Fig. 12.3.1,
where ψ− ≡ ψ+ , so that ψ−(·) is a 2-shock of generally positive strength at t = t̄ ,
while φ−(t) < φ+(t), for t > t̄ , in which case, as we shall see in Lemma 12.4.10, it
is lim

t↓t̄
z(φ+(t)−, t) = lim

t↓t̄
z(φ+(t)+, t) and lim

t↓t̄
w(φ+(t)−, t) = lim

t↓t̄
w(φ−(t)+, t).

Only slight modifications in the argument are needed for the case of alternative fea-
sible configurations.

The aim is to find t0 > t1 > · · · > t̄ such that

(12.4.45) oscSN∩{t<tm }z ≤ a(abθ)mδ, oscSN∩{t<tm }w ≤ 3(abθ)mδ,

for m = 0, 1, 2, · · ·, where a ≥ 1 is a constant, independent of m and θ , to be
specified below. Clearly, (12.4.45) is satisfied for m = 0, with t0 = ∞. Arguing by
induction, we assume t0 > t1 > · · · > tk−1 > t̄ have already been fixed so that
(12.4.45) holds for m = 0, · · · , k − 1, and proceed to determine tk .

We select tk ∈ (t̄, tk−1) with tk − t̄ so small that the oscillation of z(φ+(τ )−, τ )
over the interval (t̄, tk) does not exceed a(abθ)k−1δ, the oscillation ofw(φ+(τ )−, τ )
over (t̄, tk) is bounded by (abθ)kδ, and the oscillation of U (ψ−(τ )−, τ ) over (t̄, tk)
is majorized by (abθ)2kδ2.

The bound (12.4.45) on the oscillation of w, for m = k, will be established by
the procedure employed in the proof of Lemmas 12.4.6 and 12.4.7. We thus fix any
(x, t) in SN ∩ {t < tk} and consider the maximal backward 2-characteristic ζ(·)
emanating from it, which intersects the graph of φ+(·) at some time t̃ ∈ (t̄, tk). By
virtue of Lemmas 12.4.2 and 12.4.3:
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(12.4.46) w(x+, t) ≤ w(ζ(t̃)+, t̃) = w(φ+(t̃)+, t̃) ≤ w(φ+(t̃)−, t̃).

By account of (12.4.45), for m = k − 1, and the construction of tk , the oscillation
of z(ζ(τ )−, τ ) over the interval [t̃, t] does not exceed 2a(abθ)k−1δ. Then (12.4.12)2
implies

(12.4.47) w(x−, t) ≥ w(ζ(t̃)−, t̃)− 2(abθ)kδ = w(φ+(t̃)−, t̃)− 2(abθ)kδ.

The inequalities (12.4.46), (12.4.47) coupled with the condition that the oscillation of
w(φ+(τ )−, τ ) over (t̄, tk) is majorized by (abθ)kδ readily yield the bound (12.4.45)
on the oscillation of w, for m = k.

To derive the corresponding bound on the oscillation of z requires an entirely
different argument. Let us define Ū = lim

t↓t̄
U (ψ−(t)−, t), with induced values (z̄, w̄)

for the Riemann invariants, and then set#z = z− z̄, #w = w−w̄. On SN ∩{t < tk},
as shown above,

(12.4.48) |#w| ≤ 3(abθ)kδ.

We construct the minimal backward 1-characteristic ξ(·), emanating from any
point (y, t) of approximate continuity in SN ∩ {t < tk}, which is intercepted by the
graph of ψ−(·) at time t∗ ∈ (t̄, tk). Lemma 12.4.2 implies z(y, t) ≤ z(ξ(t∗)−, t∗) =
z(ψ−(t∗)−, t∗) and this in conjunction with the selection of tk yields

(12.4.49) #z(y, t) ≤ c1(abθ)2kδ2 ,

for some constant c1 independent of k and θ .
We now fix any point of approximate continuity (x, t) in SN ∩ {t < tk}. We

consider, as above, the minimal backward 1-characteristic ξ(·) emanating from (x, t),
which is intercepted by the graph of ψ−(·) at time t∗ ∈ (t̄, tk), and integrate the
conservation law (12.1.1) over the region {(y, τ ) : t∗ < τ < t, ξ(τ ) < y < ψ−(τ )}.
By Green’s theorem,

(12.4.50)
∫ ψ−(t)

x
[U (y, t)− Ū ]dy

+
∫ t

t∗
{F(U (ψ−(τ )−, τ ))− F(Ū )− ψ̇−(τ )[U (ψ−(τ )−, τ )− Ū ]}dτ

−
∫ t

t∗
{F(U (ξ(τ )+, τ ))− F(Ū )− λ(U (ξ(τ )+, τ ))[U (ξ(τ )+, τ )− Ū ]}dτ = 0.

Applying repeatedly (7.3.12), we obtain, for U = U (z, w),

(12.4.51) U = Ū +#z R(Ū )+#wS(Ū )+ O(#z2 +#w2),

(12.4.52) F(U )− F(Ū )− λ(U )[U − Ū ] = #w[µ(Ū )− λ(Ū )]S(Ū )

−1

2
#z2λz(Ū )R(Ū )−#z#wλz(Ū )S(Ū )+O(#w2+|#z|3).
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We also note that the oscillation of w(ξ(τ)+, τ ) over the interval (t∗, t] is bounded
by 3(abθ)kδ and so, by account of (12.4.12)1 and Lemma 12.4.3, we have

(12.4.53) 0 ≤ #z(ξ(τ )+, τ )−#z(x, t) ≤ 3bθ(abθ)kδ ≤ 3(abθ)kδ,

for any τ ∈ (t∗, t).
We substitute from (12.4.51), (12.4.52) into (12.4.50) and then multiply the re-

sulting equation, from the left, by Dz(Ū ). By using (12.1.2), (12.4.49), (12.4.48),
(12.1.3), (12.4.53) and the properties of tk , we end up with

(12.4.54) #z2(x, t) ≤ c(abθ)2kδ2,

where c is a constant independent of (x, t), k and θ . Consequently, upon selecting
a = max{1, 2

√
c}, we arrive at the desired bound (12.4.45) on the oscillation of z,

for m = k. This completes the proof.

To establish Condition (b) of Definition 12.3.2, we demonstrate

12.4.9 Lemma. Let p�(·) and pr (·) be any backward 1-characteristics emanating
from (x̄, t̄), with p�(t) < pr (t), for t < t̄ . If θ is sufficiently small, then

(12.4.55) lim
t↑t̄

z(p�(t)+, t) ≤ lim
t↑t̄

z(pr (t)−, t),

(12.4.56) lim
t↑t̄

w(p�(t)+, t) ≥ lim
t↑t̄

w(pr (t)−, t).

Proof. Consider any sequence {(xn, tn)} with tn ↑ t̄ , as n → ∞, and xn in
(p�(tn), pr (tn)) so close to pr (tn) that lim

n→∞[w(xn+, tn)−w(pr (tn)−, tn)] = 0. Let

ζn(·) denote the maximal backward 2-characteristic emanating from (xn, tn), which
intersects the graph of p�(·) at time t∗n . By virtue of Lemma 12.4.2, it follows that
w(xn+, tn) ≤ w(ζn(t∗n )+, t∗n ) = w(p�(t∗n )+, t∗n ). Since t∗n ↑ t̄ , as n → ∞, this
establishes (12.4.56).

To verify (12.4.55), we begin with another sequence {(xn, tn)}, with tn ↑ t̄ , as
n →∞, and xn ∈ (p�(tn), pr (tn)) such that lim

n→∞[z(xn−, tn)−z(p�(tn)+, tn)]= 0.

We construct the minimal backward 1-characteristics ξn(·) and ξ∗n (·), emanating from
the points (xn, tn) and (pr (tn), tn), respectively. Because of minimality, we now have
ξn(t) ≤ ξ∗n (t) ≤ pr (t), for t ≤ tn . As n →∞, {ξn(·)} and {ξ∗n (·)} will converge,
uniformly, to shock-free minimal 1-separatrices (in the sense of Definition 10.3.3)
χ(·) and χ∗(·), emanating from (x̄, t̄), such that χ(t) ≤ χ∗(t) ≤ pr (t), for t ≤ t̄ . In
particular, χ̇(t̄−) ≥ χ̇∗(t̄−) and so

(12.4.57) lim
t↑t̄

λ(z(χ(t)±, t), w(χ(t)±, t)) ≥ lim
t↑t̄

λ(z(χ∗(t)±, t), w(χ∗(t)±, t)).
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Applying (12.4.56) with χ(·) and χ∗(·) in the roles of p�(·) and pr (·) yields

(12.4.58) lim
t↑t̄

w(χ(t)+, t) ≥ lim
t↑t̄

w(χ∗(t)−, t).

Since λz < 0 and λw < 0, (12.4.57) and (12.4.58) together imply

(12.4.59) lim
t↑t̄

z(χ(t)±, t) ≤ lim
t↑t̄

z(χ∗(t)±, t).

By virtue of Lemma 12.4.2, z(ξn(t)−, t) and z(ξ∗n (t)−, t) are nonincreasing func-
tions on [0, tn] and so

(12.4.60) lim
t↑t̄

z(χ(t)±, t) ≥ lim
t↑t̄

z(p�(t)+, t),

(12.4.61) lim
t↑t̄

z(χ∗(t)±, t) ≥ lim
t↑t̄

z(pr (t)−, t).

Thus, to complete the proof of (12.4.55), one has to show

(12.4.62) lim
t↑t̄

z(χ∗(t)±, t) = lim
t↑t̄

z(pr (t)−, t).

Since (12.4.62) is trivially true when χ∗ ≡ pr , we take up the case where
χ∗(t) < pr (t), for t < t̄ . We set S = {(x, t) : 0 ≤ t < t̄ , χ∗(t) < x < pr (t)}. We
shall verify (12.4.62) by constructing t0 < t1 < · · · < t̄ such that

(12.4.63) oscS∩{t>tm }z ≤ (3bθ)mδ, oscS∩{t>tm }w ≤ (3bθ)mδ,

for m = 0, 1, 2, · · ·.
For m = 0, (12.4.63) is satisfied with t0 = 0. Arguing by induction, we assume

t0 < t1 < · · · < tk−1 < t̄ have already been fixed so that (12.4.63) holds for
m = 0, · · · , k − 1, and proceed to determine tk . We fix t̂ ∈ (tk−1, t̄) with t̄ − t̂ so
small that the oscillation of z(χ∗(τ )±, τ ) and w(χ∗(τ )−, τ ) over the interval [t̂, t̄)
does not exceed 1

3 (3bθ)kδ. Next we locate x̂ ∈ (χ∗(t̂), pr (t̂))with x̂−χ∗(t̂) so small
that the oscillation of z(y+, t̂) over the interval [χ∗(t̂), x̂) is similarly bounded by
1
3 (3bθ)kδ.

By the construction of χ∗(·), if we fix tk ∈ (t̂, t̄) with t̄ − tk sufficiently small,
then the minimal backward 1-characteristic ξ(·), emanating from any point (x, t) in
S ∩ {t > tk}, will intersect either the graph of χ∗(·) at some time t∗ ∈ (t̂, t̄) or the
t̂-time line at some x∗ ∈ (χ∗(t̂), x̂); while the maximal backward 2-characteristic
ζ(·), emanating from (x, t), will intersect the graph of χ∗(·) at some time t̃ ∈ (t̂, t̄).

Assume, for definiteness, that ξ(·) intersects the t̂-time line. By virtue of Lemmas
12.4.2 and 12.4.3,

(12.4.64) z(x−, t) ≤ z(ξ(t̂)−, t̂) = z(x∗−, t̂) ≤ z(x∗+, t̂).

By account of (12.4.63), for m = k − 1, the oscillation of w(ξ(τ)+, τ ) over the
interval [t̂, t] does not exceed (3bθ)k−1δ. It then follows from (12.4.12)1
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(12.4.65) z(x+, t) ≥ z(ξ(t̂)+, t̂)− bθ(3bθ)k−1δ = z(x∗+, t̂)− 1

3
(3bθ)kδ.

Recalling that the oscillation of z(y+, t̂) over [χ∗(t̂), x̂) and the oscillation of
z(χ∗(τ )+, τ ) over [t̂, t̄) are bounded by 1

3 (3bθ)kδ, (12.4.64) and (12.4.65) together
imply the bound (12.4.63) on the oscillation of z, for m = k.

The argument for w is similar: On the one hand, Lemmas 12.4.2 and 12.4.3 give

(12.4.66) w(x+, t) ≤ w(ζ(t̃)+, t̃) = w(χ∗(t̃)+, t̃) ≤ w(χ∗(t̃)−, t̃).

On the other hand, considering that the oscillation of z(ζ(τ )−, τ ) over the interval
[t̃, t] is bounded by (3bθ)k−1δ+ 1

3 (3bθ)kδ, which in turn is smaller than 2(3bθ)k−1δ,
(12.4.12)2 yields

(12.4.67) w(x−, t) ≥ w(ζ(t̃)−, t̃)− 2bθ(3bθ)k−1δ = w(χ∗(t̃)−, t̃)− 2

3
(3bθ)kδ.

Since the oscillation of w(χ∗(τ )−, τ ) over [t̂, t̄) does not exceed 1
3 (3bθ)kδ, the in-

equalities (12.4.66) and (12.4.67) together imply the bound (12.4.63) on the oscilla-
tion of w, for m = k. The proof of the proposition is now complete.

In particular, one may apply Lemma 12.4.9 with ξ(·) and/or ξ∗(·) in the role
of p�(·) or pr (·), so that, by virtue of Lemma 12.4.3, the inequalities (12.3.6)1 and
(12.3.7)1 follow from (12.4.55) and (12.4.56). We have thus verified condition (b)1
of Definition 12.3.2. Condition (b)2 may be validated by a completely symmetrical
argument.

It remains to check Condition (c) of Definition 12.3.2. It will suffice to verify
(c)1 , because then (c)2 will readily follow by a similar argument. In the shock case,
φ− ≡ φ+ , the required inequalities zW ≤ zN and wW ≥ wN are immediate corol-
laries of Lemma 12.4.3. Thus, one need only consider the rarefaction wave case.

12.4.10 Lemma. Let φ−(t) < φ+(t), for t > t̄ . For θ sufficiently small, as (x, t)
tends to (x̄, t̄) in the region W = {(x, t) : t > t̄, φ−(t) < x < φ+(t)} , w(x±, t)
tend to wW . Furthermore, (12.3.8)1 holds for any 1-characteristics p�(·) and pr (·),
with φ−(t) ≤ p�(t) ≤ pr (t) ≤ φ+(t), for t > t̄ .

Proof. Consider (x, t) that tend to (x̄, t̄) through W . The maximal backward 2-
characteristic ζ(·) emanating from (x, t) is intercepted by the t̄-time line at ζ(t̄),
which tends from below to x̄ . It then readily follows on account of Lemma 12.4.2 that
lim supw(x±, t) ≤ wW . To verify the assertion of the proposition, one needs to
show that lim infw(x±, t) = wW . The plan is to argue by contradiction and so we
make the hypothesis lim infw(x±, t) = wW − β, with β > 0.

We fix t̂ > t̄ with t̂ − t̄ so small that

(12.4.68) wW − 2β < w(x±, t) ≤ wW + β, t̄ < t < t̂ , φ−(t) < x < φ+(t)

and also the oscillation of the functions z(φ−(t)±, t) and w(φ−(t)±, t) over the
interval (t̄, t̂) does not exceed 1

2β.
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We consider the maximal backward 2-characteristic ζ(·) emanating from any
point (x̃, t̃), with t̄ < t̃ < t̂, φ−(t̃) < x < φ+(t̃), and intersecting the graph of φ−(·)
at time t∗ ∈ (t̄, t̂). We demonstrate that when θ is sufficiently small, independent of
β, then

(12.4.69) w(ζ(t)−, t)− w(x̃−, t̃) ≤ β

4
, t∗ < t < t̃ .

Indeed, if (12.4.69) were false, one may find t1 , t2 , with t∗ < t1 < t2 ≤ t̃ and t2− t1
arbitrarily small, such that

(12.4.70) |z(ζ(t1)±, t1)− z(ζ(t2)±, t2)| > β

4bθ
.

In particular, if ξ1(·) and ξ2(·) denote the minimal backward 1-characteristics that
emanate from the points (ζ(t1), t1) and (ζ(t2), t2), respectively, and thus necessarily
pass through the point (x̄, t̄), then t1 and t2 may be fixed so close that

(12.4.71) 0 ≤
∫ t1

0
λ(z(ξ2(t)−, t), w(ξ2(t)−, t))dt

−
∫ t1

0
λ(z(ξ1(t)−, t), w(ξ1(t)−, t))dt ≤ βt0 .

By virtue of (12.4.68), |w(ξ2(t)−, t)− w(ξ1(t)−, t)| < 3β, for all t in (t̄, t1). Also,
on account of Lemma 12.4.2, (12.4.12)1 and (12.4.68), we have

(12.4.72)

⎧⎨⎩ z(ζ(t1)−, t1) ≤ z(ξ1(t)−, t) = z(ξ1(t)+, t) ≤ z(ζ(t1)+, t1)+ 3βbθ,

z(ζ(t2)−, t2) ≤ z(ξ2(t)−, t) = z(ξ2(t)+, t) ≤ z(ζ(t2)+, t2)+ 3βbθ,

for almost all t in (t̄, t1). It is now clear that, for θ sufficiently small, (12.4.72) ren-
ders the inequalities (12.4.70) and (12.4.71) incompatible. This provides the desired
contradiction that verifies (12.4.69).

By Lemma 12.4.6, and the construction of t̂ ,

(12.4.73) lim
t↓t̄

z(φ−(t)−, t) = zW , lim
t↓t̄

w(φ−(t)−, t) = wW ,

(12.4.74) |z(φ−(t∗)−, t∗)− zW | ≤ β

2
, |w(φ−(t∗)−, t∗)− wW | ≤ β

2
.

The next step is to establish an estimate

(12.4.75) |z(φ−(t∗)−, t∗)− lim
t↓t∗

z(ζ(t)−, t)| ≤ aβ,

for some constant a independent of θ and β. Let
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(12.4.76) lim
t↓t̄

z(φ−(t)+, t) = zW + γ,

with γ ≥ 0. We fix t3 ∈ (t∗, t̂) and x3 ∈ (φ−(t3), φ+(t3)), with x3 − φ−(t3) so small
that

(12.4.77) |z(x3±, t3)− zW − γ | ≤ β.

By also choosing t3 − t∗ small, the minimal backward 1-characteristic ξ(·), emanat-
ing from the point (x3, t3), will intersect the graph of ζ(·) at time t4 , arbitrarily close
to t∗. By Lemma 12.4.2, z(ζ(t4)−, t4) ≥ z(x3−, t3). On the other hand, by (12.4.68),
Lemma 12.4.4 implies z(ζ(t4)+, t4) ≤ z(x3+, t3)+3bθβ. Hence, for θ so small that
6bθ ≤ 1, we have |zW + γ − lim

t↓t∗
z(ζ(t)−, t)| ≤ 3

2β. In conjunction with (12.4.74),
this yields

(12.4.78) |z(φ−(t∗)−, t∗)− lim
t↓t∗

z(ζ(t)−, t)| ≤ 2β + γ.

Thus, to verify (12.4.75), one has to show γ ≤ cβ.
The characteristic ξ(·) lies to the right of φ−(·) and passes through the point

(x̄, t̄), so φ̇−(t̄+) ≤ ξ̇ (t̄+). On account of (12.4.73), (12.4.76), (8.2.1), (8.2.2),
(7.3.12), (8.2.3), and (12.1.2), we conclude

(12.4.79) φ̇−(t̄+) = λ(zW , wW )+ 1
2λz(zW , wW )γ + O(γ 2).

To estimate ξ̇ (t̄+) = lim
t↓t̄

λ(z(ξ(t)−, t), w(ξ(t)−, t)), we recall λz < 0, λw < 0,

z(ξ(t)−, t) ≥ z(x3−, t3) ≥ zW + γ − β, w(ξ(t)−, t) ≥ wW − 2β, and so

(12.4.80)

ξ̇ (t̄+) ≤ λ(zW + γ − β,wW − 2β) = λ(zW , wW )+ λz(zW , wW )γ + O(β + γ 2).

Therefore, γ = O(β) and (12.4.75) follows from (12.4.78).
By virtue of Lemma 12.4.4, (12.4.75) yields

(12.4.81) w(φ−(t∗)−, t∗)− lim
t↓t∗

w(ζ(t)−, t) ≤ abθβ.

Hence, if θ ≤ (8ab)−1, then (12.4.69), (12.4.81) and (12.4.74) together imply
wW − w(x̃−, t̃) ≤ 7

8β, for all (x̃, t̃) in W ∩ {t < t̂}. This provides the desired
contradiction to the hypothesis lim infw(x±, t) = wW − β, with β > 0, thus veri-
fying the assertion that, as (x, t) tends to (x̄, t̄) through W, w(x±, t) tend to wW .

We now focus attention on φ+(·). We already have lim
t↓t̄

w(φ+(t)−, t) = wW ,

lim
t↓t̄

z(φ+(t)+, t) = zN , lim
t↓t̄

w(φ+(t)+, t) = wN . We set z0 = lim
t↓t̄

z(φ+(t)−, t).

Then λ(z0, wW ) ≥ φ̇+(t̄+) ≥ λ(zN , wN ). The aim is to show that φ̇+(t̄+) =
λ(z0, wW ) so as to infer zN = z0 , wN = wW . We consider the minimal backward
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1-characteristic ξ(·) emanating from the point (φ+(t5), t5), where t5− t̄ is very small.
The assertion zN = z0 , wN = wW is obviously true when ξ ≡ φ+, so let us assume
that ξ(t) < φ+(t) for t ∈ (t̄, t5). Then |w(ξ(t)+, t) − wW | is very small on (t̄, t5).
Moreover, by Lemma 12.4.4, the oscillation of z(ξ(t)+, t) over the interval (t̄, t5)
is very small so this function takes values near z0 . Hence, t5 − t̄ sufficiently small
renders ξ̇ (t̄+) arbitrarily close to λ(z0, wW ). Since ξ̇ (t̄+) ≤ φ̇+(t̄+), we conclude
that φ̇+(t̄+) ≥ λ(z0, wW ) and thus necessarily φ̇+(t̄+) = λ(z0, wW ).

Consider now any forward 1-characteristic χ(·) issuing from (x̄, t̄), such that
φ−(t) ≤ χ(t) ≤ φ+(t), for t > t̄ . Since lim

t↓t̄
w(χ(t)−, t) and lim

t↓t̄
w(χ(t)+, t) take

the same value, namely wW , lim
t↓t̄

z(χ(t)−, t) and lim
t↓t̄

z(χ(t)+, t) must also take the

same value, say zχ . In particular, χ̇ (t̄+) = λ(zχ ,wW ). Therefore, if p�(·) and pr (·)
are any 1-characteristics, with φ−(t) ≤ p�(t) ≤ pr (t) ≤ φ+(t), for t > t̄ , the
inequalities φ̇−(t̄+) ≤ ṗ�(t̄+) ≤ ṗr (t̄+) ≤ φ̇+(t̄+), ordering the speeds of propa-
gation at t̄ , together with λz < 0, imply (12.3.8)1. The proof is complete.

We have now completed the proof of Theorem 12.3.3, on local regularity, as
well as of Theorem 12.4.1, on the laws of propagation of Riemann invariants along
extremal backward characteristics. These will serve as the principal tools for deriving
a priori estimates leading to a description of the long time behavior of solutions.

Henceforth, our solutions will be normalized on (−∞,∞) × (0,∞) by defin-
ing (z(x, t), w(x, t)) = (zS, wS), namely the “southern” limit at (x, t). The trace
of the solution on any space-like curve is then defined as the restriction of the nor-
malized (z, w) to this curve. In particular, this renders the trace of (z, w) along the
minimal backward 1-characteristic and the maximal backward 2-characteristic, em-
anating from any point (x̄, t̄), continuous from the left on (0, t̄].

12.5 Bounds on Solutions

We consider a solution, normalized as above, bounded by

(12.5.1) |z(x, t)| + |w(x, t)| < 2δ, −∞ < x <∞ , 0 < t <∞,

where δ is a small positive constant. It is convenient to regard the initial data as multi-
valued functions, allowing (z(x, 0), w(x, 0)) to take as values any state in the range
of the solution of the Riemann problem with end-states (z(x±, 0), w(x±, 0)). The
supremum and total variation are measured for the selection that maximizes these
quantities. We then assume

(12.5.2) sup(−∞,∞) |z(·, 0)| + sup(−∞,∞)|w(·, 0)| ≤ δ,

(12.5.3) T V(−∞,∞)z(·, 0)+ T V(−∞,∞)w(·, 0) < aδ−1 ,

where a is a small constant, to be fixed later, independently of δ. Thus, there is a
tradeoff, allowing for arbitrarily large total variation at the expense of keeping the
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oscillation sufficiently small. The aim is to establish bounds on the solution. In what
follows, c will stand for a generic constant that depends solely on F . The principal
result is

12.5.1 Theorem. Consider any space-like curve t = t∗(x), x� ≤ x ≤ xr , in the
upper half-plane, along which the trace of (z, w) is denoted by (z∗, w∗). Then

(12.5.4)1 T V[x�,xr ]z∗(·) ≤ T V[ξ�(0),ξr (0)]z(·, 0)

+ cδ2{T V[ζ�(0),ξr (0)]z(·, 0)+ T V[ζ�(0),ξr (0)]w(·, 0)},

(12.5.4)2 T V[x�,xr ]w∗(·) ≤ T V[ζ�(0),ζr (0)]w(·, 0)

+cδ2{T V[ζ�(0),ξr (0)]z(·, 0)+ T V[ζ�(0),ξr (0)]w(·, 0)},
where ξ�(·), ξr (·) are the minimal backward 1-characteristics and ζ�(·), ζr (·) are
the maximal backward 2-characteristics emanating from the endpoints (x�, t�) and
(xr , tr ) of the graph of t∗(·).

Since generalized characteristics are space-like curves, one may combine the
above proposition with Theorem 12.4.1 and the assumptions (12.5.1), (12.5.3) to
deduce the following corollary:

12.5.2 Theorem. For any point (x, t) of the upper half-plane:

(12.5.5)1 sup(−∞,∞) z(·, 0) ≥ z(x, t) ≥ inf(−∞,∞) z(·, 0)− caδ,

(12.5.5)2 sup(−∞,∞) w(·, 0) ≥ w(x, t) ≥ inf(−∞,∞) w(·, 0)− caδ.

Thus, on account of our assumption (12.5.2) and by selecting a sufficiently small,
we secure a posteriori that the solution will satisfy (12.5.1).

The task of proving Theorem 12.5.1 is quite laborious and will require exten-
sive preparation. In the course of the proof we shall verify that certain quantities
measuring the total amount of wave interaction are also bounded.

Consider a 1-shock joining the state (z−, w−), on the left, with the state
(z+, w+), on the right. The jumps #z = z+ − z− and #w = w+ − w− are re-
lated through an equation

(12.5.6)1 #w = f (#z; z−, w−)

resulting from the reparametrization of the 1-shock curve emanating from the state
(z−, w−). In particular, f and its first two derivatives with respect to #z vanish at
#z = 0 and hence f as well as ∂ f/∂z− and ∂ f/∂w− are O(#z3) as #z → 0.

Similarly, the jumps #w = w+ − w− and #z = z+ − z− of the Riemann
invariants across a 2-shock joining the state (z−, w−), on the left, with the state
(z+, w+), on the right, are related through an equation
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(12.5.6)2 #z = g(#w; z+, w+)

resulting from the reparametrization of the backward 2-shock curve (see Section
9.3) that emanates from the state (z+, w+). Furthermore, g together with ∂g/∂z+
and ∂g/∂w+ are O(#w3) as #w→ 0.

For convenience, points of the upper half-plane will be labelled by single capital
letters I , J , etc. With any point I = (x̄, t̄) we associate the special characteris-
tics φ I±, ψ I±, ξ I±, ζ I± emanating from it, as discussed in Section 12.3 and depicted
in Fig. 12.3.1, and identify the limits (z I

W , w
I
W ), (z

I
E , w

I
E ), (z

I
N , w

I
N ), (z

I
S, w

I
S) as I

is approached through the sectors S I
W ,S I

E ,S I
N ,S I

S . From I emanate minimal 1-
separatrices pI± and maximal 2-separatrices q I± constructed as follows: pI− (or q I+) is
simply the minimal (or maximal) backward 1-characteristic ξ I− (or 2-characteristic
ζ I+) emanating from I ; while pI+ (or q I−) is the limit of a sequence of minimal (or
maximal) backward 1-characteristics ξn (or 2-characteristics ζn) emanating from
points (xn, tn) in S I

E (or S I
W ), where (xn, tn) → (x̄, t̄), as n → ∞. We introduce

the notation

(12.5.7)1 FI = {(x, t) : 0 ≤ t < t̄, pI−(t) ≤ x ≤ pI+(t)},

(12.5.7)2 GI = {(x, t) : 0 ≤ t < t̄, q I−(t) ≤ x ≤ q I+(t)}.
By virtue of Theorems 12.3.3 and 12.4.1,

(12.5.8)1 lim
t↑t̄

z(pI−(t), t) = z I
S , lim

t↑t̄
z(pI+(t), t) = z I

E ,

(12.5.8)2 lim
t↑t̄

w(q I−(t), t) = w I
W , lim

t↑t̄
w(q I+(t), t) = w I

S .

The cumulative strength of 1-waves and 2-waves, incoming at I , is respectively
measured by

(12.5.9) #z I = z I
E − z I

S , #w I = w I
S − w I

W .

If the incoming 1-waves alone were allowed to interact, they would produce an out-
going 1-shock with w-amplitude

(12.5.10)1 #w I∗ = f (#z I ; z I
S, w

I
S),

together with an outgoing 2-rarefaction wave. Consequently, |#w I∗| exceeds the cu-
mulative w-strength |w I

E − w I
S| of incoming 1-waves. Similarly, the interaction of

incoming 2-waves alone would produce an outgoing 2-shock with z-amplitude

(12.5.10)2 #z I∗ = g(#w I ; z I
S, w

I
S),

exceeding their cumulative z-strength z I
S − z I

W . Note that if z I
S = z I

W , w I
S = w I

W
then #w I∗ = w I

N − w I
W , while if z I

S = z I
E , w

I
S = w I

E then #z I∗ = z I
E − z I

N .
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We visualize the upper half-plane as a partially ordered set under the relation
induced by the rule I < J whenever J is confined between the graphs of the minimal
1-separatrices pI− and pI+ emanating from I . In particular, when J lies strictly to
the right of the graph of pI− , then I lies on the graph of the 1-characteristic φ J−
emanating from J . Thus I < J implies that I always lies on the graph of a forward
1-characteristic issuing from J , that is either φ J− or pI− . This special characteristic
will be denoted by χ J− .

We consider 1-characteristic trees M consisting of a finite set of points of the
upper half-plane, called nodes, with the following properties: M contains a unique
minimal node I0 , namely the root of the tree. Furthermore, if J and K are any two
nodes, then the point I of confluence of the forward 1-characteristics χ J− and χK− ,
which pass through the root I0 , is also a node of M. In general, M will contain
several maximal nodes (Fig. 12.5.1).

I0

pIJ
+

pI

 I

p-
I

J

pIJ
-

K

+

Fig. 12.5.1

Every node J �= I0 is consecutive to some node I , namely, its strict greatest lower
bound relative to M. The set of nodes that are consecutive to a node I is denoted
by CI . When J is consecutive to I , the pair (I, J ) is called a link. A finite sequence
{I0, I1, · · · , Im} of nodes such that I j+1 is consecutive to I j , for j = 0, · · · ,m − 1,
which connects the root I0 with some maximal node Im , constitutes a chain of M.

If (I, J ) is a link of M, so that I = (χ J−(t̄), t̄), we set

(12.5.11)1 z I J± = lim
t↑t̄

z(χ J−(t)±, t), w I J± = lim
t↑t̄

w(χ J−(t)±, t),

(12.5.12)1 #z I J = z I J+ − z I J− , #w I J = w I J+ − w I J− .

In particular,
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(12.5.13)1 #w I J = f (#z I J ; z I J− , w I J− ).

With (I, J ) we associate minimal 1-separatrices pI J± , emanating from I , constructed
as follows: pI J− is the t ↑ t̄ limit of the family ξt of minimal backward 1-
characteristics emanating from the point (χ J−(t), t); while pI J+ is the limit of a se-
quence of minimal backward 1-characteristics ξn emanating from points (xn, tn) such
that, as n →∞, tn ↑ t̄, xn−χ J−(tn) ↓ 0 and z(xn−, tn)→ z I J+ , w(xn−, tn)→ w I J+ .
Notice that the graphs of pI J± are confined between the graph of pI− and the graph of
pI+ ; see Fig. 12.5.1. In turn, the graphs of pJ± , as well as the graphs of pK± , for any
K > J , are confined between the graph of pI J− and the graph of pI J+ . Furthermore,

(12.5.14)1 lim
t↑t̄

z(pI J− (t), t) = z I J− , lim
t↑t̄

z(pI J+ (t), t) = z I J+ .

Indeed, the first of the above two equations has already been established in the con-
text of the proof of Lemma 12.4.9 (under different notation; see (12.4.62)); while the
second may be verified by a similar argument.

We now set

(12.5.15)1 P1(M) = −
∑
I∈M

[#w I∗ −
∑
J∈CI

#w I J ] ,

(12.5.16)1 Q1(M) =
∑
I∈M

∑
J∈CI

|#w I J −#w J∗ | .

By virtue of (12.3.7)1 ,

(12.5.17)1
∑
J∈CI

#w I J ≥ w I
E − w I

S ≥ #w I∗ ,

so that both P1 and Q1 are nonnegative.
With subsets F of the upper half-plane, we associate functionals

(12.5.18)1 P1(F) = supJ
∑
M∈J

P1(M),

(12.5.19)1 Q1(F) = supJ
∑
M∈J

Q1(M),

where J denotes any (finite) collection of 1-characteristic trees M contained in F ,
which are disjoint, in the sense that the roots of any pair of them are non-comparable.
One may view P1(F) as a measure of the amount of 1-wave interactions inside F ,
and Q1(F) as a measure of strengthening of 1-shocks induced by interaction with
2-waves.
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We introduce corresponding notions for the 2-characteristic family: I < J when-
ever J is confined between the graphs of the maximal 2-separatrices q I− and q I+ ema-
nating from I . In that case, I lies on the graph of a forward 2-characteristic χ J+ issu-
ing from J , namely either ψ J+ or q I+ . One may then construct 2-characteristic trees
N , with nodes, root, links and chains defined as above. In the place of (12.5.11)1 ,
(12.5.12)1 and (12.5.13)1 , we now have

(12.5.11)2 z I J± = lim
t↑t̄

z(χ J+(t)±, t), w I J± = lim
t↑t̄

w(χ J+(t)±, t),

(12.5.12)2 #z I J = z I J+ − z I J− , #w I J = w I J+ − w I J− ,

(12.5.13)2 #z I J = g(#w I J ; z I J+ , w I J+ ).

With links (I, J ) we associate maximal 2-separatrices q I J± , emanating from I , in
analogy to pI J± . The graphs of q I J± are confined between the graphs of q I− and q I+ .
On the other hand, the graphs of q J± are confined between the graphs of q I J− and q I J+ .
In the place of (12.5.14)1 ,

(12.5.14)2 lim
t↑t̄

w(q I J− (t), t) = w I J− , lim
t↑t̄

w(q I J+ (t), t) = w I J+ .

Analogs of (12.5.15)1 and (12.5.16)1 are also defined:

(12.5.15)2 P2(N ) =
∑
I∈N

[#z I∗ −
∑
J∈CI

#z I J ] ,

(12.5.16)2 Q2(N ) =
∑
I∈N

∑
J∈CI

|#z I J −#z J∗ | ,

which are nonnegative since

(12.5.17)2
∑
J∈CI

#z I J ≤ z I
S − z I

W ≤ #z I∗.

This induces functionals analogous to P1 and Q1:

(12.5.18)2 P2(F) = supJ
∑
N∈J

P2(N ),

(12.5.19)2 Q2(F) = supJ
∑
N∈J

Q2(N ).

12.5.3 Lemma. Let F1, · · · ,Fm be a collection of subsets of a set F contained in the
upper half-plane. Suppose that for any I ∈ Fi and J ∈ F j that are comparable, say



374 XII Genuinely Nonlinear Systems of Two Conservation Laws

I < J , the arc of the characteristic χ J− (or χ J+) which connects J to I is contained
in F . Then

(12.5.20)1

m∑
i=1

{P1(Fi )+Q1(Fi )} ≤ k{P1(F)+Q1(F)},

or

(12.5.20)2

m∑
i=1

{P2(Fi )+Q2(Fi )} ≤ k{P2(F)+Q2(F)},

where k is the smallest positive integer with the property that any k+1 of F1, · · · ,Fm

have empty intersection.

Proof. It will suffice to verify (12.5.20)1 . With each i = 1, · · · ,m, we associate a
family Ji of disjoint 1-characteristic trees M contained in Fi . Clearly, by adjoining
if necessary additional nodes contained in F , one may extend the collection of the
Ji into a single family J of disjoint trees contained in F . The contribution of the
additional nodes may only increase the value of P1 and Q1 . Therefore,

(12.5.21)
m∑

i=1

∑
M∈Ji

{P1(M)+Q1(M)} ≤ k
∑
M∈J

{P1(M)+Q1(M)},

where the factor k appears on the right-hand side because the same node or link may
be counted up to k times on the left-hand side. Recalling (12.5.18)1 and (12.5.19)1 ,
we arrive at (12.5.20)1 . The proof is complete.

12.5.4 Lemma. Consider a space-like curve t = t̄(x), x̂ ≤ x ≤ x̃ , in the upper
half-plane. The trace of (z, w) along t̄ is denoted by (z̄, w̄). Let p̂(·) and p̃(·)
(or q̂(·) and q̃(·)) be minimal (or maximal) 1-separatrices (or 2-separatrices)
emanating from the left endpoint (x̂, t̂) and the right endpoint (x̃, t̃) of the graph of
t̄ . The trace of z (or w) along p̂ and p̃ (or q̂ and q̃) is denoted by ẑ and z̃ (or ŵ and
w̃). Let F (or G) stand for the region bordered by the graphs of p̂, p̃ (or q̂, q̃), t̄ and
the x-axis. Then

(12.5.22)1

|z̃(t̃−)− ẑ(t̂−)| ≤ |z̃(0+)− ẑ(0+)| + cδ2T V[x̂,x̃]w̄(·)+ P2(F)+Q2(F),

or

(12.5.22)2

|w̃(t̃−)− ŵ(t̂−)| ≤ |w̃(0+)− ŵ(0+)| + cδ2T V[x̂,x̃] z̄(·)+ P1(G)+Q1(G).

Proof. It will suffice to verify (12.5.22)1 . We write
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(12.5.23) z̃(t̃−)− ẑ(t̂−) = [z̃(0+)− ẑ(0+)]+[z̃(t̃−)− z̃(0+)]−[ẑ(t̂−)− ẑ(0+)].
By virtue of Theorem 12.4.1,

(12.5.24)

⎧⎨⎩ ẑ(t̂−)− ẑ(0+) =∑[ẑ(τ+)− ẑ(τ−)],

z̃(t̃−)− z̃(0+) =∑[z̃(τ+)− z̃(τ−)],
where the summations run over the countable set of jump discontinuities of ẑ(·) and
z̃(·).

By account of Theorem 12.3.3, if z̄(·) is the trace of z along any minimal 1-
separatrix which passes through some point K = (x, τ ), then

(12.5.25) zK
S − zK

W ≤ z̄(τ−)− z̄(τ+) ≤ #zK∗ .

Starting out from points K of jump discontinuity of ẑ(·) on the graph of p̂, we
construct the characteristic φK− until it intersects the graph of either p̃ or t̄ . This
generates families of disjoint 2-characteristic trees N , with maximal nodes, say
K1 = (x1, τ1), · · · , Km = (xm, τm) lying on the graph of p̂ and root K0 = (x0, τ0)

lying on the graph of either p̃ or t̄ . In the former case, on account of (12.5.25),
(12.5.15)2 and (12.5.16)2 ,

(12.5.26) |z̃(τ0+)− z̃(τ0−)−
m∑
�=1

[ẑ(τ�+)− ẑ(τ�−)]| ≤ P2(N )+Q2(N ).

On the other hand, if K0 lies on the graph of t̄ ,

(12.5.27)
∑

J∈CK0

#zK0 J ≤ zK0
S − zK0

W ≤ cδ2|wK0
S − w

K0
W |,

and so

(12.5.28) | −
m∑
�=1

[ẑ(τ�+)− ẑ(τ�−)]| ≤ cδ2|wK0
S − w

K0
W | + P2(N )+Q2(N ).

Suppose that on the graph of p̃ there still remain points K0 of jump discontinuity
of z̃(·) which cannot be realized as roots of trees with maximal nodes on the graph of
p̂. We then adjoin (trivial) 2-characteristic trees N that contain a single node, namely
such a K0 = (x0, τ0), in which case

(12.5.29) |z̃(τ0+)− z̃(τ0−)| ≤ P2(N )+Q2(N ).

Recalling (12.5.23) and tallying the jump discontinuities of z̄1(·) and z̄2(·), as
indicated in (12.5.24), according to (12.5.26), (12.5.28) or (12.5.29), we arrive at
(12.5.22)1 . The proof is complete.

12.5.5 Lemma. Under the assumptions of Theorem 12.5.1,
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(12.5.30)1

T V[x�,xr ]z∗(·) ≤ T V[ξ�(0),ξr (0)]z(·, 0)+ cδ2T V[x�,xr ]w∗(·)+ 2{P2(F)+Q2(F)},
(12.5.30)2

T V[x�,xr ]w∗(·) ≤ T V[ζ�(0),ζr (0)]w(·, 0)+ cδ2T V[x�,xr ]z∗(·)+ 2{P1(G)+Q1(G)},
where F denotes the region bordered by the graphs of ξ� , ξr , t∗, and the x-axis,

while G stands for the region bordered by the graphs of ζ� , ζr , t∗, and the x-axis.

Proof. It will suffice to establish (12.5.30)1 . We have to estimate

(12.5.31) T V[x�,xr ]z∗(·) = sup
m∑

i=1

|zLi
S − zLi−1

S |,

where the supremum is taken over all finite sequences {L0, · · · , Lm} of points along
t∗ (Fig. 12.5.2).

L
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ξ
ξ

ζ ξ
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i-1

i-1

i

i

r r

t*(x)

(x , tl l )

(x , t )r r

Fig. 12.5.2

We construct the minimal backward 1-characteristics ξi emanating from
Li = (xi , ti ), i = 0, · · · ,m, and let zi (·) denote the trace of z along
ξi (·). We apply Lemma 12.5.4 with t̄ the arc of t∗ with endpoints Li−1 and
Li ; x̂ = xi−1 ; x̃ = xi ; p̂ = ξi−1 ; p̃ = ξi ; and F = Fi , namely the region bordered
by the graphs of ξi−1 , ξi , t∗, and the x-axis. The estimate (12.5.22)1 then yields

(12.5.32)

|zLi
S − zLi−1

S | ≤ |zi (0+)− zi−1(0+)| + cδ2T V[xi−1,xi ]w∗(·)+ P2(Fi )+Q2(Fi ).

Combining (12.5.31), (12.5.32) and Lemma 12.5.3, we arrive at (12.5.30)1. The
proof is complete.

12.5.6 Lemma. Let M (or N ) be a 1-characteristic (or 2-characteristic) tree rooted
at I0 . Then
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(12.5.33)1

P1(M)+Q1(M) ≤ cδ2(1+ VM){T V[pI0− (0),p
I0+ (0)]

z(·, 0)+ P2(FI0)+Q2(FI0)},
or

(12.5.33)2

P2(N )+Q2(N ) ≤ cδ2(1+WN ){T V[q I0− (0),q
I0+ (0)]w(·, 0)+ P1(GI0)+Q1(GI0)},

where VM (or WN ) denotes the maximum of

(12.5.34)1

m−1∑
i=0

{|z Ii Ii+1− − z Ii+1
S | + |w Ii Ii+1− − w

Ii+1
S |}

or

(12.5.34)2

m−1∑
i=0

{|z Ii Ii+1+ − z Ii+1
S | + |w Ii Ii+1+ − w

Ii+1
S |}

over all chains {I0, · · · , Im} of M (or N ).

Proof. It will suffice to validate (12.5.33)1 , the other case being completely analo-
gous. By virtue of (12.5.15)1 and (12.5.16)1 ,

(12.5.35) P1(M) ≤ −
∑
I∈M

[#w I∗ −
∑
J∈CI

#w J∗ ] +Q1(M)

=
∑

maximal
nodes

#wK∗ −#w I0∗ +Q1(M).

Since #wK∗ ≤ 0, to establish (12.5.33)1 it is sufficient to show

(12.5.36) −#w I0∗ ≤ cδ2{T V[pI0− (0),p
I0+ (0)]

z(·, 0)+ P2(FI0)+Q2(FI0)},

(12.5.37) Q1(M) ≤ cδ2(1+ VM){T V[pI0− (0),p
I0+ (0)]

z(·, 0)+P2(FI0)+Q2(FI0)}.

To demonstrate (12.5.36), we first employ (12.5.10)1 to get

(12.5.38) −#w I0∗ = − f (#z I0; z I0
S , w

I0
S ) ≤ cδ2#z I0 ,

and then, to estimate #z I0 , we apply Lemma 12.5.4, with (x̂, t̂) = (x̃, t̃) = I0 ,

p̂ = pI0− and p̃ = pI0+ .
We now turn to the proof of (12.5.37), recalling the definition (12.5.16)1 of

Q1(M). For any nodes I ∈ M and J ∈ CI , we use (12.5.10)1 and (12.5.13)1 to
get
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(12.5.39) #w I J −#w J∗ = f (#z I J ; z I J− , w I J− )− f (#z I J ; z J
S , w

J
S )

+ f (#z I J ; z J
S , w

J
S )− f (#z J ; z J

S , w
J
S ).

By account of the properties of the function f ,

(12.5.40)

| f (#z I J ; z I J− , w I J− )− f (#z I J ; z J
S , w

J
S )| ≤ cδ2#z I J {|z I J− − z J

S | + |w I J− − w J
S |},

(12.5.41) | f (#z I J ; z J
S , w

J
S )− f (#z J ; z J

S , w
J
S )| ≤ cδ2|#z I J −#z J |.

Thus, to verify (12.5.37) we have to show

(12.5.42)
∑
I∈M

∑
J∈CI

#z I J {|z I J− − z J
S | + |w I J− − w J

S |}

≤ VM{#z I0 +
∑
I∈M

∑
J∈CI

|#z I J −#z J |} ,

(12.5.43)∑
I∈M

∑
J∈CI

|#z I J −#z J | ≤ c{T V[pI0− (0),p
I0+ (0)]

z(·, 0)+ P2(FI0)+Q2(FI0)}.

We tackle (12.5.42) first. We perform the summation starting out from the maxi-
mal nodes and moving down towards the root of M. For L ∈M, we let ML denote
the subtree of M which is rooted at L and contains all I ∈M with L < I . For some
K ∈M, assume

(12.5.44)
∑

I∈ML

∑
J∈CI

#z I J {|z I J− − z J
S | + |w I J− − w J

S |}

≤ VML {#zL +
∑

I∈ML

∑
J∈CI

|#z I J −#z J |}

holds for every L ∈ CK . Since #zL ≤ #zK L + |#zK L −#zL | and

(12.5.45)
∑

L∈CK

#zK L ≤ #zK ,

(12.5.44) implies
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(12.5.46)
∑

I∈MK

∑
J∈CI

#z I J {|z I J− − z J
S | + |w I J− − w J

S |}

≤
∑

L∈CK

#zK L{|zK L− − zL
S | + |wK L− − wL

S | + VML }

+
∑

L∈CK

VML {|#zK L −#zL | +
∑

I∈ML

∑
J∈CI

|#z I J −#z J |}

≤ VMK {#zK +
∑

I∈MK

∑
J∈CI

|#z I J −#z J |}.

Thus, proceeding step by step, we arrive at (12.5.42).
It remains to show (12.5.43). We note that

(12.5.47) #z I J −#z J = [z I J+ − z J
E ] + [z J

S − z I J− ].
We bound the right-hand side by applying
Lemma 12.5.4 twice: First with (x̂, t̂) = J,
(x̃, t̃) = I, p̂ = pJ+ , p̃ = pI J+ , and then with (x̂, t̂) = I, (x̃, t̃) = J, p̂ = pI J− ,

p̃ = pJ− . In either case, the arc of χ−J joining I to J serves as t̄ . We combine the
derivation of (12.5.22)1 for the two cases: The characteristic φK− issuing from any
point K on the graph of pJ+ is always intercepted by the graph of pI J+ ; never by the
graph of χ−J . On the other hand, φK− issuing from points K on the graph of pI J− and
crossing the graph of χ−J , may be prolonged until they intersect the graph of pI J+ .
Consequently, the contribution of the common t̄ drops out and we are left with the
estimate

(12.5.48) |#z I J −#z J | ≤ T V[pI J− (0),pJ−(0)]z(·, 0)+ T V[pJ+(0),pI J+ (0)]z(·, 0)

+P2(FI J )+Q2(FI J ),

with FI J defined through

(12.5.49) FI J = {(x, t) : 0 ≤ t < tI , pI J− (t) ≤ x ≤ pI J+ } ∩ F̄C
J .

When (I, J ) and (K , L) are any two distinct links (possibly with I = K ), the
intervals (pI J− (0), pJ−(0)), (pJ+(0), pI J+ (0)), (pK L− (0), pL−(0)) and (pL+(0), pK L+ (0))
are pairwise disjoint; likewise, the interiors of the sets FI J and FK L are disjoint.
Therefore, by virtue of Lemma 12.5.3, tallying (12.5.48) over J ∈ CI and then over
I ∈M yields (12.5.43). The proof is complete.

12.5.7 Lemma. Under the assumptions of Theorem 12.5.1, if H denotes the region
bordered by the graphs of ζ� , ξr , t∗, and the x-axis, then
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(12.5.50) P1(H)+Q1(H)+P2(H)+Q2(H)

≤ cδ2{T V[ζ�(0),ξr (0)]z(·, 0)+ T V[ζ�(0),ξr (0)]w(·, 0)}.
Proof. Consider any family J of disjoint 1-characteristic trees M contained in H. If
I and J are the roots of any two trees in J , (pI−(0), pI+(0)) and (pJ−(0), pJ+(0)) are
disjoint intervals contained in (ζ�(0), ξ�(0)); also FI and FJ are subsets of H with
disjoint interiors. Consequently, by combining Lemmas 12.5.3 and 12.5.6 we deduce

(12.5.51)1

P1(H)+Q1(H) ≤ cδ2(1+ VH){T V[ζ�(0),ξr (0)]z(·, 0)+ P2(H)+Q2(H)},
where VH denotes the supremum of the total variation of the trace of (z, w) over all
2-characteristics with graph contained in H.

Similarly,

(12.5.51)2

P2(H)+Q2(H) ≤ cδ2(1+WH){T V[ζ�(0),ξr (0)]w(·, 0)+ P1(H)+Q1(H)},
where WH stands for the supremum of the total variation of the trace of (z, w) over
all 2-characteristics with graph contained in H.

The constants in (12.5.30)1 and (12.5.30)2 do not depend on the particular t∗,
so long as H remains fixed. In particular, we may apply these estimates for t∗ any
1-characteristic or 2-characteristic, contained in H. Therefore,

(12.5.52)1 (1− cδ2)VH ≤ T V[ζ�(0),ξr (0)]z(·, 0)+ T V[ζ�(0),ξr (0)]w(·, 0)

+2{P1(H)+Q1(H)+ P2(H)+Q2(H)},

(12.5.52)2 (1− cδ2)WH ≤ T V[ζ�(0),ξr (0)]z(·, 0)+ T V[ζ�(0),ξr (0)]w(·, 0)

+2{P1(H)+Q1(H)+ P2(H)+Q2(H)}.
Combining (12.5.51)1 , (12.5.51)2 , (12.5.52)1 , (12.5.52)2 and recalling (12.5.3),

we deduce (12.5.50), provided δ is sufficiently small. This completes the proof.

We now combine Lemmas 12.5.5 and 12.5.7. Since F and G are subsets of H,
(12.5.30)1 , (12.5.30)2 and (12.5.50) together imply (12.5.4)1 and (12.5.4)2 . The as-
sertion of Theorem 12.5.1 has thus been established.

In addition to serving as a stepping stone in the proof of Theorem 12.5.1, Lemma
12.5.7 reveals that the amount of self-interaction of waves of the first and second
characteristic family, measured by P1 and P2 , respectively, as well as the amount
of mutual interaction of waves of opposite families, measured by Q1 and Q2 , are
bounded and controlled by the total variation of the initial data.

In our derivation of (12.5.4), the initial data were regarded as multi-valued and
their total variation was evaluated for the “most unfavorable” selection of allowable
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values. According to this convention, the set of values of z(x, 0) is either confined
between z(x−, 0) and z(x+, 0) or else it lies within c|w(x+, 0) − w(x−, 0)|3 dis-
tance from z(x+, 0); and an analogous property holds for w(x, 0). Consequently,
(12.5.4) will still hold, with readjusted constant c, when (z(·, 0), w(·, 0)) are renor-
malized to be single-valued, for example continuous from the right at ξr (0) and at
ζr (0) and continuous from the left at any other point.

12.6 Spreading of Rarefaction Waves

In Section 11.2 we saw that the spreading of rarefaction waves induces one-sided
Lipschitz conditions on solutions of genuinely nonlinear scalar conservation laws.
Here we shall encounter a similar effect in the context of our system (12.1.1) of two
conservation laws. We shall see that the spreading of 1- (or 2-) rarefaction waves acts
to reduce the falling (or rising) slope of the corresponding Riemann invariant z (or
w). Because of intervening wave interactions, this mechanism is no longer capable
of sustaining one-sided Lipschitz conditions, as in the scalar case; it still manages,
however, to keep the total variation of solutions bounded, independently of the initial
data.

Let us consider again the solution (z, w) discussed in the previous section, with
small oscillation (12.5.1). The principal result is

12.6.1 Theorem. For any −∞ < x < y <∞ and t > 0,

(12.6.1) T V[x,y]z(·, t)+ T V[x,y]w(·, t) ≤ b
y − x

t
+ βδ,

where b and β are constants that may depend on F but are independent of the initial
data.

The proof of the above theorem will be partitioned into several steps. The nota-
tion introduced in Section 12.5 will be used here freely. In particular, as before, c
will stand for a generic constant that may depend on F but is independent of δ.

12.6.2 Lemma. Fix t̄ > 0 and pick any −∞ < x� < xr < ∞, with xr − x�
small compared to t̄ . Construct the minimal (or maximal) backward 1-(or 2-) char-
acteristics ξ�(·), ξr (·) (or ζ�(·), ζr (·)) emanating from (x�, t̄), (xr , t̄), and let F (or
G) denote the region bordered by the graphs of ξ� , ξr (or ζ� , ζr ) and the time lines
t = t̄ and t = t̄/2. Then

(12.6.2)1 z(x�, t̄)− z(xr , t̄) ≤ ĉ exp(c̄δV̄ )
xr − x�

t̄
+ P2(F)+Q2(F),

or

(12.6.2)2 w(xr , t̄)− w(x�, t̄) ≤ ĉ exp(c̄δV̄ )
xr − x�

t̄
+ P1(G)+Q1(G),
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where V̄ denotes the total variation of the trace of w (or z) along ξ�(·) (or ζr (·)) over
the interval [ 1

2 t̄, t̄].
Proof. It will suffice to show (12.6.2)1 . Let (z�(·), w�(·)) and (zr (·), wr (·)) denote
the trace of (z, w) along ξ�(·) and ξr (·), respectively.

We consider the infimum µ̃ and the supremum µ̄ of the characteristic speed
µ(z, w) over the range of the solution. The straight lines with slope µ̃ and µ̄ em-
anating from the point (ξr (t), t), t ∈ [ 1

2 t̄, t̄], are intercepted by ξ�(·) at time f (t)
and g(t), respectively. Both functions f and g are Lipschitz with slope 1 + O(δ),
and

(12.6.3) 0 ≤ g(t)− f (t) ≤ c1δ[ξr (t)− ξ�( f (t))].
The map that carries (ξr (t), t) to (ξ�( f (t)), f (t)) induces a pairing of points of

the graphs of ξ� and ξr . From

(12.6.4) ξr (t)− ξ�( f (t)) = µ̃[t − f (t)],
we obtain

(12.6.5) ḟ (t) = 1− 1

µ̃− ξ̇�( f (t))
[ξ̇r (t)− ξ̇�( f (t))],

(12.6.6)
d

dt
[ξr (t)− ξ�( f (t))] = µ̃

µ̃− ξ̇�( f (t))
[ξ̇r (t)− ξ̇�( f (t))],

almost everywhere on [ 1
2 t̄, t̄]. In order to bound the right-hand side of (12.6.6) from

below, we begin with

(12.6.7) ξ̇r (t)− ξ̇�( f (t)) = λ(zr (t), wr (t))− λ(z�( f (t)), w�( f (t)))

= λ̄z[zr (t)− z�( f (t))] + λ̄w[wr (t)− w�( f (t))].
By virtue of Theorem 12.4.1,

(12.6.8) zr (t)− z�( f (t)) ≤ z(xr , t̄)− z(x�, t̄)−
∑
[zr (τ+)− zr (τ−)],

where the summation runs over the set of jump points of zr (·) inside the interval
(t, t̄). As in the proof of Lemma 12.5.4, with each one of these jump points τ one
may associate the trivial 2-characteristic tree N which consists of the single node
(ξr (τ ), τ ) so as to deduce

(12.6.9) −
∑
[zr (τ+)− zr (τ−)] ≤ P2(F)+Q2(F).

For t ∈ [ 1
2 t̄, t̄], we construct the maximal backward 2-characteristic emanating

from (ξr (t), t), which is intercepted by ξ�(·) at time h(t); f (t) ≤ h(t) ≤ g(t). By
account of Theorem 12.4.1, w�(h(t)) ≥ wr (t) and so

(12.6.10) wr (t)− w�( f (t)) ≤ w�(h(t))− w�( f (t)) ≤ V ( f (t))− V (g(t)),

where V (τ ) measures the total variation of w�(·) over the interval [τ, t̄).
We now integrate (12.6.6) over the interval (s, t̄). Recalling that λ̄z < 0 , λ̄w < 0,

upon combining (12.6.7), (12.6.8), (12.6.9) and (12.6.10), we deduce
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(12.6.11) ξr (s)− ξ�( f (s)) ≤ ξr (t̄)− ξ�( f (t̄))

+ c−1
2 (t̄ − s)[z(xr , t̄)− z(x�, t̄)+P2(F)+Q2(F)]

+ c3

∫ t̄

s
[V ( f (t))− V (g(t))]dt.

By interchanging the order of integration,

(12.6.12)
∫ t̄

s
[V ( f (t))− V (g(t))]dt = −

∫ t̄

s

∫ g(t)

f (t)
dV (τ )dt

≤ −
∫ f (t̄)

f (s)
[ f −1(τ )− g−1(τ )]dV (τ )−

∫ g(t̄)

f (t̄)
[t̄ − g−1(τ )]dV (τ )

= −
∫ t̄

s
[t − g−1( f (t))]dV ( f (t))−

∫ g(t̄)

f (t̄)
[t̄ − g−1(τ )]dV (τ ).

On account of (12.6.3),

(12.6.13) t − g−1( f (t)) ≤ c4δ[ξr (t)− ξ�( f (t))], t̄

2
≤ t ≤ t̄,

(12.6.14) t̄ − g−1(τ ) ≤ c4δ[ξr (t̄)− ξ�( f (t̄))], f (t̄) ≤ τ ≤ g(t̄),

and hence (12.6.11) yields

(12.6.15) ξr (s)− ξ�( f (s)) ≤ exp(c3c4δV̄ )[ξr (t̄)− ξ�( f (t̄))]
+ c−1

2 (t̄ − s)[z(xr , t̄)− z(x�, t̄)+P2(F)+Q2(F)]

− c3c4δ

∫ t̄

s
[ξr (t)− ξ�( f (t))]dV ( f (t)),

for any s ∈ [ 3
4 t̄, t̄]. Integrating the above, Gronwall-type, inequality, we obtain

(12.6.16) ξr (s)− ξ�( f (s)) ≤ exp(2c3c4δV̄ )[ξr (t̄)− ξ�( f (t̄))]

+c−1
2 [
∫ t̄

s
exp{c3c4δ[V ( f (s))−V ( f (τ ))]}dτ ][z(xr , t̄)−z(x�, t̄)+P2(F)+Q2(F)].

We apply (12.6.16) for s = 3
4 t̄ . The left-hand side of (12.6.16) is nonnegative. Also,

ξr (t̄)−ξ�( f (t̄)) ≤ c5(xr − x�). Therefore, (12.6.16) implies (12.6.2)1 with constants
c̄ = 2c3c4 , ĉ = 4c2c5 . The proof is complete.

In what follows, we shall be operating under the assumption that the constants V̄
appearing in (12.6.2)1 and (12.6.2)2 satisfy
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(12.6.17) c̄δV̄ ≤ log 2.

This will certainly be the case, by virtue of Theorem 12.5.1, when the initial data
satisfy (12.5.3) with a sufficiently small. Furthermore, because of the finite domain
of dependence property, (12.6.17) shall hold for t̄ sufficiently small, even when the
initial data have only locally bounded variation and satisfy (12.5.2) with δ sufficiently
small. It will be shown below that (12.6.17) actually holds for any t̄ > 0, provided
only the initial data have sufficiently small oscillation, i.e., δ is small.

12.6.3 Lemma. For any −∞ < x̄ < ȳ <∞ and t̄ > 0,

(12.6.18) N V[x̄,ȳ]z(·, t̄)+ PV[x̄,ȳ]w(·, t̄) ≤ 4ĉ
ȳ − x̄

t̄

+ cδ2
{

T V[x̄− 1
2 µ̄t̄,ȳ− 1

2 λ̄t̄]z
(
· , t̄

2

)
+ T V[x̄− 1

2 µ̄t̄,ȳ− 1
2 λ̄t̄]w

(
· , t̄

2

)}
,

(12.6.19) T V[x̄,ȳ]z(·, t̄)+ T V[x̄,ȳ]w(·, t̄) ≤ 8ĉ
ȳ − x̄

t̄
+ 8δ

+ cδ2
{

T V[x̄− 1
2 µ̄t̄,ȳ− 1

2 λ̄t̄]z
(
· , t̄

2

)
+ T V[x̄− 1

2 µ̄t̄,ȳ− 1
2 λ̄t̄]w

(
· , t̄

2

)}
,

where λ̄ is the infimum of λ(z, w) and µ̄ is the supremum of µ(z, w) over the range
of the solution.

Proof. By combining (12.6.2)1 , (12.6.2)2 , (12.6.17) and Lemma 12.5.3, we imme-
diately infer

(12.6.20) N V[x̄,ȳ]z(·, t̄)+ PV[x̄,ȳ]w(·, t̄) ≤ 4ĉ
ȳ − x̄

t̄

+ 2[P1(H)+Q1(H)+ P2(H)+Q2(H)],
where H denotes the region bordered by the graph of the minimal backward 1-
characteristic ξ(·) emanating from (ȳ, t̄), the graph of the maximal backward 2-
characteristic ζ(·) emanating from (x̄, t̄), and the time lines t = t̄ and t = t̄/2.

We estimate P1(H) + Q1(H) + P2(H) + Q2(H) by applying Lemma 12.5.7,
with the time origin shifted from t = 0 to t = t̄/2. This yields (12.6.18).

Since total variation is the sum of negative variation and positive variation, while
the difference of negative variation and positive variation is majorized by the oscil-
lation, (12.6.18) together with (12.5.1) yield (12.6.19). The proof is complete.

Proof of Theorem 12.6.1 In order to establish (12.6.1), we first write (12.6.19) with
t̄ = t, x̄ = x and ȳ = y. To estimate the right-hand side of the resulting inequality,
we reapply (12.6.19), for t̄ = 1

2 t, x̄ = x − 1
2 µ̄t and ȳ = x − 1

2 λ̄t . This yields
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(12.6.21) T V[x− 1
2 µ̄t,y− 1

2 λ̄t]z
(
· , t

2

)
+ T V[x− 1

2 µ̄t,y− 1
2 λ̄t]w

(
· , t

2

)

≤ 16ĉ
y − x

t
+ 8ĉ(µ̄− λ̄)+ 8δ

+ cδ2
{

T V[x− 3
4 µ̄t,y− 3

4 λ̄t]z
(
· , t

4

)
+ T V[x− 3

4 µ̄t,y− 3
4 λ̄t]w

(
· , t

4

)}
.

Similarly, in order to estimate the right-hand side of (12.6.21), we apply (12.6.19)
with t̄ = 1

4 t, x̄ = x − 3
4 µ̄t and ȳ = y − 3

4 λ̄t . We thus obtain

(12.6.22) T V[x− 3
4 µ̄t,y− 3

4 λ̄t]z
(
· , t

4

)
+ T V[x− 3

4 µ̄t,y− 3
4 λ̄t]w

(
· , t

4

)

≤ 32ĉ
y − x

t
+ 24ĉ(µ̄− λ̄)+ 8δ

+ cδ2
{

T V[x− 7
8 µ̄t,y− 7

8 λ̄t]z
(
· , t

8

)
+ T V[x− 7

8 µ̄t,y− 7
8 λ̄t]w

(
· , t

8

)}
.

Continuing on and passing to the limit, we arrive at (12.6.1) with

(12.6.23) b = 8ĉ

1− 2cδ2
, β = 8

1− cδ2
+ 8cĉδ(µ̄− λ̄)

(1− cδ2)(1− 2cδ2)
.

The above derivations hinge on the assumption that (12.6.17) holds; hence, in
order to complete the proof, we now have to verify this condition. Recalling the
definition of V̄ in Lemma 12.6.2 and applying Theorem 12.5.1, with time origin
shifted from 0 to 1

2 t , we deduce

(12.6.24) V̄ ≤ c sup
x̄
{T V[x̄− 1

2 µ̄t,x̄− 1
2 λ̄t]z(· ,

t

2
)+ T V[x̄− 1

2 µ̄t,x̄− 1
2 λ̄t]w(· ,

t

2
)}.

We estimate the right-hand side of (12.6.24) by means of (12.6.1), which yields

(12.6.25) V̄ ≤ cb(µ̄− λ̄)+ cβδ,

so that (12.6.17) is indeed satisfied, provided δ is sufficiently small. The proof is
complete.

We now show that initial data of sufficiently small oscillation, but arbitrarily large
total variation, induce the L∞ bound (12.5.1), which has been assumed throughout
this section.

12.6.4 Theorem. There is a positive constant γ , depending solely on F , such that
solutions generated by initial data with small oscillation

(12.6.26) |z(x, 0)| + |w(x, 0)| < γδ2, −∞ < x <∞,

but unrestricted total variation, satisfy (12.5.1).
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Proof. Assuming (12.6.26) holds, with γ sufficiently small, we will demonstrate
that −δ < z(x, t) < δ and −δ < w(x, t) < δ on the upper half-plane. Arguing
by contradiction, suppose any one of the above four inequalities is violated at some
point, say for example z(x̄, t̄) ≥ δ.

We determine ȳ through 8ĉ(ȳ − x̄) = δt̄ , where ĉ is the constant appearing in
(12.6.2)1 , and apply (12.6.18). The first term on the right-hand side of (12.6.18) is
here bounded by 1

4δ; the second term is bounded by c̃δ2, on account of (12.6.1).
Consequently, for δ sufficiently small, the negative (decreasing) variation of z(·, t̄)
over the interval [x̄, ȳ] does not exceed 1

2δ. It follows that z(x, t̄) ≥ 1
2δ, for all

x ∈ [x̄, ȳ]. In particular,

(12.6.27)
∫ ȳ

x̄
[|z(x, t̄)| + |w(x, t̄)|]dx ≥ (ȳ − x̄)

δ

2
= 1

16ĉ
δ2 t̄ .

We now appeal to the L1 estimate (12.8.3), which will be established in Section
12.8, Lemma 12.8.2, and combine it with (12.6.26) to deduce

(12.6.28)
∫ ȳ

x̄
[|z(x, t̄)| + |w(x, t̄ |]dx ≤ 4[(ȳ − x̄)+ 2ct̄]γ δ2 = γ [ δ

2ĉ
+ 8c]δ2 t̄ .

It is clear that for γ sufficiently small (12.6.27) is inconsistent with (12.6.28), and
this provides the desired contradiction. The proof is complete.

In conjunction with the compactness properties of BV functions, recounted in
Section 1.7, the estimate (12.6.1) indicates that, starting out with solutions with ini-
tial data of locally bounded variation, one may construct, via completion, BVloc so-
lutions under initial data that are merely in L∞, with sufficiently small oscillation.
Thus, the solution operator of genuinely nonlinear systems of two consesrvation laws
regularizes the initial data by the mechanism already encountered in the context of
the genuinely nonlinear scalar conservation law (Theorem 11.2.2).

12.7 Regularity of Solutions

The information collected thus far paints the following picture for the regularity of
solutions:

12.7.1 Theorem. Let U (x, t) be an admissible BV solution of the genuinely nonlin-
ear system (12.1.1) of two conservation laws, with the properties recounted in the
previous sections. Then

(a) Any point (x̄, t̄) of approximate continuity is a point of continuity of U .
(b) Any point (x̄, t̄) of approximate jump discontinuity is a point of (classical) jump

discontinuity of U .
(c) Any irregular point (x̄, t̄) is the focus of a centered compression wave of either,

or both, characteristic families, and/or a point of interaction of shocks of the
same or opposite characteristic families.
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(d) The set of irregular points is (at most) countable.

Proof. Assertions (a), (b) and (c) are corollaries of Theorem 12.3.3. In particular,
(x̄, t̄) is a point of approximate continuity if and only if (zW , wW ) = (zE , wE ),
in which case all four limits (zW , wW ), (zE , wE ), (zN , wN ) and (zS, wS) coin-
cide. When (zW , wW ) �= (zE , wE ), then (x̄, t̄) is a point of approximate jump
discontinuity in the 1-shock set if (zW , wW ) = (zS, wS), (zE , wE ) = (zN , wN );
or a point of approximate jump discontinuity in the 2-shock set if (zW , wW ) =
(zN , wN ), (zE , wE ) = (zS, wS); and an irregular point in all other cases.

To verify asssertion (d), assume the irregular point I = (x̄, t̄) is a node of some
1-characteristic tree M or a 2-characteristic tree N . If I is the focusing point of a
centered 1-compression wave and/or point of interaction of 1-shocks, then, by virtue
of (12.5.15)1 , I will register a positive contribution to P1(M). Similarly, if I is
the focusing point of a centered 2-compression wave and/or point of interaction of
2-shocks, then, by account of (12.5.15)2 , I will register a positive contribution to
P2(N ). Finally, suppose I is a point of interaction of a 1-shock with a 2-shock. We
adjoin to M an additional node K lying on the graph of χ I− very close to I . Then
|#wK I −#w I∗| > 0 and so, by (12.5.16)1 , we get a positive contribution to Q1(M).
Since the total amount of wave interaction is bounded, by virtue of Lemma 12.5.7,
we conclude that the set of irregular points is necessarily (at most) countable. This
completes the proof.

An analog of Theorem 11.3.5 is also in force here:

12.7.2 Theorem. Assume the set C of points of continuity of the solution U has
nonempty interior C0. Then U is locally Lipschitz continuous on C0.

Proof. We verify that z is locally Lipschitz continuous on C0. Assume (x̄, t̄) ∈ C0

and C contains a rectangle {(x, t) : |x − x̄ | < kp, |t − t̄ | < p}, with p > 0 and k
large compared to |λ| and µ. By shifting the axes, we may assume, without loss of
generality, that t̄ = p. We fix ȳ > x̄ , where ȳ − x̄ is small compared to p, and apply
(12.6.2)1 , with x� = x̄, xr = ȳ. Since the solution is continuous in the rectangle,
both P2(F) and Q2(F) vanish and so, recalling (12.6.17),

(12.7.1) z(x̄, t̄)− z(ȳ, t̄) ≤ 2ĉ

p
(ȳ − x̄).

The functions (ẑ, ŵ)(x, t) = (z, w)(x̄ + ȳ − x, 2p − t) are Riemann invariants
of another solution Û which is continuous, and thereby admissible, on the rectangle
{(x, t) : |x − ȳ| < kp, |t − t̄ | < p}. Applying (12.7.1) to ẑ yields

(12.7.2) z(ȳ, t̄)− z(x̄, t̄) = ẑ(x̄, t̄)− ẑ(ȳ, t̄) ≤ 2ĉ

p
(ȳ − x̄).

We now fix s̄ > t̄ , with s̄ − t̄ small compared to p. We construct the minimal
backward 1-characteristic ξ emanating from (x̄, s̄), which is intercepted by the t̄-
time line at the point ȳ = ξ(t̄), where 0 < ȳ − x̄ ≤ −λ̄(s̄ − t̄). By Theorem 12.4.1,
z(x̄, s̄) = z(ȳ, t̄) and so, by virtue of (12.7.1) and (12.7.2),
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(12.7.3) |z(x̄, s̄)− z(x̄, t̄)| ≤ 2ĉ

p
(ȳ − x̄) ≤ −2λ̄ĉ

p
(s̄ − t̄).

Thus z is Lipschitz.
A similar argument shows that w is also Lipschitz in C0. This completes the

proof.

12.8 Initial Data in L1

Recall that, by virtue of Theorem 11.5.2, initial data in L1 induce decay of so-
lutions of genuinely nonlinear scalar conservation laws, as t → ∞, at the rate

O(t− 1
2 ). The aim here is to establish an analogous property for solutions of gen-

uinely nonlinear systems of two conservation laws. Accordingly, we consider a solu-
tion (z(x, t), w(x, t)) of small oscillation (12.5.1), with initial values of unrestricted
total variation lying in L1(−∞,∞):

(12.8.1) L =
∫ ∞

−∞
[|z(x, 0)| + |w(x, 0)|]dx <∞.

The principal result is

12.8.1 Theorem. As t →∞,

(12.8.2) (z(x, t), w(x, t)) = O(t−
1
2 ),

uniformly in x on (−∞,∞).

The proof will be partitioned into several steps.

12.8.2 Lemma. For any t̄ ∈ [0,∞), and −∞ < x̄ < ȳ <∞,

(12.8.3)
∫ ȳ

x̄
[|z(x, t̄)| + |w(x, t̄)|]dx ≤ 4

∫ ȳ+ct̄

x̄−ct̄
[|z(x, 0)| + |w(x, 0)|]dx .

In particular, (z(·, t̄), w(·, t̄)) are in L1(−∞,∞).

Proof. We construct a Lipschitz continuous entropy η by solving the Goursat prob-
lem for (12.2.2) with prescribed data

(12.8.4)

⎧⎨⎩η(z, 0) = |z| + αz2, −∞ < z <∞,

η(0, w) = |w| + αz2, −∞ < w <∞,

where α is a positive constant. From (12.2.3) it follows that, for α sufficiently large,
η is a convex function of U on some neighborhood of the origin containing the range
of the solution.
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Combining (12.2.2) and (12.8.4), one easily deduces, for δ small,

(12.8.5)
1

2
(|z| + |w|) ≤ η(z, w) ≤ 2(|z| + |w|), −2δ < z < 2δ,−2δ < w < 2δ.

Furthermore, if q is the entropy flux associated with η, normalized by
q(0, 0) = 0, (12.2.1) and (12.8.5) imply

(12.8.6) |q(z, w)| ≤ cη(z, w), −2δ < z < 2δ, −2δ < w < 2δ.

We now fix t̄ > 0, −∞ < x̄ < ȳ < ∞ and integrate (12.3.1), for the entropy-
entropy flux pair (η, q) constructed above, on the trapezoid {(x, t) : 0 < t < t̄,
x̄ − c(t̄ − t) < x < ȳ + c(t̄ − t)}. Upon using (12.8.6), this yields

(12.8.7)
∫ ȳ

x̄
η(z(x, t̄), w(x, t̄))dx ≤

∫ ȳ+ct̄

x̄−ct̄
η(z(x, 0), w(x, 0))dx .

By virtue of (12.8.5), (12.8.7) implies (12.8.3). The proof is complete.

12.8.3 Lemma. Let (z̄(·), w̄(·)) denote the trace of (z, w) along the minimal (or
maximal) backward 1-(or 2-) characteristic ξ(·) (or ζ(·)) emanating from any point
(ȳ, t̄) of the upper half-plane. Then

(12.8.8)1

∫ t̄

0
[z̄2(t)+ |w̄(t)|]dt ≤ c̃L ,

or

(12.8.8)2

∫ t̄

0
[|z̄(t)| + w̄2(t)]dt ≤ c̃L .

Proof. It will suffice to verify (12.8.8)1 . Suppose η is any Lipschitz continuous
convex entropy associated with entropy flux q , normalized so that η(0, 0) = 0,
q(0, 0) = 0. We fix x̄ < ȳ and integrate the inequality (12.3.1) over the region
{(x, t) : 0 < t < t̄, x̄ < x < ξ(t)} to get

(12.8.9)
∫ ȳ

x̄
η(z(x, t̄), w(x, t̄))dx −

∫ ξ(0)

x̄
η(z(x, 0), w(x, 0))dx

+
∫ t̄

0
G(z̄(t), w̄(t))dt −

∫ t̄

0
q(z(x̄+, t), w(x̄+, t))dt ≤ 0,

where G is defined by

(12.8.10) G(z, w) = q(z, w)− λ(z, w)η(z, w).

We seek an entropy-entropy flux pair that renders G(z, w) positive definite on
(−2δ, 2δ)× (−2δ, 2δ). On account of (12.2.1),

(12.8.11) Gz = −λzη,
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(12.8.12) Gw = [(µ− λ)η]w − µwη,

which indicate that G decays fast, at least quadratically, as z → 0, but it may decay
more slowly, even linearly, as w→ 0.

We construct an entropy η by solving the Goursat problem for (12.2.2) with data

(12.8.13)

⎧⎨⎩η(z, 0) = 2z + αz2, −∞ < z <∞,

η(0, w) = |w| + αw2, −∞ < w <∞.

For α sufficiently large, it follows from (12.2.3) that η is a convex function of U
on some neighborhood of the origin containing the range of the solution. From
(12.8.12), (12.2.2) and (12.8.13) we deduce

(12.8.14) G(0, w) = [µ(0, 0)− λ(0, 0)]|w| + O(w2),

(12.8.15) η(z, w) = 2z + |w| + O(z2 + w2),

for (z, w) near the origin. Combining (12.8.14) with (12.8.11) and (12.8.15), we
conclude

(12.8.16) G(z, w) = [µ(0, 0)− λ(0, 0)]|w| − λz(0, 0)z2 + O(w2 + |zw| + |z|3).
We now return to (12.8.9). By account of Lemma 12.8.2, (z(·, t), w(·, t)) are in

L1(−∞,∞), for all t ∈ [0, t̄], and hence

(12.8.17) lim inf
x̄→−∞ |

∫ t̄

0
q(z(x̄+, t), w(x̄+, t))dt | = 0.

Therefore, (12.8.9), (12.8.17), (12.8.15), (12.8.3) and (12.8.1) together imply

(12.8.18)
∫ t̄

0
G(z̄(t), w̄(t))dt ≤ 12L ,

provided (12.5.1) holds, with δ sufficiently small. The assertion (12.8.8)1 now fol-
lows easily from (12.8.18), (12.8.16) and (12.1.3). This completes the proof.

Lemma 12.8.3 indicates that along minimal backward 1-characteristics z is

O(t− 1
2 ) and w is O(t−1), while along maximal backward 2-characteristics z is

O(t−1) and w is O(t− 1
2 ). In fact, recalling that z̄(·) and w̄(·) are nonincreasing along

minimal and maximal backward 1- and 2-characteristics, respectively, we infer di-
rectly from (12.8.8)1 and (12.8.8)2 that the positive parts of z(x, t) and w(x, t) are

O(t− 1
2 ), as t → ∞. The proof of Theorem 12.8.1 will now be completed by estab-

lishing O(t− 1
2 ) decay on both sides:
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12.8.4 Lemma. For δ sufficiently small,

(12.8.19)1 z2(x, t) ≤ 8c̃L

t
,

(12.8.19)2 w2(x, t) ≤ 8c̃L

t
,

hold, for all −∞ < x < ∞ , 0 < t < ∞, where c̃ is the constant in (12.8.8)1 and
(12.8.8)2 .

Proof. Arguing by contradiction, suppose the assertion is false and let t̄ > 0 be the
greatest lower bound of the set of points t on which (12.8.19)1 and/or (12.8.19)2 is
violated for some x . According to Theorem 12.3.3, the continuation of the solution
beyond t̄ is initiated by solving Riemann problems along the t̄-time line. Conse-
quently, since (12.8.19)1 and/or (12.8.19)2 fail for t > t̄ , one can find ȳ ∈ (−∞,∞)

such that

(12.8.20)1 z2(ȳ, t̄) >
4c̃L

t̄
,

and/or

(12.8.20)2 w2(ȳ, t̄) >
4c̃L

t̄
.

For definiteness, assume (12.8.20)1 holds.
Let (z̄(·), w̄(·)) denote the trace of (z, w) along the minimal backward 1-

characteristic ξ(·) emanating from (ȳ, t̄). By applying Theorem 12.5.1, with the time
origin shifted from t = 0 to t = t̄/2, we deduce

(12.8.21) T V[ 1
2 t̄,t̄]w̄(·) ≤ ĉ{T V[ȳ− 1

2 µ̄t̄,ȳ− 1
2 λ̄t̄] z(· ,

t̄

2
)+T V[ȳ− 1

2 µ̄t̄,ȳ− 1
2 λ̄t̄]w(· ,

t̄

2
)},

where λ̄ stands for the infimum of λ(z, w) and µ̄ denotes the supremum of µ(z, w)
over the range of the solution. We estimate the right-hand side of (12.8.21) with the
help of Theorem 12.6.1, thus obtaining

(12.8.22) T V[ 1
2 t̄,t̄]w̄(·) ≤ ĉ[b(µ̄− λ̄)+ βδ].

By hypothesis,

(12.8.23) w̄2(t) ≤ 16c̃L

t̄
,

t̄

2
≤ t < t̄ .

We also have |z̄(t)| ≤ 2δ. Therefore, by applying (12.4.2)1 we deduce

(12.8.24) z̄2(t̄−)− z̄2(t) ≤ c̄δ
4c̃L

t̄
,

with c̄ = 64aĉ[b(µ̄− λ̄)+ βδ].
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Since z̄(t̄−) = z(ȳ, t̄), combining (12.8.20)1 with (12.8.24) yields

(12.8.25) z̄2(t) ≥ 4c̃L

t̄
(1− c̄δ),

t̄

2
≤ t < t̄ .

From (12.8.25),

(12.8.26)
∫ t̄

t̄
2

z̄2(t)dt ≥ 2c̃L(1− c̄δ),

which provides the desired contradiction to (12.8.8)1 , when δ is sufficiently small.
The proof is complete.

12.9 Initial Data with Compact Support

Here we consider the large time behavior of solutions, with small oscillation (12.5.1),
to our genuinely nonlinear system (12.1.1) of two conservation laws under initial
data (z(x, 0), w(x, 0)) that vanish outside a bounded interval [−�, �]. We already

know, from Section 12.8, that (z(x, t), w(x, t)) = O(t− 1
2 ). The aim is to examine

the asymptotics in finer scale, establishing the analog of Theorem 11.6.1 on the gen-
uinely nonlinear scalar conservation law. 12.9.1 Theorem. Employing the notation

introduced in Section 12.3, consider the special forward characteristics φ−(·), ψ−(·)
issuing from (−�, 0) and φ+(·), ψ+(·) issuing from (�, 0). Then

(a) For t large, φ− , ψ− , φ+ and ψ+ propagate according to

(12.9.1)1 φ−(t) = λ(0, 0)t − (p−t)
1
2 + O(1),

(12.9.1)2 ψ+(t) = µ(0, 0)t + (q+t)
1
2 + O(1),

(12.9.2)1 φ+(t) = λ(0, 0)t + (p+t)
1
2 + O

(
t

1
4
)
,

(12.9.2)2 ψ−(t) = µ(0, 0)t − (q−t)
1
2 + O

(
t

1
4
)
,

where p− , p+ , q− and q+ are nonnegative constants.
(b) For t > 0 and either x < φ−(t) or x > ψ+(t),

(12.9.3) z(x, t) = 0, w(x, t) = 0.

(c) For t large,

(12.9.4) T V[φ−(t),ψ+(t)] z(·, t)+ T V[φ−(t),ψ+(t)] w(·, t) = O
(

t−
1
2

)
.
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(d) For t large and φ−(t) < x < φ+(t),

(12.9.5)1 λ(z(x, t), 0) = x

t
+ O

(
1

t

)
,

while for ψ−(t) < x < ψ+(t),

(12.9.5)2 µ(0, w(x, t)) = x

t
+ O

(
1

t

)
.

(e) For t large and x > φ+(t), if p+ > 0 then

(12.9.6)1 0 ≤ −z(x, t) ≤ c[x − λ(0, 0)t]− 3
2 ,

while for x < ψ−(t), if q− > 0 then

(12.9.6)2 0 ≤ −w(x, t) ≤ c[µ(0, 0)t − x]− 3
2 .

According to the above proposition, as t → ∞ the two characteristic families

decouple and each one develops an N -wave profile, of width O(t
1
2 ) and strength

O(t− 1
2 ), which propagates into the rest state at characteristic speed. When one of

p− , p+ (or q− , q+) vanishes, the 1- (or 2-) N -wave is one-sided, of triangular pro-
file. If both p− , p+ (or q− , q+) vanish, the 1- (or 2-) N -wave is absent altogether.

In the wake of the N -waves, the solution decays at the rate O(t− 3
4 ), so long as

p+ > 0 and q− > 0. In cones properly contained in the wake, the decay is even

faster, O(t− 3
2 ).

Statement (b) of Theorem 12.9.1 is an immediate corollary of Theorem 12.5.1.
The remaining assertions will be established in several steps.

12.9.2 Lemma. As t →∞, the total variation decays according to (12.9.4).

Proof. We fix t large and construct the maximal forward 1-characteristic χ−(·) issu-

ing from (ψ+(t
1
2 ), t

1
2 ) and the minimal forward 2-characteristic χ+(·) issuing from

(φ−(t
1
2 ), t

1
2 ).

In order to estimate the total variation over the interval (χ−(t), χ+(t)), we apply

Theorem 12.5.1, shifting the time origin from 0 to t
1
2 . The minimal backward 1-

characteristics as well as the maximal backward 2-characteristics emanating from

points (x, t) with χ−(t) < x < χ+(t) are intercepted by the t
1
2 -time line outside the

support of the solution. Furthermore, the oscillation of (z, w) along the t
1
2 -time line

is O(t− 1
4 ) so that in (12.5.4)1 and (12.5.4)2 one may take δ = O(t− 1

4 ). Therefore,

(12.9.7) T V(χ−(t),χ+(t)) z(·, t)+ T V(χ−(t),χ+(t)) w(·, t) = O(t−
1
2 ).

In order to estimate the total variation over the intervals [φ−(t), χ−(t)] and
[χ+(t), ψ+(t)], we apply Theorem 12.6.1, shifting the time origin from 0 to 1

2 t .
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The oscillation of (z, w) along the 1
2 t-time line is O(t− 1

2 ) so that in (12.6.1) we may

take δ = O(t− 1
2 ). Since χ−(t)− φ−(t) and ψ+(t)− χ+(t) are O(t

1
2 ),

(12.9.8)

⎧⎪⎨⎪⎩
T V[φ−(t),χ−(t)] z(·, t)+ T V[φ−(t),χ−(t)] w(·, t) = O(t− 1

2 ),

T V[χ+(t),ψ+(t)] z(·, t)+ T V[χ+(t),ψ+(t)] w(·, t) = O(t− 1
2 ).

Combining (12.9.7) with (12.9.8), we arrive at (12.9.4). This completes the proof.

12.9.3 Lemma. Let λ̄ be any fixed strict upper bound of λ(z, w) and µ̄ any fixed
strict lower bound of µ(z, w), over the range of the solution. Then, for t large and
x > λ̄t ,

(12.9.9)1 z(x, t) = O
(
t−

3
2
)
,

while for x < µ̄t ,

(12.9.9)2 w(x, t) = O
(
t−

3
2
)
.

Proof. We fix t large and x > λ̄t . Since λ̄ is a strict upper bound of λ(z, w), the
minimal backward 1-characteristic ξ(·) emanating from (x, t) will be intercepted by
the graph of ψ+ at time t1 ≥ κt , where κ is a positive constant depending solely
on λ̄. If (z̄(·), w̄(·)) denotes the trace of (z, w) along ξ(·), then the oscillation of

w̄(·) over [t1, t] is O(t− 1
2 ). Applying Theorem 12.5.1, with time origin shifted to

t1 , and using Lemma 12.9.2, we deduce that the total variation of w̄(·) over [t1, t] is

likewise O(t− 1
2 ). It then follows from Theorem 12.4.1 that z̄(t−) = O(t− 3

2 ). Since
z(x, t) = z̄(t−), we arrive at (12.9.9)1 .

In a similar fashion, one establishes (12.9.9)2 , for x < µ̄t . The proof is complete.

12.9.4 Lemma. Assertion (d) of Theorem 12.9.1 holds.

Proof. By the construction of φ− and φ+ , the minimal backward 1-charac-
teristic ξ(·) emanating from any point (x, t) with φ−(t) < x < φ+(t) will be in-
tercepted by the x-axis on the interval [−�, �]. Therefore, if (z̄(·), w̄(·)) denotes the
trace of (z, w) along ξ(·),

(12.9.10) x =
∫ t

1
λ(z̄(τ ), w̄(τ ))dτ + ξ(1)

= tλ(z(x, t), 0)+
∫ t

1
{λ̄z[z̄(τ )− z̄(t−)] + λ̄ww̄(τ )}dτ + O(1).

By account of Lemma 12.9.3, w̄(τ ) = O(τ− 3
2 ). Applying Theorem 12.5.1, with

time origin shifted to τ , and using Lemma 12.9.2, we deduce that the total variation

of w̄(·) over [τ, t] is O(τ− 1
2 ). It then follows from Theorem 12.4.1 that z̄(τ )− z̄(t−)
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is O(τ− 7
2 ). In particular, the integral on the right-hand side of (12.9.10) is O(1) and

this establishes (12.9.5)1 .
A similar argument shows (12.9.5)2 . The proof is complete.

12.9.5 Lemma. For t large, φ−(t) and ψ+(t) satisfy (12.9.1)1 and (12.9.1)2 .

Proof. For t large, φ−(t) joins the state (z(φ−(t)−, t), w(φ−(t)−, t)) = (0, 0), on
the left, to the state (z(φ−(t)+, t), w(φ−(t)+, t)), on the right, where w(φ−(t)+, t)

is O(t− 3
2 ), while z(φ−(t)+, t) satisfies (12.9.5)1 for x = φ−(t). The jump accross

φ−(t) is O(t− 1
2 ). Consequently, by use of (8.1.9) we infer

(12.9.11) φ̇−(t) = 1

2
λ(0, 0)+ 1

2t
φ−(t)+ O

(
1

t

)
,

almost everywhere.
We set φ−(t) = λ(0, 0)t − v(t). By the admissibility condition φ̇−(t) ≤ λ(0, 0),

we deduce that v̇(t) ≥ 0. Substituting into (12.9.11) yields

(12.9.12) v̇(t) = 1

2t
v(t)+ O

(
1

t

)
.

If v(t) = O(1), as t → ∞, we obtain (12.9.1)1 with p− = 0. On the other hand,

if v(t) ↑ ∞, as t → ∞, then (12.9.12) implies v(t) = (p−t)
1
2 + O(1), which

establishes (12.9.1)1 with p− > 0.
One validates (12.9.1)2 by a similar argument. The proof is complete.

12.9.6 Lemma. For t large, φ+(t) and ψ−(t) satisfy (12.9.2)1 and (12.9.2)2 . Fur-
thermore, Assertion (e) of Theorem 12.9.1 holds.

Proof. For t large, φ+(t) joins the state (z(φ+(t)−, t), w(φ+(t)−, t)), on the left,
to the state (z(φ+(t)+, t), w(φ+(t)+, t)), on the right, where both w(φ+(t)±, t) are

O(t− 3
2 ), while z(φ+(t)−, t) satisfies (12.9.5)1 for x = φ+(t). The jump across φ+(t)

is O(t− 1
2 ). Hence, by use of (8.1.9) we obtain

(12.9.13) φ̇+(t) = 1

2
λ(z(φ+(t)+, t), 0)+ 1

2t
φ+(t)+ O

(
1

t

)
.

Since φ+ is maximal, minimal backward 1-characteristics ζ(·) emanating from
points (x, t) with x > φ+(t) stay strictly to the right of φ+(·) on [0, t] and are thus
intercepted by the x-axis at ζ(0) > �. By virtue of Theorem 12.4.1, it follows that
z(φ+(t)+, t) ≤ 0 and so λ(z(φ+(t)+, t), 0) ≥ λ(0, 0).

We now set φ+(t) = λ(0, 0)t + v(t), λ(z(φ+(t)+, t), 0) = λ(0, 0) + g(t).
As shown above, g(t) ≥ 0. Furthermore, notice that the admissibility condition

φ̇+(t) ≥ λ(z(φ+(t)+, t), w(φ+(t)+, t)) implies v̇(t) ≥ g(t) + O(t− 3
2 ). When v(t)

is bounded, as t →∞, we obtain (12.9.2)1 , with p+ = 0, corresponding to the case
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of one-sided N -wave. This case is delicate and will not be discussed here, so let us
assume v(t)→∞, as t →∞.

Substituting φ+(t) into (12.9.13), we obtain

(12.9.14) v̇(t) = 1

2t
v(t)+ 1

2
g(t)+ O(

1

t
).

Since g(t) ≥ 0, (12.9.14) yields v(t) ≥ αt
1
2 , with α > 0. On the other hand, we

know that v(t) = O(t
1
2 ) and so (12.9.14) implies

(12.9.15)
v̇

v
≥ 1

2t
+ βg(t)t−

1
2 + O(t−

3
2 ).

It is clear that (12.9.15) induces a contradiction to v(t) = O(t
1
2 ) unless

(12.9.16)
∫ ∞

1
g(τ )τ−

1
2 dτ <∞.

We now demonstrate that, in consequence of (12.9.16), there is T > 0 with the
property that

(12.9.17) inf{τ 1
2 g(τ ) : t

2
≤ τ ≤ t} < α

2
, for all t > T .

Indeed, if this assertion is false, we can find a sequence {tm}, with tm+1 ≥ 2tm ,
m = 1, 2, · · ·, along which (12.9.17) is violated. But then

(12.9.18)
∫ ∞

1
g(τ )τ−

1
2 dτ ≥ 1

2α
∑

m

∫ tm

1
2 tm

dt

t
= ∞,

in contradiction to (12.9.16).
Let us fix (x, t), with t > T and x > φ+(t). The minimal backward 1-

characteristic ζ(·) emanating from (x, t) stays strictly to the right of φ+(·). We locate
t̄ ∈ [ 1

2 t, t] such that

(12.9.19) λ(z(φ+(t̄)+, t̄), 0)− λ(0, 0) = g(t̄) < 1
4αt̄−

1
2

and consider the minimal backward 1-characteristic ξ(·) emanating from a point
(x̄, t̄), where x̄ lies between φ+(t̄) and ζ(t̄) and is so close to φ+(t̄) that

(12.9.20) λ(z(x̄, t̄), 0)− λ(0, 0) < 1
4αt̄−

1
2 .

Let (z̄(·), w̄(·)) denote the trace of (z, w) along ξ(·). By virtue of Theorem 12.4.1,
z̄(·) is a nonincreasing function on (0, t̄) so that z̄(τ ) ≤ z̄(t̄−) = z(x̄, t̄). Conse-
quently, on account of (12.9.20),

(12.9.21) ξ̇ (τ ) = λ(z̄(τ ), w̄(τ )) ≤ λ(z(x̄, t̄), w̄(τ ))

≤ λ(0, 0)+ 1
2αt̄−

1
2 + c̄|w̄(τ )|.
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The integral of |w̄(·)| over [0, t̄] is O(1), by virtue of Lemma 12.8.3. Moreover,

(12.9.22) ξ(t̄) = x̄ > φ+(t̄) ≥ λ(0, 0)t̄ + αt̄
1
2 .

Therefore, integrating (12.9.21) over [0, t̄] yields

(12.9.23) ξ(0) ≥ 1
2αt̄

1
2 + O(1) ≥

√
2

4 αt
1
2 + O(1).

Since ζ(·) stays to the right of ξ(·), (12.9.23) implies, in particular, that the graph of

ζ(·) will intersect the graph of ψ+(·) at time t̂ = O(t
1
2 ).

Let (ẑ(·), ŵ(·)) denote the trace of (z, w) along ζ(·). The oscillation of ŵ(·) over

[t̂, t) is O(t− 1
4 ). Furthermore, on account of Theorem 12.5.1, with time origin shifted

to t̂ , and Lemma 12.9.2, we deduce that the total variation of ŵ(·) over [t̂, t) is also
O(t− 1

4 ). It then follows from Theorem 12.4.1 that ẑ(t−) = O(t− 3
4 ).

By virtue of the above result, (12.9.21) now implies

(12.9.24) ξ̇ (τ ) ≤ λ(0, 0)+ O(t−
3
4 )+ c̄|w̄(τ )|,

which, upon integrating over [0, t], yields

(12.9.25) ξ(0) ≥ x − λ(0, 0)t + O(t
1
4 ) ≥ 1

2 [x − λ(0, 0)t] .
Thus, t̂ ≥ c′[x − λ(0, 0)t]. But then the oscillation and total variation of ŵ(·) over
[t̂, t] is bounded by ĉ[x−λ(0, 0)t]− 1

2 , in which case (12.9.6)1 follows from Theorem
12.4.1.

Finally, we return to (12.9.14). Since z(φ+(t)+, t) is O(t− 3
4 ), we deduce that

g(t) = O(t− 3
4 ), and this in turn yields v(t) = (p+t)

1
2 + O(t

1
4 ), with p+ > 0. We

have thus verified (12.9.2)1 .
A similar argument establishes (12.9.6)2 , for x < ψ−(t), and validates (12.9.2)2 .

This completes the proof of Lemma 12.9.6 and thereby the proof of Theorem 12.9.1.

It is now easy to determine the large time asymptotics of the solution U (x, t) in
L1(−∞,∞). Starting out from the (finite) Taylor expansion

(12.9.26) U (z, w) = z R(0, 0)+ wS(0, 0)+ O(z2 + w2),

and using Theorem 12.9.1, we conclude

12.9.7 Theorem. Assume p+ > 0 and q− > 0. Then, as t →∞,

(12.9.27)

‖U (x, t)−M(x, t; p−, p+)R(0, 0)−N (x, t; q−, q+)S(0, 0)‖L1(−∞,∞) = O(t−
1
4 ),
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where M and N denote the N -wave profiles:

(12.9.28)1

M(x, t; p−, p+) =

⎧⎪⎪⎨⎪⎪⎩
x − λ(0, 0)t

λz(0, 0)t
, f or − (p−t)

1
2 ≤ x − λ(0, 0)t ≤ (p+t)

1
2

0 otherwise,

(12.9.28)2

N (x, t; q−, q+) =

⎧⎪⎪⎨⎪⎪⎩
x − µ(0, 0)t

µw(0, 0)t
, f or − (q−t)

1
2 ≤ x − µ(0, 0)t ≤ (q+t)

1
2

0 otherwise.

12.10 Periodic Solutions

The study of genuinely nonlinear hyperbolic systems (12.1.1) of two conservation
laws will be completed with a discussion of the large time behavior of solutions with
small oscillation that are periodic,

(12.10.1) U (x + �, t) = U (x, t), −∞ < x <∞, t > 0,

and have zero mean1:

(12.10.2)
∫ y+�

y
U (x, t)dx = 0, −∞ < y <∞, t > 0.

The confinement of waves resulting from periodicity induces active interactions
and cancellation. As a result, the total variation per period decays at the rate O(t−1):

12.10.1 Theorem. For any x ∈ (∞,∞), and t > 0,

(12.10.3) T V[x,x+�] z(·, t)+ T V[x,x+�] w(·, t) ≤ b�

t
.

Proof. Apply (12.6.1) with y = x + n� ; then divide by n and let n → ∞. This
completes the proof.

We now resolve the asymptotics at the scale O(t−1). The mechanism encoun-
tered in Section 11.7, in the context of genuinely nonlinear scalar conservation laws,
namely the confinement of the intercepts of extremal backward characteristics in in-
tervals of the x-axis of period length, is here in force as well and generates similar,

1 If the Cauchy problem has unique solution, initial data that are periodic with zero mean
necessarily generate solutions with the same property.
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serrated asymptotic profiles. The nodes of the profiles are again tracked by divides,
in the sense of Definition 10.3.3.

12.10.2 Theorem. The upper half-plane is partitioned by minimal (or maximal) 1-
(or 2-) divides along which z (or w) decays rapidly to zero, O(t−2), as t →∞. Let
χ−(·) and χ+(·) be any two adjacent 1- (or 2-) divides, with χ−(t) < χ+(t). Then
χ+(t) − χ−(t) approaches a constant at the rate O(t−1), as t →∞. Furthermore,
between χ− and χ+ lies a 1- (or 2-) characteristic ψ such that, as t →∞,

(12.10.4) ψ(t) = 1
2 [χ−(t)+ χ+(t)] + o(1),

(12.10.5)1 λz(0, 0)z(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x − χ−(t)

t
+ o

(
1

t

)
, χ−(t) < x < ψ(t),

x − χ+(t)
t

+ o

(
1

t

)
, ψ(t) < x < χ+(t),

or

(12.10.5)2 µw(0, 0)w(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x − χ−(t)

t
+ o

(
1

t

)
, χ−(t) < x < ψ(t),

x − χ+(t)
t

+ o

(
1

t

)
, ψ(t) < x < χ+(t).

The first step towards proving the above proposition is to investigate the large
time behavior of divides:

12.10.3 Lemma. Along minimal (or maximal) 1- (or 2-) divides, z (or w) decays at
the rate O(t−2), as t → ∞. Furthermore, if χ−(·) and χ+(·) are any two minimal
(or maximal) 1- (or 2-) divides, then, as t →∞,

(12.10.6) χ+(t)− χ−(t) = h∞ + O

(
1

t

)
,

(12.10.7)1

∫ χ+(t)

χ−(t)
z(x, t)dx = O

(
1

t2

)
,

or

(12.10.7)2

∫ χ+(t)

χ−(t)
w(x, t)dx = O

(
1

t2

)
.

Proof. Assume χ(·) is a minimal 1-divide, say the limit of a sequence {ξn(·)} of
minimal backward 1-characteristics emanating from points {(xn, tn)}, with tn →∞,
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as n → ∞. Let (zn(·), wn(·)) denote the trace of (z, w) along ξn(·). Applying The-
orem 12.5.1, with time origin shifted to τ , and using Theorem 12.10.1, we deduce
that the total variation of wn(·) over any interval [τ, τ + 1] ⊂ [0, tn] is O(τ−1), uni-
formly in n. Therefore, by virtue of Theorem 12.4.1, zn(·) is a nonincreasing function
on [0, tn] whose oscillation over [τ, τ + 1] is O(τ−3), uniformly in n. It follows that
the trace z̄(·) of z along χ(·) is likewise a nonincreasing function with O(τ−3) oscil-
lation over [τ, τ + 1]. By tallying the oscillation of z̄(·) over intervals of unit length,
from t to infinity, we verify the assertion z̄(t) = O(t−2).

A similar argument shows that the trace w̄(·) of w along maximal 2-divides is
likewise O(t−2), as t →∞.

Let χ−(·) and χ+(·) be minimal 1-divides with h(t) = χ+(t) − χ−(t) ≥ 0, for
0 ≤ t <∞. Note that, because of periodicity, h(0) < k�, for some integer k, implies
h(t) ≤ k�, 0 ≤ t < ∞. Letting (z−(·), w−(·)) and (z+(·), w+(·)) denote the trace
of (z, w) along χ−(·) and χ+(·), respectively, we have

(12.10.8) ḣ(τ ) = λ(z+(τ ), w+(τ ))− λ(z−(τ ), w−(τ )),

for almost all τ in [0,∞).
The maximal backward 2-characteristic ζτ (·) emanating from the point

(χ+(τ ), τ ) is intercepted by the graph of χ−(·) at time τ − f (τ ). If (ẑ(·), ŵ(·))
denotes the trace of (z, w) along ζτ (·), Theorems 12.5.1 and 12.10.1 together imply
that the total variation of ẑ(·) over the interval [τ − f (τ ), τ ] is O(τ−1), as τ →∞.
It then follows from Theorem 12.4.1 that the oscillation of ŵ(·) over [τ − f (τ ), τ ]
is O(τ−3). Hence

(12.10.9) w+(τ ) = w−(τ − f (τ ))+ O(τ−3).

Since z±(τ ) = O(τ−2), (12.10.8) yields

(12.10.10) ḣ(τ ) = λ(0, w−(τ − f (τ )))− λ(0, w−(τ ))+ O(
1

τ 2
).

From ḣ(τ ) = O(τ−1) and ζ̇τ = µ(0, 0)+O(τ−1), we infer that the oscillation of
f (·) over the interval [τ, τ+1] is O(τ−1). The total variation ofw−(·) over [τ, τ+1]
is likewise O(τ−1). Then, for any t < t ′ <∞,

(12.10.11) |
∫ t ′

t
{λ(0, w−(τ − f (τ )))− λ(0, w−(τ ))}dτ | ≤ c

t
.

Upon combining (12.10.10) with (12.10.11), one arrives at (12.10.6).
Let U−(·) and U+(·) denote the trace of U along χ−(·) and χ+(·), respectively.

Integration of (12.1.1) over {(x, τ ) : t < τ < ∞, χ−(τ ) < x < χ+(τ )} yields the
equation
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(12.10.12)
∫ χ+(t)

χ−(t)
U (x, t)dx =

∫ ∞

t
{F(U+(τ ))− λ(U+(τ ))U+(τ )

−F(U−(τ ))+ λ(U−(τ ))U−(τ )}dτ.
We multiply (12.10.12), from the left, by the row vector Dz(0). On account of
(7.3.12), Uz = R and Uw = S so that, using (12.1.2), we deduce

(12.10.13) Dz(0)U = z + O(z2 + w2),

(12.10.14) Dz(0)[F(U )− λ(U )U ] = Dz(0)F(0)+ aw2 + O(z2 + |zw| + |w|3),
where the constant a is the value of 1

2 (λ − µ)S�D2zS at U = 0. By virtue of
z±(τ ) = O(τ−2), w±(τ ) = O(τ−1) and (12.10.9), we conclude

(12.10.15)
∫ χ+(t)

χ−(t)
z(x, t)dx = a

∫ ∞

t
[w2−(τ − f (τ ))− w2−(τ )]dτ + O

(
1

t2

)
.

As explained above, over the interval [τ, τ + 1] the oscillation of f (·) is O(τ−1)

and the total variation of w2−(·) is O(τ−2). Then, the integral on the right-hand side
of (12.10.15) is O(t−2), as t →∞, which establishes (12.10.7)1 .

When χ−(·) and χ+(·) are maximal 2-divides, a similar argument verifies
(12.10.6) and (12.10.7)2 . The proof is complete.

The remaining assertions of Theorem 12.10.2 will be established through the
following

12.10.4 Lemma. Consider any two adjacent minimal (or maximal) 1- (or 2-) divides
χ−(·), χ+(·), with χ−(t) < χ+(t), 0 ≤ t < ∞. The special forward 1- (or 2-)
characteristic φ−(·) (or ψ+(·)), in the notation of Section 12.3, issuing from any
fixed point (x̄, 0), where χ−(0) < x̄ < χ+(0), is denoted by ψ(·). Then ψ(·) satisfies
(12.10.4). Furthermore, (12.10.5)1 (or (12.10.5)2) holds.

Proof. It will suffice to discuss the case where χ− and χ+ are 1-divides. We consider
minimal backward 1-characteristics ξ(·) emanating from points (x, t), with t > 0
and χ−(t) < x < χ+(t). Their graphs are trapped between the graphs of χ− and χ+ .
The intercepts ξ(0) of such ξ , by the x-axis, cannot accumulate to any x̂ in the open
interval (χ−(0), χ+(0)), because in that case a minimal 1-divide would issue from
the point (x̂, 0), contrary to our assumption that χ− , χ+ are adjacent. Therefore, by
the construction of ψ(·) we infer that, as t → ∞, ξ(τ ) → χ−(τ ), when x is in
(χ−(t), ψ(t)], or ξ(τ )→ χ+(τ ), when x is in (ψ(t), χ+(t)], the convergence being
uniform on compact subsets of [0,∞).

Let us now fix ξ(·) that emanates from some point (x, t), with χ−(t) < x ≤ ψ(t),
and set h(τ ) = ξ(τ )− χ−(τ ), 0 ≤ τ ≤ t . Then, for almost all τ ∈ [0, t] we have

(12.10.16) ḣ(τ ) = λ(z̄(τ ), w̄(τ ))− λ(z−(τ ), w−(τ )),
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where (z̄(·), w̄(·)) denotes the trace of (z, w) along ξ(·), while (z−(·), w−(·)) stands
for the trace of (z, w) along χ−(·).

By virtue of Theorems 12.5.1 and 12.10.1, the total variation of w̄(·) on any
interval [s, s + 1] ⊂ [0, t] is O(s−1). It then follows from Theorem 12.4.1 that the
oscillation of z̄(·) over [s, s + 1] is O(s−3) and hence

(12.10.17) z̄(τ ) = z(x, t)+ O

(
1

τ 2

)
.

Furthermore, by Lemma 12.10.3, z−(τ ) = O(τ−2). Also, z(x, t) = O(t−1) so, a
fortiori, z(x, t) = O(τ−1). By account of these observations, (12.10.16) yields

(12.10.18) ḣ(τ ) = λz(0, 0)z(x, t)+ λ(0, w̄(τ ))− λ(0, w−(τ ))+ O

(
1

τ 2

)
.

For any fixed τ >> 0, we consider the maximal backward 2-characteristic ζτ (·)
emanating from the point (ξ(τ ), τ ), which is intercepted by the graph of χ−(·) at time
τ − f (τ ). If (ẑ(·), ŵ(·)) denotes the trace of (z, w) along ζτ (·), Theorems 12.5.1 and
12.10.1 together imply that the total variation of ẑ(·) over the interval [τ − f (τ ), τ ]
is O(τ−1). It then follows from Theorem 12.4.1 that the oscillation of ŵ(·) over
[τ − f (τ ), τ ] is O(τ−3). Hence

(12.10.19) w̄(τ ) = w−(τ − f (τ ))+ O

(
1

τ 3

)
,

and so (12.10.18) implies

(12.10.20) ḣ(τ ) = λz(0, 0)z(x, t)+λ(0, w−(τ− f (τ )))−λ(0, w−(τ ))+O

(
1

τ 2

)
.

As in the proof of Lemma 12.10.3, on any interval [τ, τ + 1] ⊂ [0, t] the oscil-
lation of f (·) is O(τ−1) and the total variation of w−(·) is also O(τ−1). Therefore,
upon integrating (12.10.20) over the interval [s, t], 0 < s < t , we deduce

(12.10.21) x − χ−(t)− λz(0, 0)z(x, t)t = ξ(s)− χ−(s)+ O

(
1

s

)
+ sO

(
1

t

)
.

With reference to the right-hand side of (12.10.21), given ε > 0, we first fix s so
large that O(s−1) is less than 1

3ε. With s thus fixed, we determine t̂ such that, for
t ≥ t̂ , sO(t−1) does not exceed 1

3ε, while at the same time ξ(s) − χ−(s) < 1
3ε,

for all x ∈ (χ−(t), ψ(t)]. Clearly, it is sufficient to check this last condition for
t = t̂, x = ψ(t̂). We have thus verified that the left-hand side of (12.10.21) is
o(1), as t → ∞, uniformly in x on (χ−(t), ψ(t)), which verifies the upper half of
(12.10.5)1 . The lower half of (12.10.5)1 is established by a similar argument. This
completes the proof.
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12.11 Notes

There is voluminous literature addressing various aspects of the theory of genuinely
nonlinear systems of two conservation laws. The approach in this chapter, via the
theory of generalized characteristics, is principally due to the author, and some of
the proofs are recorded here in print for the first time. Most of the results were de-
rived earlier in the framework of solutions constructed by the random choice method,
which will be presented in Chapter XIII. The seminal contribution in that direction
is Glimm and Lax [1].

The Lax entropies, discussed in Section 12.2, were first introduced in Lax [4].
The hodograph transformation was discovered by Riemann [1] and by Helmholtz
[1]. For detailed discussions and applications to aerodynamics, see Courant and
Friedrichs [1] and Von Mises [1]. For applications to other areas of mathematical
physics, see Fusco [1].

A somewhat stronger version of Theorem 12.3.3 was established by DiPerna [3],
for solutions constructed by the random choice method. Theorem 12.4.1 improves a
proposition in Dafermos [16].

Theorems 12.5.1, 12.6.1 and 12.6.4 were originally established in Glimm and
Lax [1], for solutions constructed by the random choice method, by use of the the-
ory of approximate conservation laws and approximate characteristics, which will be
outlined in Section 13.3. The treatment here employs and refines methodology devel-
oped by Dafermos and Geng [1,2], for special systems, and Trivisa [1], for general
systems, albeit when solutions are “countably regular”. Trivisa [2] extends these re-
sults to genuine nonlinar systems of n conservation laws endowed with a coordinate
system of Riemann invariants.

The results of Section 12.7 were established earlier by DiPerna [3], for solutions
constructed by the random choice method.

For solutions with initial data in L1, Temple [5] derives decay at the rate

O(1/
√

log t). The O(t− 1
2 ) decay rate established in Theorem 12.8.1, which is taken

from Dafermos [16], is sharp. Similarly, Lemma 12.8.2 improves an earlier result of
Temple [8]. L1 stability has now been established for general systems; see Chapter
XIV.

The mechanism that generates N -wave profiles was understood quite early,
through formal asymptotics (see Courant and Friedrichs [1]), even though a rigorous
proof was lacking (Lax [2]). In a series of papers by DiPerna [4,6] and Liu [8,9.22],
decay to N -waves of solutions with initial data of compact support, constructed by
the random choice method, was established at progressively sharper rates, not only
for genuinely nonlinear sytems of two conservation laws but even for systems of n
conservation laws with characteristic families that are either genuinely nonlinear or
linearly degenerate. The decay rates recorded in Theorem 12.9.1 are sharp. When
the initial data do not have compact support but instead approach distinct limits UL

and UR , as x → ±∞, then the solution U converges, as t → ∞, to the solution
of the Riemann problem with initial data (9.1.12); see Liu [6] and compare with the
scalar case discussed in Section 11.5. Relatively little is known for systems that are
not genuinely nonlinear; see Zumbrun [1,2].
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Theorem 12.10.1 is due to Glimm and Lax [1], while Theorem 12.10.2 is taken
from Dafermos [18]. Decay of solutions with periodic initial data may be peculiar
to systems of two conservation laws. Indeed, the work of R. Young [3,4] indicates
that, for the system of nonisentropic gas dynamics, solutions with periodic initial
data remain bounded but do not necessarily decay.

For applications of the theory of characteristics to investigating uniqueness, reg-
ularity and large time behavior of solutions of special systems with coinciding shock
and rarefaction wave curves (Temple [3]), see Serre [7,11], Dafermos and Geng [1,2],
Heibig [2], Heibig and Sahel [1] and Ostrov [1]. BV solutions for such systems have
been constructed by the Godunov difference scheme (LeVeque and Temple [1]) as
well as by the method of vanishing viscosity (Serre [1,11]).



XIII

The Random Choice Method

This chapter introduces the celebrated random choice method, which has provided
the earliest, but still very effective, scheme for constructing globally defined, admis-
sible BV solutions to the Cauchy problem for strictly hyperbolic systems of conser-
vation laws, under initial data with small total variation. The solution is obtained as
the limit of a sequence of approximate solutions that do not smear shocks. Solutions
to the Riemann problem, discussed at length in Chapter IX, serve as building blocks
for constructing the approximate solutions to the Cauchy problem. Striving to pre-
serve the sharpness of shocks may be in conflict with the requirement of consistency
of the algorithm. The “randomness” feature of the method is employed in order to
strike the delicate balance of safeguarding consistency without smearing the sharp-
ness of propagating shock fronts. By paying the price of delineating the global wave
pattern, the device of wave tracing, which will be discussed here only briefly, renders
the algorithm deterministic.

A detailed presentation of the random choice method will be given for systems
with characteristic families that are either genuinely nonlinear or linearly degenerate.
The case of more general systems, which involves substantial technical complication,
will be touched on rather briefly here.

The chapter will close with a discussion on how the algorithm may be adapted
for handling inhomogeneity and source terms encountered in hyperbolic systems of
balance laws.

13.1 The Construction Scheme

We consider the initial-value problem for a strictly hyperbolic system of conservation
laws, defined on a ball O centered at the origin:

(13.1.1)

⎧⎨⎩ ∂tU (x, t)+ ∂x F(U (x, t)) = 0, −∞ < x <∞, 0 ≤ t <∞,

U (x, 0) = U0(x), −∞ < x <∞.
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The initial data U0 are functions of bounded variation on (−∞,∞). The ultimate
goal is to establish the following

13.1.1 Theorem. There are positive constants δ0 and δ1 such that if

(13.1.2) sup(−∞,∞)|U0(·)| < δ0 ,

(13.1.3) T V(−∞,∞)U0(·) < δ1 ,

then there exists a solution U of (13.1.1), which is a function of locally bounded
variation on (−∞,∞) × [0,∞), taking values in O. This solution satisfies the en-
tropy admissibility criterion for any entropy-entropy flux pair (η, q) of the system,
with η(U ) convex. Furthermore, for each fixed t ∈ [0,∞), U (·, t) is a function of
bounded variation on (−∞,∞) and

(13.1.4) sup(−∞,∞)|U (·, t)| ≤ c0 sup(−∞,∞)|U0(·)|, 0 ≤ t <∞,

(13.1.5) T V(−∞,∞)U (·, t) ≤ c1T V(−∞,∞)U0(·), 0 ≤ t <∞,

(13.1.6)
∫ ∞

−∞
|U (x, t)−U (x, τ )|dx ≤ c2|t−τ |T V(−∞,∞)U0(·), 0 ≤ τ < t <∞,

where c0, c1 and c2 are constants depending solely on F . When the system is en-
dowed with a coordinate system of Riemann invariants, δ1 in (13.1.3) may be fixed
arbitrarily large, so long as

(13.1.7) (sup(−∞,∞)|U0(·)|)(T V(−∞,∞)U0(·)) < δ2 ,

with δ2 sufficiently small, depending on δ1 .

The proof of the above proposition is quite lengthy and shall occupy the entire
chapter. Even though the assertion holds at the level of generality stated above, cer-
tain steps in the proof (Sections 13.3, 13.4, 13.5 and 13.6) will be carried out under
the simplifying assumption that each characteristic family of the system is either gen-
uinely nonlinear (7.6.13) or linearly degenerate (7.5.2). The case of general systems
will be touched on in Sections 13.7 and 13.8.

The solution U will be attained as the h ↓ 0 limit of a family of approximate
solutions Uh constructed by the following process.

We fix a spatial mesh-length h, which will serve as parameter, and an associated
temporal mesh-length λ−1h, where λ is a fixed upper bound of the characteristic
speeds |λi (U )|, for U ∈ O and i = 1, · · · , n. Setting xr = rh , r = 0,±1,±2, · · ·
and ts = sλ−1h , s = 0, 1, 2, · · ·, we build the staggered grid of mesh-points (xr , ts),
with s = 0, 1, 2, · · · , and r + s even.

Assuming now Uh has been defined on {(x, t) : −∞ < x < ∞, 0 ≤ t < ts},
we determine Uh(·, ts) as a step function that is constant on intervals defined by
neighboring mesh-points along the line t = ts ,
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(13.1.8) Uh(x, ts) = Ur
s , xr−1 < x < xr+1 , r + s odd,

and approximates the function Uh(·, ts−). The major issue of selecting judiciously
the constant states Ur

s will be addressed in Section 13.2.
Next we determine Uh on the strip {(x, t) : −∞ < x <∞ , ts ≤ t < ts+1} as a

solution of our system, namely,

(13.1.9) ∂tUh(x, t)+ ∂x F(Uh(x, t)) = 0, −∞ < x <∞, ts ≤ t < ts+1 ,

under the initial condition (13.1.8), along the line t = ts . Notice that the solution of
(13.1.9), (13.1.8) consists of centered wave fans emanating from the mesh-points ly-
ing on the ts-time line (Fig. 13.1.1). The wave fan centered at the mesh point (xr , ts),
r + s even, is constructed by solving the Riemann problem for our system, with
left state Ur−1

s and right state Ur+1
s . We employ admissible solutions, with shocks

satisfying the viscous shock admissibility condition (cf. Chapter IX). The resulting
outgoing waves from neighboring mesh-points do not interact on the time interval
[ts, ts+1), because of our selection of the ratio λ of spatial and temporal mesh-lengths.

x

t

sU U
r+1
s

r-1

(x r, t )s

(-4h, 0) (-2h, 0)  (0, 0) (2h, 0) (4h, 0)

Fig. 13.1.1

To initiate the algorithm, at s = 0, we employ the initial data:

(13.1.10) Uh(x, 0−) = U0(x), −∞ < x <∞.

The construction of Uh may proceed for as long as one can solve the resulting
Riemann problems. As we saw in Chapter IX, this can be effected, in general, so
long as the jumps |Ur+1

s −Ur−1
s | stay sufficiently small.

After considerable preparation, we shall demonstrate, in Sections 13.5 and 13.6,
that the Uh satisfy estimates

(13.1.11) sup(−∞,∞)|Uh(·, t)| ≤ c0 sup(−∞,∞)|U0(·)|, 0 ≤ t <∞,
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(13.1.12) T V(−∞,∞)Uh(·, t) ≤ c1T V(−∞,∞)U0(·), 0 ≤ t <∞,

(13.1.13)∫ ∞

−∞
|Uh(x, t)−Uh(x, τ )|dx ≤ c2(|t − τ | + h)T V(−∞,∞)U0(·), 0 ≤ τ < t <∞.

In particular, (13.1.11) guarantees that when (13.1.2) holds with δ0 sufficiently small,
Uh may be constructed on the entire upper half-plane.

13.2 Compactness and Consistency

Deferring the proof of (13.1.11), (13.1.12) and (13.1.13) to Sections 13.5 and 13.6,
here we shall take these stability estimates for granted and will examine their im-
plications. By virtue of (13.1.12), Helly’s theorem and the Cantor diagonal process,
there is a sequence {hm}, with hm → 0 as m →∞, such that {Uhm (·, τ )} is Cauchy
in L1

loc(−∞,∞), for each positive rational number τ . Since the rationals are dense
in [0,∞), (13.1.13) implies that {Uhm (·, t)} must be Cauchy in L1

loc(−∞,∞), for
any t ≥ 0. Thus

(13.2.1) Uhm (x, t)→ U (x, t), as m →∞, in L1
loc((−∞,∞)× [0,∞)),

where, for each fixed t ∈ [0,∞), U (·, t) is a function of bounded variation on
(−∞,∞), which satisfies (13.1.4), (13.1.5) and (13.1.6). In particular, U is in
BVloc .

We now turn to the question of consistency of the algorithm, investigating
whether U is a solution of the initial-value problem (13.1.1). By its construction, Uh

satisfies the system inside each strip {(x, t) : −∞ < x < ∞, ts ≤ t < ts+1}. Con-
sequently, the errors are induced by the jumps of Uh across the dividing time lines
t = ts . To estimate the cumulative effect of these errors, we fix any C∞ test function
φ, with compact support on (−∞,∞)× [0,∞), we apply the measure (13.1.9) to φ
on the rectangle {(x, t) : xr−1 < x < xr+1, ts ≤ t < ts+1, r + s odd} and sum over
all such rectangles in the upper half-plane. After an integration by parts, and upon
using (13.1.8) and (13.1.10), we obtain

(13.2.2)
∫ ∞

0

∫ ∞

−∞
[∂tφUh + ∂xφF(Uh)]dxdt +

∫ ∞

−∞
φ(x, 0)U0(x)dx

=
∞∑

s=0

∑
r+s odd

∫ xr+1

xr−1

φ(x, ts)[Uh(x, ts−)−Ur
s ]dx .

Therefore, U will be a weak solution of (13.1.1), i.e., the algorithm will be consistent,
if Ur

s approximates the function Uh(·, ts−), over the interval (xr−1, xr+1), in such a
manner that the right-hand side of (13.2.2) tends to zero, as h ↓ 0.

One may attain consistency via the Lax-Friedrichs scheme:
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(13.2.3) Ur
s =

1

2h

∫ xr+1

xr−1

Uh(x, ts−)dx, r + s odd.

Indeed, with that choice, each integral on the right-hand side of (13.2.2) is ma-
jorized by h2 max |∂xφ| osc(xr−1,xr+1)Uh(·, ts−). The sum of these integrals over r
is then majorized by h2 max |∂xφ| T V(−∞,∞)Uh(·, ts−), which, in turn, is bounded
by c1δ1h2 max |∂xφ|, on account of (13.1.12) and (13.1.3). The summation over s,
within the support of φ, involves O(h−1) terms, and so finally the right-hand side of
(13.2.2) is O(h), as h ↓ 0.

Even though it passes the test of consistency, the Lax-Friedrichs scheme stum-
bles on the issue of stability: It is at present unknown whether estimates (13.1.12)
and (13.1.13) hold within its framework.1 One of the drawbacks of this scheme is
that it smears, through averaging, the shocks of the exact solution. This feature may
be vividly illustrated in the context of the Riemann problem for the linear, scalar
conservation law,

(13.2.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t u(x, t)+ aλ∂x u(x, t) = 0, −∞ < x <∞, 0 ≤ t <∞

u(x, 0) =
⎧⎨⎩0, −∞ < x < 0

1, 0 < x <∞,

where a is a constant in (−1, 1) (recall that λ denotes the ratio of the spatial and
temporal mesh-lengths). The solution of (13.2.4) comprises, of course, the constant
states u = 0, on the left, and u = 1, on the right, joined by the shock x = aλt .
The first four steps of the construction of the approximate solution uh according to
the Lax-Friedrichs scheme are depicted in Fig. 13.2.1. The smearing of the shock is
clear.

In order to prevent the smearing of shocks, we try a different policy for evaluating
the Ur

s . We start out with some sequence ℘ = {a0, a1, a2, · · ·}, where as ∈ (−1, 1),
we set yr

s = xr + ash, and build, on the upper half-plane, another staggered grid of
points (yr

s , ts), with s = 0, 1, 2, · · · and r + s odd. We employ (yr
s , ts) as a sampling

point for the interval (xr−1, xr+1), on the ts-time line, by selecting

(13.2.5) Ur
s = lim

t↑ts
Uh(y

r
s−, t), r + s odd.

To test this approach, we consider again the Riemann problem (13.2.4). The first
few steps of the construction of the approximate solution Uh are depicted in Fig.
13.2.2. We observe that according to the rule (13.2.5), as one passes from t = ts
to t = ts+1 , the shock is preserved but its location is shifted by h, to the left when
as > a, or to the right when as < a. Consequently, in the limit h ↓ 0 the shock will

1 In fact, it has been recently demonstrated, in the context of the closely related Godunov
scheme, that selecting λ to be an irrational number, but very close to a rational, induces
resonance generating spurious oscillations in the approximate solutions, which drives the
total variation to infinity.
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be thrown off course, unless the number m− of indices s ≤ m with as < a and the
number m+ of indices s ≤ m with as > a are related through m− − m+ ∼ am, as
m →∞. Combining this with m− +m+ = m, we conclude that uh will converge to
the solution of (13.2.4) if and only if m−/m → 1

2 (1 + a) and m+/m → 1
2 (1 − a),

as m → ∞. For consistency of the algorithm, it will be necessary that the above
condition hold for arbitrary a ∈ (−1, 1). Clearly, this will be the case only when
the sequence ℘ is equidistributed on the interval (−1, 1), that is, for any subinterval
I ⊂ (−1, 1) of length µ(I ):

(13.2.6) lim
m→∞

2

m
[number of indices s ≤ m with as ∈ I ] = µ(I ),

uniformly with respect to I .
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Later on, in Section 13.8, we shall see that the algorithm based on (13.2.5), with
any sequence ℘ which is equidistributed in (−1, 1), is indeed consistent, for the
general initial-value problem (13.1.1); but this may be established only by paying
the price of tracking the global wave pattern. The objective here is to demonstrate
a slightly weaker result, whose proof however relies solely on the stability estimate
(13.1.5). Roughly, it will be shown that if one picks the sequence ℘ at random, then
the resulting algorithm will be consistent, with probability one. It is from this feature
that the method derives its name: random choice.

We realize sequences ℘ as points in the Cartesian product space A =∏∞
s=0(−1, 1). Each factor (−1, 1) is regarded as a probability space, under Lebesgue

measure rescaled by a factor 1/2, and this induces a probability measure ν on A as
well. In connection to our earlier discussions on consistency, it may be shown (ref-
erences in Section 13.10) that almost all sequences ℘ ∈ A are equidistributed in
(−1, 1). The main result is

13.2.1 Theorem. There is a null subset N of A with the property that the algorithm
induced by any sequence ℘ ∈ A\N is consistent. That is, when the Ur

s are evaluated
through (13.2.5), with yr

s = xr + ash, then the limit U in (13.2.1) is a solution of the
initial-value problem (13.1.1).

Proof. The right-hand side of (13.2.2) is completely determined by the spatial mesh-
length h, the sequence ℘ and the test function φ, so it shall be denoted by e(℘;φ, h).
By virtue of (13.2.5),

(13.2.7) e(℘;φ, h) =
∞∑

s=0

es(℘;φ, h),

where

(13.2.8) es(℘;φ, h) =
∑

r+s odd

∫ xr+1

xr−1

φ(x, ts)[Uh(x, ts−)−Uh(y
r
s , ts−)]dx .

The integral on the right-hand side of (13.2.8) is bounded from above by
2h max |φ| osc(xr−1,xr+1)Uh(·, ts−) and hence es(℘;φ, h) is in turn majorized by
2h max |φ| T V(−∞,∞)Uh(·, ts−). By (13.1.12) and (13.1.3), we conclude

(13.2.9) |es(℘;φ, h)| ≤ 2c1δ1h max |φ|, s = 0, 1, 2, · · · .
In the summation (13.2.7), the number of nonzero terms, lying inside the sup-

port of φ, is O(h−1), and so the most one may generally extract from (13.2.9) is
e(℘;φ, h) = O(1), as h ↓ 0. This again indicates that one should not expect consis-
tency for an arbitrary sequence ℘. The success of the random choice method stems
from the fact that, as h ↓ 0, the average of es(℘;φ, h) decays to zero faster than
es(℘;φ, h) itself. Indeed,
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(13.2.10)
∫ 1

−1

∫ xr+1

xr−1

φ(x, ts)[Uh(x, ts−)−Uh(y
r
s , ts−)]dxdas

= 1

h

∫ xr+1

xr−1

∫ xr+1

xr−1

φ(x, ts)[Uh(x, ts−)−Uh(y, ts−)]dxdy

is majorized by 2h2 max |∂xφ| osc(xr−1xr+1)Uh(·, ts−). The sum over r of these inte-
grals is then majorized by 2h2 max |∂xφ| T V(−∞,∞)Uh(·, ts−). Recalling (13.1.12)
and (13.1.3), we finally conclude

(13.2.11) |
∫ 1

−1
es(℘;φ, h)das | ≤ 2c1δ1h2 max |∂xφ|, s = 0, 1, 2, · · · .

Next we demonstrate that, for 0 ≤ s < σ < ∞, es(℘;φ, h) and eσ (℘;φ, h)
are “weakly correlated” in that their inner product in A decays to zero very rapidly,
O(h3), as h ↓ 0. In the first place, es(℘;φ, h) depends on ℘ solely through the
first s + 1 components (a0, · · · , as) and, similarly, eσ (℘;φ, h) depends on ℘ only
through (a0, · · · , aσ ). Hence, upon using (13.2.9) and (13.2.11),

(13.2.12) |
∫
A

es(℘;φ, h)eσ (℘;φ, h)dν(℘)|

= |2−σ−1
∫ 1

−1
· · ·
∫ 1

−1
es(

∫ 1

−1
eσdaσ )da0 · · · daσ−1|

≤ 2c2
1δ

2
1h3 max |φ|max |∂xφ|.

By virtue of (13.2.7),

(13.2.13) |e|2 =
∞∑

s=0

|es |2 + 2
∞∑

s=0

∞∑
σ=s+1

eseσ .

Since φ has compact support, on the right-hand side of (13.2.13) the first summation
contains O(h−1) nonzero terms and the second summation contains O(h−2) nonzero
terms. Consequently, on account of (13.2.9) and (13.2.11),

(13.2.14)
∫
A
|e(℘;φ, h)|2dν(℘) = O(h), as h ↓ 0.

Thus there exists a null subset Nφ of A such that e(℘;φ, hm)→ 0, as m → ∞,
for any ℘ ∈ A\Nφ . If {φk} is any countable set of test functions, which is C1-dense
in the set of all test functions with compact support in (−∞,∞) × [0,∞), the null
subset N =

⋃
k
Nφk of A will obviously satisfy the asssertion of the theorem. The

proof is complete.
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To conclude this section, we discuss the admissibility of the constructed solution.

13.2.2 Theorem. Assume the system is endowed with an entropy-entropy flux pair
(η, q), where η(U ) is convex in O. Then there is a null subset N of A with the
following property: When the Ur

s are evaluated via (13.2.5), with yr
s = xr+ash, then

for any ℘ ∈ A\N , the limit U in (13.2.1) is a solution of (13.1.1) which satisfies the
entropy admissibility criterion.

Proof. Inside each strip {(x, t) : −∞ < x < ∞, ts ≤ t < ts+1},Uh is a solution
of (13.1.9), with shocks that satisfy the viscous shock admissibility condition and
thereby also the entropy shock admissibility criterion, relative to the entropy-entropy
flux pair (η, q) (cf. Theorem 8.6.2). Therefore, we have

(13.2.15) ∂tη(Uh(x, t))+ ∂x q(Uh(x, t)) ≤ 0, −∞ < x <∞, ts ≤ t < ts+1 ,

in the sense of measures.
Consider any nonnegative C∞ test function φ with compact support on

(−∞,∞) × [0,∞). We apply the measure (13.2.15) to the function φ on the rect-
angle {(x, t) : xr−1 < x < xr+1 , ts ≤ t < ts+1 , r + s odd} and sum over all
such rectangles in the upper half-plane. After an integration by parts, and upon using
(13.1.8) and (13.1.10), this yields

(13.2.16)
∫ ∞

0

∫ ∞

−∞
[∂tφ η(Uh)+ ∂xφ q(Uh)]dxdt +

∫ ∞

−∞
φ(x, 0)η(U0(x))dx

≥
∞∑

s=0

∑
r+s odd

∫ xr+1

xr−1

φ(x, ts)[η(Uh(x, ts−))− η(Ur
s )]dx .

Retracing the steps of the proof of Theorem 13.2.1, we deduce that there is a
null subset Nφ of A with the property that, when ℘ ∈ A\Nφ , the right-hand side
of (13.2.16) tends to zero, along the sequence {hm}, as m → ∞. Consequently, the
limit U in (13.2.1) satisfies the inequality

(13.2.17)
∫ ∞

0

∫ ∞

−∞
[∂tφ η(U )+ ∂xφ q(U )]dxdt +

∫ ∞

−∞
φ(x, 0)η(U0(x))dx ≥ 0.

We now consider any countable set {φk} of nonnegative test functions that is C1-
dense in the set of all nonnegative test functions with compact support in the upper
half-plane (−∞,∞)×[0,∞), and define N =

⋃
k
Nφk . It is clear that if one selects

any ℘ ∈ A\N then (13.2.17) will hold for all nonnegative test functions φ and hence
U will satisfy the entropy admissibility condition. This completes the proof.

In the absence of entropy-entropy flux pairs, or whenever the entropy admis-
sibility criterion is not sufficiently discriminating to rule out all spurious solutions
(cf. Chapter VIII), the question of admissibility of solutions constructed by the ran-
dom choice method is subtle. It is plausible that the requisite shock admissibility
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conditions will hold at points of approximate jump discontinuity of the solution U ,
so long as they are satisfied by the shocks of the approximate solutions Uh . Prov-
ing this, however, requires a more refined treatment of the limit process that yields
U from Uh which may be attained by the method of wave partitioning outlined in
Section 13.8.

13.3 Wave Interactions, Approximate Conservation Laws
and Approximate Characteristics
in Genuinely Nonlinear Systems

We now embark on the long journey that will eventually lead to the stability esti-
mates (13.1.11), (13.1.12) and (13.1.13). The first step is to estimate local changes
in the total variation of the approximate solutions Uh . For simplicity, we limit the
discussion to systems with characteristic families that are either genuinely nonlin-
ear (7.6.13) or linearly degenerate (7.5.2). The general case is considerably more
complicated and will be discussed briefly in Section 13.7.

According to the construction scheme, a portion of the wave fan emanating from
the mesh-point (xr−1, ts−1), r + s even, combines with a portion of the wave fan
emanating from the mesh-point (xr+1, ts−1) to produce the wave fan that emanates
from the mesh-point (xr , ts). This is conveniently illustrated by enclosing the mesh-
point (xr , ts) in a diamond-shaped region #r

s with vertices at the four surrounding
sampling points, (yr−1

s , ts), (yr
s−1, ts−1), (yr+1

s , ts) and (yr
s+1, ts+1); see Fig. 13.3.1.
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A wave fan emanating from (xr−1, ts−1) and joining the state Ur−1
s , on the left,

with the state Ur
s−1 , on the right, enters #r

s through its “southwestern” edge. It may
be represented, as explained in Sections 9.3 and 9.9, by the n-tuple α = (α1, · · · , αn)

of its wave amplitudes. A second wave fan, emanating from (xr+1, ts−1), joining the
state Ur

s−1 , on the left, with the state Ur+1
s , on the right, and similarly represented by
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the n-tuple β = (β1, · · · , βn) of its wave amplitudes, enters #r
s through its “south-

eastern” edge.
The output from #r

s consists of the full wave fan which emanates from (xr , ts),
joins the state Ur−1

s , on the left, with the state Ur+1
s , on the right, and is represented

by the n-tuple ε = (ε1, · · · , εn) of its wave amplitudes. A portion β ′ = (β ′1, · · · , β ′n)
of ε exits through the “northwestern” edge of #r

s and enters the diamond #r−1
s+1 ,

while the balance α′ = (α′1, · · · , α′n) exits through the “northeastern” edge of #r
s

and enters the diamond #r+1
s+1 . Clearly, εi = α′i + β ′i , i = 1 , · · · , n. As explained

in Section 9.4, for genuinely nonlinear characteristic families, a positive amplitude
indicates a rarefaction wave and a negative amplitude indicates a compressive shock.
Needless to say, a zero amplitude indicates that the wave of that family is missing
from the wave fan in question. In particular, there is j = 1, · · · , n such that α′i = 0
for i = 1, · · · , j − 1 and β ′i = 0 for i = j + 1, · · · , n. Both α′j and β ′j may be
nonzero, but then both must be positive, associated with rarefaction waves.

If the incoming wave fans α and β were allowed to propagate freely, beyond
the ts-time line, the resulting wave interactions would generate a very intricate wave
pattern. Nevertheless, following the discussion in Section 9.9, it should be expected
that as t → ∞ this wave pattern will reduce to a centered wave fan which is none
other than ε. Thus the essense of our construction scheme is that it replaces actual,
complex, wave patterns by their time-asymptotic, simpler, forms. In that connection,
the role of “random choice” is to arrange the relative position of the wave fans in
such a manner that “on the average” the law of “mass” conservation holds.

According to the terminology of Section 9.9, the wave fan ε shall be regarded as
the result of the interaction of the wave fan α, on the left, with the wave fan β, on
the right. It is convenient to realize ε, α and β as n-vectors normed by the �n

1 norm,
in which case Theorem 9.9.1 yields the estimate

(13.3.1) |ε − (α + β)| ≤ [c3 + c4(|α| + |β|)]D(#r
s),

with c3 and c4 depending solely on F . In particular, c3 = 0 when the system is
endowed with a coordinate system of Riemann invariants. Here the symbol D(#r

s)

is being used, in the place of D(α, β) in Section 9.9, to denote the amount of wave
interaction in the diamond #r

s , namely,

(13.3.2) D(#r
s) =

∑
app

|αk ||β j |.

The summation runs over all pairs of approaching waves, i.e. over all (k, j) such that
either k > j , or k = j and at least one of α j , β j is negative, corresponding to a
shock.

Formula (13.3.1) will serve as the vehicle for estimating how the total variation
and the supremum of the approximate solutions Uh change with time, as a result of
wave interactions.

By (13.3.1), when αi and βi have the same sign, the total strength |α′i | + |β ′i |
of i-waves leaving the diamond #r

s is nearly equal to the total strength |αi | + |βi |
of entering i-waves. However, when αi and βi have opposite signs, cancellation of
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i-waves takes place. To account for this phenomenon, which greatly affects the be-
havior of solutions, certain notions will now be introduced.

The amount of i-wave cancellation in the diamond #r
s is conveniently measured

by the quantity

(13.3.3) Ci (#
r
s) = 1

2 (|αi | + |βi | − |αi + βi |).
In order to account separately for shocks and rarefaction waves, we rewrite (13.3.1)
in the form

(13.3.4) ε±i = α±i + β±i − Ci (#
r
s)+ [c3 O(1)+ O(τ )]D(#r

s),

where the superscript plus or minus denotes positive or negative part of the ampli-
tude, and τ is the oscillation of Uh .

Upon summing (13.3.4) over any collection of diamonds, whose union forms a
domain � in the upper half-plane, we end up with equations

(13.3.5) L±i (�) = E±i (�)− Ci (�)+ [c3 O(1)+ O(τ )]D(�),
where E−i (or E+i ) denotes the total amount of i-shock (or i-rarefaction wave) that
enters � , L−i (or L+i ) denotes the total amount of i-shock (or i-rarefaction wave)
that leaves � , Ci (�) is the amount of i-wave cancellation inside �, and D(�) is
the amount of wave interaction inside �. The equations (13.3.5) express the balance
of i-waves relative to � and, accordingly, are called approximate conservation laws
for i-shocks (with minus sign) or i-rarefaction waves (with plus sign).

The total amount of wave cancellation in the diamond #r
s is naturally measured

by

(13.3.6) C(#r
s) =

n∑
i=1

Ci (#
r
s).

Notice that (13.3.1) implies

(13.3.7) |α′| + |β ′| = |ε| ≤ |α| + |β| − 2C(#r
s)+ [c3 + c4(|α| + |β|)]D(#r

s).

An approximate i-characteristic associated with the approximate solution Uh ,
and defined on the time interval [t�, tm), is a sequence χ(�), · · · , χ(m−1) of straight
line segments, such that, for s = �, · · · ,m − 1, χ(s) is either a classical i-
characteristic or an i-shock for Uh , emanating from some mesh-point (xr , ts), r + s
even, and defined on the time interval [ts, ts+1). Moreover, for s = �+1, · · · ,m−1,
χ(s) is a proper sequel to χ(s−1), according to the following rules: χ(s−1) must enter
the diamond #r

s centered at (xr , ts). Whenever the interaction of i-waves entering
#r

s produces an i-shock, χ(s) is that shock. On the other hand, when the interaction
of the i-waves entering #r

s produces an i-rarefaction wave, then χ(s) is a classical
i-characteristic identified by the requirement that the amount of i-rarefaction wave
that leaves #r

s on the left (right) of χ(s) does not exceed the amount of i-rarefaction
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wave that enters #r
s on the left (right) of χ(s−1). In applying the above rule, we

tacitly assume that εi = αi + βi , disregarding the potential (small) contribution to
i-rarefaction wave by wave interactions.

Figure 13.3.2 depicts three representative configurations. Only i-waves are il-
lustrated and the approximate i-characteristic is drawn as a dotted line. In case (a),
an i-shock interacts with an i-rarefaction wave to produce an i-shock. χ(s−1) is a
classical i-characteristic but χ(s) will be the outgoing i-shock. In case (b), χ(s−1) is
an i-shock whose interaction with an i-rarefaction wave produces an i-rarefaction
wave. Since the amount of i-rarefaction wave that enters #r

s on the left of χ(s−1)

is nil, χ(s) must be the left edge of the outgoing rarefaction wave. Finally, in case
(c) two i-rarefaction waves interact to produce an i-rarefaction wave. Then χ(s) is
selected so that the amount of i-rarefaction wave on its left equals the amount of
i-rarefaction wave that enters #r

s on the left of χ(s−1). This will automatically as-
sure that the amount of i-rarefaction wave that leaves #r

s on the right of χ(s) equals
the amount of i-rarefaction wave that enters #r

s on the right of χ(s−1), provided one
neglects potential contribution to i-rarefaction wave by wave interactions.

The above construction of approximate characteristics has been designed so that
the following principle holds: Rarefaction waves cannot cross approximate charac-
teristics of their own family. Consequently, approximate conservation laws

(13.3.8) L+i (�±) = E+i (�±)− Ci (�±)+ [c3 O(1)+ O(τ )]D(�±),
for i-rarefaction waves, hold for the domains�± in which the diamond#r

s is divided
by any approximate i-characteristic (Fig. 13.3.3).

The corresponding approximate conservation laws for i-shocks assume a more
complicated form, depending on how one apportions between �− and �+ the
strength of i-shocks that lie on the dividing boundary of �− and �+ .

One may immediately extend the approximate conservation laws for i-rarefaction
waves from the single diamond to any domain � formed by the union of a collection
of diamonds and thus write (13.3.8) for the domains �± into which � is divided by
any approximate i-characteristic.
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Approximate conservation laws may be employed for deriving fine properties of
approximate solutions, at least for systems of two conservation laws, which yield,
in the limit, properties of solutions comparable to those established in Chapter XII
by the method of generalized characteristics. Indeed, the h ↓ 0 limit of any con-
vergent sequence of approximate i-characteristics is necessarily a generalized i-
characteristic, in the sense of Chapter X.

13.4 The Glimm Functional for Genuinely Nonlinear Systems

The aim here is to establish bounds on the total variation of approximate solutions
Uh along certain curves. We are still operating under the assumption that each char-
acteristic family is either genuinely nonlinear (7.6.13) or linearly degenerate (7.5.2).

A mesh curve, associated with Uh , is a polygonal graph with vertices that form
a finite sequence of sample points (yr1

s1 , ts1), · · · , (yrm
sm , tsm ), where r�+1 = r�+ 1 and

s�+1 = s�−1 or s�+1 = s�+1 (Fig. 13.4.1). Thus the edges of any mesh curve I are
also edges of diamond-shaped regions considered in the previous section. Any wave
entering into a diamond through an edge shared with the mesh curve I is said to be
crossing I .

A mesh curve J is called an immediate successor of the mesh curve I when J\I
is the upper (i.e., “northwestern” and “northeastern”) boundary of some diamond,
say #r

s , and I\J is the lower (i.e., “southwestern” and “southeastern”) boundary of
#r

s . Thus J has the same vertices as I , save for one, (yr
s−1, ts−1), which is replaced

by (yr
s+1, ts+1). This induces a natural partial ordering in the family of mesh curves:

J is a successor of I , denoted I < J , whenever there is a finite sequence, say
I = I0, I1, · · · , Im = J , of mesh curves such that I� is an immediate successor of
I�−1, for � = 1, · · · ,m.
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With mesh curves I we associate the functionals

(13.4.1) S(I ) = max |ξ |,

(13.4.2) L(I ) =
∑

|ξ |,

where both the maximum and the summation are taken over the amplitudes ξ of all
waves that are crossing I . Clearly, S(I ) measures the oscillation and L(I ) measures
the total variation of Uh along the curve I . We shall estimate the supremum and
total variation of Uh by monitoring how S and L change as one passes from I to its
successors.

Assume J is an immediate successor of I , as depicted in Fig. 13.4.1. Wave fans
α = (α1, · · · , αn) and β = (β1, · · · , βn) enter the diamond #r

s through its “south-
western” and “southeastern” edge, respectively, and interact to generate, as discussed
in Section 13.3, the wave fan ε = (ε1, · · · , εn), which exits #r

s through its “north-
western” and “northeastern” edge. By virtue of (13.3.1) we deduce

(13.4.3) S(J ) ≤ S(I )+ [c3 + c4S(I )]D(#r
s),

(13.4.4) L(J ) ≤ L(I )+ [c3 + c4S(I )]D(#r
s),

where c3 and c4 are the constants that appear also in (13.3.1). In particular, when the
system is endowed with a coordinate system of Riemann invariants, c3 = 0. Clearly,
S and L may increase as one passes from I to J and thus (13.4.3), (13.4.4) alone are
insufficient to render the desired bounds (13.1.11), (13.1.12).

What saves the day is the realization that L may increase only as a result of inter-
action by approaching waves, which, after crossing paths, separate and move away
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from each other, never to meet again. Consequently, the potential for future interac-
tions is embodied in the initial arrangement of waves and may thus be anticipated
and estimated in advance. To formalize the above heuristic arguments, we shall asso-
ciate with mesh curves I a functional Q (I ) which measures the potential for future
interactions of waves that are crossing I .

An i-wave and a j-wave, crossing the mesh curve I , are said to be approaching
if (a) i > j and the i-wave is crossing on the left of the j-wave; or (b) i < j and the
i-wave is crossing on the right of the j-wave; or (c) i = j , the i-characteristic family
is genuinely nonlinear and at least one of the waves is a shock. The reader should
note the analogy with the notion of approaching waves in two interacting wave fans,
introduced in Section 9.9. After this preparation, we set

(13.4.5) Q(I ) =
∑
app

|ζ ||ξ |,

where the summation runs over all pairs of approaching waves that are crossing I
and ζ, ξ are their amplitudes. Clearly,

(13.4.6) Q(I ) ≤ 1
2 [L(I )]2.

The change in the potential of future wave interactions as one passes from the
mesh curve I to its immediate successor J , depicted in Fig. 13.4.1, is controlled by
the estimate

(13.4.7) Q(J )−Q(I ) ≤ {[c3 + c4S(I )]L(I )− 1}D(#r
s),

where c3 and c4 are the same constants appearing in (13.4.3) and (13.4.4).
To verify (13.4.7), we shall distinguish between peripheral waves, which are

crossing both I and J on the left of (yr−1
s , ts) or on the right of (yr+1

s , ts), and
principal waves, that is, constituents of the wave fans α, β or ε, which enter or exit
#r

s by crossing I or J between (yr−1
s , ts) and (yr+1

s , ts).
We first observe that pairs of principal waves from the incoming wave fans α and

β interact to contribute the amount D(#r
s) to Q(I ). By contrast, no pair of principal

waves from the outgoing wave fan ε is approaching so as to make a contribution to
Q(J ).

Next we note that pairs of peripheral waves contribute equally to Q(I ) and to
Q(J ); hence their net contribution to Q(J )−Q(I ) is nil.

It remains to discuss the pairing of peripheral with principal waves. Let us ex-
amine the contributions to Q(I ) and to Q(J ) from the pairing of some fixed periph-
eral i-wave, of amplitude ζ , with the j-waves of α, β and ε. One must distinguish
the following cases: (i) j > i and the peripheral i-wave is crossing I on the left of
(yr−1

s , ts); (ii) j < i and the peripheral i-wave is crossing I on the right of (yr+1
s , ts);

(iii) j = i and the i-characteristic family is linearly degenerate; (iv) j > i and the
peripheral i-wave is crossing I on the right of (yr+1

s , ts); (v) j < i and the periph-
eral i-wave is crossing I on the left of (yr−1

s , ts); (vi) j = i , the i-characteristic
family is genuinely nonlinear, and the peripheral wave is an i-shock, ζ < 0; and (vii)
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j = i , the i-characteristic family is genuinely nonlinear, and the peripheral wave is
an i-rarefaction, ζ > 0.

In cases (i), (ii) and (iii), the peripheral i-wave is not approaching any of the j-
waves of α, β, ε; hence the contribution to both Q(I ) and Q(J ) is nil. By contrast, in
cases (iv), (v) and (vi), the peripheral i-wave is approaching all three of the j-waves
of α, β, ε; thus the contribution to Q(I ) and Q(J ) is |ζ |(|α j | + |β j |) and |ζ ||ε j |,
respectively.

In the remaining case (vii), depending on the signs of αi , βi and εi , the periph-
eral i-wave may be approaching all, some, or none of the i-waves of α, β and ε;
the contribution to Q(I ) and Q(J ) is ζ(α−i + β−i ) and ζε−i , respectively, where the
superscript “minus” denotes “negative part”.

From the above and (13.3.1), the total contribution to Q(J )−Q(I ) from the pair-
ing of any peripheral wave of amplitude ζ with all principal waves cannot exceed the
amount |ζ |[c3+ c4S(I )]D(#r

s). Therefore we conclude that the overall contribution
to Q(J )−Q(I ) from such interactions is bounded by [c3+c4S(I )]L(I )D(#r

s). This
establishes (13.4.7).

The key consequence of (13.4.7) is that when L(I ) is suffiently small the poten-
tial Q for future wave interactions will decrease as one passes from the mesh curve
I to its immediate successor J . We shall exploit this property to compensate for the
possibility that S and L may be increasing, to the extent allowed by (13.4.3) and
(13.4.4). For that purpose, we associate with mesh curves I the Glimm functional

(13.4.8) G(I ) = L(I )+ 2κQ(I ),

where κ is some fixed upper bound of c3 + c4S(I ), independent of I and h. Even
though G majorizes L, it is actually equivalent to L by account of (13.4.6).

13.4.1 Theorem. Let I be a mesh curve with 4κL(I ) ≤ 1. Then, for any mesh curve
J that is a successor of I ,

(13.4.9) G(J ) ≤ G(I ),

(13.4.10) L(J ) ≤ 2L(I ).

Furthermore, the amount of wave interaction and the amount of wave cancellation
in the diamonds confined between the curves I and J are bounded:

(13.4.11)
∑

D(#r
s) ≤ [L(I )]2,

(13.4.12)
∑

C(#r
s) ≤ L(I ).

Proof. Assume first that J is the immediate successor of I depicted in Fig. 13.4.1.
Upon combining (13.4.8) with (13.4.4) and (13.4.7), we deduce

(13.4.13) G(J ) ≤ G(I )+ κ[2κG(I )− 1]D(#r
s).
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By virtue of (13.4.8), (13.4.6) and 4κL(I ) ≤ 1, we obtain

(13.4.14) G(I ) ≤ 2L(I ),

so that 2κG(I ) ≤ 1, in which case (13.4.13) yields (13.4.9).
Assume now that J is any successor of I . Iterating the above argument, we es-

tablish (13.4.9) for that case as well. Since L(J ) ≤ G(J ), (13.4.10) follows from
(13.4.9) and (13.4.14). Summing (13.4.7) over all diamonds confined between the
curves I and J and using (13.4.10), we obtain

(13.4.15) 1
2

∑
D(#r

s) ≤ Q(I )−Q(J ),

which yields (13.4.11), by virtue of (13.4.6).
We sum (13.3.7) over all the diamonds confined between the curves I and J , to

get

(13.4.16) 2
∑

C(#r
s) ≤ L(I )− L(J )+ κ

∑
D(#r

s).

Combining (13.4.16) with (13.4.10) and (13.4.11) we arrive at (13.4.12). This com-
pletes the proof.

The above theorem is of fundamental importance. In particular, the estimates
(13.4.9) and (13.4.10) provide the desired bounds on the total variation while
(13.4.11) and (13.4.12) embody the dissipative effects of nonlinearity and have sig-
nificant implications for regularity and large time behavior of solutions.

The assumption 4κL(I ) ≤ 1 in the above theorem means that L(I ) itself should
be sufficiently small, for general systems. However, in systems endowed with a
coordinate system of Riemann invariants, where c3 = 0, it would suffice that
(sup Uh)L(I ) be sufficiently small. For this special class of systems, sup Uh will
be estimated with the help of

13.4.2 Theorem. Assume that the system is endowed with a coordinate system of
Riemann invariants. Let I be a mesh curve with 4κL(I ) ≤ 1. Then, for any mesh
curve J that is a successor of I ,

(13.4.17) S(J ) ≤ exp[c4L(I )2]S(I ).
Proof. Assume first that J is the immediate successor of I depicted in Fig. 13.4.1.
Since c3 = 0, (13.4.3) yields

(13.4.18) S(J ) ≤ [1+ c4D(#r
s)]S(I ).

Iterating the above argument, we deduce that if J is any successor of I , then

(13.4.19) S(J ) ≤
∏
[1+ c4D(#r

s)]S(I ),
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where the product runs over all the diamonds confined between the curves I and
J . Combining (13.4.19) with (13.4.11), we arrive at (13.4.17). This completes the
proof.

For systems endowed with a coordinate system of Riemann invariants, it is ex-
pedient to measure wave strength by the jump of the corresponding Riemann invari-
ant across the wave. In particular, for systems with coinciding shock and rarefaction
wave curves (see Section 8.2) this policy renders L itself nonincreasing, as one passes
from a mesh curve to its successor, and thus allows us to estimate the total variation
of the solution without any restriction on the size of the total variation of the ini-
tial data. There is another, very special, class of systems of two conservation laws
in which a suitable measurement of wave strength yields a nonincreasing L, and
thereby existence of solutions to the Cauchy problem under initial data with large
total variation. An interesting representative of that class is the system

(13.4.20)

⎧⎨⎩
∂t u − ∂xv = 0

∂tv + ∂x (u−1) = 0,

namely the special case of (7.1.8) with σ(u) = −u−1. In classical gas dynamics,
this system governs the isothermal flow of a polytropic ideal gas, in Lagrangian
coordinates.

13.5 Bounds on the Total Variation
for Genuinely Nonlinear Systems

Here we prove the estimates (13.1.12) and (13.1.13), always operating under the
assumption that the oscillation of Uh is bounded, uniformly in h. The vehicle will be
the following corollary of Theorem 13.4.1:

13.5.1 Theorem. Fix 0 ≤ τ < t <∞ and −∞ < a < b <∞. Assume that κ times
the total variation of Uh(·, t) over the interval [a−λ(t− τ)−6h, b+λ(t− τ)+6h]
is sufficiently small.2 Then

(13.5.1) T V[a,b]Uh(·, t) ≤ c1T V[a−λ(t−τ)−6h,b+λ(t−τ)+6h]Uh(·, τ ),
where c1 depends solely on F . Furthermore, if x is a point of continuity of both
Uh(·, τ ) and Uh(·, t), and κ times the total variation of Uh(·, t) over the interval
[x − λ(t − τ)− 6h, x + λ(t − τ)+ 6h] is sufficiently small, then

(13.5.2) |Uh(x, t)−Uh(x, τ )| ≤ c5T V[x−λ(t−τ)−6h,x+λ(t−τ)+6h]Uh(·, τ ),
where c5 depends solely on F .

2 As before, λ here denotes the ratio of spatial and temporal mesh-lengths.
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Proof. First we determine nonnegative integers σ and s such that tσ ≤ τ < tσ+1 and
ts ≤ t < ts+1 . Next we identify integers r1 and r2 such that yr1+1

s+1 < a ≤ yr1+3
s+1 and

yr2−3
s+1 ≤ b < yr2−1

s+1 . We then set r3 = r1 − (s − σ) and r4 = r2 + (s − σ).
We now construct two mesh curves I and J , as depicted in Fig. 13.5.1, by the fol-

lowing procedure: I originates at the sampling point (yr3
σ , tσ ) and zig-zags between

tσ and tσ+1 until it reaches the sampling point (yr4
σ , tσ ), where it terminates. J also

originates at (yr3
σ , tσ ), takes s − σ steps to the “northeast”, reaching the sampling

point (yr1
s , ts), then it zig-zags between ts and ts+1 until it arrives at the sampling

point (yr2
s , ts), and finally takes s−σ steps to the “southeast” terminating at (yr4

σ , tσ ).

(ys
r2, t s )(ys

1r
s ), t

I

J

(yσ
r

, t σ ) )σ, tσ
4r(y3

Fig. 13.5.1

Clearly,

(13.5.3) T V[a,b]Uh(·, t) ≤ c6L(J ).

It is easy to see that yr3
σ ≥ a−λ(t− τ)−6h and yr4

σ ≤ b+λ(t− τ)+6h. Therefore,

(13.5.4) L(I ) ≤ c7T V[a−λ(t−τ)−6h,b+λ(t−τ)+6h]Uh(·, τ ).
Also, J is a successor of I and hence, if 4κL(I ) ≤ 1, Theorem 13.4.1 implies
L(J ) ≤ 2L(I ). Combining this with (13.5.3) and (13.5.4), we arrive at (13.5.1),
with c1 = 2c6c7 .

Given x , we repeat the above construction of I and J with a = b = x . We can
identify a point (y′, τ ′) on I with Uh(y′, τ ′) = Uh(x, τ ) as well as a point (x ′, t ′) on
J with Uh(x ′, t ′) = Uh(x, t). Hence

(13.5.5) |Uh(x, t)−Uh(x, τ )| ≤ c8[L(I )+ L(J )] ≤ 3c8L(I ).

From (13.5.5) and (13.5.4), with a = b = x , we deduce (13.5.2) with c5 = 3c7c8 .
This completes the proof.
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Applying (13.5.1) for τ = 0, a → −∞, b → ∞, and taking into account that
T V(−∞,∞)Uh(·, 0) ≤ T V(−∞,∞)U0(·), we verify (13.1.12).

Finally, we integrate (13.5.2) over (−∞,∞), apply Fubini’s theorem, and use
(13.1.12) to get

(13.5.6)∫ ∞

−∞
|Uh(x, t)−Uh(x, τ )|dx ≤ c5

∫ ∞

−∞
T V[x−λ(t−τ)−6h,x+λ(t−τ)+6h]Uh(·, τ )dx

= 2c5[λ(t − τ)+ 6h]T V(−∞,∞)Uh(·, τ )
≤ 2c1c5[λ(t − τ)+ 6h]T V(−∞,∞)U0(·),

which establishes (13.1.13).

13.6 Bounds on the Supremum for Genuinely Nonlinear Systems

One may readily obtain a bound on the L∞ norm of Uh from (13.5.2), with τ = 0:

(13.6.1) sup(−∞,∞)|Uh(·, t)| ≤ sup(−∞,∞)|U0(·)| + c5T V(−∞,∞)U0(·).
This estimate is not as strong as the asserted (13.1.11), because, in addition to the
supremum, it involves the total variation of the initial data. Even so, combining
(13.6.1) with the estimates (13.1.12) and (13.1.13), established in Section 13.5, al-
lows us to invoke the results of Section 13.2 and thus infer the existence of a solution
U to the initial-value problem (13.1.1), which is the limit of a sequence of approx-
imate solutions; cf. (13.2.1). Clearly, U satisfies (13.1.5) and (13.1.6), by virtue of
(13.1.12) and (13.1.13). We have thus verified all the assertions of Theorem 13.1.1,
save (13.1.4). Despite the fact that it is inessential for demonstrating existence of
solutions, (13.1.4) has intrinsic interest, as a statement of stability, and also plays a
useful role in deriving other qualitative properties of solutions. It is thus important to
establish the estimate (13.1.11), which yields (13.1.4).

We first note that for systems endowed with a coordinate system of Riemann
invariants, (13.1.11) is an immediate corollary of Theorem 13.4.2 and thus δ1 in
(13.1.3) need not be small, so long as δ2 in (13.1.7) is. The proof in this case is
so simple because terms of quadratic order are missing in the interaction estimate
(13.3.1), i.e., c3 = 0. By contrast, in systems devoid of this special structure, the
interaction terms of quadratic order complicate the situation. The proof of (13.1.11)
hinges on the special form of the quadratic terms, which, as seen in (9.9.13), involve
the Lie brackets of the eigenvectors of DF . The analysis is too laborious to be re-
produced here in its entirety, so only an outline of the main ideas shall be presented.
The reader may find the details in the references cited in Section 13.10.
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The general strategy of the proof is motivated by the ideas expounded in Section
13.4, which culminated in the proof of Theorems 13.4.1 and 13.4.2. Two functionals,
R and P , will be associated with mesh curves I , where R(I )measures the oscillation
of Uh over I while P(I ) provides an estimate on how the oscillation may be affected
by future wave interactions. For measuring the oscillation with accuracy, it becomes
necessary to account for the mutual cancellation of shocks and rarefaction waves of
the same characteristic family. We thus have to tally amplitudes, rather than strengths
of waves. Accordingly, with any (finite) sequence of, say, M waves with amplitudes
ξ = (ξ1, . . . , ξM ), we associate the number

(13.6.2) |ξ | =
n∑

j=1

|
∑

j−waves

ξL |,

where the second summation runs over the indices L = 1, · · · , M for which the L-th
wave in the sequence is a j-wave. We then define

(13.6.3) R(I ) = sup |ξ |,
where the supremum is taken over all sequences of waves crossing I that are consec-
utive, in the sense that any two of them occupying consecutive places in the sequence
are separated by a constant state of Uh . After a little reflection, one sees that, as long
as L(I ) is sufficiently small, R(I ) measures the oscillation of Uh over I .

As one passes from I to its successors, the value of R changes for two reasons:
First, as waves travel at different speeds, crossings occur and wave sequences are re-
ordered (notice, however, that the relative order of waves of the same characteristic
family is necessarily preserved). Secondly, the amplitude of waves changes in result
of wave interactions, as indicated in (9.9.13). It turns out that the effect of wave inter-
actions of third or higher order in wave strength may be estimated grossly, as in the
proof of Theorem 13.4.2. However, the effect of wave interactions of quadratic order
in wave strength is more significant and thus must be estimated with higher preci-
sion. This may be accomplished in an effective manner by realizing the quadratic
terms in (9.9.13) as new virtual waves which should be accounted for, along with the
actual waves.

The aforementioned functional P , which will help us estimate the effect of future
wave interactions, is constructed by the following procedure. With any sequence of
consecutive waves crossing the mesh curve I , one associates a family of sequences
of waves, which are regarded as its “descendents”. A descendent sequence of waves
is derived from its “parental” one by the following two operations: (a) Admissible
reorderings of the waves in the parental sequence j , e.g. a k-wave occupying the K -
th place and an �-wave occupying the L-th place in the parental sequence, exchange
places if k > � and K < L . (b) Insertion of any virtual waves that may be gener-
ated from interactions of waves in the parental sequence. The precise construction of
descendent sequences entails a major technical endeavor, which shall not be under-
taken here, but can be found in the references cited in Section 13.10. For any mesh
curve I , we set
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(13.6.4) P(I ) = sup |ξ |,
where the supremum is now taken over the union of the descendent families of all
sequences of consecutive waves that are crossing I .

As long as the total variation is small, P is actually equivalent to R:

(13.6.5) R(I ) ≤ P(I ) ≤ [1+ c9L(I )]R(I ).
The idea of the proof of (13.6.5) is as follows. Recall that the principal difference
between L(I ) and R(I ) is that in the former we tally the (positive) strengths of
crossing waves while in the latter we sum the (signed) amplitudes of crossing waves,
thus allowing for cancellation between waves in the same characteristic family but of
opposite signs (i.e., shocks and rarefaction waves). Consider the interaction of a sin-
gle j-wave, with amplitude ζ , with a number of k-waves. Since waves in the same
characteristic family preserve their relative order, the interactions of the k-waves
with the j-wave will occur consecutively and so the resulting virtual waves will also
appear in the same order. Furthermore, whenever the amplitudes of the k-waves al-
ternate in sign, then so do the corresponding Lie bracket terms. Consequently, the
virtual waves undergo the same cancellation as their parent waves and thus the con-
tribution to P(I ) by the interaction of the j-wave with the k-waves will be of the
order O(1)|ζ |S(I ). Thus the total contribution to P(I ) from such interactions will
be O(1)L(I )S(I ), whence (13.6.5) follows. The detailed proof is quite lengthy and
may be found in the references.

The next step is to show that if J is the immediate successor of the mesh curve I
depicted in Fig. 13.4.1, then

(13.6.6) P(J ) ≤ P(I )+ c10R(I )D(#r
s).

The idea of the proof is as follows. Sequences of waves crossing J are reorderings of
sequences that cross I , with the waves entering the diamond #r

s through its “south-
western” and “southeastern” edges exchanging their relative positions as they exit
#r

s . Furthermore, as one passes from I to J the virtual waves produced by the inter-
action of the waves that enter #r

s are converted into actual waves, embodied in the
waves that exit #r

s . Again, the detailed proof is quite lengthy and should be sought
in the references.

By virtue of (13.6.5), we may substitute P(I ) for R(I ) on the right-hand side of
(13.6.6), without violating the inequality. Therefore, upon iterating the argument, we
conclude that if J is any successor of I , then

(13.6.7) P(J ) ≤
∏
[1+ c10D(#r

s)]P(I ),
where the product runs over all the diamonds #r

s confined between the curves I and
J .

We now assume 4κL(I ) ≤ 1 and appeal to Theorem 13.4.1. Combining (13.6.7),
(13.4.11) and (13.6.5) yields

(13.6.8) R(J ) ≤ exp[c9L(I )+ c10L(I )2]R(I ),
whence the desired estimate (13.1.11) readily follows.
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13.7 General Systems

In this section we discuss briefly how to obtain bounds on the total variation of
approximate solutions Uh along mesh curves, for systems with characteristic fami-
lies that are merely piecewise genuinely nonlinear. These bounds will be derived by
the procedure used in Section 13.4 for genuinely nonlinear systems, except that the
functional measuring the potential for future wave interactions shall be modified, as
wave interactions are here governed by Theorem 9.9.2 (rather than 9.9.1). Thus, if
we consider the diamond #r

s , with incoming wave fans α and β, entering through
the “southwest” and the “southeast” edge, respectively, and outgoing wave fan ε,
(9.9.14) yields

(13.7.1) |ε − (α + β)| ≤ c11D(#r
s),

where

(13.7.2) D(#r
s) =

∑
θ |γ ||δ|.

Recall that the above summation runs over all pairs of elementary i-waves, with am-
plitude γ , and j-waves, with amplitude δ, entering #r

s through its “southwestern”
and “southeastern” edge, respectively. The weighting factor θ is determined as fol-
lows: θ = 0 if i < j ; θ = 1 if either i > j or i = j and γ δ < 0; finally, θ is given
by (9.9.16) if i = j and γ δ > 0.

As in Section 13.4, with any mesh curve I we associate the functional L(I ),
defined by (13.4.2). Assuming J is the immediate successor of I depicted in Fig.
13.4.1, (13.7.1) yields

(13.7.3) L(J ) ≤ L(I )+ c11D(#r
s).

The increase in L allowed by (13.7.3) will be offset by the decrease in a func-
tional Q, which monitors the potential for future wave interactions and is here defined
by

(13.7.4) Q(I ) =
∑

θ |ζ ||ξ |.
The above summation runs over all pairs of elementary i-waves and j-waves, with
respective amplitudes ζ and ξ , that are crossing the mesh curve I . When the i-wave
is crossing I on the left of the j-wave, then θ = 0 if i < j and θ = 1 if i > j . When
i = j and ζ ξ < 0, then θ = 1. Finally, if i = j and ζ ξ > 0, then θ is determined
by (9.9.16); and in particular by (9.9.16)1 when the wave on the left is an i-shock
with speed σL and the wave on the right is an i-shock with speed σR ; or by (9.9.16)2
when the wave on the left is an i-shock with speed σL , while the wave on the right is
an i-rarefaction, joining UR with Vi (τR;UR); or by (9.9.16)3 when the wave on the
left is an i-rarefaction, joining UL with Vi (τL ;UL), while the wave on the right is
an i-shock with speed σR ; or by (9.9.16)4 when the wave on the left is a rarefaction,
joining UL with Vi (τL ;UL), and the wave on the right is also a rarefaction, joining
UR with Vi (τR;UR).
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The aim is to demonstrate the analog of (13.4.7), namely that if J is the immedi-
ate successor of I depicted in Fig. 13.4.1, then

(13.7.5) Q(J )−Q(I ) ≤ [c12L(I )− 1]D(#r
s).

Once (13.7.5) is established, one considers, as in Section 13.4, the Glimm functional
G, defined by (13.4.8), and shows that if κ is selected sufficiently large and L(I )
is small, then G(J ) ≤ G(I ). This in turn yields the desired estimates (13.1.12) and
(13.1.13), by the arguments employed in Section 13.5.

To verify (13.7.5), let us retrace the steps in the proof of (13.4.7), making the
necessary adjustments. We shall use again the terms “peripheral” and “principal”
waves, to distinguish the elementary waves that are crossing both I and J from those
which enter or exit #r

s , thus crossing only I or only J .
To begin with, the interaction among principal waves of the two incoming wave

fans α and β contributes the amount D(#r
s) to Q(I ). By contrast, pairs of principal

waves from the outgoing wave fan ε make no contribution to Q(J ).
The next observation is that pairs of peripheral waves contribute equally to Q(I )

and Q(J ); hence their net contribution to Q(J )−Q(I ) is nil.
It remains to examine the pairing of peripheral waves with principal waves. Let

us estimate the contribution to Q(I ) and to Q(J ) from the pairing of some fixed
peripheral i-wave, of amplitude ζ , with the elementary j-waves of α, β and ε. As
in the genuinely nonlinear situation, we must consider a number of cases: (i) j > i
and the peripheral i-wave is crossing I on the left of (yr−1

s , ts); (ii) j < i and the
peripheral i-wave is crossing I on the right of (yr+1

s , ts); (iii) j > i and the peripheral
i-wave is crossing I on the right of (yr+1

s , ts); (iv) j < i and the peripheral i-wave
is crossing I on the left of (yr−1

s , ts); (v) j = i , αiβi > 0 and ζ(αi + βi ) < 0; (vi)
j = i , αiβi < 0 and ζ(αi + βi ) < 0; (vii) j = i , αiβi > 0 and ζ(αi + βi ) > 0; and
(viii) j = i , αiβi < 0 and ζ(αi + βi ) > 0.

In cases (i) and (iii), the contribution to both Q(I ) and Q(J ) is obviously nil. By
contrast, in cases (iii) and (iv), the contribution to Q(I ) and Q(J ) is |ζ |(|α j | + |β j |)
and |ζ ||ε j |, respectively.

In case (v), the contribution to Q(I ) is |ζ |(|αi | + |βi |). The contribution to Q(J )
depends on the sign of ζεi , but under any circumstance may not exceed the amount
|ζ ||εi |. Similarly, in case (vi) the contribution to Q(I ) is at least |ζ |max{|αi |, |βi |},
while the contribution to Q(J ) is at most |ζ ||εi |.

From the above and (13.7.1) it follows that the total contribution to Q(J )−Q(I )
from the pairing of the peripheral i-wave with all the principal waves that fall under
one of cases (i) through (vi) cannot exceed the amount c11|ζ |D(#r

s).
The remaining cases (vii) and (viii) require a more delicate treatment. In fact, it

is at this point that the difference between genuinely nonlinear systems and general
systems comes to the fore. For orientation, let us examine the special, albeit repre-
sentative, situation considered in the proof of Theorem 9.9.2: The incoming wave
fans α and β consist of a single i-shock each, with respective amplitudes γ and δ

and respective speeds σL and σR , σR ≤ σL . The i-th wave fan of the outgoing wave
fan ε also consists of a single i-shock, with amplitude εi and speed σ . For definite-
ness, it will be further assumed that the peripheral i-wave is likewise an i-shock,
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with amplitude ζ and speed σ0 < σR , which is crossing I on the right of (yr+1
s , ts).

In accordance with case (vii), above, let γ, δ, εi and ζ be all positive. Then the con-
tribution to Q(J )−Q(I ) is

(13.7.6) ζ {(σ − σ0)
+εi − (σL − σ0)

+γ − (σR − σ0)
+δ},

which is O(1)ζ θγ δ, by virtue of (9.9.30) and (9.9.31). The proof in the general
case, where α and β are arbitrary incoming wave fans, requires lengthy and tech-
nical analysis, but follows the same pattern, with (9.9.14) and (9.9.33) playing the
role of (9.9.30) and (9.9.31); see the references cited in Section 13.10. The final
conclusion is that the total contribution to Q(J )−Q(I ) from the pairing of any pe-
ripheral wave of amplitude ζ with all the principal waves cannot exceed an amount
c12|ζ |D(#r

s). Therefore, the overall contribution to Q(J )−Q(I ) from such interac-
tions is bounded by c12L(I )D(#r

s). This establishes (13.7.5) and thereby the bounds
on the total variation of Uh .

In the literature cited in Section 13.10, it is shown that the above estimates may
even be extended to the more general class of strictly hyperbolic systems of conserva-
tion laws that can be approximated “uniformly” by systems with piecewise genuinely
nonlinear characteristic families. This broader class encompasses, for example, the
system (7.1.8) of isentropic elastodynamics, for arbitrary smooth, strictly increasing
stress-strain curve.

13.8 Wave Tracing

The aim here is to track the waves of approximate solutions Uh and monitor the
evolution of their strength and speed of propagation. This is not an easy task, as
wave interactions may induce the fusion or demise of colliding waves of the same
characteristic family, while giving birth to new waves of other characteristic families.

For orientation, let us consider wave interactions in a diamond for the simple
case of the Burgers equation ∂t u+ 1

2∂x u2 = 0, (4.2.1). The wave interaction estimate
(13.3.1) now reduces to ε = α + β.

In one typical situation, shocks with (negative) amplitudes α and β, and respec-
tive speeds σL and σR , enter the diamond through its “southwestern” and “south-
eastern” edge, respectively, and fuse into a single shock of amplitude ε = α+ β and
speed σ . It is instructive to regard the outgoing shock as a composite of two “vir-
tual waves”, with respective amplitudes α and β, so that the two incoming shocks
continue on beyond the collision, with the same amplitude but altered speeds. Since
σε = σLα + σRβ, we easily deduce

(13.8.1) |σ − σL ||α| = |σ − σR ||β| = 1
2αβ.

Recall that αβ represents the amount of wave interaction in the diamond.
In the dual situation, rarefaction waves with (positive) amplitudes α and β enter

the diamond through its “southwestern” and “southeastern” edge, respectively, and
combine into a single rarefaction with amplitude ε = α + β, which in turn splits
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into new rarefactions with amplitudes α′ and β ′, exiting the diamond through its
“northwestern” and “northeastern” edge, respectively. Assuming, for instance, that
α′ < α, we visualize the left incoming wave as a composite of two rarefactions, with
respective amplitudes α′ and α − α′, and the right outgoing wave as a composite
of two rarefactions, with respective amplitudes α − α′ and β. This way, all three
incoming waves continue beyond the interaction with unchanged amplitudes, albeit
with altered speeds.

Still another case arises when a shock of (negative) amplitude α and speed σL

enters the diamond through its “southwestern” edge and interacts with a rarefaction
of (positive) amplitude β entering through the “southeastern” edge. Assuming, for
instance, that |α| > |β|, the outgoing wave will be a shock with amplitude ε = α+β
and speed σ . As before, we shall regard the incoming shock as a composite of two
“virtual waves”, with respective amplitudes α + β and −β. Then, as a result of the
interaction, the second incoming virtual wave and the incoming rarefaction cancel
each other out, while the first virtual wave continues on with unchanged amplitude,
but with altered speed. A simple calculation shows that the change in speed is

(13.8.2) |σ − σL | = 1
2β.

Notice that β represents the amount of wave cancellation in the diamond.
The waves exiting the above diamond will get involved in future collisions, in

the context of which they may have to be partitioned further into finer virtual waves.
These partitions should be then carried backwards in time and applied retroactively
to every ancestor of the wave in question. The end result of this laborious process
is that, in any specified time zone, each wave is partitioned into a number of virtual
waves which fall into one of the following two categories: Those that survive all col-
lisions, within the specified time interval, and those that are eventually extinguished
by cancellation.

The situation is similar for systems of hyperbolic conservation laws, except that
now one should bear in mind that collisions of any two waves generally give birth
to new waves of every characteristic family. In a strictly hyperbolic system with
piecewise genuinely nonlinear or linearly degenerate characteristic families, waves
are partitioned into virtual waves by the following procedure.

A partitioning of an i-shock joining the state U− , on the left, with the state U+ ,
on the right, is performed by some sequence of states U− = U 0,U 1, · · · ,U ν = U+ ,
such that, for µ = 1, · · · , ν, Uµ lies on the i-shock curve emanating from U− , and
λi (Uµ) ≤ λi (Uµ−1). Even though Uµ−1 and Uµ are not generally joined by a
shock, we regard the pair (Uµ−1,Uµ) as a virtual wave, with assigned amplitude
Vµ

i = Uµ −Uµ−1 and speed λµi , equal to the speed of the shock (U−,U+).
A partitioning of an i-rarefaction wave joining the state U− , on the left, with

the state U+ , on the right, is similarly performed by a finite sequence of states,
namely U− = U 0,U 1, · · · ,U ν = U+ , such that, for µ = 1, · · · , ν, Uµ lies on
the i-rarefaction curve emanating from U− and λi (Uµ) > λi (Uµ−1). Even though
Uµ−1 and Uµ can now be joined by an actual i-rarefaction wave, (Uµ−1,Uµ) will
still be regarded as a virtual wave with amplitude Vµ

i = Uµ − Uµ−1 and speed
λ
µ
i = λi (Uµ−1).
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A partitioning of a general i-wave, joining a state U− , on the left, with a state
U+ , on the right, by a finite sequence of i-shocks and i-rarefaction waves, is per-
formed by combining, in an obvious way, the pure shock with the pure rarefaction
case, described above.

By a laborious construction, found in the references cited in Section 13.10, the
waves of the approximate solution Uh , over a specified time zone � = {(x, t) :
−∞ < x < ∞, s1λ

−1h ≤ t ≤ s2λ
−1h}, can be partitioned into virtual waves be-

longing to one of the following three classes:
I. Waves, members of this class, enter � at t = s1λ

−1h with positive strength, sur-
vive over the time interval [s1λ

−1h, s2λ
−1h] and exit � at t = s2λ

−1h with positive
strength.
II. Waves, members of this class, enter � at t = s1λ

−1h with positive strength, but
are extinguished inside � by mutual cancellations.
III. Waves, members of this class, are generated inside�, through wave interactions.

If W denotes the typical virtual wave in any one of the above three classes, the
objective is to estimate its maximum strength, denoted by |W|, the total variation
of its amplitude, denoted by [W], and the total variation of its speed, denoted by
[σ(W)], over its life span inside �. The seeds for such estimations lie in the simple
estimates (13.8.1) and (13.8.2), obtained in the scalar case, in conjunction with the
wave interaction estimates derived in earlier sections.

For systems with genuinely nonlinear characteristic families, the requisite esti-
mates read

(13.8.3)
∑
W∈I

{[W] + |W|[σ(W)]} = O(1)D(�),

(13.8.4)
∑
W∈II

{[W] + |W|} = O(1)C(�)+ O(1)D(�),

(13.8.5)
∑
W∈III

{[W] + |W|} = O(1)D(�),

where D(�) and C(�) denote the total amount of wave interaction and wave cancel-
lation inside �, namely

(13.8.6) D(�) =
∑

D(#r
s), C(�) =

∑
C(#r

s),

with the summation running over all diamonds#r
s contained in�, and D(#r

s), C(#r
s)

defined by (13.3.2), (13.3.6).
For systems with characteristic families that are merely piecewise genuinely non-

linear, the analogs of the estimates (13.8.3), (13.8.4) and (13.8.5) are considerably
more complicated. The difference stems from the fact that the amount of wave in-
teraction D(#r

s) is of quadratic order, (13.3.2), in the genuinely nonlinear case, but
merely of cubic order, (13.7.2), in the general case. Details are given in the references
cited in Section 13.10.
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It is now possible to establish the following proposition, which improves Theo-
rem 13.2.1 by removing the “randomness” hypothesis in the selection of the sequence
℘:

13.8.1 Theorem. The algorithm induced by any sequence ℘ = {a0, a1, · · ·}, which
is equidistributed on the interval (−1, 1) in the sense of (13.2.6), is consistent.

In the proof, which may be found in the references cited in Section 13.10, one
expresses the right-hand side of (13.2.2) in terms of the virtual waves that partition
Uh and proceeds to show that it tends to zero, as h ↓ 0, whenever the sequence
℘ is equidistributed. This happens for the following reason. Recall that in Section
13.2 we did verify the consistency of the algorithm, for any equidistributed sequence
℘, in the context of the linear conservation law ∂t u + aλ∂x u = 0, by employing
the property that every wave propagates with constant amplitude and at constant
speed. The partitioning of waves performed above demonstrates that even nonlinear
systems have this property, albeit in an approximate sense, and this makes it possible
to extend the argument for consistency to that case as well.

Though somewhat cumbersome to use, wave partitioning is an effective tool for
obtaining precise information on local structure, large time behavior, and other qual-
itative properties of solutions; and in particular it is indispensable for deriving prop-
erties that hinge on the global wave pattern.

13.9 Inhomogeneous Systems of Balance Laws

It is relatively straightforward to adapt the random choice method to inhomogeneous,
strictly hyperbolic systems of balance laws

(13.9.1) ∂tU (x, t)+ ∂x F(U (x, t), x, t)+ G(U (x, t), x, t) = 0.

The functions F and G are defined on O × (−∞,∞)× [0,∞), take values in IRn ,
are smooth and have bounded partial derivatives. For any fixed (x, t), DF(U, x, t)
has real distinct eigenvalues λ1(U, x, t) < · · · < λn(U, x, t), which are separated
from each other, uniformly in (x, t).

We assign initial conditions

(13.9.2) U (x, 0) = U0(x), −∞ < x <∞,

and seek to determine the solution of the Cauchy problem as the h ↓ 0 limit of ap-
proximate solutions Uh constructed by a simple adaptation of the scheme described
in Sections 13.1 and 13.2.

The effect of inhomogeneity and the source term is incorporated in the algorithm
via operator splitting: At each time step, the approximate solution to the inhomoge-
neous balance law is obtained by concatenating solutions (or approximate solutions)
of ordinary differential equations ∂tU + G = 0, ∂x F = 0 and homogeneous conser-
vation laws ∂tU + ∂x F(U ) = 0.
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As in Section 13.2, we start out with a random sequence ℘ = {a0, a1, . . .}, with
as ∈ (−1, 1). We fix the spatial mesh-length h, with associated time mesh-length
λ−1h, and build the staggered grids of mesh-points (xr , ts), for r + s even, and sam-
pling points (yr

s , ts), yr
s = xr + ash, for r + s odd.

Assuming Uh is already known on {(x, t) : −∞ < x < ∞, 0 ≤ t < ts}, we
define Ur

s , for r + s odd, by means of (13.2.5), and then set

(13.9.3) Û r
s = Ur

s − λ−1hG(Ur
s , xr , ts).

Next we determine V r
s and W r

s , for r + s odd, as solutions to the equation

(13.9.4) F(V r
s , xr+1, ts) = F(Û r

s , xr , ts) = F(W r
s , xr−1, ts).

To make (13.9.4) solvable, we may have to change coordinates (x, t) �→ (y, t), with
y = y(x, t), so as to eliminate any zero characteristic speeds. Finally, we define Uh

on {(x, t) : xr−1 ≤ x <r+1 , ts ≤ t < ts+1}, for r + s even, as the restriction to this
rectangle of the solution to the Riemann problem

(13.9.5) ∂tUh(x, t)+ ∂x F(Uh(x, t), xr , ts) = 0, t ≥ ts ,

(13.9.6) Uh(x, ts) =
⎧⎨⎩V r−1

s , x < xr

W r+1
s , x > xr .

The algorithm is initiated, at s = 0, by (13.1.10).
Inhomogeneity and the source term may amplify the total variation of approx-

imate solutions, driving it beyond the range of currently available analytical tools.
In order to keep the effect of inhomogeneity under control, we impose the follow-
ing restrictions on the functions F and G: For any U ∈ O, x ∈ (−∞,∞) and
t ∈ [0,∞)3

(13.9.7) |DFx (U, x, t)| < ω, |DFt (U, x, t)| < ω,

(13.9.8) |DFx (U, x, t)| ≤ f (x), |Gx (U, x, t)| ≤ f (x),

where f (x) is a W 1,1(−∞,∞) function such that

(13.9.9)

∞∫
−∞

f (x)dx < ω,

and ω is a positive number. Under these conditions, the Cauchy problem admits at
least local BV solutions:

3 Throughout this section, n-vectors shall be regarded, and normed, as elements of �1
n , and

n × n matrices shall be regarded, and normed, as linear operators on �1
n .
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13.9.1 Theorem. For sufficiently small positive numbers ω and δ, there exists time
T = T (ω, δ), with T (ω, δ)→∞ as (ω, δ)→ 0, such that when (13.9.7), (13.9.8),
(13.9.9) hold and

(13.9.10) T V(−∞,∞)U0(·) < δ,

then there exists an admissible BV solution U of (13.9.1), (13.9.2) on the time in-
terval [0, T ). For each fixed t ∈ [0, T ), U (·, t) is a function of bounded variation on
(−∞,∞) and

(13.9.11) T V(−∞,∞)U (·, t) ≤ c eρt [T V(−∞,∞)U0(·)+ ω],
for some ρ > 0.

The proof of the above proposition, which rests on a fairly straightforward,
though tedious, adaptation of the analysis in earlier sections that culminated in the
proof of Theorem 13.1.1, can be found in the references cited in Section 13.10. The
reader may get a taste of the methodology from the proof of Theorem 13.9.4, below,
which treats systems (13.9.1) with special structure. The exponential growth in the
total variation is induced by both inhomogeneity and the source term, and the expo-
nent ρ is O(ω + γ ), where γ = sup |DG|. Of course, the solution cannot escape as
long as T V(−∞,∞)Uh(·, t) stays small.

Our next project is to identify classes of systems for which the Cauchy prob-
lem admits global BV solutions. The simplest mechanism that would keep the total
variation small is rapid decay of the inhomogeneity and the source term as t →∞.
Suppose that we replace the assumptions (13.9.7) and (13.9.8) by

(13.9.12) |DFx (U, x, t)| < ωg(t), |DFt (U, x, t)| < ωg(t),

(13.9.13) |G(U, x, t)| < ωg(t), |DG(U, x, t)| < ωg(t),

(13.9.14) |DFx (U, x, t)| ≤ f (x)g(t), |Gx (U, x, t)| ≤ f (x)g(t),

for all U ∈ O, x ∈ (−∞,∞), t ∈ [0,∞), where f (x) and ω are as above, while
g(t) is a bounded function in L1(0,∞). Then a simple corollary of Theorem 13.9.1,
and in particular of the estimate (13.9.11), is the following

13.9.2 Theorem. For sufficiently small positive numbers ω and δ, when (13.9.12),
(13.9.13), (13.9.14), (13.9.9) and (13.9.10) hold, then there exists a global admissible
BV solution U of (13.9.1),(13.9.2). For each t ∈ [0,∞), U (·, t) is a function of
bounded variation on (−∞,∞) and

(13.9.15) T V(−∞,∞)U (·, t) ≤ c [T V(−∞,∞)U0(·)+ ω].

A considerably subtler mechanism that induces global existence to the Cauchy
problem is the rapid decay of the inhomogeneity and the source term as |x | → ∞, in
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conjunction with nonzero characteristic speeds. Indeed, when all the characteristic
speeds are bounded away from zero, one should expect that as t increases the bulk
of the wave moves far away from the origin and eventually enters, and stays, in
the region where inhomogeneity and the source term have negligible influence. To
verify this conjecture requires delineating the global wave pattern and tracking the
bulk of the wave. This may be effected only by the method of wave tracing, outlined
in Section 13.8. A representative result in that direction is the following proposition,
which is established in the references cited in Section 13.10.

13.9.3 Theorem. Consider the strictly hyperbolic system of balance laws

(13.9.16) ∂tU (x, t)+ ∂x F(U (x, t))+ G(U (x, t), x) = 0,

with nonzero characteristic speeds, and characteristic families that are either gen-
uinely nonlinear or linearly degenerate. Assume that for any U in O and x in
(−∞,∞),

(13.9.17) |G(U, x)| ≤ f (x), |DG(U, x)| ≤ f (x),

where f (x) satisfies (13.9.9) with ω sufficiently small. If the initial data satisfy
(13.9.10), with δ sufficiently small, then there exists a global admissible BV solution
U of (13.9.16),(13.9.2). For each fixed t ∈ [0,∞), U (·, t) is a function of bounded
variation on (−∞,∞) and

(13.9.18) T V(−∞,∞)U (·, t) ≤ c [T V(−∞,∞)U0(·)+ ω].

A typical application of the above proposition is to the system (7.1.18) that gov-
erns the isentropic flow of a gas through a duct of varying cross section a(x). We
rewrite (7.1.18) in the form (13.9.16):

(13.9.19)

⎧⎨⎩ ∂tv + ∂x (ρv)+ a−1(x)a′(x)ρv = 0

∂t (ρv)+ ∂x [ρv2 + p(ρ)] + a−1(x)a′(x)ρv2 = 0.

Clearly, in order to meet the requirement (13.9.17) of Theorem 19.9.3, one needs to
assume that a(x) has sufficiently small total variation on (−∞,∞).

The remaining task is to investigate systems of balance laws with dissipative
source terms. It turns out that dissipation may secure global existence of BV solu-
tions, with initial values of small total variation, even in the presence of inhomo-
geneity. Here, however, in order to keep the analysis as simple as possible, we shall
consider only homogeneous hyperbolic systems of balance laws

(13.9.20) ∂tU (x, t)+ ∂x F(U (x, t))+ G(U (x, t)) = 0.

We assume G(Ū ) = 0, for some Ū ∈ O, so that U ≡ Ū is an equilibrium solution.
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Since the analysis is in BV space, we have to impose on G conditions that would
render it dissipative in L1. In order to identify the proper assumptions, we linearize
(13.9.20) about Ū and then set U = R(Ū )V , where R(U ) is the n × n matrix with
column vectors a set of linearly independent right eigenvectors R1(U ), · · · , Rn(U )

of DF(U ). This yields the system

(13.9.21) ∂t Vi (x, t)+ λi (Ū )∂x Vi (x, t)+
n∑

j=1

Ai j Vj (x, t) = 0, i = 1, · · · , n,

where

(13.9.22) A = R(Ū )−1DG(Ū )R(Ū ).

We multiply (13.2.21) by sgn Vi (x, t), integrate with respect to x over (−∞,∞),
and sum over i = 1, · · · , n, to deduce that when A is column diagonally dominant,
namely

(13.9.23) Aii −
∑
j �=i

|A ji | ≥ ν > 0, i = 1, · · · , n,

then, as t →∞, solutions of (13.9.21) decay exponentially to zero in L1(−∞,∞).
It should be noted that the diagonal dominance property (13.9.23) depends on

the particular matrix R(U ) of right eigenvectors employed in the construction of A.
Indeed, choosing the equivalent matrix R̂(U ) = R(U )K of eigenvectors, where K
is some positive diagonal matrix, would replace A with the matrix Â = K−1 A K ;
and diagonal dominance is not generally preserved under such similarity transfor-
mations. Given a matrix A, it is possible to find a positive diagonal matrix K that
renders K−1 A K column diagonally dominant if and only if all eigenvalues of the
matrix Ã, with entries Ãii = Aii , i = 1, · · · , n and Ãi j = −|Ai j |, for i �= j , have
positive real part (references in Section 13.10). In particular, this class of A encom-
passes positive triangular matrices as well as row diagonally dominant matrices (by
Geršgorin’s theorem).

For any τ > 0, multiplying the linear system (I + τ A)X = Y , from the left, by
the row vector sgn X�, yields

(13.9.24) |(I + τ A)−1| ≤ (1+ ντ)−1.

As we shall see, it is this property that induces existence of global solutions to the
Cauchy problem for (13.9.20).

13.9.4 Theorem. Consider the homogeneous, strictly hyperbolic system of balance
laws (13.9.20), with characteristic families that are either genuinely nonlinear or
linearly degenerate. Assume that for some selection of eigenvectors of DF(U ), the
matrix A, defined by (13.9.22), is column diagonally dominant (13.9.23). Suppose
G(Ū ) = 0. If the initial data U0 are constant Ū outside a bounded interval and
satisfy (13.9.10) for δ sufficiently small, then there exists a global admissible BV
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solution U of (13.9.20), (13.9.2). For each fixed t ∈ [0,∞), U (·, t) is a function of
bounded variation on (−∞,∞) and

(13.9.25) T V(−∞,∞)U (·, t) ≤ c e−µt T V(−∞,∞)U0(·),
where µ is some positive constant.

Sketch of Proof. We construct the solution U by means of the random choice algo-
rithm described earlier in this section. The proof of consistency follows closely the
argument used in the proof of Theorem 13.1.1 and need not be repeated here. It will
suffice to establish a bound for the total variation T V(−∞,∞)Uh(·, t) of the approxi-
mate solution Uh that will yield in the limit h ↓ 0 the asserted estimate (13.9.25).

As in Section 13.3, for r + s even we consider the diamond #r
s with vertices

(yr−1
s , ts), (yr

s−1, ts−1), (yr+1
s , ts) and (yr

s+1, ts+1), depicted in Fig. 13.3.1. The aim
is to estimate the strength of the outgoing wave fan ε, emanating from (xr , tr ), in
terms of the strengths of the incoming wave fans α and β, which emanate from
(xr−1, ts−1) and (xr+1, ts−1), respectively.

Since our system is homogeneous, (13.9.4) yields V r
s = Û r

s = W r
s . According

to the prescription of the algorithm,

(13.9.26) "(α;Ur−1
s ) = Û r

s−1 ,

(13.9.27) "(β; Û r
s−1) = Ur+1

s ,

(13.9.28) "(ε; Û r−1
s ) = Û r+1

s ,

where " is the wave fan function, defined by (9.3.4).
Let us consider the wave fan ε̃ that would have resulted from the interaction of α

and β in the absence of source term, i.e.,

(13.9.29) "(ε̃;Ur−1
s ) = "(β;"(α;Ur−1

s )) = Ur+1
s .

By virtue of Theorem 9.9.1,

(13.9.30) ε̃ = α + β + O(1)D(#r
s),

where the wave interaction term D(#r
s) is defined by (13.3.2).

We proceed to relate ε to ε̃. Since "(0;U ) = U , for any U ∈ O, (13.9.28)
together with (13.9.3) and G(Ū ) = 0 yield

(13.9.31) "(ε;Ur−1
s ) = Ur+1

s − λ−1h[G(Ur+1
s )− G(Ur−1

s )] + o(1)h|ε|,
where o(1) denotes a quantity that becomes arbitrarily small when sup |Uh − Ū | is
sufficiently small. By virtue of (9.3.8),

(13.9.32) "(ε;Ur−1
s )−"(ε̃;Ur−1

s ) = P(ε − ε̃),
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where P is some matrix close to the matrix R(Ū ) of right eigenvectors of DF(Ū ).
Furthermore, by account of (13.9.3),

(13.9.33)

G(Ur+1
s )− G(Ur−1

s ) = H [Û r+1
s − Û r−1

s ] + λ−1h H [G(Ur+1
s )− G(Ur−1

s )],
where H is some matrix close to DG(Ū ). Finally, by (9.3.8) and (13.9.28),

(13.9.34) Û r+1
s − Û r−1

s = "(ε; Û r−1
s )−"(0; Û r−1

s ) = Qε,

where Q is some matrix close to R(Ū ). We now combine (13.9.29),(13.9.31),
(13.9.32),(13.9.33) and (13.9.34) to get

(13.9.35) ε̃ = [I + λ−1h B]ε + o(1)h|ε|,
where

(13.9.36) B = P−1[I − λ−1h H ]−1 H Q

is close to the matrix A, defined by (13.9.22).
On account of (13.9.30),(13.9.35) and (13.9.24) we conclude that, for as long as

sup |Uh − Ū | stays sufficiently small,

(13.9.37) |ε| ≤ (1− 3µλ−1h)(|α| + |β|)+ c13D(#r
s),

with µ = ν/4 > 0.
From (13.9.30),(13.9.35) and (13.9.37), we also deduce

(13.9.38) |ε − (α + β)| ≤ c14h(|α| + |β|)+ c15D(#r
s).

As in Section 13.4, we consider mesh curves I and associate with them the func-
tionals L(I ), Q(I ) and G(I ), defined by (13.4.2),(13.4.5) and (13.4.8). Assuming J
is the immediate successor to I , depicted in Fig. 13.4.1, we may retrace the analysis
in Section 13.4, using (13.9.37) to get

(13.9.39) L(J ) ≤ L(I )− 3µλ−1h(|α| + |β|)+ c13D(#r
s),

in the place of (13.4.4), and using (13.9.38) to get

(13.9.40) Q(J )−Q(I ) ≤ c14hL(I )(|α| + |β|)+ [c15L(I )− 1]D(#r
s),

in the place of (13.4.7). Thus, for κ sufficiently large and L(I ) sufficiently small,

(13.9.41) G(J ) ≤ G(I )− 2µλ−1h(|α| + |β|).
Next, for fixed s = 0, 1, 2, . . . , we consider the mesh curve Js with vertices

all sampling points (yr−1
s , ts) and (yr

s+1, ts+1) with r + s even. Then assuming that
sup |Uh − Ū | is so small that G(Js−1) ≤ 2L(Js−1), (13.9.41) yields
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(13.9.42) G(Js) ≤ (1− µλ−1h)G(Js−1).

Thus, for any ts < t < ts+1 ,

(13.9.43) T V(−∞,∞)Uh(·, t) ≤ (1− µλ−1h)sG(J0),

where the total variation is measured by L(Js).
Since Uh(x, t) = Ū , for t fixed and |x | sufficiently large, the right-hand side of

(13.9.43) also bounds sup(−∞,∞)|Uh(·, t)− Ū |.
On the right-hand side of (13.9.43), G(J0) is bounded by c T V(−∞,∞)U0(·).

Therefore, letting h ↓ 0, (13.9.43) yields (13.9.25). The proof is complete.

13.10 Notes

The random choice method was developed in the fundamental paper of Glimm [1]. It
is in that work that the ideas of consistency (Section 13.2), wave interactions (Section
13.3), and the Glimm functional (Section 13.4) were originally introduced, and The-
orem 13.1.1 was first established, for genuinely nonlinear systems. As we shall see
in the following chapter, it is Glimm-type functionals that provide the key estimates
for compactness in other solution approximation schemes as well. Furthermore, the
Glimm functional can be defined, and profitably employed, even in the context of
general BV solutions; see Section 14.11.

Resonance phenomena in Godunov’s scheme that may drive the total variation
of approximate solutions to infinity are discussed in Bressan and Jenssen [1], Baiti,
Bressan and Jenssen [1], and Bressan, Jenssen and Baiti [1].

The construction of solutions with large variation for the special system (13.4.20)
of isothermal gas dynamics is due to Nishida [1]. Related constructions of solu-
tions with large, or at least moderately large, initial data are found in Bakhvarov [1],
DiPerna [1,2], Nishida and Smoller [1], Luskin and Temple [1], Poupaud, Rascle
and Vila [1], Serre [11], Ying and Wang [1], and Amadori and Guerra [2]. Existence
of BV solutions to the Cauchy problem for the equations of isentropic gas dynamics
under initial data of arbitrarily large total variation (and even regions of vacuum) was
recently announced by R. Young [7]. See also Section 14.12.

The notions of wave cancellation, approximate conservation laws and approxi-
mate characteristics (Section 13.3), which were introduced in the important memoir
by Glimm and Lax [1], provide the vehicle for deriving properties of solutions of
genuinely nonlinear systems of two conservation laws, constructed by the random
choice method (see Section 12.11).

The derivation of bounds on the supremum, outlined in Section 13.6, is taken
from the thesis of R. Young [1], where the reader may find the technical details. In
fact, this work introduces a new length scale for the Cauchy problem, which, under
special circumstances, may be used in order to relax the requirement of small total
variation on the initial data, for certain systems of more than two conservation laws.
In that direction, see Temple [7], Temple and Young [1,2], and Cheverry [3]. Local
or global solutions under initial data with large total variation are also constructed by
Alber [1] and Schochet [3,4].
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The Glimm functional was adapted to systems that are not genuinely nonlinear
by Liu [15], who was first to realize the important role played by the incidence angle
between approaching waves of the same characteristic family. The outline presented
here, in Section 13.7, follows the recent work by Iguchi and LeFloch [1] and Liu and
Yang [6].

The method of wave partitioning is developed in Liu [7], for genuinely nonlin-
ear systems, and in Liu [15], for general systems, and is used for establishing the
deterministic consistency of the algorithm for equidistributed sequences (Theorem
13.8.1). Bressan and Marson [3] show that for “well equidistributed” sequences the
rate of convergence in L1 is o(h1/2| log h|). For the rate of convergence in the scalar
case, see Hoff and Smoller [1]. For systems with characteristic families that are ei-
ther piecewise genuinely nonlinear or linearly degenerate, Liu [15] describes the
local structure of solutions and shows, in particular, that any point of discontinuity
of the solution is either a point of classical jump discontinuity or a point of wave
interaction. Furthermore, the set of points of jump discontinuity comprise a count-
able family of Lipschitz curves (shocks), while the set of points of wave interaction
is at most countable (compare with Theorem 12.7.1, for genuinely nonlinear sys-
tems of two conservation laws, and see also Section 14.11). As t → ∞, solutions
of (13.1.1) approach the solution of the Riemann problem with data (9.1.12), where
UL = U0(−∞) and UR = U0(+∞); cf. Liu [9,11,15]. For a more recent exposition
see Liu [28] and Liu and Yang [6].

The details of the proof of Theorems 13.9.1 and 13.9.4 are found in Dafermos
and Hsiao [1]. The form of the dissipativeness condition on the matrix A that does
not depend on the choice of eigenvectors of DF was found by Amadori and Guerra
[1]. For systems with weaker dissipation that may still be treated by this approach,
see Amadori and Guerra [2,3] and Dafermos [20,22]. See also Crasta and Piccoli
[1]. Spherically symmetric solutions of the Euler equations with damping are con-
structed in Hsiao, Tao and Yang [1]. See also Tong Yang [1]. For source terms in-
duced by combustion, see Chen and Wagner [1]. Theorem 13.9.3 is taken from Liu
[14]. Amadori, Gosse and Guerra [1] and Ha [1] improve this result by establishing
L1 stability. The effects of resonance between the waves and the source term may be
seen in Liu [18], Li and Liu [1], Pego [4], Isaacson and Temple [4], Klingenberg and
Risebro [2], Ha and Yang [1], Lien [1], Lan and Lin [1], and Hong and Temple [1].

There is voluminous literature on extensions and applications of the random
choice method. For systems of mixed type, see Pego and Serre [1], LeFloch [3]
and Corli and Sablé-Tougeron [3]. For initial-boundary-value problems, cf. Liu [11],
Luskin and Temple [1], Nishida and Smoller [2], Dubroca and Gallice [1], Sablé-
Tougeron [1] and Frid [1]. For solutions involving strong shocks, see Sablé-Tougeron
[2], Corli and Sablé-Tougeron [1,2], Asakura [1], Corli [2] and Schochet [3,4]. For
applications to gas dynamics, see Liu [4,5,12,16,17] and Temple [1]. For the effects
of vacuum in gas dynamics, see Liu and Smoller [1]. For applications to the theory
of relativity, see Barnes, LeFloch, Schmidt and Stewart [1]. For systems that are not
in conservation form, see LeFloch [2] and LeFloch and Liu [1]. Weak L p stability is
established by Temple [6]. Additional references are found in the books by Smoller
[3], Serre [11] and LeFloch [5].



XIV

The Front Tracking Method
and Standard Riemann Semigroups

A method is described in this chapter for constructing solutions of the initial-value
problem for hyperbolic systems of conservation laws by tracking the waves and mon-
itoring their interactions as they collide. Interactions between shocks are easily re-
solved by solving Riemann problems; this is not the case, however, with interactions
involving rarefaction waves. The random choice method, expounded in Chapter XIII,
side-steps this difficulty by stopping the clock before the onset of wave collisions
and reapproximating the solution by step functions. In contrast, the front tracking
approach circumvents the obstacle by disposing of rarefaction waves altogether and
resolving all Riemann problems in terms of shocks only. Such solutions generally
violate the admissibility criteria. Nevertheless, considering the close local proxim-
ity between shock and rarefaction wave curves in state space, any rarefaction wave
may be approximated arbitrarily close by fans of (inadmissible) shocks of very small
strength. The expectation is that in the limit, as this approximation becomes finer,
one recovers admissible solutions.

The implementation of the front tracking algorithm, with proof that it converges,
will be presented here, first for scalar conservation laws and then in the context of
genuinely nonlinear strictly hyperbolic systems of conservation laws of any size.

By a contraction argument with respect to a suitably weighted L1 distance, it
will be demonstrated that solutions of genuinely nonlinear systems, constructed by
the front tracking method, may be realized as orbits of the Standard Riemann Semi-
group, which is defined on the set of functions with small total variation and is Lip-
schitz continuous in L1. It will further be shown that any BV solution that satisfies
reasonable stability conditions is also identifiable with the orbit of the Standard Rie-
mann Semigroup issuing from its initial data. This establishes, in particular, unique-
ness for the initial-value problem within a broad class of BV solutions, including
those constructed by the random choice method, as well as those whose trace along
space-like curves has bounded variation, encountered in earlier chapters.

The chapter will close with a discussion of the structural stability of the wave
pattern under perturbations of the initial data.
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14.1 Front Tracking for Scalar Conservation Laws

This section discusses the construction of the admissible solution to the initial-value
problem for scalar conservation laws by a front tracking scheme that aims at eliminat-
ing rarefaction waves. The building blocks will be wave fans composed of constant
states, admissible “compressive” shocks, and inadmissible “rarefaction” shocks of
small strength.

The admissible solution of the Riemann problem for the scalar conservation law
∂t u+ ∂x f (u) = 0, with C1 flux f , was constructed in Section 9.5: The left end-state
ul and the right end-state ur are joined by the wave fan

(14.1.1) u(x, t) = [g′]−1
( x

t

)
,

where g is the convex envelope of f over [ul , ur ], when ul < ur , or the concave
envelope of f over [ur , ul ], when ul > ur . Intervals on which g′ is constant yield
shocks, while intervals over which g′ is strictly monotone generate rarefaction waves.
The same construction applies even when f is merely Lipschitz, except that now, in
addition to shocks and rarefaction waves, the ensuing wave fan may contain inter-
mediate constant states, namely, the jump points of g′. In particular, when f , and
thereby g, are piecewise linear, the wave fan does not contain any rarefaction waves
but is composed of shocks and constant states only (Fig. 14.1.1).

u xul

f(u)

g(u)

f(u)

g(u)

y

0

u

u
u

ur
l

1

2

g(u)

u21u ur

t

Fig. 14.1.1

We now consider the Cauchy problem

(14.1.2)

⎧⎨⎩ ∂t u(x, t)+ ∂x f (u(x, t)) = 0, −∞ < x <∞, 0 ≤ t <∞,

u(x, 0) = u0(x), −∞ < x <∞,

for a scalar conservation law, where the flux f is Lipschitz continuous on (−∞,∞)

and the initial datum u0 takes values in a bounded interval [−M, M] and has bounded
total variation over (−∞,∞).
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To solve (14.1.2), one first approximates the flux f by a sequence { fm} of piece-
wise linear functions, such that the graph of fm is a polygonal line inscribed in the
graph of f , with vertices at the points ( k

m , f ( k
m )), k ∈ ZZ . Next, one realizes the

initial datum u0 as the a.e. limit of a sequence {u0m} of step functions, where u0m

takes values in the set Um = { k
m : k ∈ ZZ , |k| ≤ m M}, and its total variation does not

exceed the total variation of u0 over (−∞,∞). Finally, one solves the initial-value
problem

(14.1.3)

⎧⎨⎩ ∂t u(x, t)+ ∂x fm(u(x, t)) = 0, −∞ < x <∞, 0 ≤ t <∞,

u(x, 0) = u0m(x), −∞ < x <∞,

for m = 1, 2, · · ·. The aim is to show that the admissible solution um of (14.1.3) is a
piecewise constant function, taking values in Um , which is constructed by solving a
finite number of Riemann problems for the conservation law (14.1.3)1 ; and that the
sequence {um} converges to the admissible solution u of (14.1.2).

The construction of um is initiated by solving the Riemann problems that resolve
the jump discontinuities of u0m into wave fans of shocks and constant states in Um .
In turn, wave interactions induced by shock collisions are similarly resolved, in the
order they occur, into wave fans of shocks and constant states in Um , resulting from
the solution of Riemann problems. It should be noted that the admissible solution
of the Riemann problem for (14.1.3)1 , with end-states in Um , is also a solution of
(14.1.2)1 , albeit not necessarily an admissible one, because in that context some of
the jump discontinuities may be rarefaction shocks. Thus, in addition to being the ad-
missible solution of (14.1.3), um is a (generally inadmissible) solution of (14.1.2)1 .

We demonstrate that the number of shock collisions that may be encountered in
the implementation of the above algorithm is a priori bounded, and hence um is con-
structed on the entire upper half-plane in finite steps. The reason is that each shock
interaction simplifies the wave pattern by lowering either the number of shocks,
measured by the number jm(t) of points of jump discontinuity of the step func-
tion um(·, t), or the number of “oscillations”, counted by the lap number �m(t) of
um(·, t), which is defined as follows.

For the case of a step function v(·) on (−∞,∞), the lap number � is set equal to
0 when v(·) is monotone, while when v(·) is nonmonotone it is defined as the largest
positive integer such that there exist � + 2 points −∞ < x0 < · · · < x�+1 < ∞ of
continuity of v(·), with [v(xi+1)− v(xi )][v(xi )− v(xi−1)] < 0 , i = 1, · · · , �.

Clearly, both jm(t) and �m(t) stay constant along the open time intervals be-
tween consecutive shock collisions; they may change only across t = 0 and as
shocks collide. When k shocks, joining (left, right) states (u0, u1), · · · , (uk−1, uk),
collide at one point, the ensuing interaction is called monotone if the finite sequence
{u0, u1, · · · , uk} is monotone. Such an interaction produces a single shock joining
the state u0 , on the left, with the state uk , on the right. In particular, monotone
interactions leave �m(t) unchanged, while lowering the value of jm(t) by at least
one. In contrast, across nonmonotone interactions �m(t) decreases by at least one,
while the value of jm(t) may change in either direction, but in any case it cannot
increase by more than sm − 1, sm being the number of jump points of f ′m over the
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interval (−M, M); thus sm − 1 < 2Mm. It follows that the integer-valued func-
tion pm(t) = jm(t) + sm�m(t) stays constant along the open time intervals be-
tween consecutive shock collisions, while decreasing by at least one across any
monotone or nonmonotone shock collision. Across t = 0, �m(0+) = �m(0) and
jm(0+) ≤ (sm + 1) jm(0). Therefore, (sm + 1)[ jm(0) + �m(0)] provides an upper
bound for the total number of shock collisions involved in the construction of um .

As function of t , the total variation of um(·, t) over (−∞,∞) stays constant
along time intervals between consecutive shock collisions; it does not change across
monotone shock collisions; and it decreases across nonmonotone shock collisions.
Hence,

(14.1.4) T V(−∞,∞)um(·, t) ≤ T V(−∞,∞)um0(·) ≤ T V(−∞,∞)u0(·), 0 ≤ t <∞.

Since the speed of any shock of um cannot exceed the Lipschitz constant c of f over
[−M, M], (14.1.4) implies

(14.1.5)∫ ∞

−∞
|um(x, t)− um(x, τ )|dx ≤ c|t − τ |T V(−∞,∞)u0(·), 0 ≤ τ < t <∞.

By virtue of (14.1.4), Helly’s theorem and the Cantor diagonal process, one finds a
subsequence {umk } such that {umk (·, t)} is convergent in L1

loc(−∞,∞), for any ra-
tional t ∈ [0,∞). Then, (14.1.5) implies that {umk (·, t)} is Cauchy in L1

loc(−∞,∞)

for all t ∈ [0,∞), and hence {umk } converges in L1
loc to some function u of locally

bounded variation on (−∞,∞)× [0,∞).
As discussed in Chapter VI, since um is the admissible solution of (14.1.3),

(14.1.6)∫ ∞

0

∫ ∞

−∞
[∂tψη(um)+ ∂xψqm(um)]dxdt +

∫ ∞

−∞
ψ(x, 0)η(u0m(x))dx ≥ 0,

for any convex entropy η, with associated entropy flux qm =
∫
η′d fm , and all non-

negative Lipschitz test functions ψ on (−∞,∞)×[0,∞), with compact support. As
m →∞, {u0m} converges, a.e. on (−∞,∞), to u0 , and {qm} converges, uniformly
on [−M, M], to the function q = ∫ η′d f , namely, the entropy flux associated with
the entropy η in the conservation law (14.1.2)1 . Upon passing to the limit in (14.1.6),
along the subsequence {mk}, we deduce

(14.1.7)
∫ ∞

0

∫ ∞

−∞
[∂tψη(u)+ ∂xψq(u)]dxdt +

∫ ∞

−∞
ψ(x, 0)η(u0(x))dx ≥ 0,

which in turn implies that u is the admissible solution of (14.1.2). By uniqueness, we
infer that the entire sequence {um} converges to u.
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14.2 Front Tracking for Genuinely Nonlinear
Systems of Conservation Laws

Consider a system of conservation laws, in canonical form

(14.2.1) ∂tU + ∂x F(U ) = 0,

which is strictly hyperbolic (7.2.8), and each characteristic family is either genuinely
nonlinear (7.6.13) or linearly degenerate (7.5.2). The object of this section is to intro-
duce a front tracking algorithm that solves the initial-value problem (13.1.1), under
initial data U0 with small total variation, and provides, in particular, an alternative
proof of the existence Theorem 13.1.1.

The instrument of the algorithm will be special Riemann solvers, which will be
employed to resolve jump discontinuities into centered wave fans composed of jump
discontinuities and constant states, approximating the admissible solution of the Rie-
mann problem. In implementing the algorithm, the initial data are approximated by
step functions whose jump discontinuities are then resolved into wave fans. Inter-
actions induced by the collision of jump discontinuities are in turn resolved, in the
order they occur, into similar wave fans. It will suffice to consider the generic situ-
ation, in which no more than two jump discontinuities may collide simultaneously.
The expectation is that such a construction will produce an approximate solution of
the initial-value problem in the class of piecewise constant functions.

The first item on the agenda is how to design suitable Riemann solvers. The
experience with the scalar conservation law, in Section 14.1, suggests that one should
synthesize the centered wave fans by a combination of constant states, admissible
shocks, and inadmissible rarefaction shocks with small strength.

In an admissible i-shock, the right state U+ lies on the i-th shock curve through
the left state U− , that is, in the notation of Section 9.3, U+ = �i (τ ;U−), with
τ < 0 when the i-th characteristic family is genuinely nonlinear (compressive shock)
or with τ

<
> 0 when the i-th characteristic family is linearly degenerate (contact

discontinuity). The amplitude is τ , the strength is measured by |τ |, and the speed s
is set by the Rankine-Hugoniot jump condition (8.1.2).

Instead of actual rarefaction shocks, it is more convenient to employ “rarefac-
tion fronts”, namely jump discontinuities that join states lying on a rarefaction wave
curve and propagate with characteristic speed. Thus, in an i-rarefaction front (which
may arise only when the i-th characteristic family is genuinely nonlinear) the right
state U+ lies on the i-th rarefaction wave curve through the left state U− , i.e.,
U+ = �i (τ ;U−), with τ > 0. Both, amplitude and strength are measured by τ ,
and the speed is set equal to λi (U+). Clearly, these fronts violate not only the en-
tropy admissibility criterion but even the Rankine-Hugoniot jump condition, albeit
only slightly when their strength is small.

Centered rarefaction waves may be approximated by centered wave fans com-
posed of constant states and rarefaction fronts with strength not exceeding some
prescribed magnitude δ > 0. Consider some i-rarefaction wave, centered, for defi-
niteness, at the origin, which joins the state U− , on the left, with the state U+ , on the
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right. Thus, U+ lies on the i-rarefaction curve through U− , say U+ = �i (τ ;U−),
for some τ > 0. If ν is the smallest integer that is larger than τ/δ, we set
U 0 = U− ,U ν = U+ ,Uµ = �i (µδ;U−), µ = 1, · · · , ν − 1, and approximate
the rarefaction wave, inside the sector λi (U−) < x

t < λi (U+), by the wave fan

(14.2.2) U (x, t) = Uµ, λi (U
µ−1) <

x

t
< λi (U

µ), µ = 1, · · · , ν.
We are thus naturally lead to an Approximate Riemann Solver, which resolves the

jump discontinuity between a state Ul , on the left, and Ur , on the right, into a wave
fan composed of constant states, admissible shocks, and rarefaction fronts, by the
following procedure: The starting point is the admissible solution of the Riemann
problem, consisting of n + 1 constant states Ul = U0,U1, · · · ,Un = Ur , where
Ui−1 is joined to Ui by an admissible i-shock or an i-rarefaction wave. To pass
to the approximation, the domain and values of the constant states, and thereby all
shocks, are retained, whereas, as described above, any rarefaction wave is replaced,
within its sector, by a fan of constant states and rarefaction fronts of the same family,
with strength not exceeding δ (Fig. 14.2.1).
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U

U
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U

0

i-1

x
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Fig. 14.2.1

Our earlier success with the scalar case may raise expectations that a front track-
ing algorithm, in which all shock interactions are resolved via the above approximate,
though relatively accurate, Riemann solver, will produce an approximate solution of
our system, converging to an admissible solution of the initial-value problem, as the
allowable strength δ of rarefaction fronts shrinks to zero. Unfortunately, such an ap-
proach would generally fail, for the following reason: By contrast to the case for
scalar conservation laws, wave interactions in systems tend to increase the complex-
ity of the wave pattern so that collisions become progressively more frequent and the
algorithm may grind to a halt in finite time. As a remedy, in order to prevent the pro-
liferation of waves, only shocks and rarefaction fronts of substantial strength shall
be tracked with relative accuracy. The rest shall not be totally disregarded but shall
be treated with less accuracy: They will be lumped together to form jump disconti-
nuities, dubbed “pseudoshocks”, which propagate with artificial, supersonic speed.



14.2 Front Tracking for Genuinely Nonlinear Systems of Conservation Laws 449

A pseudoshock is allowed to join arbitrary states U− and U+ . Its strength is
measured by |U+−U−| and its assigned speed is a fixed upper bound λn+1 of λn(U ),
for U in the range of the solution. Clearly, pseudoshocks are more serious violators
of the Rankine-Hugoniot jump condition than rarefaction fronts, and may thus wreak
havoc in the approximate solution, unless their combined strength is kept very small.

To streamline the exposition, i-rarefaction fronts and i-shocks (compression or
contact discontinuities) together will be dubbed i-fronts. Fronts and pseudoshocks
will be called collectively waves. Thus an i-front will be an i-wave and a pseu-
doshock will be termed (n + 1)-wave. As in earlier chapters, the amplitudes of
waves will be denoted by Greek letters α, β, γ, . . . with corresponding strengths
|α|, |β|, |γ |, · · ·.

Under circumstances to be specified below, the jump discontinuity generated by
the collision of two waves shall be resolved via a Simplified Riemann Solver, which
allows fronts to pass through the point of interaction without affecting their strength,
while introducing an outgoing pseudoshock in order to bridge the resulting mismatch
in the states. The following cases may arise.
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Suppose that, for i < j , a j-front, joining the states Ul and Um , collides with an
i-front, joining the states Um and Ur ; see Fig. 14.2.2. Thus Um = � j (τl;Ul) and
Ur = �i (τr ;Um). To implement the Simplified Riemann Solver, one determines the
states Up = �i (τr ;Ul) and Uq = � j (τl;Up). Then, the outgoing wave fan will be
composed of the i-front, joining the states Ul and Up , the j-front, joining the states
Up and Uq , plus the pseudoshock that joins Uq with Ur .

Suppose next that an i-front, joining the states Ul and Um , collides with another
i-front, joining the states Um and Ur (no such collision may occur unless at least one
of these fronts is a compressive shock); see Fig. 14.2.3.

Thus Um = �i (τl;Ul) and Ur = �i (τr ;Um). If Uq = �i (τl + τr ;Ul), the
outgoing wave fan will be composed of the i-front, joining the states Ul and Uq ,
plus the pseudoshock that joins Uq with Ur .
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Finally, suppose a pseudoshock, joining the states Ul and Um , collides with an
i-front, joining the states Um and Ur ; see Fig. 14.2.4. Hence, Ur = �i (τm;Um). We
determine Uq = �i (τm;Ul). The outgoing wave fan will be composed of the i-front,
joining the states Ul and Uq , plus the pseudoshock that joins Uq with Ur .

Ur

Uq

Um

Ul

Ul

Um

Ur

Uq

Φ i

Φ i

Fig. 14.2.4

In implementing the front tracking algorithm, one fixes, at the outset, the super-
sonic speed λn+1 of pseudoshocks, sets the delimiter δ for the strength of rarefaction
fronts, and also specifies a third parameter σ > 0, which rules how jump discontinu-
ities are to be resolved:

• Jump discontinuities resulting from the collision of two fronts, with respective
amplitudes α and β, must be resolved via the Approximate Riemann Solver if
|α||β| > σ , or via the Simplified Riemann Solver if |α||β| ≤ σ .

• Jump discontinuities resulting from the collision of a pseudoshock with any front
must be resolved via the Simplified Riemann Solver.
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• Jump discontinuities of the step function approximating the initial data are to be
resolved via the Approximate Riemann Solver.

14.3 The Global Wave Pattern

Starting out from some fixed initial step function, the front tracking algorithm, de-
scribed in the previous section, will produce a piecewise constant function U on a
maximal time interval [0, T ). In principle, T may turn out to be finite, if the number
of collisions grows without bound as t ↑ T , so the onus is to show that this will not
happen.

To understand the structure of U , one has to untangle the complex wave pattern.
Towards that end, waves must be tracked not just between consecutive collisions
but globally, from birth to extinction or in perpetuity. The waves are granted global
identity through the following convention: An i-wave involved in a collision does
not necessarily terminate there, but generally continues on as the outgoing i-wave
from that point of wave interaction. Any ambiguities that may arise in applying the
above rule will be addressed and resolved below.

Pseudoshocks are generated by the collision of two fronts, resolved via the Sim-
plified Riemann Solver, as depicted in Figs. 14.2.2 or 14.2.3. On the other hand,
i-fronts may be generated either at t = 0, from the resolution of some jump discon-
tinuity of the initial step function, or at t > 0, by the collision of a j-front with a
k-front, where j �= i �= k, that is resolved via the Approximate Riemann Solver.

Every wave carries throughout its life span a numberµ, identifying its generation
order, that is the maximum number of collisions predating its birth. Thus, fronts
originating at t = 0 are assigned generation orderµ = 0. Any other new wave, which
is necessarily generated by the collision of two waves, with respective generation
orders say µ1 and µ2 , is assigned generation order µ = max{µ1, µ2} + 1.

As postulated above, waves retain their generation order as they traverse points of
interaction. Ambiguity may arise when, in a collision of an i-rarefaction front with a
j-front, resolved via the Approximate Riemann Solver, the outgoing i-wave fan con-
tains two i-rarefaction fronts. In that case, the stronger of these fronts, with strength
δ, is designated as the prolongation of the incoming i-front, while the other i-front,
with strength < δ, is regarded as a new front and is assigned a higher generation or-
der, in accordance to the standard rule. Ambiguity may also arise when two fronts of
the same family collide, since the outgoing wave fan may include (at most) one front
of that family. In that situation, the convention is that the front with the lower gener-
ation order is designated the survivor, while the other one is terminated. In case both
fronts are of the same generation order, either one, arbitrarily, may be designated as
the survivor. Of course, both fronts may be terminated upon colliding, as depicted in
Fig. 14.2.3, in the (nongeneric) case where one of them is a compression shock, the
other is a rarefaction front of the same characteristic family, and both have the same
strength. Pseudoshocks may also be extinguished in finite time by colliding with a
front, as depicted in Fig. 14.2.4, in the (nongeneric) case Uq = Ur .
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We now introduce the following notions, which will establish a connection with
the approach pursued in Chapters X-XII.

For i = 1, · · · , n, an i-characteristic associated with U is a Lipschitz, polygonal
line x = ξ(t) which traverses constant states, say Ū , at classical i-characteristic
speed, ξ̇ = λi (Ū ), but upon impinging on an i-front, or a generation point thereof, it
adheres to that front, following it throughout its lifespan. Thus, in particular, any i-
front is an i-characteristic. By analogy, (n+1)-characteristics are defined as straight
lines with slope λn+1 . Thus, pseudoshocks are (n + 1)-characteristics.

Consider now an oriented Lipschitz curve with graph C, which divides the upper
half-plane into its “positive” and “negative” side. We say C is nonresonant if the
set {1, · · · , n, n + 1} can be partitioned into three, pairwise disjoint, possibly empty,
subsets N− ,N0 and N+ , with the following properties: N− and N+ each consists
of up to n + 1 consecutive integers, while N0 may contain at most one member. For
i ∈ N− (or i ∈ N+), any i-characteristic impinging on C crosses from the positive to
the negative (or from the negative to the positive) side. On the other hand, if i ∈ N0 ,
any i-characteristic impinging upon C, from either its positive or its negative side, is
absorbed by C, i.e., C itself is an i-characteristic.

Noteworthy examples of nonresonant curves include:

(a) Any i-characteristic, in particular any i-wave, so that N− = {1, · · · , i−1},N0 =
{i} and N+ = {i + 1, · · · , n + 1}.

(b) Any space-like curve. Assuming λ1(U ) < 0 < λn+1 , these may be represented
by Lipschitz functions t = t̂(x), such that 1/λ1 < dt̂/dx < 1/λn+1 , a.e. In that
case, N+ = {1, · · · , n + 1} while both N− and N0 are empty.

The relevance of the above will become clear in the next section.

14.4 Approximate Solutions

The following definition collects all the requirements on a piecewise constant func-
tion, of the type produced by the front tracking algorithm, so as to qualify as a rea-
sonable approximation to the solution of our Cauchy problem:

14.4.1 Definition. For δ > 0, a δ-approximate solution of the hyperbolic sys-
tem of conservation laws (14.2.1) is a piecewise constant function U , defined on
(−∞,∞) × [0,∞) and satisfying the following conditions: The domains of the
constant states are bordered by jump discontinuities, called waves, each propagating
with constant speed along a straight line segment x = y(t). Any wave may originate
either at a point of the x-axis, t = 0, or at a point of collision of other waves, and gen-
erally terminates upon colliding with another wave, unless no such collision occurs
in which case it propagates all the way to infinity. Only two incoming waves may
collide simultaneously, but any (finite) number of outgoing waves may originate at a
point of collision. There is a finite number of points of collision, waves and constant
states. The waves are of three types:
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(a) Shocks. An (approximate) i-shock x = y(t) borders constant states U− , on the
left, and U+ , on the right, which can be joined by an admissible i-shock, i.e.,
U+ = Wi (τ ;U−), with τ < 0 when the i-characteristic family is genuinely
nonlinear or τ <

> 0 when the i-characteristic family is linearly degenerate, and
propagates approximately at the shock speed s = si (τ ;U−):
(14.4.1) |ẏ(·)− s| ≤ δ.

(b) Rarefaction Fronts. An (approximate) i-rarefaction front x = y(t) borders con-
stant states U− , on the left, and U+ , on the right, which can be joined by an
i-rarefaction wave with strength ≤ δ, i.e., U+ = Vi (τ ;U−), with 0 < τ ≤ δ,
and propagates approximately at characteristic speed:

(14.4.2) |ẏ(·)− λi (U+)| ≤ δ.

(c) Pseudoshocks. A pseudoshock x = y(t) may border arbitrary states U− and U+
and propagates at the specified supersonic speed:

(14.4.3) ẏ(·) = λn+1 .

The combined strength of pseudoshocks does not exceed δ:

(14.4.4)
∑

|U (y(t)+, t)−U (y(t)−, t)| ≤ δ, 0 < t <∞,

where for each t the summation runs over all pseudoshocks x = y(·) which cross the
t-time line.

If, in addition, the step function U (·, 0) approximates the initial data U0 in L1,
within distance δ,

(14.4.5)
∫ ∞

−∞
|U (x, 0)−U0(x)|dx ≤ δ,

then U is called a δ-approximate solution of the Cauchy problem (13.1.1).
The extra latitude afforded by the above definition in allowing the speed of (ap-

proximate) shocks and rarefaction fronts to (slightly) deviate from their more accu-
rate values granted by the front tracking algorithm provides some flexibility which
may be put to good use for ensuring that no more than two fronts may collide simul-
taneously.

The effectiveness of front tracking will be demonstrated through the following

14.4.2 Theorem. Assume U0 ∈ BV (−∞,∞), with T V(−∞,∞)U0(·) ≤ a << 1.
Fix any small positive δ, and approximate U0 by some step function U0δ such that
T V(−∞,∞)U0δ(·) ≤ T V(−∞,∞)U0(·) and ‖U0δ(·) − U0(·)‖L1(−∞,∞) ≤ δ. Then the
front tracking algorithm with initial data U0δ , fixed supersonic speed λn+1 for pseu-
doshocks, delimiter δ for the strength of rarefaction fronts, and sufficiently small
parameter σ (depending on δ and on the number of jump points of U0δ) generates
a δ-approximate solution Uδ of the initial-value problem (13.1.1). Any sequence of
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δ’s converging to zero contains a subsequence {δk} such that {Uδk } converges, a.e.
on (−∞,∞) × [0,∞), to a BV solution U of (13.1.1), which satisfies the entropy
admissibility condition for any convex entropy-entropy flux pair (η, q) of the system
(14.2.1), together with the estimates (13.1.5) and (13.1.6). Furthermore, the trace of
U on any Lipschitz graph on the upper half-plane that is nonresonant relative to all
Uδ has bounded variation.

The above proposition reestablishes the assertions of Theorem 13.1.1. The prop-
erty that the trace of U along nonresonant curves has bounded variation establishes
a connection with the class of solutions discussed in Chapter XII.

The demonstration of Theorem 14.4.2 is quite lengthy and will be presented, in
installments, in the next three sections. However, the following road map may prove
useful at this juncture.

As already noted in Section 14.3, once the step function U0δ has been designated,
the front tracking algorithm will produce Uδ , at least on a time interval [0, T ), which
as we shall see later is [0,∞). We shall be assuming throughout that the range of Uδ

is contained in a ball of small radius in state space, a condition that must be verified
a posteriori. The constants c1, c2, · · · , κ, · · · which will appear in the course of the
proof, all depend solely on bounds of F and its derivatives in that ball.

The first step will be to establish an estimate

(14.4.6) T V(−∞,∞)Uδ(·, t) ≤ c1T V(−∞,∞)U0(·), 0 ≤ t < T,

on the total variation, together with a bound on the total amount of wave interaction.
By account of the construction of Uδ , (14.4.6) will immediately imply

(14.4.7)∫ ∞

−∞
|Uδ(x, t)−Uδ(x, τ )|dx ≤ c2|t − τ |T V(−∞,∞)U0(·), 0 ≤ τ < t < T,

with c2 = cc1 , where c is any upper bound of the wave speeds; for instance c is
the maximum of λn+1 and− inf λ1(U ). The usefulness of these estimates is twofold:
First, they will assist in the task of verifying that Uδ meets the requirements set by
Definition 14.4.1. Secondly, they will induce compactness that makes it possible to
pass to the δ ↓ 0 limit.

In verifying that Uδ is a δ-approximate solution, the requirements (14.4.1),
(14.4.2) and (14.4.3), on the speed of shocks, rarefaction fronts and pseudosho-
cks, are patently met, because of the specifications of the construction. Moreover,
the selection of the delimiter entails that the strengths of rarefaction fronts will be
bounded by δ. The remaining requirements, namely that the combined strength of
pseudoshocks is also bounded by δ, as in (14.4.4), and that the number of collisions
is finite, will be established by insightful analysis of the wave pattern. In particular,
this will furnish the warranty that Uδ is generated, in finite steps, on the entire upper
half-plane, i.e., T = ∞.
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The final step in the proof will complete the construction of the solution to
(13.1.1) by passing to the δ ↓ 0 limit in Uδ , via a compactness argument relying
on the estimates (14.4.6) and (14.4.7).

14.5 Bounds on the Total Variation

As in Section 13.4, T V(−∞,∞)Uδ(·, t) will be measured through

(14.5.1) L(t) =
∑

|γ |,

namely by the sum of the strengths of all jump discontinuities that cross the
t-time line. Clearly, L(·) stays constant along time intervals between consecutive
collisions of fronts and changes only across points of wave interaction. To estimate
these changes, we have to investigate the various types of collisions.

Suppose a j-front of amplitude α collides with an i-front of amplitude β. When
|α||β| ≥ σ , so that the resulting jump discontinuity is resolved, via the Approximate
Riemann Solver, into a full wave fan ε = (ε1, · · · , εn), then, by virtue of Theorem
9.9.11,

(14.5.2) |ε j − α| + |εi − β| +
∑

k �=i, j

|εk | = O(1)|α||β|,

if i < j , or

(14.5.3) |εi − α − β| +
∑
k �=i

|εk | = O(1)|α||β|,

if i = j . On the other hand, when |α||β| < σ , in which case the resulting jump
discontinuity is resolved, via the Simplified Riemann Solver, as shown in Fig. 14.2.2
or Fig. 14.2.3, the amplitude of the colliding fronts is conserved. The strength of the
generated outgoing pseudoshock is easily estimated from the wave diagrams in state
space:

(14.5.4) |UR −UQ | = O(1)|α||β|.
Consider next the case depicted in Fig. 14.2.4, where a pseudoshock collides

with an i-front of amplitude β. Since the amplitude of the i-front is conserved across
the collision, analysis of the wave diagram in state space, Fig. 14.2.4, yields that
the strength of the outgoing pseudoshock is related to the strength of the incoming
pseudoshock by

(14.5.5) |UR −UQ | = |UM −UL | + O(1)|β||UM −UL |.
1 If the outgoing k-wave is a fan of k-rarefaction fronts, εk denotes the cumulative amplitude

and |εk | stands for the cumulative strength of these fronts.
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Let I denote the set of t ∈ (0, T ) where collisions occur. We let # denote the
“jump” operator from t− to t+, for t ∈ I . By account of the analysis of wave
interactions, above, we infer

(14.5.6) #L(t) ≤ κ|α||β|, t ∈ I,

where |α| and |β| are the strengths of the waves that collide at t .
Our strategy for keeping T V(−∞,∞)Uδ(·, t) under control is to show that any

increase of L(·) allowed by (14.5.6) is offset by the simultaneous decrease in the
amount of potential wave interaction.

A j-wave and an i-wave, with the former crossing the t-time line to the left of
the latter, are called approaching when either i < j , or i = j and at least one of
these waves is a compression shock.

The potential for wave interaction at t ∈ (0, τ )\I will be measured by

(14.5.7) Q(t) =
∑

|ζ ||ξ |, t ∈ (0, T )\I,

where the summation runs over all pairs of approaching waves, with strengths, say,
|ζ | and |ξ |, which cross the t-time line. In particular,

(14.5.8) Q(t) ≤ 1
2 L(t)2 , t ∈ (0, T )\I.

Clearly, Q(·) stays constant along time intervals between consecutive collisions. On
the other hand, at any t ∈ I where waves with strength |α| and |β| collide, our
analysis of wave interactions implies

(14.5.9) #Q(t) ≤ −|α||β| + κ|α||β|L(t−), t ∈ I.

In analogy to the Glimm functional (13.4.8), we set

(14.5.10) G(t) = L(t)+ 2κQ(t), t ∈ (0, T )\I.

Combining (14.5.10) with (14.5.6) and (14.5.9), yields

(14.5.11) #G(t) ≤ κ[2κG(t−)− 1]|α||β|, t ∈ (0, T )\I.

Assume the total variation of the initial data is so small that 4κL(0+) ≤ 1. Then,
on account of (14.5.10) and (14.5.8), G(0+) ≤ 2L(0+) ≤ (2κ)−1. This together
with (14.5.11) and a simple induction argument yields #G(t) ≤ 0, t ∈ I , i.e., G(·)
is nonincreasing. Hence

(14.5.12) L(t) ≤ G(t) ≤ G(0+) ≤ 2L(0+), t ∈ (0, T )\I,

which establishes the desired estimate (14.4.6).
Next we estimate the total amount of wave interaction. Since κL(t−) ≤ 1

2 ,
(14.5.9) yields

(14.5.13) #Q(t) ≤ − 1
2 |α||β|, t ∈ I.
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By summing (14.5.13) over all t ∈ I , and upon using (14.5.8),

(14.5.14)
∑

|α||β| ≤ L(0+)2 ,
where the summation runs over the set of collisions in (−∞,∞)× (0, T ).

Let us now consider any Lipschitz graph C in (−∞,∞) × [0, T ) that is non-
resonant relative to Uδ , as defined in Section 14.3. The aim is to estimate the total
variation of the trace of Uδ on C, measured by the sum LC =

∑ |γ | of the strengths
of all waves that impinge on C.

Let J stand for the set of t ∈ (0, T ) where some wave impinges on C. For
t ∈ (0, T )\(I ⋃ J ) we set

(14.5.15) M(t) =
∑

−|γ | +
∑

+|γ | +
∑

0 |γ |,
where the summation Σ− (or Σ+) runs over the i-waves, with i ∈ N− (or N+), that
cross the t-time line on the positive (or negative) side of C; while Σ0 runs over all
i-waves, with i ∈ N0, that cross the t-time line on either side of C. Clearly,

(14.5.16) #M(t) = −|γ |, t ∈ J\I,

(14.5.17) #M(t) ≤ κ|α||β|, t ∈ I\J,

(14.5.18) #M(t) ≤ −|γ | + κ|α||β|, t ∈ I ∩ J,

where |α| and |β| are the strengths of the waves colliding at t ∈ I and |γ | is the
strength of the wave that impinges on C at t ∈ J . Summing the above inequalities
over all t ∈ I

⋃
J and using (14.5.14) together with 4κL(0+) ≤ 1, we conclude

(14.5.19) LC ≤ M(0+)+ κ
∑

|α||β| ≤ 2L(0+).
Another important implication of the boundedness of the amount of wave inter-

action is that the total number of collisions is finite and bounded, independently of T .
Indeed, recall that the Approximate Riemann Solver is employed to resolve collisions
only when the product of the strengths of the two incoming fronts exceeds σ . By
virtue of (14.5.14), the number of such collisions is bounded by L(0+)2/σ . Fronts
are generated exclusively by the application of the Approximate Riemann Solver to
resolve jump discontinuities of U0δ or collisions of fronts. Therefore, the number
of fronts is bounded. Any two fronts may collide at most once in their lifetime, so
the number of collisions between fronts is also bounded. Since all pseudoshocks are
generated by collisions of fronts, the number of pseudoshocks is likewise bounded.
But then, even the number of collisions between fronts and pseudoshocks must be
bounded. To summarize, the total number of collisions is finite, bounded solely in
terms of δ, σ , and the number of jump points of U0δ . Consequently, the front track-
ing algorithm generates Uδ , in finite steps, on the entire upper half-plane. In particu-
lar, the estimates (14.4.6) and (14.4.7) will hold for 0 ≤ t <∞ and 0 ≤ τ < t <∞,
respectively.
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14.6 Bounds on the Combined Strength of Pseudoshocks

The final task for verifying that Uδ is a δ-approximate solution of (14.2.1) is to estab-
lish requirement (14.4.4). The notion of generation order was introduced in Section
14.3. Waves of high generation order are produced after a large number of collisions
and so it should be expected that their strength is small. Indeed, the first step in our
argument is to show that the combined strength of all waves, and thus in particu-
lar of all pseudoshocks, of sufficiently high generation order is arbitrarily small. To
that end, the analysis of Section 14.5 shall be refined by sorting out and monitoring
separately the waves according to their generation order.

We know by now that the total number of collisions is bounded, and hence the
generation order of all waves lies in a finite range, 0 ≤ µ ≤ ν. Note, however, that
the magnitude of ν depends penultimately on δ, and should be expected to grow
without bounds as δ ↓ 0. For µ = 0, 1, · · · , ν and t ∈ [0,∞)\I , we let Lµ(t) denote
the sum of the strengths of all waves with generation order ≥ µ that cross the t-time
line; and Qµ(t) stand for the sum of the products of the strengths of all couples of
approaching waves that cross the t-time line and have generation order µ1, µ2 with
max{µ1, µ2} ≥ µ. Thus, in particular, L0(t) = L(t) and Q0(t) = Q(t). Finally, we
identify the set Iµ of times t ∈ I in which a wave of generation order µ collides with
a wave of generation order ≤ µ.

Collisions between waves of generation order ≤ µ − 2 cannot affect waves of
generation order ≥ µ, and so

(14.6.1) #Lµ(t) = 0, t ∈ I0 ∪ · · · ∪ Iµ−2 .

Any change in Lµ(·) at t ∈ I must be induced by the collision of two waves,
of which at least one is of generation order ≥ µ − 1. These colliding waves,
with strengths say |α| and |β|, are contributing |α||β| to Qµ−1(t−) but nothing to
Qµ−1(t+). As in Section 14.5, the resulting drop in Qµ−1(·) can be used to offset
the potential increment of Lµ(·), which is bounded by κ|α||β|:
(14.6.2) #Lµ(t)+ 2κ#Qµ−1(t) ≤ 0, t ∈ Iµ−1 ∪ · · · ∪ Iν .

By similar arguments one verifies the inequalities

(14.6.3) #Qµ(t)+ 2κ#Q(t)Lµ(t−) ≤ 0, t ∈ I0 ∪ · · · ∪ Iµ−2 ,

(14.6.4) #Qµ(t)+ 2κ#Qµ−1(t)L(t−) ≤ 0, t ∈ Iµ−1 ,

(14.6.5) #Qµ(t) ≤ 0, t ∈ Iµ ∪ · · · ∪ Iν ,

which govern the change of Qµ(·) across collisions of various orders.
A superscript+ or−will be employed below to indicate “positive” or “negative”

part: w+ = max{w, 0}, w− = max{−w, 0}. The aim is to monitor the quantities

(14.6.6) L̂µ = sup
t

Lµ(t), Q̂µ =
∑
t∈I

[#Qµ(t)]+ ,

for µ = 1, · · · , ν, and show
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(14.6.7) L̂µ ≤ 2−µc3a , Q̂µ ≤ 2−µ+3c2
3a2 ,

where a is the bound on T V(−∞,∞)U0(·).
From (14.6.1), (14.6.2) and the “initial condition” Lµ(0+) = 0, µ = 1, · · · , ν,

it follows that

(14.6.8) L̂µ ≤ 2κ
∑
t∈I

[#Qµ−1(t)]− , µ = 1, · · · , ν.

Next we focus on (14.6.3), (14.6.4) and (14.6.5), with “initial condition”
Qµ(0+) = 0. Recalling (14.5.8), (14.5.12) and using

(14.6.9)
∑
t∈I

[#Q(t)]− = Q(0+)− Q(∞) ≤ 1
2 L(0+)2 ,

we deduce

(14.6.10) Q̂µ ≤ κL(0+)2 L̂µ + 4κL(0+)
∑
t∈I

[#Qµ−1(t)]−, µ = 1, · · · , ν.

We combine (14.6.8) with (14.6.10). Assuming the total variation of the initial
data is so small that 10κL(0+) ≤ 1, we deduce

(14.6.11) Q̂µ ≤ 1

2

∑
t∈I

[#Qµ−1(t)]− , µ = 1, · · · , ν.

In particular, for µ = 1 and by account of (14.6.9), Q̂1 ≤ 1
4 L(0+)2.

We finally notice that, for µ = 1, · · · , ν, since Qµ(0+) = 0,

(14.6.12)
∑
t∈I

[#Qµ(t)]− =
∑
t∈I

[#Qµ(t)]+ − Qµ(∞) ≤ Q̂µ .

Therefore, (14.6.11) yields Q̂µ ≤ 1
2 Q̂µ−1, µ = 2, · · · , ν, which in turn implies

Q̂µ ≤ 2−µ−1L(0+)2. This together with (14.6.9) and (14.6.10) yields the estimate
L̂µ ≤ 2−µ−2L(0+). We have thus established (14.6.7).

It is now clear that one can fix µ0 sufficiently large so that the combined strength
of all waves of generation order ≥ µ0 , which is majorized by L̂µ0 , does not exceed
1
2δ.

In order to estimate the combined strength of pseudoshocks of generation order
< µ0 , the first step is to estimate their number. For µ = 0, · · · , ν, let Kµ denote
the number of waves of generation order ≤ µ. A crude upper bound for Kµ may
be derived by the following argument. The number of outgoing waves produced by
resolving a jump discontinuity, via any of the two Riemann solvers, is bounded by a
number b/δ. Thus, K0 ≤ b

δ
N , where N is the number of jump points of U0δ . Since

any two waves may collide at most once in their lifetime, the number of collisions
that may generate waves of generation order µ is bounded by 1

2 K 2
µ−1 . Therefore,
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(14.6.13) Kµ ≤ Kµ−1 + b

2δ
K 2
µ−1 ≤

b

δ
K 2
µ−1 ,

whence one readily deduces

(14.6.14) Kµ ≤ (
b

δ
)2

µ+1
N 2µ.

Next we estimate the strength of individual pseudoshocks. Any pseudoshock
is generated by the collision of two fronts, with strengths |α| and |β| such that
|α||β| ≤ σ , which is thus resolved via the Simplified Riemann Solver, as depicted
in Figs. 14.2.2 and 14.2.3. It then follows from the corresponding interaction esti-
mate (14.5.4) that the strength of any pseudoshock at birth does not exceed c4σ . On
account of (14.5.5), the collision of a pseudoshock with a front of strength |β|, as
depicted in Fig. 14.2.4, may increase its strength at most by a factor 1+ κ|β|. Con-
sequently, the strength of a pseudoshock may ultimately grow at most by the factor∏
(1+κ|γ |), where the product runs over all fronts with which the pseudoshock col-

lides during its life span. Since pseudoshocks are nonresonant, the estimate (14.5.19)
here applies and implies

∑ |γ | ≤ 2L(0+). Assuming 2κL(0+) ≤ 1, we thus con-
clude that the strength of each pseudoshock, at any time, does not exceed 3c4σ .

It is now clear that by employing the upper bound for Kµ0−1 provided by
(14.6.14), and upon selecting σ sufficiently small, one guarantees that the combined
strength of pseudoshocks of generation order < µ0 is bounded by 1

2δ. In conjunction
with our earlier estimate on the total strength of pseudoshocks of generation order
≥ µ0 , this establishes (14.4.4).

14.7 Compactness and Consistency

In this section, the proof of Theorem 14.4.2 will be completed by passing to the
δ ↓ 0 limit. Here we will just be assuming that {Uδ} is any family of δ-approximate
solutions, in the sense of Definition 14.4.1, with δ positive and small, that satisfy
estimates (14.4.6) and (14.4.7). Thus, we shall not require the special features of the
particular δ-approximate solutions constructed via the front tracking algorithm, for
instance that shocks propagate with the correct shock speed.

Let us fix any test function φ, with compact support in (−∞,∞) × [0, T ). By
applying Green’s theorem,

(14.7.1)
∫ ∞

0

∫ ∞

−∞
[∂tφUδ + ∂xφF(Uδ)]dxdt +

∫ ∞

−∞
φ(x, 0)Uδ(x, 0)dx

= −
∫ ∞

0

∑
φ(y(t), t){F(Uδ(y(t)+, t))− F(Uδ(y(t)−, t))

− ẏ(t)[Uδ(y(t)+, t)−Uδ(y(t)−, t)]}dt,

where for each t the summation runs over all jump discontinuities x = y(·) that cross
the t-time line.
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When the jump discontinuity x = y(·) is an (approximate) shock, then by virtue
of (14.4.1),

(14.7.2) |F(Uδ(y(t)+, t))−F(Uδ(y(t)−, t))− ẏ(t)[Uδ(y(t)+, t)−Uδ|y(t)−, t)]|
≤ δ|Uδ(y(t)+, t)−Uδ(y(t)−, t)|.

Similarly, when x = y(·) is an (approximate) rarefaction front, with strength ≤ δ,
then by account of the proximity between shock and rarefaction wave curves, and
(14.4.2),

(14.7.3) |F(Uδ(y(t)+, t))−F(Uδ(y(t)−, t))− ẏ(t)[Uδ(y(t)+, t)−Uδ(y(t)−, t)]|
≤ c5δ|Uδ(y(t)+, t)−Uδ(y(t)−, t)|.

Finally, when x = y(·) is a pseudoshock,

(14.7.4) |F(Uδ(y(t)+, t))−F(Uδ(y(t)−, t))| ≤ c6|Uδ(y(t)+, t)−Uδ(y(t)−, t)|.
By combining (14.7.2), (14.7.3), (14.7.4) with (14.4.6) and (14.4.4), we deduce

that, for any fixed test function φ, the right-hand side of (14.7.1) is bounded by
Cφ[T V(−∞,∞)U0(·)+ 1]δ and thus tends to zero as δ ↓ 0.

By virtue of (14.4.6), (14.4.7) and Theorem 1.7.3, any sequence of δ’s converging
to zero contains a subsequence {δk} such that {Uδk } converges a.e. to some U in
BVloc . Passing to the limit in (14.7.1) along the sequence {δk}, and using (14.4.5),
we conclude that U is indeed a weak solution of (13.1.1).

By passing to the δ ↓ 0 limit in (14.4.6) and (14.4.7), one verifies that U satisfies
(13.1.5) and (13.1.6). Furthermore, if C is any Lipschitz graph that is nonresonant
relative to Uδ , for all δ, then, as shown in Section 14.5, the trace of Uδ on C has
bounded variation, uniformly in δ, and thus, passing to the δ ↓ 0 limit, yields that
the trace of U on C will have the same property.

To conclude the proof, assume (η, q) is an entropy-entropy flux pair for the sys-
tem (14.2.1), with η(U ) convex. Let φ be any nonnegative test function, with com-
pact support in (−∞,∞)× [0, T ). By Green’s theorem,

(14.7.5)
∫ ∞

0

∫ ∞

−∞
[∂tφη(Uδ)+ ∂xφq(Uδ)]dxdt +

∫ ∞

−∞
φ(x, 0)η(Uδ(x, 0))dx

= −
∫ ∞

0

∑
φ(y(t), t){q(Uδ(y(t)+, t))− q(Uδ(y(t)−, t))

−ẏ(t)[η(Uδ(y(t)+, t))− η(Uδ(y(t)−, t))]}dt,

where, as in (14.7.1), for each t the summation runs over all jump discontinuities
x = y(·) that cross the t-time line.

When x = y(·) is an (approximate) shock, the entropy inequality (8.5.1) together
with (14.4.1) imply
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(14.7.6)

q(Uδ(y(t)+, t))− q(Uδ(y(t)−, t))− ẏ(t)[η(Uδ(y(t)+, t))− η(Uδ(y(t)−, t))]
≤ c7δ|Uδ(y(t)+, t)−Uδ(y(t)−, t)|.

When x = y(·) is an (approximate) rarefaction front, with strength ≤ δ,
Theorem 8.5.1 together with (14.4.2) yield

(14.7.7)

|q(Uδ(y(t)+, t))− q(Uδ(y(t)−, t))− ẏ(t)[η(Uδ(y(t)+, t))− η(Uδ(y(t)−, t))]|
≤ c8δ|Uδ(y(t)+, t)−Uδ(y(t)−, t)|.

Finally, when x = y(·) is a pseudoshock,

(14.7.8)

|q(Uδ(y(t)+, t))− q(Uδ(y(t)−, t))− ẏ(t)[η(Uδ(y(t)+, t)− η(Uδ(y(t)−, t))]|
≤ c9|Uδ(y(t)+, t)−Uδ(y(t)−, t)|.

By combining (14.7.6), (14.7.7), (14.7.8) with (14.4.6) and (14.4.4), we deduce
that, for fixed test function φ, the right-hand side of (14.7.5) is bounded from be-
low by −Cφ[T V(−∞,∞)U0(·) + 1]δ. Therefore, passing to the limit along the {δk}
sequence, we conclude that the solution U satisfies the inequality (13.2.17), which
expresses the entropy admissibility condition. The proof of Theorem 14.4.2 is now
complete.

14.8 Continuous Dependence on Initial Data

The remainder of this chapter will address the issue of uniqueness and stability of
solutions to the initial-value problem (13.1.1). The existence proofs via Theorems
13.1.1 an 14.4.2, which rely on compactness arguments, offer no clue to that ques-
tion. We will approach the subject via the approximate solutions generated by the
front tracking algorithm. By monitoring the time evolution of a certain functional,
we will demonstrate that δ-approximate solutions depend continuously on their ini-
tial data, modulo corrections of order δ. This will induce stability for solutions ob-
tained by passing to the δ ↓ 0 limit.

Our earlier experiences with the scalar conservation law strongly suggest that
the L1 topology should provide the proper setting for continuous dependence. How-
ever, the L1 distance shall not be measured via the standard L1 metric but through a
functional ρ, specially designed for the task at hand.

Let us consider two δ-approximate solutions U and Ū of (14.2.1). Fixing any
point (x, t) of continuity for both U and Ū , we shall measure the distance between
the vectors U (x, t) and Ū (x, t) in the special curvilinear coordinate system whose
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coordinate curves are the shock curves, with both the admissible and the nonad-
missible branches retained. To that end, the vector Ū (x, t) − U (x, t) is represented
by curvilinear “coordinates” p1(x, t), · · · , pn(x, t), obtained by means of the fol-
lowing process: One envisages a “virtual” jump discontinuity with left state U (x, t)
and right state Ū (x, t), and resolves it into a wave fan composed of n + 1 con-
stant states joined exclusively by (admissible or nonadmissible) virtual shocks. For
|U (x, t) − Ū (x, t)| sufficiently small, this resolution is unique and can be effected,
via the implicit function theorem, by retracing the steps of the admissible solution
to the Riemann problem, in Section 9.3, with the wave fan curves �i here replaced
by the shock curves Wi . We denote the amplitude of the resulting virtual i-shock
by pi (x, t) and its speed by si (x, t). The distance between U (x, t) and Ū (x, t) will
now be measured by the suitably weighted sum

∑
gi (x, t)|pi (x, t)| of the strengths

of the n virtual shocks, and accordingly the distance between the two approximate
solutions at time t will be measured through the functional

(14.8.1) ρ(U (·, t), Ū (·, t)) =
n∑

i=1

∫ ∞

−∞
gi (x, t)|pi (x, t)|dx .

We proceed to introduce suitable weights gi . Let I and Ī denote the sets of col-
lision times for U and Ū , and consider the corresponding potentials for wave inter-
action Q(t) and Q̄(t), defined through (14.5.7), for t ∈ (0,∞)\I and t ∈ (0,∞)\ Ī ,
respectively. For t ∈ (0,∞)\(I ⋃ Ī ) and any point of continuity x of both U (·, t)
and Ū (·, t), we define

(14.8.2) gi (x, t) = 1+ κ[Q(t)+ Q̄(t)] + νAi (x, t),

where κ and ν are sufficiently large positive constants, to be fixed later, and

(14.8.3) Ai (x, t) =∑−|γ | +
∑̄
−|γ | +

∑
+|γ | +

∑̄
+|γ | +

∑
0 |γ | +

∑̄
0|γ |.

In (14.8.3), Σ− (or Σ̄−) sums the strengths of all j-fronts of U (or Ū ), with j =
i + 1, · · · , n, that cross the t-time line to the left of the point x ; Σ+ (or Σ̄+) sums
the strengths of all j-fronts of U (or Ū ), with j = 1, · · · , i − 1, that cross the t-time
line to the right of the point x ; Σ0 (or Σ̄0) sums the strengths of all i-fronts of U (or
Ū ) that cross the t-time line to the left (or right) of the point x , when pi (x, t) < 0,
or to the right (or left) of the point x , when pi (x, t) > 0. Thus, one may justifiably
say that Ai (x, t) represents the total strength of the fronts of U and Ū that cross the
t-time line and approach the virtual i-shock at (x, t).

Once κ and ν have been fixed, the total variation of the initial data shall be re-
stricted to be so small that 1

2 ≤ gi (x, t) ≤ 2. Then, ρ(U (·, t), Ū (·, t)) will be equiv-
alent to the L1 distance of U (·, t) and Ū (·, t):

(14.8.4) 1
C ‖U (·, t)− Ū (·, t)‖L1(−∞,∞) ≤ ρ(U (·, t), Ū (·, t))

≤ C‖U (·, t)− Ū (·, t)‖L1(−∞,∞).
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It is easily seen that in the scalar case, n = 1, the functional ρ introduced by
(14.8.1) is closely related to the functional ρ, defined by (11.8.11), when the latter is
restricted to step functions.

The aim is to show that ρ(U (·, t), Ū (·, t)) is nonincreasing, modulo corrections
of order δ:

(14.8.5) ρ(U (·, t), Ū (·, t))− ρ(U (·, τ ), Ū (·, τ )) ≤ ωδ(t − τ), 0 < τ < t <∞.

Notice that across points of I or Ī , Q(t) or Q̄(t) decreases by an amount approxi-
mately equal to the product of the strengths of the two colliding waves, while Ai (x, t)
may increase at most by a quantity of the same order of magnitude. Therefore, upon
fixing κ/ν sufficiently large, ρ(U (·, t), Ū (·, t)) will be decreasing across points of I
or Ī . Between consecutive points of I

⋃
Ī , ρ(U (·, t), Ū (·, t)) is continuously differ-

entiable; hence to establish (14.8.5) it will suffice to show

(14.8.6)
d

dt
ρ(U (·, t), Ū (·, t)) ≤ ωδ.

From (14.8.1),

(14.8.7)
d

dt
ρ(U (·, t), Ū (·, t)) =

∑
y

n∑
i=1

{g−i |p−i | − g+i |p+i |}ẏ,

where
∑

y runs over all waves x = y(·) of U and Ū that cross the t-time line, and

ẏ, g±i and p±i stand for ẏ(t), gi (y(t)±, t) and pi (y(t)±, t). By adding and subtract-
ing, appropriately, the speed s±i = si (y(t)±, t) of the virtual i-shocks, one may
recast (14.8.7) in the form

(14.8.8)
d

dt
ρ(U (·, t), Ū (·, t)) =

∑
y

n∑
i=1

Ei (y(·), t),

where

(14.8.9) Ei (y(·), t) = g+i (s
+
i − ẏ)|p+i | − g−i (s

−
i − ẏ)|p−i |

= (g+i − g−i )(s
+
i − ẏ)|p−i | + g−i (s

+
i − s−i )|p−i | + g+i (s

+
i − ẏ)(|p+i | − |p−i |).

Suppose first x = y(·) is a pseudoshock, say of U . Then g+i = g−i and (14.8.9)
yields

(14.8.10)
n∑

i=1

Ei (y(·), t) ≤ c10|U (y(t)+, t)−U (y(t)−, t)|.

Thus, by virtue of (14.4.4), the portion of the sum on the right-hand side of (14.8.8)
that runs over all pseudoshocks of U is bounded by c10δ. Of course, this equally
applies to the portion of the sum that runs over all pseudoshocks of Ū .
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We now turn to the case x = y(·) is a j-front of U or Ū , with amplitude γ . To
complete the proof of (14.8.6), one has to show that

(14.8.11)
n∑

i=1

Ei (y(·), t) ≤ c11δ|γ |.

What follows is a road map to the proof of (14.8.11), which will expose the main
ideas and, in particular, will explain why the weight function gi (x, t) was designed
according to (14.8.2). The detailed proof, which is quite laborious, is found in the
references cited in Section 14.13.

Let us first examine the three terms on the right-hand side of (14.8.9) for i �= j .
By virtue of (14.8.2), g+i − g−i equals ν|γ | when j > i , or −ν|γ | when j < i . In
either case, the first term

(14.8.12) (g+i − g−i )(s
+
i − ẏ)|p−i | ∼= −ν|λi − λ j ||p−i ||γ |

is strongly negative and the idea is that this dominates the other two terms, rendering
the desired inequality (14.8.6). Indeed, the second term is majorized by c12|p−i ||γ |,
which is clearly dominated by (14.8.12), when ν is sufficiently large. One estimates
the remaining term by the following argument. The amplitudes (p−1 , · · · , p−n ) or
(p+1 , · · · , p+n ) of the virtual shocks result respectively from the resolution of the
jump discontinuity between U− and Ū− or U+ and Ū+, where U± = U (y(t)±, t)
and Ū± = Ū (y(t)±, t).

Assuming, for definiteness, that x = y(·) is a front of U , we have Ū− = Ū+,
while the states U− and U+ are connected, in state space, by a j-wave curve. Con-
sequently, to leading order, p+j ∼= p−j − γ while, for any k �= j, p+k ∼= p−k . Indeed,
a study of the wave curves easily yields the estimate

(14.8.13)
|p+j − p−j + γ | +

∑
k �= j

|p+k − p−k | = O(1)[δ + |p−j |(|p−j | + |γ |)+
∑
k �= j

|p−k |]|γ | ,

which in turn implies

(14.8.14) Ei (y(·), t) ≤ −aν|p−i ||γ | + c12[δ + |p−j |(|p−j | + |γ |)+
∑
k �= j

|p−k |]|γ |,

with a > 0.
For i = j , the estimation of Ei (y(·), t) is more delicate, as the j-front may

resonate with the virtual i-shock. The same difficulty naturally arises, and has to be
addressed, even for the scalar conservation law. In fact, the scalar case was already
treated, in Section 11.8, albeit under a different guise. For the system, one has to
examine separately a number of cases, depending on whether x = y(·) is a shock
or a rarefaction front, in conjunction with the signs of p−j and p+j . The resulting
estimates, which vary slightly from case to case but are essentially equivalent, are
derived in the references. For example, when either x = y(·) is a j-rarefaction front
and 0 < p−j < p+j or x = y(·) is a j-shock and p+j < p−j < 0,
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(14.8.15)

E j (y(·), t) ≤ −bν|p−j ||γ |(|p−j | + |γ |)+ c13[δ + |p−j |(|p−j | + |γ |)+
∑
k �= j

|p−k |]|γ |,

where b > 0.
We now sum the inequalities (14.8.14), for i �= j , together with the inequality

(14.8.15). Upon selecting ν sufficiently large to offset the possibly positive terms,
we arrive at (14.8.11). As noted earlier, this implies (14.8.6), which in turn yields
(14.8.5). Recalling (14.8.4), we conclude

(14.8.16) ‖U (·, t)−Ū (·, t)‖L1(−∞,∞) ≤ C2‖U (·, 0)−Ū (·, 0)‖L1(−∞,∞)+Cωδt,

which establishes that δ-approximate solutions depend continuously on their initial
data, modulo δ. The implications for actual solutions, obtained as δ ↓ 0, will be
discussed in the following section.

14.9 The Standard Riemann Semigroup

As a corollary of the stability properties of approximate solutions, established in the
previous section, it will be shown here that any solution to our system constructed as
the δ ↓ 0 limit of some sequence of δ-approximate solutions is uniquely determined
by its initial data and may be identified with a trajectory of a L1-Lipschitz semigroup,
defined on a closed subset of L1(−∞,∞).

The first step in our investigation is to locate the domain of the semigroup. This
must be a set which is positively invariant for solutions. Motivated by the analysis in
Section 14.5, with any step function W (·), of compact support and small total varia-
tion over (−∞,∞), we associate a number H(W (·)) determined by the following
procedure. The jump discontinuities of W (·) are resolved into fans of admissible
shocks and rarefaction waves, by solving classical Riemann problems. Before any
wave collisions may occur, one measures the total strength L and the potential for
wave interaction Q of these outgoing waves and then sets H(W (·)) = L + 2κQ,
where κ is a sufficiently large positive constant. Suppose a δ-approximate solution
U , with initial data W , is constructed by the front tracking algorithm of Section
14.2. By the rules of the construction, all jump discontinuities of W will be
resolved via the Approximate Riemann Solver and so, for any δ > 0, H(W (·)) will
coincide with the initial value G(0+) of the Glimm-type function G(t) defined
through (14.5.10). At a later time, as the Simplified Riemann Solver comes into
play, G(t) and H(U (·, t)) may part from each other. In particular, by contrast to
G(t), H(U (·, t)) will not necessarily be nonincreasing with t . Nevertheless, when κ
is sufficiently large, H(U (·, t)) ≤ H(U (·, t−)) and H(U (·, t+)) ≤ H(U (·, t−)).
Hence H(U (·, t)) ≤ H(W (·)) for any t ≥ 0 and so all sets of step functions
{W (·) : H(W (·)) < r} are positively invariant for δ-approximate solutions con-
structed by the front tracking algorithm. Following this preparation, we define the
set that will serve as the domain of the semigroup by
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(14.9.1) D = cl{step functions W (·) with compact support : H(W (·)) < r},
where cl denotes closure in L1(−∞,∞). By virtue of Theorem 1.7.3, the members
of D are functions of bounded variation over (−∞,∞), with total variation bounded
by cr . The main result is

14.9.1 Theorem. For r sufficiently small, there is a family of maps St : D→ D, for
t ∈ [0,∞), with the following properties.

(a) L1-Lipschitz continuity on D × [0,∞): For any W, W̄ in D and t, τ in [0,∞),

(14.9.2) ‖St W (·)− Sτ W̄ (·)‖L1(−∞,∞) ≤ κ{‖W (·)− W̄ (·)‖L1(−∞,∞) + |t − τ |}.
(b) {St : t ∈ [0,∞)} has the semigroup property, namely

(14.9.3) S0 = identity,

(14.9.4) St+τ = St Sτ , t, τ ∈ [0,∞).

(c) If U is any solution of (13.1.1), with initial data U0 ∈ D, which is the δ ↓ 0 limit
of some sequence of δ-approximate solutions, then

(14.9.5) U (·, t) = StU0(·), t ∈ [0,∞).

Proof. Let U and Ū be two solutions of (13.1.1), with initial data U0 and Ū0 , which
are δ ↓ 0 limits of sequences of δ-approximate solutions {Uδn } and {Ūδ̄n

}, respec-
tively. No assumption is made that these approximate solutions have necessarily been
constructed by the front tracking algorithm. So long as the total variation is suffi-
ciently small to meet the requirements of Section 14.8, we may apply (14.8.16) to
get

(14.9.6) ‖Uδn (·, t)− Ūδ̄n
(·, t)‖L1(−∞,∞) ≤ C2‖Uδn (·, 0)− Ūδ̄n

(·, 0)‖L1(−∞,∞)

+ Cωmax{δn, δ̄n}t.
Passing to the limit, n →∞, we deduce

(14.9.7) ‖U (·, t)− Ū (·, t)‖L1(−∞,∞) ≤ C2‖U0(·)− Ū0(·)‖L1(−∞,∞).

When r is sufficiently small, Theorem 14.4.2 asserts that for any U0 ∈ D one
can generate solutions U of (13.1.1) as limits of sequences {Uδn } of δ-approximate
solutions constructed by the front tracking algorithm. Moreover, the initial values
of Uδ may be selected so that H(Uδ(·, 0)) < r , in which case, as noted above,
H(Uδ(·, t)) < r and thereby U (·, t) ∈ D, for any t ∈ [0,∞). By virtue of (14.9.7),
all these solutions must coincide so that U is uniquely defined. In fact, (14.9.7) fur-
ther implies that U must even coincide with any solution, with initial value U0 , that
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is derived as the δ ↓ 0 limit of any sequence of δ-approximate solutions, regardless
of whether they were constructed by the front tracking algorithm.

Once U has thus been identified, we define St through (14.9.5). The Lip-
schitz continuity property (14.9.2) follows by combining (14.9.7) with (13.1.6),
and (14.9.3) is obvious. To verify (14.9.4), it suffices to notice that for any fixed
τ > 0, U (·, τ +·) is a solution of (13.1.1), with initial data U (·, τ ), which is derived
as the δ ↓ 0 limit of δ-approximate solutions and thus, by uniqueness, must coincide
with StU (·, τ ). The proof is complete.

The term Standard Riemann Semigroup is commonly used for St , as a reminder
that its building block is the solution of the Riemann problem. The question of
whether this semigroup also encompasses solutions derived via alternative methods
will be addressed in the next section.

14.10 Uniqueness of Solutions

Uniqueness for the Cauchy problem (13.1.1) shall be established here by demon-
strating that any solution in a reasonable function class can be identified with the
trajectory of the Standard Riemann Semigroup which emanates from the initial data.
As shown in Section 14.9, this is indeed the case for solutions constructed by front
tracking.

For fair comparison one should limit, at the outset, the investigation to solutions
U for which U (·, t) resides in the domain D of the Standard Riemann Semigroup,
defined through (14.9.1). As noted earlier, this implies, in particular, that U (·, t) has
bounded variation over (−∞,∞):

(14.10.1) T V(−∞,∞)U (·, t) ≤ cr.

It then follows from Theorem 4.3.1 that t �→ U (·, t) is L1-Lipschitz,

(14.10.2)
∫ ∞

−∞
|U (x, t)−U (x, τ )|dx ≤ c′r |t − τ |, 0 ≤ τ < t <∞,

and U is in BVloc on (−∞,∞)×[0,∞). Hence, as pointed out in Section 10.1, there
is N ⊂ [0,∞), of measure zero, such that any (x, t) with t �∈ N and U (x−, t) =
U (x+, t) is a point of approximate continuity of U while any (x, t) with t �∈ N and
U (x−, t) �= U (x+, t) is a point of approximate jump discontinuity of U , with one-
sided approximate limits U± = U (x±, t) and associated shock speeds determined
through the Rankine-Hugoniot jump condition (8.1.2).

It is presently unknown whether uniqueness prevails within the above class of
solutions. Accordingly, one should endow solutions with additional structure. Here
we will experiment with the

14.10.1 Tame Oscillation Condition: There are positive constants λ and β such that

(14.10.3) |U (x±, t + h)−U (x±, t)| ≤ β T V(x−λh,x+λh)U (·, t),

for all x ∈ (−∞,∞), t ∈ [0,∞) and any h > 0.
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Clearly, solutions constructed by either the random choice method or the front
tracking algorithm satisfy this condition, and so do also the solutions to systems of
two conservation laws considered in Chapter XII.

The Tame Oscillation Condition induces uniqueness:

14.10.2 Theorem. Any BV solution U of the Cauchy problem (13.1.1), with U (·, t)
in D for all t ∈ [0,∞), which satisfies the Lax E-condition, at any point of approxi-
mate jump discontinuity, together with the Tame Oscillation Condition (14.10.3), co-
incides with the trajectory of the Standard Riemann Semigroup St , emanating from
the initial data:

(14.10.4) U (·, t) = StU0(·), t ∈ [0,∞).

In particular, U is uniquely determined by its initial data.

Proof. The demonstration will be quite lengthy. The first step is to show that at every
τ �∈ N , U (·, t) is tangential to the trajectory of St emanating from U (·, τ ):

(14.10.5) lim sup
h↓0

1

h
‖U (·, τ + h)− ShU (·, τ )‖L1(−∞,∞) = 0.

Then we shall verify that (14.10.5), in turn, implies (14.10.4).
Fixing τ �∈ N , we will establish (14.10.5) by the following procedure. For any

fixed bounded interval [a, b] and ε > 0, arbitrarily small, we will construct some
function U∗ on a rectangle [a, b] × [τ, τ + δ] such that

(14.10.6) lim sup
h↓0

1

h
‖U (·, τ + h)−U∗(·, h)‖L1(a,b) ≤ c14rε,

(14.10.7) lim sup
h↓0

1

h
‖ShU (·, τ )−U∗(·, h)‖L1(a,b) ≤ c14rε.

Naturally, such a U∗ will provide a local approximation to the solution of (13.1.1)
with initial data U0(·) = U (·, τ ), and will be constructed accordingly by patching
together local approximate solutions of two types, one fit for points of strong jump
discontinuity, the other suitable for regions with small local oscillation.

We begin by fixing λ which is larger than the absolute value of all characteristic
speeds and also sufficiently large for the Tame Oscillation Condition (14.10.3) to
apply.

With any point (y, τ ) of jump discontinuity for U , with limits U± = U (y±, τ )
and shock speed s, we associate the sector K = {(x, σ ) : σ > 0, |x − y| ≤ λσ }, on
which we consider the solution U % = U %

(y,τ ) defined by

(14.10.8) U %(x, σ ) =
⎧⎨⎩U− , for x < y + sσ

U+ , for x > y + sσ.
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We prove that

(14.10.9) lim
h↓0

1

h

∫ y+λh

y−λh
|U (x, τ + h)−U %(x, h)|dx = 0.

Indeed, for 0 ≤ σ ≤ h, let us set

(14.10.10) φh(σ ) = 1

h

∫ y+λh

y−λh
|U (x, τ + σ)−U %(x, σ )|dx .

Suppose φh(h) > 0. Since σ �→ U (·, τ + σ) − U %(·, σ ) is L1-Lipschitz, with
constant γ , we infer that, for h << 1, φh(h) < 2γ and φh(σ ) ≥ 1

2φh(h), for any σ
with h − σ ≤ h

2γ φh(h). Then

(14.10.11)

1

h2

∫ h

0

∫ y+λh

y−λh
|U (x, τ + σ)−U %(x, σ )|dxdσ = 1

h

∫ h

0
φh(σ )dσ ≥ 1

4γ
φ2

h(h).

As h ↓ 0, the left-hand side of (14.10.11) tends to zero, by virtue of Theorem 1.7.4,
and this verifies (14.10.9).

Next we fix any interval (ζ, ξ), with midpoint say z. On the triangle T = {(x, σ ) :
σ > 0, ζ + λσ < x < ξ − λσ }, we construct the solution U ' = U '

(z,τ ) of the linear
Cauchy problem

(14.10.12) ∂tU
' + A'∂xU ' = 0,

(14.10.13) U '(x, 0) = U (x, τ ),

where A' is the constant matrix DF(U (z, τ )). The aim is to establish the estimate

(14.10.14)
∫ ξ−λh

ζ+λh
|U (x, τ + h)−U '(x, h)|dx

≤ c15[T V(ζ,ξ)U (·, τ )]
∫ h

0
T V(ζ+λσ,ξ−λσ)U (·, τ + σ)dσ.

Integrating (14.10.12) along characteristic directions and using (14.10.13) yields

(14.10.15) L'
i U

'(x, h) = L'
i U (x − λ

'
i h, τ ), i = 1, · · · , n,

where L'
i = Li (U (z, τ )) is a left eigenvector of A' associated with the eigenvalue

λ
'
i = λi (U (z, τ )). For fixed i , we may assume without loss of generality that λ'i = 0,

since we may change variables x �→ x − λ
'
i t , F(U ) �→ F(U )− λ

'
i U . In that case,

since U satisfies (14.2.1) in the sense of distributions,
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(14.10.16)
∫ ξ−λh

ζ+λh
φ(x)L'

i [U (x, τ + h)−U '(x, h)]dx

=
∫ ξ−λh

ζ+λh
φ(x)L'

i [U (x, τ + h)−U (x, τ )]dx

=
∫ h

0

∫ ξ−λh

ζ+λh
∂xφ(x)L

'
i F(U (x, τ + σ))dxdσ,

for any test function φ ∈ C∞0 (ζ + λh, ξ − λh). Taking the supremum over all such
φ with |φ(x)| ≤ 1, yields

(14.10.17)∫ ξ−λh

ζ+λh
|L'

i [U (x, τ + h)−U '(x, h)]|dx ≤
∫ h

0
T V(ζ+λh,ξ−λh)L

'
i F(U (·, τ + σ))dσ.

Given ζ + λh < x < y < ξ − λh, let us set, for brevity, V = U (x, τ + σ) and
W = U (y, τ + σ). Recalling the notation (8.1.4), one may write

(14.10.18)

F(V )− F(W ) = A(V,W )(V −W ) = A'(V −W )+ [A(V,W )− A'](V −W ).

We now note that L'
i A' = 0. Furthermore, A(V,W ) − A' is bounded in terms of

the oscillation of U inside the triangle T , which is in turn bounded in terms of the
total variation of U (·, τ ) over (ζ, ξ), by virtue of the Tame Oscillation Condition
(14.10.3). Therefore, (14.10.17) yields the estimate

(14.10.19)
∫ ξ−λh

ζ+λh
|L'

i [U (x, τ + h)−U '(x, h)]|dx

≤ c16[T V(ζ,ξ)U (·, τ )]
∫ h

0
T V(ζ+λσ,ξ−λσ)U (·, τ + σ)dσ.

Since (14.10.19) holds for i = 1, · · · , n, (14.10.14) readily follows.
We have now laid the groundwork for synthesizing a function U∗ that satisfies

(14.10.6). We begin by identifying a finite collection of open intervals (ζ j , ξ j ), for
j = 1, · · · , J , with the following properties:

(i) [a, b] ⊂
J⋃

j=1

[ζ j , ξ j ].
(ii) The intersection of any three of these intervals is empty.
(iii) T V(ζ j ,ξ j )U (·, τ ) < ε, for j = 1, · · · , J .
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j

Fig. 14.10.1

With each (ζ j , ξ j ), we associate, as above, the triangle T j and the approximate so-

lution U '

(z j ,τ )
relative to the midpoint z j . We also consider [a, b]\⋃J

j=1(ζ j , ξ j ),
which is a finite set {y1, · · · , yK } containing the points where strong shocks cross
the τ -time line between a and b. With each yk we associate the sector Kk and the
corresponding approximate solution U %

(yk ,τ )
(see Fig. 14.10.1). We then set

(14.10.20) U∗(x, h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U %

(yk ,τ )
(x, h), for (x, h) ∈ Kk\

k−1⋃
�=1

K�

U '

(z j ,τ )
(x, h), for (x, h) ∈ T j\

j−1⋃
�=1

T� .

Clearly, for h sufficiently small U∗(·, h) is defined for all x ∈ [a, b] and

(14.10.21)
∫ b

a
|U (x, τ + h)−U∗(x, h)|dx

≤
K∑

k=1

∫ yk+λh

yk−λh
|U (x, τ + h)−U %

(yk ,τ )
(x, h)|dx

+
J∑

j=1

∫ ξ j−λh

ζ j+λh
|U (x, τ + h)−U '

(z j ,τ )
(x, h)|dx .

Upon combining (14.10.21), (14.10.9), (14.10.14) and (14.10.1), we arrive at
(14.10.6), with c14 = 2cc15 .

We now note that St−τU (·, τ ) defines, for t ≥ τ , another solution of (14.2.1)
which has the same properties, complies with the same bounds, and has identical
restriction to t = τ with U . Therefore, this solution must equally satisfy the analog of
(14.10.6), namely (14.10.7). Finally, (14.10.6) and (14.10.7) together yield (14.10.5).

It remains to show that (14.10.5) implies (14.10.4). To that end, we fix t > 0 and
any, arbitrarily small, ε > 0. By virtue of (14.10.5) and the Vitali covering theorem,
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there is a finite collection of pairwise disjoint closed subintervals [τk, τk + hk], k =
1, · · · , K , of [0, t], with 0 ≤ τ1 < · · · < τK < t , such that τk �∈ N and

(14.10.22) 0 ≤ t −
K∑

k=1

hk < ε,

(14.10.23) ‖U (·, τk + hk)− Shk U (·, τk)‖L1(−∞,∞) < εhk , k = 1, · · · , K .

By the triangle inequality,

(14.10.24) ‖U (·, t)− StU0(·)‖L1(−∞,∞)

≤
K∑

k=0

‖St−τk+1U (·, τk+1)− St−τk−hk U (·, τk + hk)‖L1(−∞,∞)

+
K∑

k=1

‖St−τk−hk U (·, τk + hk)− St−τk U (·, τk)‖L1(−∞,∞).

In the first summation on the right-hand side of (14.10.24), τ0 + h0 is to be inter-
preted as 0, and τK+1 is to be interpreted as t . The general term in this summation is
bounded by κ(1+ c′r)(τk+1− τk − hk), on account of (14.9.2) and (14.10.2). Hence
the first sum is bounded by κ(1 + c′r)ε, because of (14.10.22). Turning now to the
second summation, since St−τk = St−τk−hk Shk ,

(14.10.25) ‖St−τk−hk U (·, τk + hk)− St−τk U (·, τk)‖L1(−∞,∞) ≤ κεhk ,

by virtue of (14.9.2) and (14.10.23). Therefore, the second sum is bounded by κtε.
Thus the right-hand side of (14.10.24) can be made arbitrarily small and this estab-
lishes (14.10.4). The proof is complete.

14.11 Continuous Glimm Functionals,
Spreading of Rarefaction Waves,
and Structure of Solutions

In earlier chapters we studied in great detail the structure of BV solutions for scalar
conservation laws as well as for systems of two conservation laws. The front track-
ing method, by its simplicity and explicitness, provides an appropriate vehicle for ex-
tending the investigation to genuinely nonlinear systems of arbitrary size. The aim of
the study is to determine what features of piecewise constant solutions are inherited
by the BV solutions that are generated via the limit process. In addition to provid-
ing a fairly detailed picture of local structure and regularity, this approach exposes
various stability characteristics of solutions and elucidates the issue of structural sta-
bility of the wave pattern. A sample of results will be stated below, without proofs.
The reader may find a detailed exposition in the literature cited in Section 14.13.
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The first step towards developing a qualitative theory is to realize within the
framework of BV solutions the key functionals that measure total wave strength and
wave interaction potential, which were introduced earlier in the context of piecewise
constant approximate solutions generated by front tracking. This will be effected by
the following procedure.

Let V be a function of bounded variation on (−∞,∞) taking value in IRn ,
and normalized by V (x) = 1

2 [V (x−) + V (x+)]. The distributional derivative ∂x V
induces a signed vector-valued measure µ on (−∞,∞), with continuous part µc

and atomic part µa . We represent µ by means of its “projections” µi , i = 1, . . . , n,
on the characteristic directions, defined as follows.

The continuous part µc
i of µi is the Radon measure defined through

(14.11.1)

∞∫
−∞

ϕ(x)dµc
i (x) =

∞∫
−∞

ϕ(x)Li (V (x))dµ
c(x),

for all continuous functions ϕ with compact support on (−∞,∞).
The atomic part µa

i of µi is concentrated on the countable set of points of jump
discontinuity of V . If x is such a point, we set µa

i (x) = εi , where εi is the ampli-
tude of the i-wave in the wave fan that solves the Riemann problem (9.1.12) with
UL = V (x−), UR = V (x+). As noted in Section 9.3, εi = Li (V (x))

[
UR −UL

]+
O(1)|UR−UL |2 . Therefore, the measureµi = µc

i +µa
i can be characterized through

(14.11.2)

∞∫
−∞

ϕ(x)dµi (x) =
∞∫

−∞
ϕ(x)L̃i (x)dµ(x),

where L̃i (x) = Li (V (x))+ O(1)|V (x+)− V (x−)|.
We introduce the positive part µ+i and the negative part µ−i of the measure µi ,

so that µi = µ+i − µ−i , |µi | = µ+i + µ−i ; and we define the functionals

(14.11.3) L[V ] =
m∑

i=1

|µi |(IR),

(14.11.4)

Q[V ] =
∑
i< j

(|µ j | × |µi |)({(x, y) : x < y})+
∑

i∈G N

(µ−i × |µi |)({(x, y) : x �= y}),

(14.11.5) G[V ] = L[V ] + 2κQ[V ],
where G N denotes the collection of genuinely nonlinear characteristic families of
(14.2.1) and κ is a positive constant to be specified below. These functionals enjoy
the following useful semicontinuity property:
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14.11.1 Lemma. For κ > 0, sufficiently large, and r > 0, sufficiently small, the
functionals Q and G are lower semicontinuous on the set

(14.11.6) D = {V ∈ L1(IR; IRn) : G[V ] ≤ r},
equipped with the topology of L1.

It should be noted that even though L[V ] is equivalent to the total variation of
V (·), L is not necessarily lower semicontinuous on D, and that G may fail to be lower
semicontinuous if r in (14.11.6) is large.

When U is the solution of a Cauchy problem for (14.2.1), constructed by the
front tracking algorithm, we identify its restriction U (·, t), to some fixed time t , with
the function V (·), above. In that case, the measure µi encodes the i-waves cross-
ing the t-time line, and in particular µ+i represents the i-rarefaction waves while µ−i
represents the i-compression waves, including the i-shocks. Accordingly, this µi

shall be dubbed the i -wave measure at time t . Moreover, L[U (·, t)] and Q[U (·, t)]
respectively measure the total strength and interaction potential of all waves cross-
ing the t-time line. In the particular situation where U (·, t) is piecewise constant
on (−∞,∞), L[U (·, t)], Q[U (·, t)] and G[U (·, t)] reduce to L(t), Q(t) and G(t)
defined by (14.5.1), (14.5.7) and (14.5.10).

One may derive qualitative properties of solutions U by first identifying them
in the context of piecewise constant approximate solutions generated by the front
tracking algorithm and then passing to the limit, taking advantage of the lower semi-
continuity property of Q and G asserted by Lemma 14.11.1. In that direction, the
following proposition establishes the spreading of rarefaction waves, extending to
genuinely nonlinear systems of n conservation laws what has already been demon-
strated for scalar conservation laws and for systems of two conservation laws, in
Sections 11.2 and 12.6.

14.11.2 Theorem. With each genuinely nonlinear i-th characteristic family of the
system (14.2.1) are associated positive numbers c and C with the following prop-
erty. Let U be the solution of the Cauchy problem for (14.2.1), with initial data U0 ,
constructed by the front tracking algorithm. Fix any t > 0 and consider the i-wave
measure µi at time t. Then

(14.11.7) µ+i (a, b) ≤ c
b − a

t
+ C{Q[U0(·)] −Q[U (·, t)]}

holds for any interval (a, b) ⊂ (−∞,∞).

In the proof, one employs the notion of generalized characteristics, introduced
in Chapter X, in order to establish the corresponding estimate in the context of the
piecewise constant approximate solutions that generate U , and then passes to the
limit.

The next proposition describes the local structure of BV solutions. It should be
compared to Theorem 12.3.3, for systems of two conservation laws.



476 XIV The Front Tracking Method and Standard Riemann Semigroups

14.11.3 Theorem. Let U be the solution of a Cauchy problem for (14.2.1), con-
structed through the front tracking algorithm. Fix any point (x̄, t̄) on the open upper
half-plane and consider the rescaled function

(14.11.8) Uα(x, t) = U (x̄ + αx, t̄ + αt), α > 0.

Then, for any t ∈ (−∞,∞), as α ↓ 0, Uα(·, t) converges in L1
loc to Ū (·, t), where

Ū is a self-similar solution of (14.2.1). On the upper half-plane, t ≥ 0, Ū coincides
with the admissible solution of the Riemann problem (9.1.1),(9.1.12), with end-states
UL = U (x̄−, t̄), UR = U (x̄+, t̄). On the lower half-plane, t < 0, Ū contains only
admissible shocks and/or centered compression waves. Furthermore, as α ↓ 0, the
i-wave measures µ±i for Uα(·, t) converge, in the weak topology of measures, to the
corresponding i-wave measures µ̄±i for U (·, t̄).

The final proposition of this section provides a description of the global wave
pattern, showing that admissible BV solutions are more regular than general BV
functions. This should also be compared with the corresponding properties of solu-
tions to scalar conservation laws and to systems of two conservation laws expounded
in Sections 11.3 and 12.7.

14.11.4 Theorem. Let U be the solution to a Cauchy problem for (14.2.1), con-
structed through the front tracking algorithm. Then the upper half-plane is parti-
tioned into the union C ∪ J ∪ I of three subsets with the following properties:
(a) Any (x̄, t̄) ∈ C is a point of continuity of U.
(b) I is (at most) countable.
(c) J is the (at most) countable union of Lipschitz arcs {(x, t) : t ∈ (am, bm), x =
ym(t)}, m = 1, 2, . . . . When x̄ = ym(t̄) and (x̄, t̄) �∈ I, then (x̄, t̄) is a point
of continuity of U relative to both sets {(x, t) : t ∈ (am, bm), x < ym(t)} and
{(x, t) : t ∈ (am, bm), x > ym(t)}, with distinct corresponding limits U− and U+ .
Furthermore, ym(·) is differentiable at t̄ , with derivative s = ẏm(t̄), and U− ,U+
and s satisfy the Rankine-Hugoniot jump condition (8.1.2).

The proof of the above two theorems again proceeds by examining the structure
of piecewise constant approximate solutions that generate U , in terms of their wave
measures, and then passing to the limit.

14.12 Stability of Strong Waves

The example of blowing up of solutions exhibited in Section 9.10 demonstrates the
futility of seeking a global existence theorem for solutions to the Cauchy problem
in the general class of systems considered in this chapter, under arbitrary initial data
with large total variation. This raises the issue of identifying the special class of sys-
tems for which solutions with large initial data exist, and the hope that the systems
of importance in continuum physics will turn out to be members. The first test for
admission to membership in the above class should be that particular solutions con-
taining waves of large amplitude, which may be explicitly known, are stable under
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small perturbations of their initial values. This has been achieved for the case of self-
similar solutions to genuinely nonlinear systems, with strong shocks and/or strong
rarefaction waves:

14.12.1 Theorem. Consider the strictly hyperbolic system of conservation laws
(14.2.1) with characteristic families that are either genuinely nonlinear or linearly
degenerate. Assume that Ū (x, t) = V (x/t) is a self-similar solution, with strong
compressive shocks, contact discontinuities and/or rarefaction waves, which satis-
fies an appropriate stability condition. For δ > 0, define

(14.12.1) Dδ =
{
W ∈ C(IR; IRn) : ‖W (ϕ(·))− V (·)‖L∞(−∞,∞)

+T V(−∞,∞)[W (ϕ(·))− V (·)] < δ, for some increasing ϕ ∈ C1(IR)
}
.

Then there exists a closed set D in L1
loc(IR; IRn), containing Dδ for δ sufficiently

small, together with a family of maps St : D→ D, t ∈ [0,∞), having the following
properties.

(a) L1-Lipschitz continuity on D × [0,∞): For any W, W̄ in D and t, τ in [0,∞),

(14.12.2)

‖St W (·)− Sτ W̄ (·)‖L1(−∞,∞) ≤ κ
{‖W (·)− W̄ (·)‖L1(−∞,∞) + |t − τ |}.

(b) {St : t ∈ [0,∞)} has the semigroup property, namely

(14.12.3) S0 = identity,

(14.12.4) St+τ = St Sτ , t, τ ∈ [0,∞).

(c) For any U0 ∈ D, U (·, t) = StU0(·) is an admissible solution of the system
(14.2.1) with initial value U0 .

In establishing the above proposition, a major issue is the formulation of the “ap-
propriate stability condition” on the self-similar solution V . Such a condition must
ensure (a) that each elementary wave in the wave fan V , whether compressive shock,
contact discontinuity or rarefaction, is individually stable; and (b) that the collision
of weak waves with the strong waves of V does not generate resonance that may lead
to the breakdown of solutions exhibited in Section 9.10. Alternative, albeit equiva-
lent, versions of stability conditions are recorded in the literature cited in Section
14.13, motivated either from analysis of wave interactions or through linearization
of (14.2.1) about V (x/t). Unfortunately, the statement of these conditions is compli-
cated, technical and opaque.

To get a taste, let us consider the relatively simple special case where the wave
fan V (·) comprises m + 1 constant states V0, . . . , Vm connected by m compressive
shocks belonging to characteristic families i1 < · · · < im and propagating with
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speeds s1 < · · · < sm . Each one of these shocks will be individually stable provided
that the conditions (8.3.8), (8.3.13) and (8.3.14), introduced in Section 8.3, hold,
namely, for � = 1, · · · ,m,

(14.12.5) λi� (V�−1) > s� > λi� (V�),

(14.12.6) λi�+1(V�) > s� > λi�−1(V�−1),

(14.12.7)

det[R1(V�−1), . . . , Ri�−1(V�−1), V� − V�−1, Ri�+1(V�), . . . , Rn(V�)] �= 0.

In addition, one has to ensure that the collision of the above strong shocks with
any weak waves produces outgoing weak waves whose weighted strength does not
exceed the weighted strength of the incoming weak waves. Suppose that the strong
i�-shock is hit from the left by weak k-waves, k = i�, . . . , n with amplitude αk and
speed µk ∼ λk(V�−1), and from the right by weak k-waves, k = 1, . . . , i� , with
amplitude βk and speed νk ∼ λk(V�). These collisions will produce an outgoing
strong i�-shock together with outgoing weak j-waves, j �= i� , with amplitude ε j and
speed ζ j ∼ λ j (V�−1), for j = 1, . . . , i�− 1, and ξ j ∼ λ j (V�) for j = i�+ 1, · · · , n.
Clearly, the µk, νk, ε j , ζ j and ξ j are all smooth functions of the n + 1 variables
(β1, . . . , βi� , αi� , . . . , αn). The wave stability condition will be satisfied if there exist
positive weights ω�j , � = 0, . . . ,m, j = 1, . . . , n, so that, for any � = 1, . . . ,m,

(14.12.8)

i�−1∑
j=1

ω�−1
j

∣∣∣∣∣ ∂

∂αk

[
ε j (ζ j − s�)

ν j − s�

]∣∣∣∣∣+
n∑

j=i�+1

ω�j

∣∣∣∣∣ ∂

∂αk

[
ε j (ξ j − s�)

µ j − s�

]∣∣∣∣∣ < ω�k , k = i�, . . . , n,

(14.12.9)

i�−1∑
j=1

ω�−1
j

∣∣∣∣∣ ∂∂βk

[
ε j (ζ j − s�)

ν j − s�

]∣∣∣∣∣+
n∑

j=i�+1

ω�j

∣∣∣∣∣ ∂∂βk

[
ε j (ξ j − s�)

µ j − s�

]∣∣∣∣∣ < ω�−1
k , k = 1, . . . , i� ,

where all partial derivatives are evaluated at βi = 0, i = 1, . . . , i� and αi = 0,
i = i�, . . . , n.

To summarize, for wave fans V containing only compressive shocks, Theorem
14.12.1 applies, provided that (14.12.5), (14.12.6), (14.12.7), (14.12.8) and (14.12.9)
are satisfied. The proof employs the methodology developed in earlier sections of
this chapter and is quite technical. For more general wave fans V , which may also
contain contact discontinuities and/or rarefactions, Theorem 14.12.1 holds under as-
sumptions that are similar to, but more complicated than (14.2.8) and (14.2.9). The
hope is that these conditions shall be automatically satisfied for the systems arising
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in continuum physics. Indeed, it has been shown that the wave stability conditions
hold identically for the wave fans of the isentropic elasticity system (7.1.8), in the
genuinely nonlinear case σ ′′(u) �= 0. On the other hand, for the system of nonisen-
tropic gas dynamics, for a polytropic gas (2.5.19), with adiabatic exponent γ , the
wave stability conditions are verified only in the range 1.056 < γ < 8.757.

14.13 Notes

Detailed, systematic presentation of most of the topics discussed in this chapter can
be found in the texts by Bressan [9] and Holden and Risebro [2], as well as in the
recent survey article by Bressan [12].

The front tracking method for scalar conservation laws was introduced by Dafer-
mos [2] and is developed in Hedstrom [1], Holden, Holden and Høegh-Krohn [1],
Holden and Holden [1], Holden and Risebro [1], Risebro and Tveito [2], Gimse and
Risebro [1], Gimse [1], and Pan and Lin [1]. It has been employed, especially by the
Norwegian School, as a computational tool. In fact, a similar approach had already
been used for computations in the 1960’s, by Barker [1]. For a detailed exposition,
with applications, see Holden and Risebro [2]. The method was extended to gen-
uinely nonlinear systems of two conservation laws by DiPerna [5] and then to gen-
uinely nonlinear systems of any size, independently, by Bressan [2] and Risebro [1].
In Bressan’s algorithm, the Approximate Riemann Solver employs pseudoshocks,
while in Risebro’s approach all new waves are attached to one of the two main fronts
involved in the interaction. Yet another possibility, proposed by Schochet [6], is to
eliminate pseudoshocks altogether, by assigning to them infinite speed, at the ex-
pense of sacrificing finite speed of propagation in the algorithm. The presentation
here, Sections 14.2-14.7, follows the approach of Bressan and employs a technical
simplification due to Baiti and Jenssen [2]. For a detailed treatment, see Bressan
[9,12]. The notion of nonresonant curve is introduced here for the first time.

For early applications to special systems see Alber [2], Long-Wei Lin [1], Rise-
bro and Tveito [1] and Wendroff [2].

Ancona and Marson [3,6] have recently extended the front tracking method, first
to systems that are merely piecewise genuinely nonlinear and then to general strictly
hyperbolic systems. A crucial role in the latter case is played by Bianchini’s [6]
solution of the Riemann problem; see Sections 9.12 and 15.9.

The Standard Riemann Semigroup was originally constructed by means of a very
technical procedure, based on linearization, in Bressan [1,3,5], for special systems,
Bressan and Colombo [1], for genuinely nonlinear systems of two conservation laws,
and finally in Bressan, Crasta and Piccoli [1], for systems of n conservation laws,
with characteristic families that are either genuinely nonlinear or linearly degener-
ate. For systems with coinciding shock and rarefaction wave curves, the semigroup is
defined for data with arbitrarily large total variation and may even be extended to the
class of data that are merely in L∞; see Baiti and Bressan [1], Bressan and Goatin
[2], Bianchini [2,3], and Colombo and Corli [2]. Similarly, for the system of isother-
mal gas dynamics Colombo and Risebro [1] construct the semigroup for data with
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arbitrarily large total variation. This approach has now been extended, by Ancona
and Marson [4,5], to systems of two conservation laws that are merely piecewise
genuinely nonlinear. The presentation in Sections 14.8-14.9 follows the alternative,
simpler approach of Bressan, Liu and Yang [1], in which the basic estimate is derived
by means of the functional ρ introduced by Liu and Yang [2,3]. A detailed discus-
sion is found in Bressan [7,9,12]. See also Bressan [8,10]. Still another method for
proving continuous dependence of solutions in L1 was devised, at about the same
time, by Hu and LeFloch [1]. Furthermore, in the context of the Euler equations,
Goatin and LeFloch [3] discuss L1 continuous dependence for solutions with large
total variation. Actually, L1 stability has now been established, by Liu and Yang [5],
even via the Glimm scheme. It should be noted that, in contrast to the scalar case,
there is no standard L1-contractive metric for systems (Temple [4]). The rate of de-
crease in the distance between two solutions (recall Theorem 11.8.3 for the scalar
case) is estimated by Goatin and LeFloch [2]; see the presentation in the book by
LeFloch [5].

Bianchini and Colombo [1] show that solutions to the Cauchy problem depend
continuously on the flux function. The issue of “shift differentiability” of the flow
generated by conservation laws, which is relevant to stability considerations, is dis-
cussed in Bressan and Guerra [1] and Bianchini [1].

Uniqueness under the Tame Oscillation Condition was established by Bressan
and Goatin [1], improving an earlier theorem by Bressan and LeFloch [1] which
required a Tame Variation Condition. Uniqueness also prevails when the Tame Os-
cillation Condition is replaced by the assumption that the trace of solutions along
space-like curves has bounded variation; see Bressan and Lewicka [1]. The impetus
for the above research was provided by Bressan [4], which established the unique
limit of the Glimm scheme. For an alternative approach, based on Haar’s method, see
Hu and LeFloch [1]. Uniqueness is also discussed in Oleinik [3], Liu [3], DiPerna
[5], Dafermos and Geng [2], Heibig [1], LeFloch and Xin [1], Chen and Frid [7], and
Chen and Li [1].

A detailed treatment of the topics outlined in Section 14.11 is found in Bressan
[9]. Continuous Glimm functionals were first introduced by Schatzman [1], in the
context of piecewise Lipschitz solutions. The extension of the notion to BV solu-
tions, for genuinely nonlinear systems, and the proof of the lower semicontinuity
property (Lemma 14.11.1) are due to Bressan and Colombo [2] and Baiti and Bres-
san [2]. Further extension, to systems that are not genuinely nonlinear, was made by
LeFloch and Trivisa [1]. See also Bianchini [5].

As already noted in Sections 11.12 and 12.11, the decay of positive waves at the
rate O(1/t) was first discussed, for convex scalar conservation laws and genuinely
nonlinear systems of two conservation laws, by Oleinik [2] and Glimm and Lax [1],
respectively. The version presented here, Theorem 14.11.2, for genuinely nonlinear
systems of n conservation laws is taken from Bressan and Colombo [3] and Bressan
[9]. A sharp decay estimate is found in Bressan and Yang [2]. See also Bressan and
Coclite [1] and Bressan and Goatin [2], for special systems, and Goatin and Gosse
[1], for systems of balance laws. An analogous property for piecewise genuinely
nonlinear systems, originally demonstrated by Liu [15], has been reestablished, by
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use of continuous Glimm functionals, in LeFloch and Trivisa [1]. For implications
on uniqueness, see Bressan and Goatin [1] and Goatin [1].

The local structure of BV solutions was first described by DiPerna [3], for gen-
uinely nonlinear systems, and by Liu [15], for piecewise genuinely nonlinear sys-
tems. The approach outlined here, culminating in Theorems 14.11.3 and 14.11.4, is
due to Bressan and LeFloch [2]; see Bressan [9], for a detailed treatment.

The investigation of solutions that are small perturbations of a given, self-similar
wave fan, with large shocks and/or rarefaction waves, was initiated by Schochet [4],
who established local existence, via the random choice method, for genuinely non-
linear systems of arbitrary size, and by Bressan and Colombo [2], who first demon-
strated stability (i.e., continuous dependence in L1) for genuinely nonlinear systems
of two conservation laws. See also Bressan and Marson [2]. The combined treat-
ment of existence and stability, for genuinely nonlinear systems of arbitrary size, out-
lined in Section 14.12, is based on the work of Lewicka and Trivisa [1] and Lewicka
[1,2,3,4,5].

A lot of experience has been accumulated by now on the random choice scheme
and the front tracking algorithm, for constructing solutions, as well as on the lin-
earization technique, the Liu-Yang functional and Haar’s method, for establishing
uniqueness and L1 stability. Accordingly, the above methods have been adapted and
have been employed, interchangeably or in combination, in the study of Cauchy
problems for (inhomogeneous) systems of balance laws (Amadori and Guerra
[1,2,3], Amadori, Gosse and Guerra [1], Crasta and Piccoli [1]), as well as initial-
boundary-value problems for systems of conservation laws (Amadori [1], Amadori
and Colombo [1,2]); also for nonclassical solutions, with shocks satisfying admissi-
bility conditions dictated by some kinetic relation, possibly even for systems not
in conservation form (Crasta and LeFloch [1], Baiti, LeFloch and Piccoli [1,2],
Amadori, Baiti, LeFloch and Piccoli [1], Colombo and Corli [1,3]), and finally for
problems in control theory (Ancona and Marson [1], Bressan and Coclite [1]).

Estimates on the rate of convergence of the front tracking algorithm have been
derived by Lucier [1], in the scalar case, and by Bressan [9], for systems.



XV

Construction of BV Solutions
by the Vanishing Viscosity Method

Admissible BV solutions to the Cauchy problem for general strictly hyperbolic sys-
tems of conservation laws, under initial data with small total variation, will be con-
structed by the vanishing viscosity method. It will be shown that these solutions may
be realized as trajectories of an L1-Lipschitz semigroup, which reduces to the stan-
dard Riemann semigroup, introduced in Chapter XIV, when the system is genuinely
nonlinear.

15.1 The Main Result

Consider the Cauchy problem

(15.1.1) ∂tU (x, t)+ ∂x F(U (x, t)) = 0, −∞ < x <∞, 0 < t <∞,

(15.1.2) U (x, 0) = U0(x), −∞ < x <∞,

for a system of conservation laws which is strictly hyperbolic in a ball O in IRn ,
centered at a certain state U∗, and initial data U0 of bounded variation on (−∞,∞)

such that U0(−∞) = U∗.
The aim is to construct BV solutions to (15.1.1), (15.1.2) as the µ ↓ 0 limit of

solutions to the parabolic system

(15.1.3)

∂tU (x, t)+ ∂x F(U (x, t)) = µ∂2
x U (x, t), −∞ < x <∞, 0 < t <∞

under the same initial condition (15.1.2). This will be effected through

15.1.1 Theorem. There is δ > 0 such that if

(15.1.4) T V(−∞,∞)U0(·) < δ,

then the following hold, for some positive constants a and b:
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(a) For any µ > 0 there exists a classical solution Uµ to (15.1.3), (15.1.2) and

(15.1.5) T V(−∞,∞)Uµ(·, t) ≤ a T V(−∞,∞)U0(·), 0 < t <∞,

(15.1.6)

‖Uµ(·, t)−Uµ(·, τ )‖L1(−∞,∞) ≤ b
(|t − τ | + |√µt −√µτ |), 0 < τ < t <∞.

(b) If Ūµ denotes the solution of (15.1.3) with initial value Ū0 such that U0 − Ū0 is
in L1(−∞,∞), then

(15.1.7)

‖Uµ(·, t)− Ūµ(·, t)‖L1(−∞,∞) ≤ a ‖U0(·)− Ū0(·)‖L1(−∞,∞) , 0 < t <∞.

(c) As µ ↓ 0, {Uµ} converges in L1
loc to a BV solution U of (15.1.1), (15.1.2) which

inherits the stability properties (15.1.5), (15.1.6) and (15.1.7), namely

(15.1.8) T V(−∞,∞)U (·, t) ≤ a T V(−∞,∞)U0(·), 0 < t <∞,

(15.1.9) ‖U (·, t)−U (·, τ )‖L1(−∞,∞) ≤ b |t − τ |, 0 < τ < t <∞,

(15.1.10)
‖U (·, t)− Ū (·, t)‖L1(−∞,∞) ≤ a ‖U0(·)− Ū0(·)‖L1(−∞,∞), 0 < t <∞.

The shocks of the solution U satisfy the viscosity shock admissibility criterion,
and thereby all implied admissibility conditions, as described in Chapter VIII. When
all characteristic families of (15.1.1) are either genuinely nonlinear or linearly de-
generate, U coincides with the solution of (15.1.1), (15.1.2) constructed by the ran-
dom choice method of Chapter XIII or by the front tracking algorithm of Chapter
XIV.

The proof of the above proposition, which combines diverse ideas and tech-
niques, will occupy the remainder of this chapter. For orientation, Section 15.2 will
provide a road map.

It should be noted that the derivation of the estimates (15.1.5), (15.1.6) and
(15.1.7) does not depend in an essential manner on the assumption that (15.1.3) is in
conservative form but applies equally well to more general systems

(15.1.11)

∂tU (x, t)+ A(U (x, t))∂xU (x, t) = µ∂2
x U (x, t), −∞ < x <∞, 0 < t <∞,

provided only that A(U ) has real distinct eigenvalues. The µ ↓ 0 limit U of the fam-
ily {Uµ} of solutions of (15.1.11), (15.1.2) may be interpreted as a “weak” solution
of

(15.1.12) ∂tU + A(U )∂xU = 0,

even though it does not necessarily satisfy this system in the sense of distributions.
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15.2 Road Map to the Proof of Theorem 15.1.1

Henceforth we employ the notation A(U ) = DF(U ), with eigenvalues λi (U ) and
right and left eigenvectors Ri (U ) and Li (U ) normalized by |Ri (U )| = 1 and (7.2.3).
In particular, we set A(U∗) = A∗ , λi (U∗) = λ∗i , Ri (U∗) = R∗i and Li (U∗) = L∗i .

The first step is to eliminate the small parameter µ from (15.1.3) by rescaling the
coordinates, (x, t) �→ (µx, µt). Indeed, if Uµ is a solution of the Cauchy problem
(15.1.3), (15.1.2), then U (x, t) = Uµ(µx, µt) satisfies

(15.2.1)

∂tU (x, t)+ A(U (x, t))∂xU (x, t) = ∂2
x U (x, t), −∞ < x <∞, 0 < t <∞

with initial conditions

(15.2.2) U (x, 0) = U0µ(x) = U0(µx), −∞ < x <∞.

Clearly, T V(−∞,∞)U0µ(·) = T V(−∞,∞)U0(·) and T V(−∞,∞)Uµ(·, t) =
T V(−∞,∞) U (·, µ−1t), so that it will suffice to estimate the total variation of so-
lutions U of (15.2.1), in which the viscosity coefficient has been scaled to value one.
The key estimate is

(15.2.3) T V(−∞,∞)U (·, t) = ‖∂xU (·, t)‖L1(−∞,∞) < δ0 ,

for t ∈ (0,∞), where δ0 is some small positive number.
The above bound results from the synergy between the parabolic and the hyper-

bolic structure of (15.2.1), in the following way:
(a) There are positive constants α and κ such that when T V(−∞,∞)U0(·) < 1

2κδ0

the diffusion induces (15.2.3) for t in some interval (0, t̄] of length t̄ = (ακδ0)
−2.

Moreover, when (15.2.3) holds on a longer time interval (0, T ), with T > t̄ , then

‖∂2
x U (·, t)‖L1(−∞,∞) < 2αδ2

0 , ‖∂3
x U (·, t)‖L1(−∞,∞) < 5α2δ3

0 ,
(15.2.4)

‖∂3
x U (·, t)‖L∞(−∞,∞) < 16α3δ4

0 ,

for any t ∈ [t̄, T ). This will be established in Section 15.3.
(b) For t > t̄ , the hyperbolic structure of (15.2.1) takes charge and induces (15.2.3)
for t in any, bounded or unbounded, time interval [t̄, T ) on which (15.2.4) holds.
Thus (b) in conjunction with (a) establish (15.2.3) for all t ∈ (0,∞).

The assertion in part (b) is verified in several steps. In Section 15.4 it is explained
how one employs the superposition of n (viscous) traveling waves of (15.2.1) that
best fits the profile of the solution U in the vicinity of any point (x, t) in the domain
(−∞,∞)× (t̄,∞) so as to express ∂xU and ∂tU in a system of local coordinates
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(15.2.5) ∂xU =
n∑

j=1

w j S j , ∂tU =
n∑

j=1

ω j S j ,

with components w j and ω j that satisfy scalar parabolic equations of the form

(15.2.6)

⎧⎨⎩ ∂tw j + ∂x (σ jw j )− ∂2
xw j = φ j

∂tω j + ∂x (σ jω j )− ∂2
xω j = ψ j .

The next step, carried out in Sections 15.5, 15.6 and 15.7, is to demonstrate that
when (15.2.3) is satisfied on a time interval (0, T ), with T > t̄ , and at the same time

(15.2.7)

T∫
t̄

∞∫
−∞

(|ϕ j (x, t)| + |ψ j (x, t)|) dx dt < δ0 , j = 1, · · · , n,

then the sharper bound

(15.2.8)

T∫
t̄

∞∫
−∞

(|ϕ j (x, t)| + |ψ j (x, t)|) dx dt < cδ2
0 , j = 1, · · · , n,

holds, for some c independent of T .
The final ingredient is the standard estimate

(15.2.9)

∞∫
−∞

|w j (x, t)|dx ≤
∞∫

−∞
|w j (x, t̄)|dx +

t∫
t̄

∞∫
−∞

|ϕ j (x, τ )|dx dτ,

for solutions of (15.2.6) and t > t̄ .
One may now establish that when δ0 is sufficiently small, (15.2.3) holds for any

t ∈ (0,∞), by means of the following argument. Assume T V(−∞,∞)U0(·) < 1
4κδ0 .

Then, by (a) above, ‖∂xU (·, t)‖L1(−∞,∞) < 1
2δ0 , for any t ∈ (0, t̄]. Suppose

now that (15.2.3) holds on a bounded interval [t̄, T̄ ) but is violated at t = T̄ .
For cδ0 < 1, as T increases from t̄ to T̄ , the left-hand side of (15.2.7) cannot
assume the value δ0 unless it has already assumed the value cδ2

0 < δ0 at an ear-
lier time T . However, this would be incompatible with the assertion, above, that
(15.2.7) implies (15.2.8). Hence (15.2.7), and thereby (15.2.8), must hold for all
t ∈ [t̄, T̄ ). By applying (15.2.9) for t = T̄ and using (15.2.5), we infer that
‖∂xU (·, T̄ )‖L1(−∞,∞) <

1
2δ0 + c1δ

2
0 , which is smaller than δ0 when 2c1δ0 < 1.

We have thus arrived at a contradiction to the hypothesis that (15.2.3) is violated at
t = T̄ .

The stability estimates (15.1.5), (15.1.6) and (15.1.7) will be derived in Section
15.8, with the help of (15.2.3). Clearly, once these estimates have been established,
one may pass to the limit along sequences {µk}, with µk → 0 as k →∞, and obtain
solutions U of (15.1.1), (15.1.2) possessing the stability properties (15.1.8), (15.1.9)
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and (15.1.10). It will then be shown that any solution U = limk→∞Uµk satisfies the
Tame Oscillation Condition 14.10.1. In turn, by virtue of Theorem 14.10.2, this will
imply that when all characteristic families are either genuinely nonlinear or linearly
degenerate, then U must coincide with the unique solution constructed by the random
choice method. Thus, for such systems, the entire family {Uµ} must converge to the
same solution U , as µ ↓ 0.

For systems with general characteristic families, the issue of uniqueness has been
settled in the literature cited in Section 15.9, by the following procedure.

As a first step, it is shown that, for special initial data (9.1.12), the entire family
{Uµ} converges to the solution V (x, t;UL ,UR) of the Riemann Problem constructed
by use of the wave curves identified in Section 9.8.

Next one demonstrates that any solution U = limk→∞Uµk of (15.1.1), (15.1.2)
is properly approximated, in the vicinity of every fixed point (x̄, t̄) of the upper half-
plane, by
(a) the solution V (x − x̄, t − t̄;UL ,UR) of the Riemann problem with end-states
UL = U (x̄−, t̄),UR = U (x̄+, t̄), in the sense that for any β > 0,

(15.2.10) lim
h↓0

1

h

x̄+βh∫
x̄−βh

|U (x, t̄ + h)− V (x − x̄, h;UL ,UR)|dx = 0;

(b) the solution W (x − x̄, t − t̄) of the Cauchy problem for the linearized system

(15.2.11)

⎧⎨⎩ ∂t W (x, t)+ A(U (x̄, t̄))∂x W (x, t) = 0

W (x, 0) = U (x − x̄, t̄),

in the sense that there exist positive constants c and β such that, for any y < x̄ < z,

(15.2.12) lim sup
h↓0

z−βh∫
y+βh

|U (x, t̄ + h)−W (x − x̄, h)|dx ≤ c[T V(y,z)U (·, t̄)]2 .

It turns out that the above two conditions, (15.2.10) and (15.2.12), uniquely iden-
tify the solution and thus the entire family {Uµ} must converge to U , as µ ↓ 0.

15.3 The Effects of Diffusion

As noted in Section 15.2, the role of viscosity will be to sustain (15.2.3) on some
interval (0, t̄], of length t̄ = O(δ−2

0 ), while at the same time reducing the size of
the L1 norms of spatial derivatives of higher order, as indicated in (15.2.4). Both
objectives are met by virtue of

15.3.1 Lemma. Let U be the solution of (15.2.1), (15.2.2). There are positive con-
stants α and κ such that if (15.2.3) holds, for any fixed positive small δ0 , on the
interval (0, t̄] of length t̄ = (ακδ0)

−2, then
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(15.3.1) ‖∂2
x U (·, t)‖L1(−∞,∞) <

2δ0

κ
√

t
, t ∈ (0, t̄],

(15.3.2) ‖∂3
x U (·, t)‖L1(−∞,∞) <

5δ0

κ2t
, t ∈ (0, t̄],

(15.3.3) ‖∂3
x U (·, t)‖L∞(−∞,∞) <

16δ0

κ3t
√

t
, t ∈ (0, t̄].

Moreover, when (15.2.3) is satisfied on a longer interval (0, T ), t̄ < T ≤ ∞, then
(15.2.4) will hold for any t ∈ [t̄, T ). Finally,

(15.3.4) T V(−∞,∞)U0(·) < 1
2κδ0

implies (15.2.3) for all t ∈ (0, t̄].

Sketch of Proof. We rewrite (15.2.1) in the form

(15.3.5) ∂tU + A∗∂xU − ∂2
x U = [A∗ − A(U )]∂xU.

The (n×n matrix-valued) Green kernel G(x, t) of the linear parabolic operator on the
left-hand side of (15.3.5) can be written in closed form as follows. Upon multiplying
(15.3.5), from the left, by L∗i , the left-hand side of this system decouples into scalar
equations with operator ∂t + λ∗i ∂x − ∂2

x , whose Green function reads

(15.3.6) gi (x, t) = 1

2
√
π t

exp

[
− (x − λ∗i t)2

4t

]
.

Therefore,

(15.3.7) G(x, t) =
n∑

i=1

gi (x, t)R∗i L∗i .

A simple calculation yields

(15.3.8) ‖G(·, t)‖L1(−∞,∞) ≤
1

κ
, ‖∂x G(·, t)‖L(−∞,∞) ≤

1

κ
√

t
,

for some constant κ .
It will suffice to establish the desired estimates under the additional assumption

U0 ∈ C∞, because the general case will then follow by completion.
Differentiating (15.3.5) with respect to x and applying Duhamel’s principle to

the resulting equation yields

(15.3.9) ∂xU (·, t) = G(·, t) ∗ ∂xU0(·)+
t∫

0

G(·, t − τ) ∗ P(·, τ ) dτ,



15.3 The Effects of Diffusion 489

where

(15.3.10)

P(x, τ ) = [A∗ − A(U (x, τ ))]∂2
x U (x, t)− ∂xU�(x, τ )D2 F(U (x, τ ))∂xU (x, τ )

and ∗ denotes convolution on (−∞,∞) with respect to the x-variable.
Since ‖U‖L∞ ≤ ‖∂xU‖L1 and ‖∂xU‖L∞ ≤ ‖∂2

x U‖L1 ,

(15.3.11) ‖P(·, τ )‖L1(−∞,∞) ≤ β‖∂xU (·, τ )‖L1(−∞,∞)‖∂2
x U (·, τ )‖L1(−∞,∞) ,

where β depends solely on sup |D2 F(U )|, for U ∈ O.
We now assume (15.2.3) holds on an interval [0, t̄] of length t̄ = (ακδ0)

−2, with
α > 2πβκ−2 and proceed to verify (15.3.1) on (0, t̄]. Differentiating (15.3.9) with
respect to x ,

(15.3.12) ∂2
x U (·, t) = ∂x G(·, t) ∗ ∂xU0(·)+

t∫
0

∂x G(·, t − τ) ∗ P(·, τ ) dτ.

This together with (15.3.8), (15.3.11) and (15.2.3) imply

(15.3.13)

‖∂2
x U (·, t)‖L1(−∞,∞) ≤

δ0

κ
√

t
+ βδ0

κ

t∫
0

1√
t − τ

‖∂2
x U (·, τ )‖L1(−∞,∞)dτ.

Suppose (15.3.1) is false and let t be the earliest time in (0, t̄] where it fails. Then
(15.3.13) yields

(15.3.14)

2δ0

κ
√

t
≤ δ0

κ
√

t
+ 2βδ2

0

κ2

t∫
0

1√
τ(t − τ)

dτ = δ0

κ
√

t
+ 2πβδ2

0

κ2
<

δ0

κ
√

t
+ δ0

κ
√

t̄
,

which is a contradiction to t ≤ t̄ .
The estimates (15.3.2) and (15.3.3) are established by similar arguments. The

reader may find the details in the references cited in Section 15.9.
Because of (15.3.1), (15.3.2) and (15.3.3), (15.2.4) holds at t = t̄ = (ακδ0)

−2 .
When (15.2.3) is satisfied on a longer interval (0, T ), t̄ < T ≤ ∞, then (15.2.4) will
hold for any t ∈ [t̄, T ), because the time origin may be shifted to the point t − t̄ .

Finally, assume (15.3.4) and suppose (15.3.1) holds on some time interval (0, t̂).
Then, for any t ∈ (0, t̂], (15.3.9), (15.3.8) and (15.3.11) together imply

(15.3.15) ‖∂xU (·, t)‖L1(−∞,∞) ≤
δ0

2
+ 2βδ0

κ2

t∫
0

1√
τ
‖∂xU (·, τ )‖L1(−∞,∞)dτ.
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By Gronwall’s lemma,

(15.3.16) ‖∂xU (·, t)‖L1(−∞,∞) ≤
δ0

2
exp

[
4βδ0

√
t

κ2

]
, t ∈ [0, t̂].

Consequently, both (15.3.1) and (15.2.3) will be satisfied on an interval (0, t̄] with
t̄ = (ακδ0)

−2, provided that α is sufficiently small, but independent of δ0 . The proof
is complete.

15.4 Decomposition into Viscous Traveling Waves

In Section 7.8 we saw that by expressing solutions as the superposition (7.8.1) of
simple waves, the hyperbolic system (15.1.1) reduces to the system (7.8.6) of weakly
coupled scalar equations. Here it is shown that the analog for the parabolic system
(15.2.1) is the decomposition (15.2.5) of solutions into a sum of viscous traveling
waves.

A viscous wave traveling with speed s is a solution U of (15.2.1) in the special
form U (x, t) = V (x − st). The function V must satisfy the second order ordinary
differential equation

(15.4.1) V̈ = [A(V )− s I ]V̇ ,
which may be recast as the first order system

(15.4.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V̇ = W

Ẇ = [A(V )− s I ]W

ṡ = 0.

Clearly there exists a (2n + 1)-parameter family of viscous traveling waves, pa-
rameterized by their speeds and the initial values of V and W . However, the only
ones that may serve our present purposes are those for which W stays small and s is
close to one of the characteristic speeds λ∗j . These will be dubbed viscous j-waves.

For the system

(15.4.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V̇ = W

Ẇ = [A∗ − λ∗j I ]W

ṡ = 0,

resulting from linearizing (15.4.2) about (V = U∗ , W = 0, s = λ∗j ), solutions with
W bounded span the (n + 2)-dimensional hyperplane

(15.4.4) P j =
{
(V,W, s) : V ∈ IRn, W = wR∗j , w ∈ IR, s ∈ IR

}
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embedded in IR2n+1 . It then follows from the center manifold theorem that the orbits
of viscous j-waves span a smooth (n + 2)-dimensional manifold M j embedded
in IR2n+1, which is tangent to P j at the point (U∗, 0, λ∗j ). Furthermore, this center
manifold admits the local representation

(15.4.5)

M j =
{
(V,W, s) : |V −U∗| < ε, W = wS j (V, v, s), |w| < ε, |s − λ∗j | < ε

}
,

where S j is a smooth unit vector field such that S j (U∗, 0, λ∗j ) = R∗j . In particular,
since |S j | = 1,

(15.4.6) S�j S j = 1, S�j Ṡ j = 0, S�j S̈ j = −Ṡ�j Ṡ j .

As W = wS j satisfies (15.4.2)2 ,

(15.4.7) ẇS j + w Ṡ j = w[A − s I ]S j .

Multiplying (15.4.7), from the left, by S�j and using (15.4.6) yields

(15.4.8) ẇ = (σ j − s)w,

where

(15.4.9) σ j (V, w, s) = S�j (V, w, s)A(W )S j (V, w, s).

Combining (15.4.8) with (15.4.7) and using (15.4.2)1 ,

(15.4.10) [A − σ j I ]S j = Ṡ j = DS j V̇ + ẇ∂wS j = w[DS j S j + (σ j − s)∂wS j ].
Letting w→ 0 in (15.4.10), we conclude that

(15.4.11) σ j (V, 0, s) = λ j (V ), S j (V, 0, s) = R j (V ).

It turns out that w satisfies a differential equation which is derived by the follow-
ing procedure. Differentiating (15.4.7),

(15.4.12) ẅS j + 2ẇ Ṡ j + w S̈ j = ẇASj + w(ASj )
. − sẇS j − sw Ṡ j .

By (15.4.6) and (15.4.7),

(15.4.13) S�j S̈ j = −Ṡ�j Ṡ j = −w Ṡ�j A S j .

Therefore, multiplying (15.4.12), from the left, by S�j and using (15.4.6), (15.4.13)
and (15.4.9) yields

(15.4.14) ẅ = (σ jw)
. − sẇ.

To summarize, when U is a viscous j-wave, so that U (x, t) = V (x − st) with s
near λ∗j , then
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(15.4.15)

⎧⎨⎩ ∂xU = w j S j (U, w j , s j )

∂tU = ω j S j (U, w j , s j ),

where s j (x, t) = s, w j (x, t) = w(x − st), ω j (x, t) = −s j (x, t)w j (x, t). Further-
more, by virtue of (15.4.14),

(15.4.16)

⎧⎨⎩ ∂tw j + ∂x (σ jw j )− ∂2
xw j = 0

∂tω j + ∂x (σ jω j )− ∂2
xω j = 0.

We now consider the possibility of representing any solution U of (15.2.1), in
the vicinity of each point (x, t), by a superposition of n viscous waves V1, · · · , Vn in
such a way that

(15.4.17) U =
n∑

j=1

Vj , ∂xU =
n∑

j=1

V̇ j , ∂2
x U =

n∑
j=1

V̈ j

at (x, t). Towards that end, motivated by (15.4.15), we try

(15.4.18)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂xU =
n∑

j=1

w j S j (U, w j , s j )

∂tU =
n∑

j=1

ω j S j (U, w j , s j ),

for appropriate coefficients w j (x, t) and ω j (x, t). This will satisfy the first two re-
quirements of (15.4.17). It would even satisfy the third requirement if one could
select the speeds s j according to the prescription s j = −ω j/w j . Indeed, in that case
(15.2.1) together with (15.4.18) yield

(15.4.19) ∂2
x U =

n∑
j=1

w j
[
A(U )− s j I

]
S j
(
U, w j , s j

)
,

which in turn implies (15.4.17)3 , by virtue of (15.4.2).
Unfortunately, it is not always permissible to choose s j = −ω j/w j , because the

ratio ω j/w j may assume any value (including infinity) whereas S j (V, w, s) is solely
defined for s close to λ∗j . Nevertheless, we opt to retain (15.4.18), with s j defined by

(15.4.20) s j = λ∗j − θ

(
λ∗j +

ω j

w j

)
,

where θ is a smooth “cutoff” function such that

(15.4.21) θ(r) =

⎧⎪⎨⎪⎩
r if |r | ≤ δ1

|θ ′(r)| ≤ 1, |θ ′′(r)| ≤ 4

δ1
,

0 if |r | > 3δ1
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for some small positive constant δ1 . Thus, s j = −ω j/w j whenever −ω j/w j takes
values near λ∗j . On the other hand, when −ω j/w j is far from λ∗j , s j is chosen con-
stant, equal to λ∗j .

After laborious analysis, which relies on the properties of the functions S j

and is found in the literature cited in Section 15.9, one shows that as long as
|U − U∗|, |∂xU |, |∂2

x U |, and thereby also |∂tU |, are sufficiently small, there ex-
ists a unique set of (w j , ω j ), j = 1, · · · , n, which satisfies (15.4.18) together with
(15.4.20). Moreover, with reference to the setting and notation of Lemma 15.3.1,
when (15.2.3) is satisfied on an interval (0, T ), with t̄ < T ≤ ∞, so that (15.2.4)
hold for any t ∈ [t̄, T ), then

(15.4.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

{‖w j (·, t)‖L1(−∞,∞) + ‖ω j (·, t)‖L1(−∞,∞)

} = O(δ0),

n∑
j=1

{‖w j (·, t)‖L∞(−∞,∞) + ‖ω j (·, t)‖L∞(−∞,∞)

} = O(δ2
0),

n∑
j=1

{‖∂xw j (·, t)‖L1(−∞,∞) + ‖∂xω j (·, t)‖L1(−∞,∞)

} = O(δ2
0),

n∑
j=1

{‖∂xw j (·, t)‖L∞(−∞,∞) + ‖∂xω j (·, t)‖L∞(−∞,∞)

} = O(δ3
0),

uniformly on [t̄, T ).
As we saw above, when U is just a viscous j-wave, w j and ω j satisfy (15.4.16).

For general solutions U , we have, instead, Equations (15.2.6), with source terms ϕ j

and ψ j . The expectation is that the approximation of U by viscous waves, through
(15.4.17), will be sufficiently tight to render ϕ j and ψ j “small”.

After a lengthy and laborious calculation, which is found in the references cited
in Section 15.9, one shows that

(15.4.23) (ϕ j , ψ j ) = O(1)
∑
i �=k

(|wiwk |+|ωiωk |+|wiωk |+|wi∂xwk |+|wi∂xωk |
)

+ O(1)
∑

i

|ωi∂xwi − wi∂xωi |

+ O(1)
∑

i

∣∣∣∣wi∂x

(
ωi

wi

)∣∣∣∣2χ{|λ∗i +ωi /wi |<3δi }

+ O(1)
∑

i

(|∂xwi | + |∂xωi |
)|ωi + siwi |.

The four terms on the right-hand side of (15.4.24) estimate the “deviation” of
(15.2.6) from the single viscous j-wave case (15.4.16), arising for the following rea-
sons:
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(a) The first term accounts for transversal wave interactions: viscous waves belong-
ing to distinct characteristic families, and thus propagating with distinct speeds, in-
teract and make a contribution of quadratic order to ϕ j and ψ j .
(b) The second and third term account for interactions of waves from the same
characteristic family: The viscous i-waves approximating the profile U (·, t) at two
different points, say x and y, are propagating with distinct speeds si (x, t) and si (y, t)
and may thus interact. The key factor in the estimate is ∂x si which monitors the rate
of change of si .
(c) The fourth term accounts for the “error” committed by selecting si through
(15.4.20) instead of −ωi/wi , as would have been the case for a viscous i-wave.
Indeed, notice that this term vanishes whenever si = −ωi/wi .

In the following three sections we will estimate the right-hand side of (15.4.23).
The aim is to verify the assertion made in Section 15.2, namely that if (15.2.3) holds
on (0, T ) then (15.2.7) implies (15.2.8).

15.5 Transversal Wave Interactions

The aim here is to estimate the first term on the right-hand side of (15.4.23), which
accounts for the interaction between viscous waves of distinct families. Under the
assumption that (15.2.3) holds for t ∈ (0, T ), which in turn yields (15.4.22) for
t ∈ [t̄, T ), it will be shown that (15.2.7) implies

(15.5.1)

T∫
t̄

∞∫
−∞

∑
i �=k

(|wiwk | + |wiωk | + |ωiωk |

+|wi∂xwk | + |wi∂xωk | + |ωi∂xwk |
)
dxdt = O(δ2

0).

Towards that goal we shall compare the solutions of two parabolic equations

(15.5.2)

⎧⎨⎩ ∂t u'(x, t)+ ∂x
[
σ '(x, t)u'(x, t)

]− ∂2
x u'(x, t) = p'(x, t)

∂t u%(x, t)+ ∂x
[
σ%(x, t)u%(x, t)

]− ∂2
x u%(x, t) = p%(x, t)

with strictly separated drifts:

(15.5.3) inf σ% − sup σ ' ≥ r > 0.

15.5.1 Lemma. If
(
u', u%

)
are solutions of (15.5.2) on (−∞,∞)× [0, T ),
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(15.5.4)

T∫
0

∞∫
−∞

∣∣u'(x, t)
∣∣∣∣u%(x, t)

∣∣dxdt ≤ 1

r

{ ∞∫
−∞

|u'(x, 0)|dx

+
T∫

0

∞∫
−∞

|p'(x, t)|dxdt

}{ ∞∫
−∞

|u%(x, 0)|dx +
T∫

0

∞∫
−∞

|p%(x, t)|dxdt

}
.

Proof. We consider first the homogeneous case, p' = p% = 0. We introduce the
interaction potential

(15.5.5) q(v', v%) =
∞∫

−∞

∞∫
−∞

k(x − y)|v'(x)||v%(y)|dxdy,

for any pair of functions v' and v% in L1(−∞,∞), where

(15.5.6) k(z) =
⎧⎨⎩

r−1 if z ≥ 0

r−1 exp
(

1
2r z
)

if z < 0.

Notice that rk′ − 2k′′ is the Dirac mass at the origin. We now have

(15.5.7)

d

dt
q
(
u'(·, t), u%(·, t)

) = d

dt

∞∫
−∞

∞∫
−∞

k(x − y) |u'(x, t)| |u%(y, t)| dxdy

=
∞∫

−∞

∞∫
−∞

k(x − y)
{[
∂2

x u' − ∂x
(
σ 'u'

)]
sgn u'

}
(x, t) |u%(y, t)| dxdy

+
∞∫

−∞

∞∫
−∞

k(x − y)
{[
∂2

x u% − ∂x
(
σ%u%

)]
sgn u%

}
(y, t) |u'(x, t)| dxdy

=
∞∫

−∞

∞∫
−∞

k′(x − y)
[
σ '(x, t)− σ%(y, t)

] |u'(x, t)| |u%(y, t)| dxdy

+
∞∫

−∞

∞∫
−∞

2k′′(x − y) |u'(x, t)| |u%(y, t)| dxdy

≤ −
∞∫

−∞

∞∫
−∞

(rk′ − 2k′′)(x − y) |u'(x, t)| |u%(y, t)| dxdy

= −
∞∫

−∞
|u'(x, t)| |u%(x, t)| dx .
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Integrating (15.5.7) over (0, T ) and recalling (15.5.5) and (15.5.6), we deduce

(15.5.8)

T∫
0

∞∫
−∞

|u'(x, t)| |u%(x, t)| dxdt ≤ 1

r

∞∫
−∞

|u'(x, 0)|dx

∞∫
−∞

|u%(x, 0)|dx,

namely (15.5.4) for the special case p' = p% = 0. In particular, if �'(x, t; y, τ )
and �%(x, t; y, τ ) denote the Green functions for the (homogeneous form of the)
equations (15.5.2),

(15.5.9)

T∫
max{τ,τ ′}

∞∫
−∞

�'(x, t; y, τ )�%(x, t; y′, τ ′)dxdt ≤ 1

r
,

for any couple of initial points (y, τ ) and (y′, τ ′).
The solutions of (15.5.2) may now be written as

(15.5.10)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u'(x, t) =
∞∫

−∞
�'(x, t; y, 0)u'(y, 0)dy +

t∫
0

∞∫
−∞

�'(x, t; y, τ )p'(y, τ )dydτ

u%(x, t) =
∞∫

−∞
�%(x, t; y, 0)u%(y, 0)dy +

t∫
0

∞∫
−∞

�%(x, t; y, τ )p%(y, τ )dydτ.

Combining (15.5.9) with (15.5.10), we arrive at (15.5.4). The proof is complete.

15.5.2 Lemma. Assume that

(15.5.11)

T∫
0

∞∫
−∞

|p'(x, t)|dxdt ≤ δ0 ,

T∫
0

∞∫
−∞

|p%(x, t)|dxdt ≤ δ0 ,

(15.5.12) ‖σ '(·, t)‖L∞(−∞,∞) ≤ cδ0 , ‖∂xσ
'(·, t)‖L∞(−∞,∞) ≤ cδ0 .

Let u', u% be solutions of (15.5.2) such that

(15.5.13) ‖u'(·, t)‖L1(−∞,∞) ≤ δ0 , ‖u%(·, t)‖L1(−∞,∞) ≤ δ0 ,

(15.5.14) ‖∂x u'(·, t)‖L1(−∞,∞) ≤ cδ2
0 , ‖u%(·, t)‖L∞(−∞,∞) ≤ cδ2

0 ,

for all t ∈ [0, T ). Then

(15.5.15)

T∫
0

∞∫
−∞

|∂x u'(x, t)| |u%(x, t)| dxdt = O(δ2
0).
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Proof. The left-hand side of (15.5.15) is bounded by

(15.5.16) J (T ) = sup

T−τ∫
0

∞∫
−∞

|∂x u'(x, t)u%(x + y, t + τ)| dxdt,

where the supremum is taken over all (y, τ ) ∈ (−∞,∞)× [0, T ).
By account of (15.5.14),

(15.5.17) sup

1∫
0

∞∫
−∞

|∂x u'(x, t)u%(x + y, t + τ)| dxdt ≤ c2δ4
0 .

For t > 1, we write ∂x u' in the form

(15.5.18) ∂x u'(x, t) =
∞∫

−∞
∂x g(z, 1)u'(x − z, t − 1)dz

+
1∫

0

∞∫
−∞

∂x g(z, s) [p' − ∂x (σ
'u')](x − z, t − s) dzds,

where g(x, t) = (4π t)− 1
2 exp[−x2/4t] is the standard heat kernel. Hence

(15.5.19)

T−τ∫
1

∞∫
−∞

|∂x u'(x, t)u%(x + y, t + τ)| dxdt

≤
T−τ∫
1

∞∫
−∞

∞∫
−∞

|∂x g(z, 1)u'(x− z, t−1)u%(x+ y, t+τ)| dzdxdt

+
T−τ∫
1

∞∫
−∞

1∫
0

∞∫
−∞

‖∂xσ
'‖L∞|∂x g(z, s)u'(x − z, t − s)u%(x + y, t + τ)| dzdsdxdt

+
T−τ∫
1

∞∫
−∞

1∫
0

∞∫
−∞

‖σ '‖L∞|∂x g(z, s)∂x u'(x − z, t − s)u%(x + y, t + τ)| dzdsdxdt

+
T−τ∫
1

∞∫
−∞

t∫
t−1

∞∫
−∞

|∂x g(x − z, t − s)p'(z, s)u%(x + y, t + τ)| dzdsdxdt.
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Upon combining (15.5.16), (15.5.17), (15.5.19), (15.5.4), (15.5.11), (15.5.12),
(15.5.13), and (15.5.14), one obtains

(15.5.20) J (T ) ≤ c2δ4
0 +

4δ2
0√
πr
+ 8cδ3

0√
πr
+ 2cδ0√

π
J (T )+ 2cδ3

0√
π
.

For δ0 sufficiently small, (15.5.20) yields J (T ) = O(δ2
0) and thence (5.5.15). This

completes the proof.

We have now laid the groundwork for establishing (15.5.1). Recalling (15.2.6),
we apply Lemma 15.5.1 with u' = wi , σ ' = σi , p' = ϕi , u% = wk , σ% = σk ,
p% = ϕk , shifting the origin from t = 0 to t = t̄ . Using (15.2.7) and (15.4.22), we
deduce that the integral of |wiwk | over (−∞,∞) × (t̄, T ) is O(δ2

0). The integrals
of |wiωk | and |ωiωk | are treated by the same argument. To estimate the integral of
|wi∂xwk |, we apply Lemma 15.5.2 with u' = wk , σ ' = σk , p' = ϕk , u% = wi ,
σ% = σi , p% = ϕi . In order to meet the requirement (15.5.12)1, we perform the
change of variable x �→ x−λ∗k t so that the drift coefficient σk is replaced by σk −λ∗k
which is O(δ0). The integrals of the remaining terms |wi∂xωk | and |ωi∂kwk | are
handled by the same method.

15.6 Interaction of Waves of the Same Family

This section provides estimates for the second and third term on the right-hand side
of (15.4.23), which are induced by the interaction of viscous waves of the same
family. The objective is to show that when (15.2.7) and (15.4.22) hold, for t ∈ [t̄, T ),
then

(15.6.1)

T∫
t̄

∞∫
−∞

|ωi∂xwi − wi∂xωi | dxdt = O(δ2
0),

(15.6.2)

T∫
t̄

∞∫
−∞

∣∣∣∣wi∂x

(
ωi

wi

)∣∣∣∣2χ{|λ∗i +ωi /wi |<3δ1}dxdt = O(δ3
0).

This will be attained by monitoring the time evolution of two functionals of the
solutions with very interesting geometric interpretation.

We consider solutions (w, ω) of the equations

(15.6.3)

⎧⎨⎩ ∂tw(x, t)+ ∂x [σ(x, t)w(x, t)] − ∂2
xw(x, t) = ϕ(x, t)

∂tω(x, t)+ ∂x [σ(x, t)ω(x, t)] − ∂2
xω(x, t) = ψ(x, t),

on [t̄, T ), where ϕ,ψ and σ are given, smooth functions, with ϕ(·, t) and ψ(·, t) in
L1(−∞,∞). Hence w(·, t) and ω(·, t) will also lie in L1(−∞,∞), so that one may
define the functionals
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(15.6.4) L(t) =
∞∫

−∞
[w2(x, t)+ ω2(x, t)]1/2dx,

(15.6.5) A(t) = 1

2

∞∫
−∞

∫
x<y

|w(x, t)ω(y, t)− ω(x, t)w(y, t)| dxdy.

We introduce the vector field

(15.6.6) Z(x, t) =
( x∫
−∞

w(y, t)dy ,

x∫
−∞

ω(y, t)dy

)
.

For fixed t ∈ [t̄, T ), Z(·, t) defines a curve on IR2 , parametrized by x , and thus Z
represents a moving curve on IR2 . Notice that L(t) is the length of the curve at time
t . Furthermore,

(15.6.7)
1

2

∞∫
−∞

Z(y, t) ∧ ∂x Z(y, t) dy = 1

2

∞∫
−∞

∫
x<y

∂x Z(x, t) ∧ ∂x Z(y, t) dxdy

yields the sum of the areas of the regions enclosed by the curve Z(·, t), each multi-
plied by the corresponding winding number. Thus A(t) provides an upper bound for
the area of the convex hull of Z(·, t).

By virtue of (15.6.3),

(15.6.8) ∂t Z(x, t)+ σ(x, t)∂x Z(x, t)− ∂2
x Z(x, t) = �(x, t),

where

(15.6.9) �(x, t) =
( ∞∫
−∞

ϕ(y, t)dy ,

x∫
−∞

ψ(y, t)dy

)
.

The plan is to show that the rate of growth of L(t) and A(t) is controlled by
‖ϕ(·, t)‖L1(−∞,∞) and ‖ψ(·, t)‖L1(−∞,∞) , and, in particular, that these functionals
are nonincreasing when ϕ and ψ vanish identically.

15.6.1 Lemma.

(15.6.10)
d

dt
A(t) ≤ −

∞∫
−∞

∣∣ω(x, t)∂xw(x, t)− w(x, t)∂xω(x, t)
∣∣ dx

+‖w(·, t)‖L1(−∞,∞)‖ψ(·, t)‖L1(−∞,∞) + ‖ω(·, t)‖L1(−∞,∞)‖ϕ(·, t)‖L1(−∞,∞).
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Fig. 15.6.1

Proof. Let us fix t ∈ [t̄, T ) and consider the curve Z(·, t) in IR2; see Fig. 15.6.1.
With any x ∈ (−∞,∞) we associate the unit vector N (x) in IR2 that is perpendic-
ular to the tangent vector ∂x Z(x, t) and is oriented by

(15.6.11) ∂x Z(x, t) ∧ N (x) = |∂x Z(x, t)|.
In particular, for any W ∈ IR2,

(15.6.12) ∂x Z(x, t) ∧W = |∂x Z(x, t)|[N (x) ·W ].
We now compute

(15.6.13)

d

dt
A(t) = 1

2

∞∫
−∞

∫
x<y

sgn[∂x Z(x, t)∧∂x Z(y, t)]

×[∂t∂x Z(x, t) ∧ ∂x Z(y, t)+ ∂x Z(x, t) ∧ ∂t∂x Z(y, t)
]

dxdy

= 1

2

∞∫
−∞

∞∫
−∞

sgn
[
∂x Z(x, t) ∧ ∂x Z(y, t)

] [
∂x Z(x, t) ∧ ∂t∂x Z(y, t)

]
dydx

= 1

2

∞∫
−∞

∞∫
−∞

|∂x Z(x, t)| sgn ∂yz(y, x, t) ∂t∂yz(y, x, t)dydx

= 1

2

∞∫
−∞

|∂x Z(x, t)| ∂t T V(−∞,∞)z(·, x, t) dx,
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where we are using the notation

(15.6.14) z(y, x, t) = N (x) · Z(y, t).

Since N (x) · ∂x Z(x, t) = 0, x is a critical point of z(·, x, t). Let us assume, for
simplicity, that this function has a finite number of critical points y−p < · · · <
y−1 < y0 = x < y1 < · · · < yq , and none of them is degenerate. As minima and
maxima alternate,

(15.6.15) sgn ∂2
y z(yr , x, t) = (−1)r sgn ∂2

y z(x, x, t).

A simple calculation yields

(15.6.16) ∂t T V(−∞,∞)z(·, x, t) = −2
∑

−p≤r≤q

sgn ∂2
y z(yr , x, t) ∂t z(yr , x, t).

We substitute into (15.6.16) ∂t z = N · ∂t Z , with ∂t Z taken from (15.6.8). Since
∂yz(yr , x, t) = 0, and by virtue of (15.6.15),

(15.6.17)

∂t T V(−∞,∞)z(·, x, t) = −2
∑

−p≤r≤q

|∂2
y z(yr , x, t)|

−2 sgn ∂2
y z(x, x, t)

∑
−p≤r≤q

(−1)r [N (x) ·�(yr , t)].

Furthermore,

(15.6.18)

∣∣∣∣ ∑
−p≤r≤q

(−1)r [N (x) ·�(yr , t)]
∣∣∣∣ ≤

∞∫
−∞

|N (x) · ∂x�(y, t)| dy.

By combining (15.6.13) with (15.6.17), (15.6.18), (15.6.14) and (15.6.12) we con-
clude that

(15.6.19)

d

dt
A(t) ≤ −

∞∫
−∞

|∂x Z(x, t)∧ ∂2
x Z(x, t)| dx +

∞∫
−∞

∞∫
−∞

|∂x Z(x, t)∧ ∂x�(y, t)| dydx .

Since ∂x Z = (w, ω) and ∂x� = (ϕ, ψ), (15.6.19) yields (15.6.10). The proof is
complete.

15.6.2 Lemma. Under the assumption w2 + ω2 �= 0,
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(15.6.20)
d

dt
L(t) ≤ 1

(1+ 9δ2
1)

3/2

∞∫
−∞

|w(x, t)|
∣∣∣∣∂x

(
ω(x, t)

w(x, t)

)∣∣∣∣2χ{|ω/w|<3δ1}dx

+‖ϕ(·, t)‖L1(−∞,∞) + ‖ψ(·, t)‖L1(−∞,∞) .

Proof. Since w2 + ω2 �= 0,

(15.6.21)
d

dt
L(t) =

∞∫
−∞

w∂tw + ω∂tw

(w2 + ω2)1/2
dx .

We substitute ∂tw and ∂tω from (15.6.3) into (15.6.21). Upon using the elementary
identities

(15.6.22)
w∂x (σw)+ ω∂x (σω)

(w2 + ω2)1/2
= ∂x [σ(w2 + ω2)1/2],

(15.6.23)
w∂2

xw + ω∂2
xω

(w2 + ω2)1/2
= ∂2

x (w
2 + ω2)

1
2 −

|w|
∣∣∣∣∂x

(
ω

w

)∣∣∣∣2[
1+

(
ω

w

)2]3/2
,

we deduce

(15.6.24)
d

dt
L(t) = −

∞∫
−∞

|w|
∣∣∣∣∂x

(
ω

w

)∣∣∣∣2[
1+

(
ω

w

)2]3/2
dx +

∞∫
−∞

wϕ + ωψ

(w2 + ω2)1/2
dx,

which easily yields (15.6.20). This completes the proof.
In order to show (15.6.1), we integrate (15.6.10) over [t̄, T ) to get the estimate

(15.6.25)

T∫
t̄

∞∫
−∞

|ω(x, t)∂xw(x, t)− w(x, t)∂xω(x, t)|dxdt ≤ A(t̄)

+ sup
[t̄,T )

(
‖w(·, t)‖L1(−∞,∞)+‖ω(·, t)‖L1(−∞,∞)

) T∫
t̄

∞∫
−∞

(|ϕ(x, t)|+ |ψ(x, t)|) dxdt.

Recalling (15.2.6), we apply (15.6.25) for w = wi , ω = ωi , ϕ = ϕi , ψ = ψi and
σ = σi . In that case, the right-hand side of (15.6.25) is O(δ2

0), by virtue of (15.2.7)
and (15.4.22).

To verify (15.6.2), we integrate (15.6.20) over [t̄, T ), choosing δ1 ≤ 1
3 . We thus

obtain
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(15.6.26)

T∫
t̄

∞∫
−∞

|w(x, t)|
∣∣∣∣∂x

(
ω(x, t)

w(x, t)

)∣∣∣∣2χ{|ω/w|<3δ1}dxdt

≤ 4L(t̄)+ 4

T∫
t̄

∞∫
−∞

(|ϕ(x, t)| + |ψ(x, t)|)dxdt.

We now apply this inequality for w = wi , ω = ωi , ϕ = ϕi , ψ = ψi and σ = σi ,
after performing the change of variable x �→ x − λ∗i t , which renders λ∗i = 0. In that
case the right-hand side of (15.6.26) is O(δ0), by account of (15.2.7) and (15.4.22).
Hence

(15.6.27)

T∫
t̄

∞∫
−∞

|wi |
∣∣∣∂x

(ωi

wi

)∣∣∣2χ{|λ∗i +ωi /wi |<3δ1}dxdt = O(δ0).

Since ‖wi‖L∞ = O(δ2
0), (15.6.2) follows directly from (15.6.27).

15.7 Energy Estimates

Here we estimate the last term on the right-hand side of (15.4.23), which stems from
our fixing the speed si according to (15.4.20). The aim is to show that

(15.7.1)

T∫
t̄

∞∫
−∞

(|∂xwi | + |∂xωi |)|ωi + siwi | dxdt = O(δ2
0).

The proof, which relies on energy estimates, is technical and does not provide as
much insight as the discussion in the previous two sections. Consequently, only an
outline will be given here. The reader may find the details in the references cited in
Section 15.9.

Since one may perform the change of variable x �→ x − λ∗i t , we may assume,
without loss of generality, that λ∗i = 0 and hence σi = O(δ0).

In addition to θ , defined by (15.4.21), we will employ the “cutoff” functions

(15.7.2) η(r) =

⎧⎪⎪⎨⎪⎪⎩
0 if |r | ≤ 3

5δ1

|η′(r)| ≤ 20

δ1
, |η′′(r)| ≤ 100

δ2
1

,

1 if |r | ≥ 4
5δ1

and η̄(r) = η(|r | − 1
5δ1). We write ηi = η(ωi/wi ), and η̄i = η̄(ωi/wi ). We also

choose δ0 << δ1 << 1.

15.7.1 Lemma. When |ωi/wi | ≥ 3
5δ1 ,
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(15.7.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|wi | ≤ 5

2δ1
|∂xwi | + O(δ0)

∑
j �=i

|w j |

|ωi | ≤ 2|∂xwi | + O(δ0)
∑
j �=i

|w j |,

while when |ωi/wi | ≤ δ1 ,

(15.7.4) |∂xwi | ≤ 2δ1|wi | + O(δ0)
∑
j �=i

|w j |.

Sketch of Proof. We substitute ∂xU and ∂tU from (15.4.18) into (15.2.1) to get

(15.7.5)
n∑

j=1

ω j S j +
n∑

j=1

w j AS j =
n∑

j=1

∂xw j S j +
n∑

j=1

w j∂x S j .

Multiplying, from the left, by S�i , recalling that S�i Si = 1, S�i ∂x Si = 0, and using
(15.4.9) yields

(15.7.6) ωi − σiwi − ∂xwi =
∑
j �=i

{[∂xw j − ω j ]S�i S j +w j S�i ∂x S j −w j S�i AS j
}

= O(δ0)
∑
j �=i

(|w j | + |∂xw j − ω j |).

Assertions (15.7.3) and (15.7.4) follow from careful analysis of the above equation.
This completes the proof.

Since |ωi + siwi | vanishes when |ωi/wi | ≤ δ1 and is otherwise bounded by |ωi |,
we have

(15.7.7) |ωi + siwi | ≤ |η̄iωi | ≤ η̄i

[
2|∂xwi | + O(δ0)

∑
j �=i

|w j |
]
.

Therefore,

(15.7.8) (|∂xwi | + |∂xωi |)|ωi + siwi |
≤ 2η̄i |∂xwi |2 + 2η̄i |∂xwi ||∂xωi | +

∑
j �=i

(|w j∂xwi | + |w j∂xωi |)

≤ 3ηi |∂xwi |2 + η̄i |∂xωi |2 +
∑
j �=i

(|w j∂xwi | + |w j∂xωi |).

As shown in Section 15.5, the integral over (−∞,∞)× (t̄, T ) of the third term
on the right-hand side of (15.7.8) is O(δ2

0). Thus, in order to verify (15.7.1) it will
suffice to show
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(15.7.9)

T∫
t̄

∞∫
−∞

ηi |∂xwi |2dxdt = O(δ2
0),

(15.7.10)

T∫
t̄

∞∫
−∞

η̄i |∂xωi |2dxdt = O(δ2
0).

The first step towards establishing (15.7.9) is to multiply (15.2.6)1 by 2ηiwi ,
integrate the resulting equation over (−∞,∞), and integrate by parts. This yields

(15.7.11)

∞∫
−∞

{
∂t (ηiw

2
i )+ ∂x (ηiσi )w

2
i − (∂tηi + 2σi∂xηi − ∂2

xηi )w
2
i

+ 2ηi (∂xwi )
2 + 4(∂xηi )wi∂xwi

}
dx =

∞∫
−∞

2ηiwiϕi dx .

Hence

(15.7.12) 2

∞∫
−∞

ηi |∂xwi |2dx = − d

dt

∞∫
−∞

ηiw
2
i dx+

∞∫
−∞

(∂tηi+2σi∂xηi−∂2
xηi )w

2
i dx

+2

∞∫
−∞

ηiσiwi∂xwi dx − 4

∞∫
−∞

(∂xηi )wi∂xwi dx + 2

∞∫
−∞

ηiwiϕi dx .

We proceed to estimate the right-hand side of the above equation.
Recalling the definition of ηi and using (15.2.6), we obtain, after a short calcula-

tion,

(15.7.13) (∂tηi + 2σi∂xηi − ∂2
xηi )w

2
i

= η′i (ψiwi−ϕiωi )+2η′iwi (∂xwi )∂x (ωi/wi )−η′′i w2
i [∂x (ωi/wi )]2 .

Furthermore, using (15.7.3)1 and since σi = O(δ0) << δ1 ,

(15.7.14)

∣∣∣∣2
∞∫

−∞
ηiσiwi∂xwi dx

∣∣∣∣ ≤
∞∫

−∞
ηi |∂xwi |2dx + O(δ0)

∞∫
−∞

∑
j �=i

|w j∂xwi |dx .

On the range where η′i �= 0, we have |ωi/wi | < δi and hence (15.7.4) applies.
One then obtains

(15.7.15) |(∂xηi )wi∂xwi | = |η′iwi (∂xwi )∂x (ωi/wi )|
≤ O(1)|wi∂xωi − ωi∂xwi | + O(δ0)

∑
j �=i

(|w j∂xwi | + |w j∂xωi |).
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We now combine (15.7.12) with (15.7.13), (15.7.14), (15.7.15) and integrate the
resulting inequality over (t̄, T ). This yields an estimate of the form

(15.7.16)

T∫
t̄

∞∫
−∞

ηi |∂xwi |2dxdt ≤
∞∫

−∞
(ηiw

2
i )(x, t̄) dx

+O(1)

T∫
t̄

∞∫
−∞

(|wiψi | + |wiϕi | + |ωiϕi |)dxdt

+ O(1)

T∫
t̄

∞∫
−∞

|wi∂xωi − ωi∂xwi | dxdt

+O(δ0)

T∫
t̄

∞∫
−∞

∑
j �=i

(|w j∂xwi | + |w j∂xωi |)dxdt

+ O(1)

T∫
t̄

∫
|ωi /wi |<δi

|wi∂x (ωi/wi )|2dxdt.

By virtue of (15.4.22), (15.2.7), (15.5.1), (15.6.1) and (15.6.2), we conclude that the
right-hand side of (15.7.16) is O(δ2

0), which verifies (15.7.9).
The estimate (15.7.10) is established by a similar procedure. For the details the

reader should consult the references in Section 15.9.

15.8 Stability Estimates

This section provides a sketch of the proof of the stability estimates (15.1.5), (15.1.6)
and (15.1.7).

By account of the rescaling U (x, t) = Uµ(µx, µt), the estimates (15.1.6) and
(15.1.7), for solutions of (15.1.3), (15.1.2), are respectively equivalent to

(15.8.1) ‖U (·, t)−U (·, τ )‖L1(−∞,∞) ≤ b(|t−τ |+|√t−√τ |), 0 ≤ τ < t <∞,

(15.8.2)

‖U (·, t)− Ū (·, t)‖L1(−∞,∞) ≤ a‖U0µ(·)− Ū0µ(·)‖L1(−∞,∞) , 0 < t <∞,

for solutions of (15.2.1), (15.2.2).
The estimate (15.8.1) is obtained by integrating over (τ, t) the inequality

(15.8.3) ‖∂tU (·, t)‖L1(−∞,∞) ≤ b

(
1+ 1

2
√

t

)
, 0 < t <∞,

which follows from (15.2.1), by virtue of (15.2.3), (15.3.1) and (15.2.4).
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The estimate (15.8.2) is established by means of the following homotopy argu-
ment. We have

(15.8.4) U (x, t)− Ū (x, t) =
1∫

0

d

dξ
Uξ (x, t)dξ,

where Uξ denotes the solution of (15.2.1) with initial data ξŪ0µ + (1− ξ)U0µ . The
“tangent” vector

(15.8.5) Wξ (x, t) = d

dξ
Uξ (x, t)

is the solution of the linearized equation

(15.8.6) ∂t Wξ (x, t)+ ∂x
[
A(Uξ (x, t))Wξ (x, t)

] = ∂2
x Wξ (x, t),

with initial value

(15.8.7) Wξ (·, 0) = Ū0µ(·)−U0µ(·).
Equation (15.8.6) bears a close resemblance to the equation satisfied by the

derivative ∂xU of solutions to (15.2.1), and may thus be treated by the methods
employed in earlier sections. The analysis, which is found in the references cited
in Section 15.9, shows that, as ‖∂xUξ (·, t)‖L2(−∞,∞) < δ0 on (0,∞), there exists
a constant a > 1 such that, for any δ > 0, ‖Wξ (·, 0)‖L1(−∞,∞) < δ/a implies
‖Wξ (·, t)‖L1(−∞,∞) < δ, for all t ∈ (0,∞). Since (15.8.6) is linear, the above as-
sertion is equivalent to

(15.8.8) ‖Wξ (·, t)‖L1(−∞,∞) ≤ a‖Wξ (·, 0)‖L1(−∞,∞) , 0 < t <∞.

Upon combining (15.8.8) with (15.8.4), (15.8.5) and (15.8.7), we arrive at (15.8.2),
thus establishing (15.1.7).

The remaining estimate (15.1.5) is an immediate corollary of (15.1.7). Indeed,
we apply (15.1.7) for the two solutions Uµ(x, t) and Ūµ(x, t) = Uµ(x + h, t), with
corresponding initial values U0(x) and Ū0(x) = U0(x+h), we multiply the resulting
inequality by h−1 and then let h → 0, which yields (15.1.5).

Solutions of (15.1.1) contructed by the vanishing viscosity method have the finite
speed of propagation property. Indeed, by using the properties of the Green function
it can be shown that when U0 and Ū0 coincide inside an interval (y, z), in which case
U0µ(x) = Ū0µ(x) for x ∈ (y/µ, z/µ), then the corresponding solutions U and Ū of
(15.2.1), (15.2.2) satisfy

(15.8.9)

|U (x, t)−Ū (x, t)| ≤ c‖U0(·)−Ū0(·)‖L∞(−∞,∞)

{
exp

(
νt−x+ y

µ

)
+exp

(
νt+x− z

µ

)}

for some positive constants c, ν and all (x, t) in (−∞,∞)×(0,∞). Upon rescaling,
(x, t) �→ (x/µ, t/µ), so as to return to Uµ , Ūµ , we conclude that the two solutions
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U = limk→∞Uµk and Ū = limk→∞ Ūµk of (15.1.1), with initial values U0 and Ū0 ,
must coincide for all (x, t) with x ∈ (y + νt, z − νt).

It follows from the above that in the place of (15.1.10) and (15.1.8) we have the
more precise estimates

(15.8.10)

z∫
y

|U (x, t)− Ū (x, t)|dx ≤ a

z+νt∫
y−νt

|U0(x)− Ū0(x)|dx,

(15.8.11) T V(y,z)U (·, t) ≤ aT V(y−νt,z+νt)U0(·),
for any −∞ ≤ y < z ≤ ∞.

We next demonstrate that the finite speed of propagation property in conjunction
with the stability estimate (15.1.8) imply that any solution U of (15.1.1), (15.1.2)
constructed by the vanishing viscosity method satisfies the Tame Oscillation Con-
dition 14.10.1. In turn, by virtue of Theorem 14.10.2, this will imply that, when all
characteristic families are either genuniely nonlinear or linearly degenerate, then U
must coincide with the unique solution constructed by the random choice method.

Because solutions of (15.1.1) are preserved under spatial and temporal transla-
tions, it will suffice to verify (14.10.3) at the origin, x = 0, t = 0. We fix λ > ν and
consider the solution Ū of (15.1.1) with initial data

(15.8.12) Ū0(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U0(−λh+) −∞ < x ≤ −λh

U0(x) −λh < x < λh

U0(λh−) λh < x <∞.

Then T V(−∞,∞)Ū0(·) = T V(−λh,λh)U0(·), Ū (0±, h) = U (0±, h) and
Ū (∞, h) = U0(λh−). Therefore, by account of (15.1.8),

(15.8.13)

|U (0±, h)−U0(0±)| ≤ |Ū (0±, h)− Ū (∞, h)| + |U0(λh−)−U0(0±)|
≤ (a + 1)T V(−λh,λh)U0(·),

which establishes (14.10.3).

15.9 Notes

The construction of BV solutions by the vanishing viscosity method had been a cen-
tral open problem of long standing in the theory of hyperbolic systems of conserva-
tion laws. It has finally been solved, in a spectacular way, by Bianchini andBressan
[5]. The presentation in this section abridges that fundamental paper. The ground
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had been prepared by the preliminary papers, Bianchini and Bressan [1,2,3,4]. For
the rate of convergence, see Bressan and Yang[1]. The method has now been ex-
tended to cover initial-boundary value problems for hyperbolic conservation laws
(Bianchiniand Ancona [1]), as well as the Cauchy problem for hyperbolic systems
of balance laws with dissipative source (Christoforou [1]). The principal underlying
ideas of this approach have been fruitfully employed for constructing solutions to the
Riemann Problem (Bianchini [6]), and for establishing convergence of semidiscrete
upwind schemes for hyperbolic conservation laws (Bianchini [7,8]), of Godunov’s
method, for special systems (Bressan and Jenssen [1]), and of the linear Jin-Xin re-
laxation scheme (Bianchini [9]). See also Bianchini [4] and Bressan and Shen [1].
A multitude of additional applicationsare to be expected in the near future. It should
also be emphasized that these techniques apply to general quasilinear strictly hyper-
bolic systems, regardless of whether they are in conservation form. Of course, in
the nonconservative case the constructed “solutions” do not necessarily satisfy the
equations in the sense of distributions but should be interpreted in the context of the
theory of nonconservative shocks by LeFloch et al., outlined in Section 8.7.

There is extensive literature on alternative aspects of the vanishing viscosity ap-
proach. We have already seen, in Chapter VI, how this method applies to scalar
conservation laws, in the L∞ or BV setting. In Chapter XVI we shall encounter
applications to certain systems of conservation laws, in the L p setting. Yet another
direction is to investigate how solutions of the system with viscosity approximate
given, piecewise smooth solutions of the hyperbolic system; see, for instance Good-
man and Xin [1], Lin and Yang [1], Hoff and Liu [1], Serre [14], Rousset [4] and
Yu [1]. One may pursue the same objective in the context of relaxation schemes; see
Lattanzio and Serre [1] and Li and Pan [1].

In the vanishing viscosity approach, the approximate solutions Uµ carry in-
formation on the viscous shock profiles, which is especially valuable, when one
employs genuine physical viscosity, but it is lost in the limit µ → 0. This loss
of information also occurs when solutions are constructed by a vanishing capil-
larity or relaxation method, or even by the approach outlined in Section 8.7, in
which the shock profile itself determines the notion of weak solution. As a rem-
edy, LeFloch [6] suggests attaching the information on internal shock structure to
the solution U of the hyperbolic system, by means of the following interesting de-
vice. Instead of tracking U (x, t) as an evolving discontinuous function of x , one
should realize it as a moving continuous curve (ξ(s, t), V (s, t)), where ξ(·, t) is a
smooth nondecreasing function of the parameter s, having the following properties:
(a) ξ(±∞, t) = ±∞. (b) ξ(·, t) is invertible on the set of points x of continu-
ity of U (·, t), and V (ξ−1(x, t), t) = U (x, t). (c) If x is a point of discontinu-
ity of U (·, t), then ξ(s, t) = x for s on some closed interval, say [s−, s+], with
V (s±, t) = U (x±, t) and V (·, t) on (s−, s+) tracing the profile of the discontinu-
ity that joins U (x−, t) to U (x+, t). The discontinuity profile will be a shock profile,
when (x, t) is a point of approximate jump discontinuity of U , or a full wave fan pro-
file, when (x, t) belongs to the set of irregular points. The above idea is conceptually
pleasing and will likely find technical applications as well.



XVI

Compensated Compactness

Approximate solutions to hyperbolic systems of conservation laws may be generated
in a variety of ways: by the method of vanishing viscosity, through difference ap-
proximations, by relaxation schemes, etc. The topic for discussion in this chapter is
whether solutions may be constructed as limits of sequences of approximate solu-
tions that are only bounded in some L p space. Since the systems are nonlinear, the
difficulty lies in that the construction schemes are generally consistent only when
the sequence of approximating solutions converges strongly, whereas the assumed
L p bounds only guarantee weak convergence: Approximate solutions may develop
high frequency oscillations of finite amplitude which play havoc with consistency.
The aim is to demonstrate that entropy inequalities may save the day by quenching
rapid oscillations, thus enforcing strong convergence of the approximating solutions.
Some indication of this effect was alluded in Section 1.9.

The principal tools in the investigation will be the notion of Young measure and
the functional analytic method of compensated compactness. The former naturally
induces the very general class of measure-valued solutions and the latter is employed
to verify that nonlinearity reduces measure-valued solutions to traditional ones. As
it relies heavily on entropy dissipation, the approach appears to be applicable mainly
to systems endowed with a rich family of entropy-entropy flux pairs, most notably
the scalar conservation law and systems of just two conservation laws. Despite this
limitation, the approach is quite fruitful, not only because of the abundance of im-
portant systems with such structure, but also because it provides valuable insight into
the stabilizing role of entropy dissipation as well as into the “conflicted” stabilizing-
destabilizing behavior of nonlinearity. Different manifestations of these factors were
already encountered in earlier chapters.

Out of a host of known applications of the method, only the simplest shall be pre-
sented here, pertaining to the scalar conservation law, genuinely nonlinear systems
of two conservation laws, and the system of isentropic elasticity and gas dynamics.
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16.1 The Young Measure

The stumbling block for establishing consistency of construction schemes that gen-
erate weakly convergent sequences of approximate solutions lies in that it is not
generally permissible to pass weak limits under nonlinear functions. Suppose " is
an open subset of IRm and {Uk} is a sequence in L∞("; IRn) which converges in
L∞ weak∗ to some limit Ū . If g is any continuous real-valued function on IRn , the
sequence {g(Uk)} will contain subsequences that converge in L∞ weak∗, say to ḡ,
but in general ḡ �= g(Ū ). It turns out that the limit behavior of such sequences, for
all continuous g, is encoded in a family {νX : X ∈ "} of probability measures on
IRn , which is constructed by the following procedure.

Let M(IRn) denote the space of bounded Radon measures on IRn , which is
isometrically isomorphic to the dual of the space C(IRn) of bounded continuous
functions. With k = 1, 2, · · · and any X ∈ ", we associate the Dirac mass δUk (X) in
M(IRn), centered at the point Uk(X), and realize the family {δUk (X) : X ∈ "} as an
element νk of the space L∞w (";M(IRn)), which is isometrically isomorphic to the
dual of L1(";C(IRn)). By virtue of standard weak compactness and separability
theorems, there is a subsequence {ν j } of {νk} which converges weakly∗ to some
ν ∈ L∞w (";M(IRn)). Thus, ν = {νX : X ∈ "} and, as j →∞,

(16.1.1)∫
"

ψ(X,U j (X))d X =
∫
"

< δU j (X), ψ(X, ·) > d X →
∫
"

< νX , ψ(X, ·) > d X,

for anyψ ∈ C("×IRn). The supports of the δU j (X) are uniformly bounded and hence
the νX must have compact support. Furthermore, since the δU j (X) are probability
measures, so are the νX . In particular, applying (16.1.1) for ψ(X,U ) = φ(X)g(U ),
where φ ∈ C(") and g ∈ C(IRn), we arrive at the following

16.1.1 Theorem. Let " be an open subset of IRm . Then any bounded sequence {Uk}
in L∞("; IRn) contains a subsequence {U j }, together with a measurable family
{νX : X ∈ "} of probability measures with compact support, such that, for any
g ∈ C(IRn),

(16.1.2) g(U j ) ⇀ ḡ, as j →∞,

in L∞ weak∗, where

(16.1.3) ḡ(X) =< νX , g >=
∫

IRn
g(U )dνX (U ).

The collection {νX : X ∈ "} constitutes the family of Young measures associated
with the subsequence {U j }. To gain some insight, let us consider the ball Br (X)
in ", with center at some X ∈ ", radius r and measure |Br |. On account of our
construction of νX , it is easy to see that
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(16.1.4) νX = lim
r↓0

lim
j↑∞

1

|Br |
∫
Br (X)

δU j (Y )dY, a.e. on ",

where the limits are to be understood in the weak∗ sense. Notice that the averaged
integral on the right-hand side of (16.1.4) may be interpreted as the probability dis-
tribution of the values of U j (Y ) as Y is selected uniformly at random from Br (X).
Thus, according to (16.1.4), νX represents the limiting probability distribution of the
values of U j near X .

By virtue of (16.1.2) and (16.1.3), the subsequence {U j } converges, in L∞
weak∗, to the mean Ū =< νX ,U > of the Young measures. The limit ḡ of {g(U j )}
will satisfy ḡ = g(Ū ), for all g ∈ C(IRn), if and only if νX reduces to the Dirac mass
δŪ (X) centered at Ū (X). In that case, {|U j |} will converge to |Ū |, which implies that

{U j } will converge to Ū strongly in L p
loc("), for any 1 ≤ p < ∞, and some subse-

quence of {U j } will converge to Ū a.e. on ". Hence, to establish strong convergence
of {U j }, one needs to verify that the support of the Young measure is confined to a
point.

Certain applications require more general versions of Theorem 16.1.1. Young
measures νX are defined even when the sequence {Uk} is merely bounded in some
L p("; IRn), with 1 < p <∞. If " is bounded, the νX are still probability measures
and (16.1.2), (16.1.3) hold for all continuous functions g which satisfy a growth
condition |g(U )| ≤ c(1 + |U |q), for some 0 < q < p. In that case, convergence in
(16.1.2) is weakly in Lr ("), for 1 < r < p/q . By contrast, when " is unbounded,
the νX may have mass less than one, because in the process of constructing them, as
one passes to the j →∞ limit, part of the mass may leak out at infinity.

16.2 Compensated Compactness and the div-curl Lemma

The theory of compensated compactness strives to classify bounded (weakly com-
pact) sets in L p space endowed with additional structure that falls short of (strong)
compactness but still manages to render certain nonlinear functions weakly continu-
ous. This is nicely illustrated by means of the following proposition, the celebrated
div-curl lemma, which commands a surprisingly broad gamut of applications.

16.2.1 Theorem. Given an open subset " of IRm , let {G j } and {Hj } be sequences
of vector fields in L2("; IRm) converging weakly to respective limits Ḡ and H̄ , as
j → ∞. Assume both {div G j } and {curl Hj } lie in compact subsets of W−1,2(").
Then

(16.2.1) G j · Hj → Ḡ · H̄ , as j →∞,

in the sense of distributions.
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Proof. It will suffice to establish (16.2.1) for " bounded. Moreover, on account of
G j · H̄ → Ḡ · H̄ , we may assume, without loss of generality, that H̄ = 0.

Let � j ∈ W 1,2
0 ("; IRm) ∩ W 2,2

loc ("; IRm) denote the solution of the boundary-
value problem#� j = Hj in",� j = 0 on ∂". Then {� j } converges to zero weakly

in W 2,2
loc , and hence {div� j } converges to zero weakly in W 1,2

loc . On the other hand,

since #(curl� j ) = curl Hj , {curl� j } converges to zero strongly in W 1,2
loc .

We now set

(16.2.2) Vj = Hj − grad div� j

and observe that, for α = 1, . . . ,m,

(16.2.3) Vjα =
m∑
β=1

∂β(∂β� jα − ∂α� jβ),

so that {Vj } converges to zero strongly in L2
loc .

With the help of (16.2.2), we obtain

(16.2.4) G j · Hj = G j · Vj + div[(div� j )G j ] − (div� j )(div G j ).

Each term on the right-hand side of (16.2.4) tends to zero, in the sense of distribu-
tions, as j →∞, and this establishes (16.2.1). The proof is complete.

In the applications, the following technical result is often helpful for verifying
the hypotheses of Theorem 16.2.1.

16.2.2 Lemma. Let " be an open subset of IRm and {φ j } a bounded sequence in
W−1,p("), for some p > 2. Furthermore, let φ j = χ j + ψ j , where {χ j } lies in a
compact set of W−1,2("), while {ψ j } lies in a bounded set of the space of measures
M("). Then {φ j } lies in a compact set of W−1,2(").

Proof. Consider the (unique) functions g j and h j in W 1,2
0 (") which solve the equa-

tions

(16.2.5) #g j = χ j , #h j = ψ j .

By standard elliptic theory, {g j } lies in a compact set of W 1,2
0 (") while {h j } lies

in a compact set of W 1,q
0 ("), for 1 < q < m

m−1 . Since φ j = #(g j + h j ), {φ j } is

contained in a compact set of W−1,q("). But {φ j } is bounded in W−1,p("), with
p > 2, hence, by interpolation between W−1,q and W−1,p, it follows that {φ j } lies
in a compact set of W−1,2("). The proof is complete.
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16.3 Measure-Valued Solutions for Systems of Conservation Laws
and Compensated Compactness

Consider a system of conservation laws,

(16.3.1) ∂tU + ∂x F(U ) = 0 ,

and suppose {Uk} is a sequence of approximate solutions in an open subset " of IR2,
namely

(16.3.2) ∂tUk + ∂x F(Uk)→ 0 , as k →∞ ,

in the sense of distributions on ". For example, {Uk} may have been derived via the
vanishing viscosity approach, that is Uk = Uµk , with µk ↓ 0 as k →∞, where Uµ

is the solution of the parabolic system

(16.3.3) ∂tUµ + ∂x F(Uµ) = µ∂2
x Uµ .

When {Uk} lies in a bounded set of L∞("; IRn), following the discussion in
Section 16.1, one may extract a subsequence {U j }, associated with a family of Young
probability measures {νx,t : (x, t) ∈ "} such that h(U j ) ⇀< ν, h >, as j →∞, in
L∞ weak∗, for any continuous h. In particular, by account of (16.3.2),

(16.3.4) ∂t< νx,t ,U > +∂x< νx,t , F(U ) >= 0 .

One may thus interpret νx,t as a new type of weak solution for (16.3.1):

16.3.1 Definition. A measure-valued solution for the system of conservation laws
(16.3.1), in an open subset " of IR2, is a measurable family {νx,t : (x, t) ∈ "} of
probability measures which satisfies (16.3.4) in the sense of distributions on ".

Clearly, any traditional weak solution U ∈ L∞("; IRn) of (16.3.1) may be
identified with the measure-valued solution νx,t = δU (x,t) . However, the class of
measure-valued solutions is definitely broader than the class of traditional solutions.
For instance, if U and V are any two traditional solutions of (16.3.1) in L∞("; IRn),
then for any fixed α ∈ (0, 1),

(16.3.5) νx,t = αδU (x,t) + (1− α)δV (x,t)

defines a nontraditional, measure-valued solution.
At first glance, the notion of measure-valued solution may appear too broad to

be relevant. However, abandoning the premise that solutions should assign at each
point (x, t) a specific value to the state vector provides the means for describing
effectively a class of physical phenomena, such as phase transitions, where at the
macroscopic level a mixture of phases may occupy the same point in space-time.
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We shall not develop these ideas here, but rather regard measure-valued solutions as
stepping stones towards constructing traditional solutions.

The notion of admissibility naturally extends from traditional to measure-valued
solutions. The measure-valued solution νx,t on " is said to satisfy the entropy ad-
missibility condition, relative to the entropy-entropy flux pair (η, q) of (16.3.1), if

(16.3.6) ∂t< νx,t , η(U ) > +∂x< νx,t , q(U ) >≤ 0,

in the sense of distributions on ".
Returning to our earlier example, suppose νx,t is generated through a sequence

{Uµ j } of solutions to the parabolic system (16.3.3). If (η, q) is any entropy-entropy
flux pair for (16.3.1), multiplying (16.3.3) by Dη(Uµ) and using (7.4.1) yields the
identity

(16.3.7) ∂tη(Uµ)+ ∂x q(Uµ) = µ∂2
xη(Uµ)− µ∂xU�

µ D2η(Uµ)∂xUµ .

In particular, when η is convex the last term on the right-hand side of (16.3.7) is
nonpositive. We thus conclude that any measure-valued solution νx,t of (16.3.1),
constructed by the vanishing viscosity approach relative to (16.3.3), satisfies the en-
tropy admissibility condition (16.3.6), for any entropy-entropy flux pair (η, q) with
η convex.

Lest it be thought that admissibility suffices to reduce measure-valued solutions
to traditional ones, it should be noted that when two traditional solutions U and
V satisfy the entropy admissibility condition for an entropy-entropy flux pair (η, q),
then so does also the nontraditional measure-valued solution νx,t defined by (16.3.5).
On the other hand, admissibility may be an agent for uniqueness and stability in the
framework of measure-valued solutions as well. In that direction, it has been shown
(references in Section 16.9) that any measure-valued solution νx,t of a scalar conser-
vation law, on the upper half-plane, that satisfies the entropy admissibility condition
for all convex entropy-entropy flux pairs, and whose initial values are Dirac masses,
νx,0 = δu0(x) for some u0 ∈ L∞(−∞,∞), necessarily reduces to a traditional solu-
tion, i.e., νx,t = δu(x,t) , where u is the unique admissible solution of the conservation
law with initial data u(x, 0) = u0(x). In particular, this implies that for scalar con-
servation laws any measure-valued solution constructed by the vanishing viscosity
approach, with traditional initial data, reduces to a traditional solution.

Returning to the system (16.3.1), a program will be outlined for verifying that the
measure-valued solution induced by the family of Young measures {νx,t : (x, t) ∈ "}
associated with a sequence {U j } of approximate solutions reduces to a traditional
solution. This program will then be implemented for special systems. As already
noted in Section 1.9, when (16.3.1) is hyperbolic, approximate solutions may develop
sustained rapid oscillations, which prevent strong convergence of the sequence {U j }.
Thus, our enterprise is destined to fail, unless the approximate solutions somehow
embody a mechanism that quenches oscillations. From the standpoint of the theory
of compensated compactness, such a mechanism is manifested in the condition
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(16.3.8) ∂tη(U j )+ ∂x q(U j ) ⊂ compact set in W−1,2
loc ("),

for any entropy-entropy flux pair (η, q) of (16.3.1).
To see the implications of (16.3.8), consider any two entropy-entropy flux pairs

(η1, q1) and (η2, q2). As j →∞ , the sequences {η1(U j )}, {η2(U j )}, {q1(U j )} and
{q2(U j )} converge to η̄1=<ν, η1> , η̄2=<ν, η2>, q̄1=<ν, q1 > and q̄2=<ν, q2 >,
respectively, where for brevity we set νx,t = ν. By (16.3.8), both
div(q2(U j ), η2(U j )) and curl(η1(U j ),−q1(U j )) lie in compact sets of W−1,2

loc (").
Hence, on account of Theorem 16.2.1,

(16.3.9) η1(U j )q2(U j )− η2(U j )q1(U j ) ⇀ η̄1q̄2 − η̄2q̄1, as j →∞,

in L∞(") weak∗, or equivalently

(16.3.10) < ν, η1 >< ν, q2 > − < ν, η2 >< ν, q1 >=< ν, η1q2 − η2q1 > .

The plan is to use (16.3.10), for strategically selected entropy-entropy flux pairs,
in order to demonstrate that the support of the Young measure ν is confined to a single
point. Clearly, such a program may have a fair chance for success only when there
is flexibility to construct entropy-entropy flux pairs with prescribed specifications.
For all practical purposes, this requirement limits the applicability of the method to
scalar conservation laws, systems of two conservation laws, and the special class of
systems of more than two conservation laws that are endowed with a rich family
of entropies (see Section 7.4). On the other hand, the method offers considerable
flexibility in regard to construction scheme, as it requires only that the approximate
solutions satisfy (16.3.8).

For illustration, let us verify (16.3.8) for the case of a system (16.3.1) endowed
with a uniformly convex entropy, " is the upper half-plane, and the sequence {U j } of
approximate solutions is generated by the vanishing viscosity approach, U j = Uµ j ,
where Uµ is the solution of (16.3.3) on the upper half-plane, with initial data

(16.3.11) Uµ(x, 0) = U0µ(x), −∞ < x <∞,

lying in a bounded set of L∞(−∞,∞) ∩ L2(−∞,∞).
Let η be a uniformly convex entropy, so that D2η(U ) is positive definite. We can

assume 0 ≤ η(U ) ≤ c|U |2, since otherwise we simply substitute η by the entropy
η∗(U ) = η(U ) − η(0) − Dη(0)U . Upon integrating (16.3.7) over the upper half-
plane, we obtain the estimate

(16.3.12) µ

∫ ∞

0

∫ ∞

−∞
|∂xUµ(x, t)|2dxdt ≤ a,

where a is independent of µ.
Consider now any, not necessarily convex, entropy-entropy flux pair (η, q), and

fix some open bounded subset " of the upper half-plane. Let us examine (16.3.7).
The left-hand side is bounded in W−1,p("), for any 1 ≤ p < ∞. The right-hand
side is the sum of two terms: By virtue of (16.3.12), the first term tends to zero, as
µ ↓ 0, in W−1,2("), and thus lies in a compact set of W−1,2("). The second term
lies in a bounded set of M("), again by account of (16.3.12). Therefore, (16.3.8)
follows from Lemma 16.2.2.
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16.4 Scalar Conservation Laws

Here we shall see how the program outlined in the previous section may be realized
in the case of the scalar conversation law

(16.4.1) ∂t u + ∂x f (u) = 0.

16.4.1 Theorem. Let " be an open subset of IR2 and {uk(x, t)} a bounded sequence
in L∞(") with

(16.4.2) ∂tη(uk)+ ∂x q(uk) ⊂ compact set in W−1,2
loc ("),

for any entropy-entropy flux pair of (16.4.1). Then there is a subsequence {u j } such
that

(16.4.3) u j ⇀ ū, f (u j ) ⇀ f (ū), as j →∞,

in L∞ weak∗. Furthermore, if the set of u with f ′′(u) �= 0 in dense in IR, then {u j }
converges almost everywhere to ū on ".

Proof. By applying Theorem 16.1.1, we extract the subsequence {u j } and the as-
sociated family of Young measures ν = νx,t so that h(u j ) ⇀< ν, h > , for
any continuous function h. Thus, u j ⇀ ū =< ν, u > and f (u j ) ⇀< ν, f > .
We thus have to show <ν, f >= f (ū); and that ν reduces to the Dirac mass when
there is no interval on which f ′(u) is constant.

We employ (16.3.10) for the particular entropy-entropy flux pairs (u, f (u)) and
( f (u), g(u)), where

(16.4.4) g(u) =
∫ u

0
[ f ′(v)]2dv,

to get

(16.4.5) < ν, u >< ν, g > − < ν, f >< ν, f >=< ν, ug − f 2 > .

From Schwarz’s inequality,

(16.4.6) [ f (u)− f (ū)]2 ≤ (u − ū)[g(u)− g(ū)],
we deduce

(16.4.7) < ν, [ f (u)− f (ū)]2 − (u − ū)[g(u)− g(ū)] >≤ 0.

Upon using (16.4.5), (16.4.7) reduces to

(16.4.8) [< ν, f > − f (ū)]2 ≤ 0,

whence < ν, f >= f (ū). In particular, the left-hand side of (16.4.7) will van-
ish. Hence, (16.4.6) must hold as an equality for u in the support of ν. However,
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Schwarz’s inequality (16.4.6) may hold as equality only if f ′ is constant on the inter-
val with endpoints ū and u. When no such interval exists, the support of ν collapses
to a single point and ν reduces to the Dirac mass δū . The proof is complete.

As indicated in the previous section, one may generate a sequence {uk} that satis-
fies the assumptions of Theorem 16.4.1 by the method of vanishing viscosity, setting
uk = uµk , µk → 0 as k →∞, where uµ is the solution of

(16.4.9) ∂t uµ + ∂x f (uµ) = µ∂2
x uµ ,

on the upper half-plane, with initial data

(16.4.10) uµ(x, 0) = u0µ(x), −∞ < x <∞,

that are uniformly bounded in L∞(−∞,∞) ∩ L2(−∞,∞). Indeed, the resulting
{uk} will be bounded in L∞, since ‖uµ‖L∞ ≤ ‖u0µ‖L∞ by the maximum principle.
Moreover, (16.4.2) will hold for all entropy-entropy flux pairs (η, q), by the general
argument of Section 16.3, which applies here, in particular, because (16.4.1) pos-
sesses the uniformly convex entropy u2. Finally, µ∂2

x uµ → 0, as µ ↓ 0, in the sense
of distributions. We thus arrive at the following

16.4.2 Theorem. Suppose u0µ ⇀ u0 , as µ ↓ 0, in L∞(−∞,∞) weak∗. Then
there is a sequence {µ j }, µ j → 0 as j → ∞, such that the sequence {uµ j } of
solutions of (16.4.9), (16.4.10) converges in L∞ weak∗ to some function ū, which is
a solution of (16.4.1), on the upper half-plane, with initial value ū(x, 0) = u0(x) on
(−∞,∞). Furthermore, if the set of u with f ′′(u) �= 0 is dense in IR, then {uµ j }, or
a subsequence thereof, converges almost everywhere to ū on the upper half-plane.

16.5 A Relaxation Scheme for Scalar Conservation Laws

The aim here is to pass to the limit, as µ ↓ 0, in the system (5.2.18), with the help of
the theory of compensated compactness. Such an exercise may serve a dual purpose:
For the case one is interested in (5.2.18) itself, as a model for some physical process,
it will demonstrate relaxation to local equilibrium governed by the scalar conser-
vation law (16.4.1). As a byproduct, it will establish that solutions to the Cauchy
problem for (16.4.1) exist, and will suggest a method for computing them. For the
latter purpose, it shall be advantageous to make the non-relaxed system (5.2.18) as
simple as possible, namely semilinear,

(16.5.1)

⎧⎨⎩
∂t u(x, t)+ ∂xv(x, t) = 0

∂tv(x, t)+ a2∂x u(x, t)+ 1
µ [v(x, t)− f (u(x, t))] = 0,

where a is some positive constant. In order to simplify the analysis, we shall deal
here with this semilinear system. At this point it may be helpful for the reader to
review the introduction to relaxation theory presented in Section 5.2.
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We assume f ′ is bounded and select a sufficiently large so that the strict subchar-
acteristic condition (recall (5.2.29))

(16.5.2) −a + δ < f ′(u) < a − δ, u ∈ (−∞,∞),

holds, for some δ > 0. We normalize v by postulating f (0) = 0.
Entropy-entropy flux pairs (η(u, v), q(u, v)) for (16.5.1) satisfy the linear hyper-

bolic system

(16.5.3)

⎧⎨⎩qu(u, v)− a2ηv(u, v) = 0

qv(u, v)− ηu(u, v) = 0,

with general solution

(16.5.4)

⎧⎨⎩η(u, v) = r(au + v)+ s(au − v)

q(u, v) = ar(au + v)− as(au − v).

The subcharacteristic condition (16.5.2) implies that the curve v = f (u) is
nowhere characteristic for the system (16.5.3), and hence, given any entropy-entropy
flux pair (η̂(u), q̂(u)) for the scalar conservation law (16.4.1), one may construct an
entropy-entropy flux pair (η(u, v), q(u, v)) for (16.5.1) with Cauchy data

(16.5.5) η(u, f (u)) = η̂(u), q(u, f (u)) = q̂(u), u ∈ (−∞,∞).

Differentiating (16.5.5) with respect to u and using that q̂ ′(u) = η̂′(u) f ′(u), together
with (16.5.3) and (16.5.2), we deduce that ηv(u, f (u)) = 0. This, in turn, combined
with (16.5.5) and (16.5.4) yields

(16.5.6) r ′(au + f (u)) = s′(au − f (u)) = 1

2a
η̂′(u),

whence one determines r and s on IR, and thereby η and q on IR2 . In particular,
η̂′′ ≥ 0 on IR implies r ′′ ≥ 0, s′′ ≥ 0 on IR, and hence ηvv ≥ 0 on IR2 . Since
ηv(u, f (u)) = 0, we then conclude that the dissipativeness condition (5.2.4) holds:

(16.5.7) ηv(u, v)[v − f (u)] ≥ 0, (u, v) ∈ IR2 .

Under the stronger hypothesis η̂′′(u) ≥ β > 0, u ∈ IR, (16.5.7) becomes stricter:

(16.5.8) ηv(u, v)[v − f (u)] ≥ γ |v − f (u)|2 , (u, v) ∈ IR2 ,

with γ > 0.
We have now laid the groundwork for establishing the existence of solutions to

the Cauchy problem for (16.5.1) and for passing to the limit, as µ ↓ 0.

16.5.1 Theorem. Under the subcharacteristic condition (16.5.2), the Cauchy prob-
lem for the system (16.5.1), with initial data
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(16.5.9) (uµ(x, 0), vµ(x, 0)) = (u0µ(x), v0µ(x)), −∞ < x <∞,

in L∞(−∞,∞) ∩ L2(−∞,∞), possesses a bounded (weak) solution (uµ, vµ) on
the upper half-plane. Furthermore,

(16.5.10)
1

µ

∫ ∞

0

∫ ∞

−∞
[vµ − f (uµ)]2dxdt ≤ b

∫ ∞

−∞
[u2

0µ(x)+ v2
0µ(x)]dx,

where b is independent of µ.

Proof. Since (16.5.1) is semilinear hyperbolic, a local solution (uµ, vµ) exists and
may be continued for as long as it remains bounded in L∞. Furthermore, if (η, q) is
any entropy-entropy flux pair,

(16.5.11) ∂tη(uµ, vµ)+ ∂x q(uµ, vµ)+ 1

µ
ηv(uµ, vµ)[vµ − f (uµ)] = 0.

We construct the entropy-entropy flux pair (ηm, qm), induced by (16.5.5), with
η̂(u) = |u|m , m = 2, 3, . . ., and normalized by ηm(0, 0) = 0, qm(0, 0) = 0. Notice
that, necessarily, the first derivatives of ηm also vanish at the origin. We integrate
(16.5.11) over (−∞,∞)× [0, t] and use (16.5.7) to get

(16.5.12)
∫ ∞

−∞
ηm(uµ(x, t), vµ(x, t))dx ≤

∫ ∞

−∞
ηm(u0µ(x), v0µ(x))dx .

By (16.5.6) and (16.5.2), it follows easily that (ĉ|w|)m ≤ rm(w) ≤ (Ĉ |w|)m and
(ĉ|w|)m ≤ sm(w) ≤ (Ĉ |w|)m , whence

(16.5.13) cm(|u|m + |v|m) ≤ ηm(u, v) ≤ Cm(|u|m + |v|m), (u, v) ∈ IR2.

Therefore, raising (16.5.12) to the power 1
m and letting m → ∞ we conclude

that ‖uµ(· , t)‖L∞(−∞,∞) and ‖vµ(· , t)‖L∞(−∞,∞) are bounded in terms of
‖u0µ(·)‖L∞(−∞,∞) and ‖v0µ(·)‖L∞(−∞,∞), uniformly in t and µ. Thus the solution
(uµ, vµ) exists on the entire upper half-plane.

Next we write (16.5.11) for the entropy-entropy flux pair (η2, q2), and integrate
it over (−∞,∞) × [0,∞). For this case, the stronger dissipativeness inequality
(16.5.8) applies and thus we deduce (16.5.10). The proof is complete.

16.5.2 Theorem. Consider the family {(uµ, vµ)} of solutions of the Cauchy problem
(16.5.1), (16.5.9), where {(u0µ, v0µ)} is bounded in L∞(−∞,∞) ∩ L2(−∞,∞)

and u0µ → u0 , as µ ↓ 0, in L∞ weak∗ . Then there is a sequence {µ j }, with µ j ↓ 0
as j → ∞, such that {(uµ j , vµ j )} converges, in L∞ weak∗ , to (ū, f (ū)), where ū
is a solution of (16.4.1), on the upper half-plane, with initial value ū(x, 0) = u0(x)
on (−∞,∞). Furthermore, if the set of u with f ′′(u) �= 0 is dense in IR, then
{(uµ j , vµ j )} converges to (ū, f (ū)), almost everywhere on the upper half-plane.

Proof. By Theorem 16.5.1, {(uµ, vµ)} is contained in a bounded set of the space
L∞((−∞,∞)× [0,∞)).
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We fix any entropy-entropy flux pair (η̂, q̂) for (16.4.1), consider the entropy-
entropy flux pair (η, q) for (16.5.1) generated by solving the Cauchy problem
(16.5.3), (16.5.5), and use (16.5.11) to write

(16.5.14) ∂t η̂(uµ)+ ∂x q̂(uµ)

= ∂t [η(uµ, f (uµ))− η(uµ, vµ)] + ∂x [q(uµ, f (uµ))− q(uµ, vµ)]

− 1
µηv(uµ, vµ)[vµ − f (uµ)].

By virtue of (16.5.10), both η(uµ, f (uµ))−η(uµ, vµ) and q(uµ, f (uµ))−q(uµ, vµ)
tend to zero in L2 , as µ ↓ 0. Therefore, the first two terms on the right-hand side of
(16.5.14) tend to zero in W−1,2, as µ ↓ 0. On the other hand, the third term lies in a
bounded set of L1 , again on account of (16.5.10), recalling that ηv(u, f (u)) = 0.

We now fix any sequence {µk}, with µk ↓ 0 as k → ∞, and set (uk, vk) =
(uµk , vµk ). In virtue of the above, Lemma 16.2.2 implies that (16.4.2) holds for any
entropy-entropy flux pair (η̂, q̂) of (16.4.1), where " is the upper half-plane. Theo-
rem 16.4.1 then yields (16.4.3), for some subsequence {u j }. In turn, (16.4.3) together
with (16.5.10) imply v j → f (ū), in L∞ weak∗ . In particular, ū is a solution of
(16.4.1), with initial values u0 , because of (16.5.1)1 .

When the set of u with f ′′(u) �= 0 is dense in IR, {u j } converges to ū almost
everywhere, on account of Theorem 16.4.1. It then follows from (16.5.10) that, like-
wise, {v j } converges to f (ū) almost everywhere. The proof is complete.

By combining (16.5.11), (16.5.7), (16.5.10) and (16.5.5), we infer that, at least in
the case where {u j } converges almost everywhere, the limit ū will satisfy the entropy
admissibility condition, for any entropy-entropy flux pair (η̂, q̂), with η̂ convex.

Notice that Theorem 16.5.2 places no restriction on the initial values v0µ of vµ ,
save for the requirement that they be bounded. In particular, v0µ may lie far apart
from its local equilibrium value f (u0µ). In that situation vk must develop a boundary
layer across t = 0.

The reader should be warned that compensated compactness is not the most ef-
ficient method for handling the simple system (16.5.1). Indeed, it has been shown
(references in Section 16.9) that if (uµ, vµ) and (ūµ, v̄µ) is any pair of solutions of
(16.5.1), with corresponding initial values (u0, v0) and (ū0, v̄0), then

(16.5.15)

�∫
−�
{|uµ(x, t)− ūµ(x, t)| + |vµ(x, t)− v̄µ(x, t)|}dx

≤ (1+ a)2

a

�+at∫
−�−at

{|u0(x)− ū0(x)| + |v0(x)− v̄0(x)|}dx

holds, for any � > 0 and t > 0. Armed with this estimate, one may easily estab-
lish compactness in L1 as well as in BV , and then pass to the µ ↓ 0 relaxation
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limit. Nevertheless, at the time of this writing, compensated compactness is the only
approach that works for the nonlinear system (5.2.18), because no analog to the esti-
mate (16.5.15) is currently known for that case.

16.6 Genuinely Nonlinear Systems of Two Conservation Laws

The program outlined in Section 16.3 will here be implemented for genuinely non-
linear systems (16.3.1) of two conservation laws. In particular, our system will be
endowed with a coordinate system of Riemann invariants (z, w), normalized as in
(12.1.2), and the condition of genuine nonlinearity will be expressed by (12.1.3),
namely λz < 0 and µw > 0. Moreover, the system will be equipped with a rich
family of entropy-entropy flux pairs, including the Lax pairs constructed in Section
12.2, which will play a pivotal role in the analysis.

We show that the entropy conditions, in conjunction with genuine nonlinearity,
quench rapid oscillations:

16.6.1 Theorem. Let " be an open subset of IR2 and {Uk(x, t)} a bounded sequence
in L∞("; IR2) with

(16.6.1) ∂tη(Uk)+ ∂x q(Uk) ⊂ compact set in W−1,2
loc ("),

for any entropy-entropy flux pair (η, q) of (16.3.1). Then there is a subsequence {U j }
which converges almost everywhere on ".

Proof. By applying Theorem 16.1.1, we extract a subsequence {U j } and identify
the associated family of Young measures νx,t . We have to show that, for almost all
(x, t), the support of νx,t is confined to a single point and so this measure reduces to
the Dirac mass. It will be expedient to monitor the Young measure on the plane of
the Riemann invariants (z, w), rather than in the original state space.

We thus let ν denote the Young measure at any fixed point (x, t) ∈ ", relative to
the (z, w) variables, and consider the smallest rectangle R = [z−, z+] × [w−, w+]
that contains the support of ν. We need to show z− = z+ and w− = w+. Arguing
by contradiction, assume z− < z+.

We consider the Lax entropy-entropy flux pairs (12.2.5), which will be here la-
beled (ηk, qk), so as to display explicitly the dependence on the parameter k. We shall
use the ηk as weights for redistributing the mass of ν, reallocating it near the bound-
ary of R. To that end, with each large positive integer k we associate probability
measures ν±k on R, defined through their action on continuous functions h(z, w):

(16.6.2) < ν±k , h >= < ν, hη±k >

< ν, η±k >
.

Because of the factor ekz in the definition of ηk , the measure ν−k (or ν+k ) is con-
centrated near the left (or right) side of R. As k → ∞, the sequences {ν−k } and
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{ν+k }, or subsequences thereof, will converge, weakly∗ in the space of measures, to
probability measures ν− and ν+, which are respectively supported by the left edge
[z−] × [w−, w+] and the right edge [z+] × [w−, w+] of R.

We apply (16.3.10) for any fixed entropy-entropy flux pair (η, q) and the Lax
pairs (η±k, q±k) to get

(16.6.3) < ν, q > −< ν, q±k >

< ν, η±k >
< ν, η >= < ν, η±kq − ηq±k >

< ν, η±k >
.

From (12.2.5) and (12.2.7) we infer

(16.6.4) q±k = [λ+ O(
1

k
)]η±k .

Therefore, letting k →∞ in (16.6.3) yields

(16.6.5) < ν, q > − < ν±, λ >< ν, η >=< ν±, q − λη > .

Next, we apply (16.3.10) for the Lax pairs (η−k, q−k) and (ηk, qk), thus obtaining

(16.6.6)
< ν, qk >

< ν, ηk >
− < ν, q−k >

< ν, η−k >
= < ν, η−kqk − ηkq−k >

< ν, η−k >< ν, ηk >
.

By (16.6.4), the left-hand side of (16.6.6) tends to < ν+, λ > − < ν−, λ > , as
k →∞. On the other hand, the right-hand side tends to zero, because the numerator
is O(k−1) while

(16.6.7) < ν, η±k > ≥ c exp[± 1
2 (z

− + z+)].
Hence,

(16.6.8) < ν−, λ >=< ν+, λ > .

Combining (16.6.5) with (16.6.8),

(16.6.9) < ν−, q − λη >=< ν+, q − λη > .

We apply (16.6.9) for (η, q) = (ηk, qk). On account of (12.2.12), for k large,

(16.6.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< ν−, qk − ληk > ≤ C

1

k
exp(kz−)

< ν+, qk − ληk > ≥ c
1

k
exp(kz+),

which yields the desired contradiction to z− < z+. Similarly one shows w− = w+,
so that R collapses to a single point. The proof is complete.

The stumbling block in employing the above theorem for constructing solutions
to our system (16.3.1) is that, at the time of this writing, it has not been established
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that sequences of approximate solutions, produced by any of the available schemes,
are bounded in L∞. Thus, boundedness has to be imposed as an extraneous (and
annoying) assumption. On the other hand, once boundedness is taken for granted, it
is not difficult to verify the other requirement of Theorem 16.6.1, namely (16.6.1).
In particular, when the sequence of Uk is generated via the vanishing viscosity ap-
proach, as solutions of the parabolic system (16.3.3), condition (16.6.1) follows di-
rectly from the discussion in Section 16.3, because genuinely nonlinear systems of
two conservation laws are always endowed with uniformly convex entropies. For ex-
ample, as shown in Section 12.2, under the normalization condition (12.1.4), the Lax
entropy ηk is convex, for k sufficiently large. We thus have

16.6.2 Theorem. Forµ > 0, let Uµ denote the solution on the upper half-plane of the
genuinely nonlinear parabolic system of two conservation laws (16.3.3) with initial
data (16.3.11), where U0µ ⇀ U0 in L∞(−∞,∞) weak∗, as µ ↓ 0. Suppose the
family {Uµ} lies in a bounded subset of L∞. Then, there is a sequence {µ j }, µ j → 0
as j → ∞, such that {Uµ j } converges, almost everywhere on the upper half-plane,
to a solution Ū of (16.3.1) with initial value Ū (x, 0) = U0(x) , −∞ < x <∞.

One obtains entirely analogous results for sequences of approximate solutions gen-
erated by a class of one-step difference schemes with a three-point domain of depen-
dence:

(16.6.11) U (x, t +#t)−U (x, t)

= α

2
G(U (x, t),U (x +#x, t))− α

2
G(U (x −#x, t),U (x, t)),

where α = #t/#x is the ratio of mesh-lengths and G, possibly depending on α,
is a function which satisfies the consistency condition G(U,U ) = F(U ). The class
includes the Lax-Friedrichs scheme, with

(16.6.12) G(V,W ) = 1

2
[F(V )+ F(W )] + 1

α
(V −W ),

and also the Godunov scheme, where G(V,W ) denotes the state in the wake of the
solution to the Riemann problem for (16.3.1), with left state V and right state W .
The condition of uniform boundedness on L∞ of the approximate solutions has to
be extraneously imposed in these cases as well.

16.7 The System of Isentropic Elasticity

The assertion of Theorem 16.6.1 is obviously false when the system (16.3.1) is linear.
On the other hand, genuine nonlinearity is far too strong a restriction: It may be
allowed to fail along a finite collection of curves in state space, so long as these
curves intersect transversely the level curves of the Riemann invariants. This will
be demonstrated here in the context of the system (7.1.8) of conservation laws of
one-dimensional, isentropic thermoelasticity,
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(16.7.1)

⎧⎨⎩ ∂t u − ∂xv = 0

∂tv − ∂xσ(u) = 0,

under the assumption σ ′′(u) �= 0 for u �= 0, but σ ′′(0) = 0, so that genuine nonlin-
earity fails along the line u = 0 in state space. Nevertheless, the analog of Theorem
16.6.1 still holds:

16.7.1 Theorem. Let " be an open subset of IR2 and {(uk, vk)} a bounded sequence
in L∞("; IR2) with

(16.7.2) ∂tη(uk, vk)+ ∂x q(uk, vk) ⊂ compact set in W−1,2
loc ("),

for any entropy-entropy flux pair (η, q) of (16.7.1). Then there is a subsequence
{(u j , v j )} which converges almost everywhere on ".

Proof. As in the proof of Theorem 16.6.1, we extract a subsequence {(u j , v j )} and
identify the associated family of Young measures νx,t . We fix (x, t) in" and monitor
the Young measure ν at (x, t) relative to the Riemann invariants

(16.7.3) z =
∫ u

0
[σ ′(ω)] 1

2 dω + v, w = −
∫ u

0
[σ ′(ω)] 1

2 dω + v.

We need to show that the smallest rectangle R = [z−, z+]× [w−, w+] that contains
the support of ν collapses to a single point.

By retracing the steps in the proof of Theorem 16.6.1, that do not depend on
the genuine nonlinearity of the system, we rederive (16.6.9). The remainder of the
argument will depend on the relative positions of R and the straight line z = w along
which genuine nonlinearity fails.

Suppose first the line z = w does not intersect the right edge of R, that is,
z+ �∈ [w−, w+]. In that case, (16.6.10) are still in force, yielding z− = z+. Hence R
collapses to [z+] × [w−, w+], which, according to our assumption, lies entirely in
the genuinely nonlinear region and so by the familiar argument w− = w+, verifying
the assertion of the theorem. Similar arguments apply when the line z = w misses
any one of the other three edges of R.

It thus remains to examine the case where the line z = w intersects all four edges
of R, i.e. z− = w− and z+ = w+. Even in that situation, by virtue of (12.2.12),
qk −ληk does not change sign along [z−]× [w−+ ε,w+] and [z+]× [w−, w+− ε],
so the familiar argument still goes through, showing z− = z+, unless the measures
ν− and ν+ are respectively concentrated in the vertices (z−, w−) and (z+, w+).
When that happens, (16.6.9) reduces to

(16.7.4) q(z−, w−)−λ(z−, w−)η(z−, w−) = q(z+, w+)−λ(z+, w+)η(z+, w+).
In particular, let us apply (16.7.4) for the trivial entropy-entropy flux pair (u,−v). At
the “southwestern” vertex, u− = 0 and v− = z− = w−, while at the “northeastern”
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vertex, u+ = 0 and v+ = z+ = w+. Hence, (16.7.4) yields z− = z+ = w− = w+.
The proof is complete.

Smoothness of σ(u) cannot be generally relaxed as examples indicate that the
assertion of the above proposition may break down when σ ′′(u) is discontinuous at
u = 0.

In particular, Theorem 16.7.1 applies when the elastic medium responds like a
“hard spring”, that is, σ is concave at u < 0 and convex at u > 0:

(16.7.5) uσ ′′(u) > 0, u �= 0.

For that case, it is possible to establish L∞ bounds on the approximate solutions
constructed by the vanishing viscosity method, namely, as solutions to a Cauchy
problem

(16.7.6)

⎧⎨⎩ ∂t uµ − ∂xvµ = µ∂2
x uµ

∂tvµ − ∂xσ(uµ) = µ∂2
x vµ ,

(16.7.7) (uµ(x, 0), vµ(x, 0)) = (u0µ(x), v0µ(x)), −∞ < x <∞.

16.7.2 Theorem. Under the assumption (16.7.5), for any M > 0, the set UM , defined
by

(16.7.8) UM = {(u, v) : −M ≤ z(u, v) ≤ M, −M ≤ w(u, v) ≤ M},
where z and w are the Riemann invariants (16.7.3) of (16.7.1), is a (positively) in-
variant region for solutions of (16.7.6), (16.7.7).

Proof. The standard proof is based on the maximum principle. An alternative proof
will be presented here, which relies on entropies and thus is closer to the spirit of
the hyperbolic theory. It has the advantage of requiring less regularity for solutions
of (16.7.6). Moreover, it readily extends to any other approximation scheme, which,
like (16.7.6), is dissipative under convex entropies of (16.7.1).

For the system (16.7.1), the equations (7.4.1) that determine entropy-entropy flux
pairs (η, q) reduce to

(16.7.9)

⎧⎨⎩qu(u, v) = −σ ′(u)ηv(u, v)

qv(u, v) = −ηu(u, v).

Notice that (16.7.9) admits the family of solutions

(16.7.10) ηm(u, v) = Ym(u) cosh(mv)− 1,

(16.7.11) qm(u, v) = − 1

m
Y ′m(u) sinh(mv),
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where m = 1, 2, · · · and Ym is the solution of the ordinary differential equation

(16.7.12) Y ′′m(u) = m2σ ′(u)Ym(u), −∞ < u <∞,

with initial conditions

(16.7.13) Ym(0) = 1, Y ′m(0) = 0.

A simple calculation gives

(16.7.14) ηmuuηmvv − η2
muv ≥ m2[m2σ ′Y 2

m − Y ′2m ] .
Moreover, by virtue of (16.7.12),

(16.7.15) [m2σ ′Y 2
m − Y ′2m ]′ = m2σ ′′Y 2

m .

Consequently, (16.7.5) implies that the right-hand side of (16.7.14) is positive
and hence ηm(u, v) is a convex function on IR2. Furthermore, ηm(0, 0) = 0 and
ηmu(0, 0) = ηmv(0, 0) = 0, so that ηm(u, v) is positive definite.

Next we examine the asymptotics of ηm(u, v) as m → ∞. The change of vari-
ables (u, Ym) �→ (ξ, Xm):

(16.7.16) ξ =
∫ u

0
[σ ′(ω)] 1

2 dω,

(16.7.17) Xm = (σ ′)
1
4 Ym ,

transforms (16.7.12) into

(16.7.18) Ẍm = m2 Xm + [ 1
4 (σ

′)−2σ ′′′ − 5
16 (σ

′)−3(σ ′′)2]Xm ,

with asymptotics, derived by the variation of parameters formula,

(16.7.19) Xm(ξ) =
[
σ ′(0)

1
4 + O

(
1

m

)]
cosh(mξ),

as m →∞, and for ξ confined in any fixed bounded interval.
Upon combining (16.7.10) with (16.7.17), (16.7.19), (16.7.16) and (16.7.3), we

deduce

(16.7.20) lim
m→∞ ηm(u, v)

1
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp[z(u, v)], if u > 0 , v > 0,

exp[w(u, v)], if u < 0 , v > 0,

exp[−w(u, v)], if u > 0 , v < 0,

exp[−z(u, v)], if u < 0 , v < 0.
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We now consider the solution (uµ, vµ) of (16.7.6), (16.7.7), where (u0µ, v0µ)

lie in L2(−∞,∞) and take values in the region UM , defined by (16.7.8). We write
(16.3.7), with Uµ = (uµ, vµ), η = ηm , q = qm , and integrate it over the strip
(−∞,∞)× [0, t], to get

(16.7.21)
∫ ∞

−∞
ηm(uµ(x, t), vµ(x, t))dx ≤

∫ ∞

−∞
ηm(u0µ(x), v0µ(x))dx .

Raising (16.7.21) to the power 1/m, letting m → ∞ and using (16.7.20), we con-
clude that (uµ(·, t), vµ(·, t)) takes values in the region UM . The proof is complete.

The above proposition, in conjunction with Theorem 16.7.1, yields an existence
theorem for the system (16.7.1), which is free from extraneous assumptions:

16.7.3 Theorem. Let (uµ, vµ) be the solution of the initial-value problem (16.7.6),
(16.7.7), on the upper half-plane, where (u0µ, v0µ) ⇀ (u0, v0) in L∞(−∞,∞)

weak∗. Under the condition (16.7.5), there is a sequence {µ j }, µ j → 0 as j →∞,
such that {(uµ j , vµ j )} converges almost everywhere on the upper half-plane to a
solution (ū, v̄) of (16.7.1) with initial values (ū(x, 0), v̄(x, 0)) = (u0(x), v0(x)), for
−∞ < x <∞.

The assumption (16.7.5) and the use of the special, artifical viscosity (16.7.6) are
essential in the proof of Theorem 16.7.3, because they appear to be indispensable for
establishing uniform L∞ bounds on approximate solutions. At the same time, it is
interesting to know whether one may construct solutions to (16.7.1) by passing to the
zero viscosity limit in the system (8.6.3) of viscoelasticity, or at least in the model
system

(16.7.22)

⎧⎨⎩
∂t uµ − ∂xvµ = 0

∂tvµ − ∂xσ(uµ) = µ∂2
x vµ ,

which is close to it.
Even though we do not have uniform L∞ estimates for solutions of (16.7.22), as

this system is not dissipative with respect to all convex entropies of (16.7.1), we still
have a number of estimates of L p type, the most prominent among them being the
“energy inequality” induced by the physical entropy-entropy flux pair (7.4.10). It is
thus natural to inquire whether the method of compensated compactness is applicable
in conjunction with such estimates. Of course, this would force us to abandon L∞
and consider Young measures in the framework of L p, a possibility already raised
in Section 16.1. It turns out that this approach is effective for the problem at hand,
albeit at the expense of elaborate analysis, so just the conclusion shall be recorded
here. The proof is found in the references cited in Section 16.9.

16.7.4 Theorem. Consider the system (16.7.22), where (a) σ ′(u) ≥ σ0 > 0, for
−∞ < u < ∞; (b) σ ′′ may vanish at most at one point on (−∞,∞); (c) σ ′(u)
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grows like |u|α , as |u| → ∞, for some α ≥ 0; and (d) σ ′′(u) and σ ′′′(u) grow no
faster than |u|α−1, as |u| → ∞. Let (uµ, vµ) be the solution of the Cauchy problem
(16.7.22), (16.7.7), where {(u0µ, v0µ)} are functions in W 1,2(−∞,∞), which have
uniformly bounded total energy,

(16.7.23)
∫ ∞

−∞
[ 1

2v
2
0µ(x)+ e(u0µ)]dx ≤ a,

have relatively tame oscillations,

(16.7.24) µ

∫ ∞

−∞
[v′0µ(x)]2dx → 0, as µ→ 0,

and converge, u0µ → u0 , v0µ → v0 , as µ→ 0, in the sense of distributions. Then
there is a sequence {µ j }, µ j → 0 as j → ∞, such that {(uµ j , vµ j )} converges
in L p

loc , for any 1 < p < 2, to a solution (ū, v̄) of (16.7.1) with initial values
(ū(x, 0), v̄(x, 0)) = (u0(x), v0(x)), −∞ < x <∞.

16.8 The System of Isentropic Gas Dynamics

The system (7.1.10) of isentropic gas dynamics, for a polytropic gas, in Eulerian
coordinates, the first hyperbolic system of conservation laws ever to be derived, has
served over the past two centuries as proving ground for testing the theory. It is
thus fitting to conclude this work with the application of the method of compensated
compactness to that system.

It is instructive to monitor the system simultaneously in its original form (7.1.10),
with state variables density ρ and velocity v, as well as in its canonical form

(16.8.1)

⎧⎪⎪⎨⎪⎪⎩
∂tρ + ∂x m = 0

∂t m + ∂x [m
2

ρ
+ κργ ] = 0,

with state variables density ρ and momentum m = ρv. The physical range for den-
sity is 0 ≤ ρ <∞, while v and m may take any values in (−∞,∞).

For convenience, we scale the state variables so that κ = (γ − 1)2/4γ , and set
θ = 1

2 (γ − 1), in which case the characteristic speeds (7.2.10) and the Riemann
invariants (7.3.3) assume the form

(16.8.2) λ = −θρθ + v = −θρθ + m

ρ
, µ = θρθ + v = θρθ + m

ρ
,

(16.8.3) z = −ρθ + v = −ρθ + m

ρ
, w = ρθ + v = ρθ + m

ρ
.
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It is not difficult to construct sequences of approximate solutions taking values
in compact sets of the state space [0,∞)× (−∞,∞). For example, one may follow
the vanishing viscosity approach relative to the system

(16.8.4)

⎧⎪⎪⎨⎪⎪⎩
∂tρµ + ∂x mµ = µ∂2

xρµ

∂t mµ + ∂x [
m2
µ

ρµ
+ κργµ] = µ∂2

x mµ ,

which admits the family of (positively) invariant regions

(16.8.5) UM = {(ρ,m) : ρ ≥ 0, −M ≤ z(ρ,m) ≤ w(ρ,m) ≤ M}.
Furthermore, solutions of (16.8.4) on the upper half-plane, with initial data that are
bounded in L∞(−∞,∞) ∩ L2(−∞,∞), satisfy

(16.8.6) ∂tη(ρµ,mµ)+ ∂x q(ρµ,mµ) ⊂ compact set in W−1,2
loc ,

for any entropy-entropy flux pair (η, q) of (16.8.1). Approximate solutions with anal-
ogous properties are also constructed by finite difference schemes, such as the Lax-
Friedrichs scheme and the Godunov scheme. They all lead to the following existence
theorem:

16.8.1 Theorem. For any γ > 1, there exists a bounded solution (ρ, v) of the system
(7.1.10) on the upper half-plane, with assigned initial value

(16.8.7) (ρ(x, 0), v(x, 0)) = (ρ0(x), v0(x)), −∞ < x <∞,

where (ρ0, v0) are in L∞(−∞,∞) and ρ0(x) ≥ 0, for−∞ < x <∞. Furthermore,
the solution satisfies the entropy admissibility condition

(16.8.8) ∂tη(ρ,m)+ ∂x q(ρ,m) ≤ 0,

for any entropy-entropy flux pair (η, q) of (16.8.1), with η(ρ,m) convex.

The proof employs (16.3.10) to establish that the support of the Young measure,
associated with a sequence of approximate solutions, either reduces to a single point
in state space or is confined to the axis ρ = 0 (vacuum state).

As function of (ρ, v), any entropy η of (7.1.10) satisfies the integrability condi-
tion

(16.8.9) ηρρ = θ2ργ−3ηvv .

The above equation is singular along the axis ρ = 0, and the nature of the singularity
changes as one crosses the threshold γ = 3. Accordingly, different arguments have
to be used for treating the cases γ < 3 and γ > 3.

Of relevance here are the so-called weak entropies, which vanish at ρ = 0. They
admit the representation
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(16.8.10) η(ρ, v) =
∫ ∞

−∞
χ(ρ, ξ − v)g(ξ)dξ,

where

(16.8.11) χ(ρ, v) =
⎧⎨⎩ (ρ

2θ − v2)s , if ρ2θ > v2

0, if ρ2θ ≤ v2 ,

with s = 1
2

3−γ
γ−1 . Thus χ is the fundamental solution of (16.8.9) under initial condi-

tions η(0, v) = 0, ηρ(0, v) = δ0(v).
As already noted in Section 2.5, the classical kinetic theory predicts the value

γ = 1 + 2
n for the adiabatic exponent of a gas with n degrees of freedom. When

the number of degrees of freedom is odd, n = 2� + 1, the exponent s in (15.8.11)
is the integer �. In this special situation the analysis of weak entropies and thereby
the reduction of the Young measure is substantially simplified. However, even in that
simpler case the proof is quite technical and shall be relegated to the references cited
in Section 15.9. Only the degenerate case γ = 3 will be presented here.

For γ = 3, i.e. θ = 1, (16.8.2) and (16.8.3) yield λ = z and µ = w, in which
case the two characteristic families totally decouple. In particular, (12.2.1) reduce to
qz = zηz , qw = wηw , so that there are entropy-entropy flux pairs (η, q) which
depend solely on z, for example (2z, z2) and (3z2, 2z3).

Suppose now a sequence {(ρµk ,mµk )} of solutions of (16.8.4), with µk → 0 as
k →∞, induces a weakly convergent subsequence {(z j , w j )} of Riemann invariants
with associated family νx,t of Young measures. We fix (x, t), set νx,t = ν and apply
(16.3.10) for the two entropy-entropy flux pairs (2z, z2) and (3z2, 2z3) to get

(16.8.12) 4 < ν, z >< ν, z3 > −3 < ν, z2 >< ν, z2 >=< ν, z4 > .

Next we consider the inequality

(16.8.13) z4 − 4z3 z̄ + 6z2 z̄2 − 4zz̄3 + z̄4 = (z − z̄)4 ≥ 0,

where z̄ =< ν, z > , and apply the measure ν to it, thus obtaining

(16.8.14)
< ν, z4 > −4 < ν, z3 >< ν, z > +6 < ν, z2 >< ν, z >2 −3 < ν, z >4≥ 0.

Combining (16.8.14) with (16.8.12) yields

(16.8.15) −3[< ν, z2 > − < ν, z >2]2 ≥ 0,

whence < ν, z2 >=< ν, z >2. Therefore, {z j } converges strongly to z̄ =< ν, z > .

Similarly one shows that {w j } converges strongly to w̄ =< ν,w > . In particular,
(z̄, w̄) induces a solution (ρ̄, v̄) of (7.1.10) by ρ̄ = 1

2 (w̄ − z̄) and v̄ = 1
2 (w̄ + z̄).
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16.9 Notes

The method of compensated compactness was introduced by Murat [1] and Tartar
[1,2]. The program of employing the method for constructing solutions to hyperbolic
conservation laws was designed by Tartar [2,3], who laid down the fundamental con-
dition (16.3.10) and demonstrated its use in the context of the scalar case. The first
application to systems, due to DiPerna [6], provided the impetus for intensive de-
velopment of these ideas, which has produced a substantial body of research. The
presentation here only scratches the surface. A clear introduction is also found in
the lecture notes of Evans [1], the text by Hörmander [2], the monograph by Malek,
Neças, Rokyta and Růžička [1], as well as the treatise by M.E. Taylor [2]. For more
detailed, and deeper development of the subject the reader is referred to the book by
Serre [11] and the recent monograph by Lu [1]. An informative presentation of cur-
rent research trends in the area is provided by the survey article by Gui-Qiang Chen
[8].

The Young measure was introduced in L.C. Young [1]. The presentation here fol-
lows Ball [2], where the reader may find generalizations beyond the L∞ framework,
as well as commentary and references to alternative constructions.

For an introduction to the theory of compensated compactness, see the lecture
notes of Tartar [1,2,3]. The div-curl lemma is due to Murat and Tartar. The proof
presented here is taken from Evans [1]. Lemma 16.2.2 is generally known as Murat’s
lemma (Murat [2]).

The notion of a measure-valued solution is due to DiPerna [11]. For further de-
velopments of the theory and applications to the construction of solutions to sys-
tems of conservation laws, including those of mixed type modeling phase transitions,
see Chen and Frid [2], Coquel and LeFloch [1], Demengel and Serre [1], Frid [2],
Poupaud and Rascle [1], Roytburd and Slemrod [1], Schochet [2], and Szepessy [1].

The scalar conservation law was first treated via the method of compensated
compactness by Tartar [2]. The clever argument employed in the proof of Theorem
16.4.1 was discovered, independently, by Tartar (private communication to the author
in May 1986) and by Chen and Lu [1]. See also Vecchi [1]. The scalar conservation
law is treated in the L p framework by Yang, Zhu and Zhao [1].

Schonbek [2] considers a scalar balance law with singular source.
The Cauchy problem for scalar conservation laws in several spatial dimensions

can also be solved in L∞ by the method of compensated compactness (DiPerna [11],
Szepessy [2]). An alternative approach, combining a kinetic formulation with ideas
from the theory of compensated compactness is carried out in Hwang and Tzavaras
[1].

The competition between viscosity and dispersion, in scalar conservation laws,
is investigated by Schonbek [1] in one-space dimension, and by Kondo and LeFloch
[2], LeFloch and Natalini [1], and Hwang and Tzavaras [1] in several space dimen-
sions.

The active investigation of relaxation for hyperbolic conservation laws, in re-
cent years, has produced voluminous literature, so it would be impossible to include
here an exhaustive list of references. The survey paper by Natalini [3] contains an
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extensive bibliography. A number of relevant references have already been recorded
in Sections 5.6 and 6.11. A seminal role in the development of the theory was played
by the work of Liu [21], motivated by Whitham [2]. The method of compensated
compactness was first employed in this context by Chen and Liu [1] and by Chen,
Levermore and Liu [1], for systems of two conservation laws whose relaxed form
is the scalar conservation law. The particular efficacy (for theoretical and computa-
tional purposes) of the semilinear system (16.5.1) was first recognized by Jin and Xin
[1]. The treatment of that system in Section 16.5 is an adaptation of the analysis in
Chen, Levermore and Liu [1], Lattanzio and Marcati [1,2], and Coquel and Perthame
[1]. For related results, see Collet and Rascle [1] and Klingenberg and Lu [1]. Fur-
thermore, Lu and Klingenberg [1], Tzavaras [3,4], Gosse and Tzavaras [1], Serre
[15], and Lattanzio and Serre [2] apply the method of compensated compactness to
systems of three or four conservation laws whose relaxed form is a system of two
conservation laws. The L1-Lipschitz estimate (16.5.15) for the semilinear system
(16.5.1) which leads to a treatment of the relaxation problem in the framework of the
space BV , is due to Natalini [1]. Existence of BV solutions on the upper half-plane
for the nonlinear system (5.2.18) has been established by Dafermos [22], but BV es-
timates independent of µ that would allow passing to the relaxation limit, as µ ↓ 0,
are currently known only for the special case p(u) = −u−1 (Luo, Natalini and Yang
[1], Amadori and Guerra [2]). For other special systems that have been treated in
BV , see Tveito and Winther [2], and Luo and Natalini [1]. Interesting contributions
to relaxation theory also include Coquel and Perthame [1], Marcati and Natalini [1],
Marcati and Rubino [1], Luo [1], Luo and Xin [1], and Luo and Yang [2].

The treatment of the genuinely nonlinear system of two conservation laws, in
Section 16.6, and the system of isentropic elasticity with a single inflection point,
in Section 16.7, follows the pioneering paper of DiPerna [8]. See also Gripenberg
[1] and Chen, Li and Li [1]. Counterexamples to Theorem 16.7.1, when σ ′′(u) is
discontinuous at u = 0, are exhibited in Greenberg [3] and Greenberg and Rascle
[1].

The system of isentropic elasticity was treated in the L p framework by J.W.
Shearer [1], Peixiong Lin [1] and Serre and Shearer [1]. An alternative, original
construction of solutions in L∞ (Demoulini, Stuart and Tzavaras [1]) is based on
the observation that the system resulting from discretizing the time variable can be
solved through a variation principle. The initial-boundary-value problem in L∞ is
solved by Heidrich [1].

The theory of invariant regions via the maximum principle is due to Chueh, Con-
ley and Smoller [1] (see also Hoff [2]). A systematic discussion, with several exam-
ples, is found in Serre [11]. The connection between stability of relaxation schemes
and existence of invariant regions is discussed in Serre [15]. The proof of Theorem
16.7.2 is taken from Dafermos [13]. See also Serre [3] and Venttsel’ [1].

The system of isentropic gas dynamics was first treated by the method of com-
pensated compactness in DiPerna [9], for the special values γ = 1+ 2

n , n = 2�+ 1,
of the adiabatic exponent. Subsequently, G.-Q. Chen [1] and Ding, Chen and Luo
[1] extended the analysis to any γ within the range (1, 5

3 ]. For a survey, see Gui-
Qiang Chen [2]. The case γ ≥ 3 was solved by Lions, Perthame and Tadmor [1],
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and the full range 1 < γ < ∞ is covered in Lions, Perthame and Souganidis [1].
The isothermal case, γ = 1, is singular and was treated by Huang and Wang [2], and
LeFloch and Shelukhin [1]. The argument presented here, for the special case γ = 3,
was communicated to the author by Gui-Qiang Chen. Extra regularity for this special
value of γ is shown by Vasseur [1]. The more general, genuinely nonlinear system
(7.1.9), for a nonpolytropic gas, was treated by Chen and LeFloch [2,3] under the
assumption that near the vacuum state the pressure function p(ρ), together with its
first four derivatives, behave like κργ .

The approach of Serre [2,11] has rendered the method of compensated com-
pactness sufficiently flexible to treat systems of two conservation laws even when
characteristic families are linearly degenerate, strict hyperbolicity fails, etc. The con-
struction of solutions to many interesting systems is effected in Chen [6], Chen and
Glimm [1,2], Chen and Tian-Hong Li [1], Dehua Wang [1], Chen and Kan [1], Kan
[1], Kan, Santos and Xin [1], Heibig [2], Lu [1], Marcati and Natalini [1,2], Rubino
[1], and Zhao [1]. Since the analysis relies heavily on the availability of a rich family
of entropies, the application of the method to systems of more than two conserva-
tion laws is presently limited to special systems in which the shock and rarefaction
wave curves coincide for all but at most two characteristic families (Benzoni-Gavage
and Serre [1]) and to the system of nonisentropic gas dynamics for a very special
equation of state (Chen and Dafermos [1], Chen, Li and Li [1]).

For a variety of systems, the large time behavior of solutions with initial values
that are either periodic or L1 perturbations of Riemann data is established in Chen
and Frid [1,3,4,6], by combining scale invariance with compactness. The method of
compensated compactness has also been employed to demonstrate that the large time
behavior of solutions to the Euler equations with frictional damping is governed by
the porous media equation; see Serre and Xiao [1], Huang and Pan [1,2,3]. For the
large time behavior of solutions to systems with relaxation, see Serre [19,20].

The kinetic formulation, which was applied effectively in Chapter VI to scalar
conservation laws in several spatial dimensions, has been successfully extended to
certain systems of conservation laws in one-space dimension, including the Euler
equations of isentropic gas flow (Berthelin and Bouchut [1]) as well as the system
of isentropic elastodynamics (Perthame and Tzavaras [1], Tzavaras [5]). A detailed
discussion and a comprehensive list of references is found in the monograph by
Perthame [2]. Refined properties of solutions are derived by combining the kinetic
formulation with techniques from the theory of compensated compactness. In partic-
ular, for strictly hyperbolic systems of two conservation laws, Tzavaras [5] obtains
an explicit formula for the coupling of oscillations between the two characteristic
fields.

Valuable insight on the effects of nonlinearity in hyperbolic conservation laws
is gained from the investigation of how the solution operator interacts with highly
oscillatory initial data, say U0ε(x) = V (x, x/ε), where V (x, ·) is periodic and ε

is a small positive parameter. When the system is linear, the rapid oscillations are
transported along characteristics and their amplitude is not attenuated. On the op-
posite extreme, when the system is strictly hyperbolic and genuinely nonlinear, the
results of Sections 16.4 and 16.6 indicate that, as ε → 0, the resulting family of
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solutions Uε(x, t) contains sequences which converge strongly to solutions with ini-
tial value the weak limit of {U0ε}, that is for t > 0 the solution operator quenches
high frequency oscillations of the initial data. It is interesting to investigate inter-
mediate situations, where some characteristic families may be linearly degenerate,
strict hyperbolicity fails, etc. Following the study of many particular examples (cf.
Bonnefille [1], Chen [3,4,5], E[1], Heibig [1], Rascle [1], and Serre [5,8]), a coherent
theory of propagation of oscillations seems to be emerging (Serre [11]).

There is a well-developed theory of propagation of oscillations based on the
method of weakly nonlinear geometric optics which derives asymptotic expansions
for solutions of hyperbolic systems under initial data oscillating with high frequency
and small amplitude. Following the pioneering work of Landau [1], Lighthill [1],
and Whitham [1], extensive literature has emerged, of purely formal, semirigorous
or rigorous nature, dealing with the cases of a single phase, or possibly resonating
multiphases, etc. See, for example, Choquet-Bruhat [1], Hunter and Keller [1,2],
Majda and Rosales [1], Majda, Rosales and Schonbek [1], Pego [1], Hunter [1], Joly,
Métivier and Rauch [1,3], and Cheverry [1]. It is remarkable that the asymptotic ex-
pansions remain valid even after shocks develop in the solution; see DiPerna and
Majda [1], Schochet [5] and Cheverry [2]. A survey is found in Majda [5] and a
systematic presentation is given in Serre [11].
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perbolique de lois de conservation monodimensionels. Comm. PDE 15 (1990),
59-80.

Duhem, P.

1. Recherches sur l’ hydrodynamique. Ann. Toulouse 3 (1901), 315-377.

E, Weinan

1. Propagation of oscillations in the solutions of 1−d compressible fluid equations.
Comm. PDE 17 (1992), 347-370.

2. Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM
J. Appl. Math. 52 (1992), 959-972.



Bibliography 561

3. Aubry-Mather theory and periodic solutions of the forced Burgers equation.
Comm. Pure Appl. Math. 52 (1999), 811–828.

E, Weinan, Khanin, K., Mazel, A. and Ya. G. Sinai

1. Invariant measures for Burgers equation with stochastic forcing. Ann. of Math.
151 (2000), 877–960.

E, Weinan, Rykov, Yu. and Ya. G. Sinai

1. Generalized variational principles, global existence of weak solutions and behav-
ior with random initial data for systems of conservation laws arising in adhesion
particle dynamics. Comm. Math. Phys. 177 (1996), 349-380.

E, Weinan and D. Serre

1. Correctors for the homogenization of conservation laws with oscillatory forcing
terms. Asymptotic Analysis 5 (1992), 311-316.

Earnshaw, S.

1. On the mathematical theory of sound. Trans. Royal Soc. London 150 (1860), 133-
148.

Ehrt, J. and J. Härterich

1. Asymptotic behavior of spatially inhomogeneous balance laws. J. Hyperbolic
Diff. Eqs. (To appear).

Engquist, B. and B. Gustafsson (eds.)

1. Third International Conference on Hyperbolic Problems, Vols. I-II. Lund:
Chartwell-Bratt 1991.

Engquist, B. and Weinan E

1. Large time behavior and homogenization of solutions of two-dimensional con-
servation laws. Comm. Pure Appl. Math. 46 (1993), 1-26.

Ercole, G.

1. Delta-shock waves as self-similar viscosity limits. Quart. Appl. Math. 58 (2000),
177–199.

Euler, L.
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6. Systèmes hyperboliques riches de lois de conservation. Nonlinear PDE’s and
their Applications, ed. H. Brézis and J.-L. Lions, Harlow: Longman, 1992.

7. Integrability of a class of systems of conservation laws. Forum Math. 4 (1992),
607-623.
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9. Écoulements de fluides parfaits en deux variables indépendantes de type espace.
Réflexion d’un choc plan par un dièdre compressif. Arch. Rational Mech. Anal.
132 (1995), 15–36.

10. Ondes spirales pour le problème de Riemann 2-D d’un fluide compressible. Ann.
Fac. Sci. Toulouse Math. 5 (1996), 125–135.
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109–130.
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Wendroff, B.

1. The Riemann problem for materials with nonconvex equation of state I;II.
J. Math. Anal. Appl. 38 (1972), 454-466; 640-658.

2. An analysis of front tracking for chromatography. Acta Appl. Math. 30 (1993),
265-285.

Weyl, H.

1. Shock waves in arbitrary fluids. Comm. Pure Appl. Math. 2 (1949), 103-122.



Bibliography 609

Whitham, G.B.

1. The flow pattern of a supersonic projectile. Comm. Pure Appl. Math. 5 (1952),
301-348.

2. Linear and Nonlinear Waves. New York: Wiley-Interscience, 1974.

Williams, F.A.

1. Combustion Theory. Reading, MA: Addison-Wesley, 1965.

Wu, Zhuo-Qun

1. The ordinary differential equation with discontinuous right-hand members and
the discontinuous solutions of the quasilinear partial differential equations. Acta
Math. Sinica 13 (1963), 515-530. English translation: Scientia Sinica 13 (1964),
1901-1907.

Xin, Zhou Ping

1. On the linearized stability of viscous shock profiles for systems of conservation
laws. J. Diff. Eqs. 100 (1992), 119-136.

2. Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes
equations of compressible isentropic gases. Comm. Pure Appl. Math. 46 (1993),
621-665.

3. On nonlinear stability of contact discontinuities. Hyperbolic Problems: Theory,
Numerics, Applications, pp. 249-257, eds. J. Glimm, M.J. Graham, J.W. Grove
and B.J. Plohr. Singapore: World Scientific, 1996.

4. Viscous boundary layers and their stability. J. PDE 11 (1998), 97-124.

Xu, Xiangsheng

1. Asymptotic behavior of solutions of hyperbolic conservation laws ut+(um)x = 0
as m → ∞ with inconsistent initial values. Proc. Royal Soc. Edinburgh 113A
(1989), 61-71.

Yan, Baisheng

1. Cavitation solutions to homogeneous van der Waals type fluids involving phase
transitons. Quart. Appl. Math. 53 (1995), 721-730.

Yang, Tong

1. A functional integral approach to shock wave solutions of the Euler equations
with spherical symmetry, I. Comm. Math. Phys. 171 (1995), 607-638. II. J. Diff.
Eqs. 130 (1996), 162-178.

Yang, Tong, Zhu, Changjiang and Huijiang Zhao

1. Compactness framework of L p approximate solutions for scalar conservation
laws. J. Math. Anal. Appl. 220 (1998), 164-186.



610 Bibliography

Yang, Xiaozhou

1. Multi-dimensional Riemann problem of scalar conservation law. Acta Math. Sci-
entia 19 (1999), 190–200.

Yang, Xiaozhou and Feimin Huang

1. Two-dimensional Riemann problems of simplified Euler equation. Chinese Sci.
Bull. 43 (1998), 441–444.

Ying, Lung An and Ching Hua Wang

1. Global solutions of the Cauchy problem for a nonhomogeneous quasilinear hy-
perbolic system. Comm. Pure Appl. Math. 33 (1980), 579-597.

Yong, Wen-An

1. A simple approach to Glimm’s interaction estimates. Appl. Math. Letters 12
(1999), 29-34.

2. Boundary conditions for hyperbolic systems with stiff source terms. Indiana
U. Math. J. 48 (1999), 115–137.

3. Singular perturbations of first-order hyperbolic systems with stiff source terms.
J. Diff. Eqs. 155 (1999), 89–132.

4. Basic aspects of hyperbolic relaxation systems. Advances in the Theory of Shock
Waves, pp. 259–305, ed. H. Freistühler and A. Szepessy. Boston: Birkhäuser,
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Šilhavý, M., 49
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