
“Shock waves in conservation laws and reaction-diffusion equations”
This course was done in the Department of Mathematics at PUC-Rio during semester I, March–June 2023

by Yulia Petrova. It consists of three (in some sense) independent parts joined by the similar phenomema
— the solutions of the corresponding PDEs represent some “fronts” that are propagating with time:

• Part I: wave equation (derivation, D’Alambert formula, well-posedness, Duhamel principle, solution
by Fourier series)

• Part II: introduction to conservation laws (weak solution, Rankine-Hugoniot condition, entropy con-
ditions, existence of solutions to scalar conservation law with convex flux function, exact solution
to Riemann problem, existence of solutions to a strictly hyperbolic genuinely nonlinear system of
conservation laws)

• Part III: introduction to reaction–diffusion equations (maximum principle for linear parabolic PDEs,
comparison principle, travelling wave solutions, invasion/extinction theorems for reaction-diffusion
equations with monostable and bistable nonlinearities in unbounded domains, asymptotic speed of
propagation)

In this file I have collected all the materials around the course. All (possible numerous) errors are entirely
mine, and I will be happy if you tell me about them through the email: yu.pe.petrova@yandex.ru.
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1 Questions for the exam.

Part 1: Around wave equation.

1. Wave equation: “physical” derivation (balls
and springs).

2. Wave equation: derivation from general princi-
ples.

3. D’Alambert’s formula for 1D wave equation,
and well-posedness of Cauchy problem on real
line.

4. Inhomogeneous wave equation. Duhamel prin-
ciple.

5. Mixed initial-boundary value problem for wave
equation: existence and uniqueness of solution.

6. Mixed initial-boundary value problem for wave
equation: solution by a Fourier series.

Part 2: Conservation and balance laws.

7. Fluid flow: Eulerian vs. Lagrangian point of
view; flow map; incompressibility condition.

8. Fluid flow: scalar transport equation, conser-
vation of mass.

9. Scalar conservation law. Weak form of solution.
Rankine-Hugoniot condition.

10. Burgers equation: blow-up in finite time, ex-
plicit solutions to different Riemann problems,
multiplicity of solutions, definition of entropy
solution, irreversibility.

11. Scalar conservation law with convex flux func-
tion: various interpretations of entropy condi-
tion (Lax, Liu, vanishing viscosity).

12. Scalar conservation law with convex flux func-
tion: theorem on existence of entropy solu-
tion. Lemmas 1 and 2 describing properties for
discrete approximation (boundedness, entropy
condition).

13. Scalar conservation law with convex flux func-
tion: theorem on existence of entropy solution.
Lemmas 3, 4 and 5 describing properties for dis-
crete approximation (space and time estimates,
stability).

14. Scalar conservation law with convex flux func-
tion: theorem on existence of entropy solution.
Lemma 6 on convergence and properties of the
limiting solution.

15. Scalar conservation law with convex flux func-
tion: theorem on existence of entropy solution.
Lemmas 7 and 8 on properties of the limiting
solution.

16. Scalar conservation law with convex flux func-
tion: uniqueness of entropy solution. General
plan of proof without technical details.

17. Scalar conservation law with convex flux func-
tion: uniqueness of entropy solution. Proof
that |ψm

x | is bounded using the entropy con-
dition.

18. Scalar conservation law with convex flux func-
tion: solution to a Riemann problem for two
cases (ul < ur and ul > ur).

19. Systems of conservation laws: weak solution,
Rankine–Hugoniot condition, notion of hyper-
bolic and strictly hyperbolic systems, examples.

20. Systems of conservation laws: notion of gen-
uinely nonlinear and linearly degenerate char-
acteristic family; simple waves. Theorem on
existence of k-rarefaction wave.

21. Systems of conservation laws: notion of shock
curves (Hugoniot locus). Theorem on structure
of shock waves (property (iii) without proof).
Notion of Lax admissibility criteria for shocks.

22. Systems of conservation laws: notion of k-
contact discontinuity. Theorem on linear de-
generacy (shock and rarefaction curves coin-
cide). Example (linear wave equation).

23. Systems of conservation laws: theorem on local
solvability of a Riemann problem for strictly
hyperbolic systems (each characteristic family
is genuinely nonlinear or linearly degenerate).

24. Systems of conservation laws: entropy
criteria (Lax, Liu, vanishing viscosity,
entropy/entropy-flux).

25. Buckley-Leverett equation (with S-shaped flux
function): solution to a Riemann problem for
two cases (ul < ur and ul > ur).



Part 3: Intro to reaction-diffusion equations.

26. Reaction-diffusion equations: probabilistic jus-
tification of laplacian, examples for nonlineari-
ties (FKPP, monostable, bistable, ignition) and
their interpretation in population dynamics.
Formulation of the initial-value problem.

27. Maximum principles for linear ODEs of the sec-
ond order with h ≡ 0 (with proofs).

28. Various versions of the maximum principles for
linear ODEs of the second order without the
assumption that h ≡ 0 (with proofs). Counter-
examples.

29. The idea of the “sliding method” on two exam-
ples.

30. Weak and strong maximum principle for lin-
ear parabolic PDEs for bounded domains with
Dirichlet boundary conditions (with proof).

31. Weak and strong maximum principle for lin-
ear parabolic PDEs for bounded domains with
Neumann/Robin boundary conditions (with
proof). Hopf lemma.

32. Notions of sub- and supersolution. Compari-
son theorems for parabolic PDEs (with proof).
Application on concrete examples.

33. Well-posedness of the scalar reaction-diffusion
equations (sketch of the proof for existence,

proof of uniqueness and continuous dependence
on initial data).

34. Theorem on existence of traveling wave solu-
tions to scalar reaction-diffusion equation with
monostable (in particular, FKPP) nonlinearity.
“Dynamical” proof (phase plane method).

35. Theorem on existence of traveling wave so-
lutions to scalar reaction-diffusion equation
with bistable nonlinearity. “Dynamical” proof
(phase plane method).

36. Theorem on existence of traveling wave solu-
tions to scalar reaction-diffusion equation with
monostable nonlinearity. “PDE” proof.

37. Theorem on existence of traveling wave solu-
tions to scalar reaction-diffusion equation with
bistable nonlinearity. “PDE” proof.

38. “Hair-trigger” effect for FKPP equation (with
proof).

39. Theorem on invasion for reaction-diffusion
equation with bistable nonlinearity (with
proof).

40. Theorem on extinction for reaction-diffusion
equation with bistable nonlinearity (with
proof).

41. Principle of asymptotic speed of propagation
(Aronson–Wienberger theorem, with proof).



2 Exercises (homework)

2.1 List of exercises 1. Deadline: 24 March 2023, 23:59.

1. Consider a wave equation on u(x, t):

utt − c2uxx = 0, x ∈ R, t ∈ R+.

Show that after the change of variables ξ = x− ct and η = x+ ct, the
wave equation becomes

vξη = 0,

where v(ξ, η) = u(x, t). As we have shown in the lecture this imme-
diately leads to the following general form of the solution of a wave
equation (as a sum of two travelling waves moving with opposite
speeds c and −c and having profiles f and g, respectively):

Join the group of
the course in Telegram!

u(x, t) = f(x− ct) + g(x+ ct).

2. Consider the following initial value problem for the Burgers equation:

ut +
(u2
2

)
x
= 0,

u(x, 0) = u0(x) =


1, x < 0,

1− x, x ∈ [0, 1],

0, x > 1.

(a) Using method of characteristics show that there exists time T , where at least two characteristic
lines intersect (thus we can not define a solution u at this point). Denote by T0 the first moment
of time when some of the characteristics intersect. We will refer to such a situation as a “blow-up
at time T0”.

(b) Calculate T0.

(c) Draw all the characteristic lines till time T0 in the (x, t)-plane.

3. Draw a solution of the Cauchy problem for the wave equation:

utt − c2uxx = 0,

u(x, 0) = φ(x),

ut(x, 0) = ψ(x),

for φ ≡ 0 and ψ depicted in figure on the right.
P.S. D’Alambert formula may help.

4. Consider a Cauchy problem for the inhomogeneous wave equation:

utt − c2uxx = h(x, t).

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

Derive that the solution u(x0, t0) takes the form:

u(x0, t0) =
φ(x0 − ct0) + φ(x0 + ct0)

2
+

1

2c

x0+ct0∫
x0−ct0

ψ(s) ds+
1

2c

∫∫
G

h(x, t) dxdt.

Here G = {(x, t) : t ∈ (0, t0) and x0 + c(t− t0) < x < x0 − c(t− t0)} is a triangular region (see figure).

P.S. Integrate the equation over G and use the Green-Gauss theorem.



2.2 List of exercises 2. Deadline: 7 April 2023, 23:59.

1. Find a Fourier series solution to the initial-boundary value problem (t > 0, x ∈ [a, b] ⊂ R):

utt − c2uxx = 0,

with initial conditions

u(x, 0) = φ(x) =

{
x, x ∈ [0, π/2]

π − x, x ∈ [π/2, π]
, ut(x, 0) = 0,

and boundary conditions: u(a, t) = u(b, t) = 0.

2. Assume that the vector field u is CtLipx, and let X(t, a) be a flow map, corresponding to particle
trajectories under the flow of u, that is:

∂tX(t, a) = u(t,X(t, a)), X(0, a) = a ∈ Rd.

Consider a flow map as a map: a 7→ X(t, a) for some fixed t > 0, and it’s Jacobian:

J(t, a) := det(∇aX)(t, a) =
d∑

i1,...,id=1

εi1,...,id
∂Xi1

∂a1
(t, a) · . . . · ∂Xid

∂ad
(t, a),

where εε1,...,εd denotes the standard Levi-Civita symbol, that is

εε1,...,εd =

{
sign(σ), in = σ(n) for all n ∈ 1, . . . , d and some permutation σ ∈ Sd

0, otherwise.

Prove that

∂tJ(t, a) = J(t, a) · div(u)(t,X(t, a)).

3. Compute explicitly the unique entropy solution of Burgers equation:

ut +
(u2
2

)
x
= 0,

u(x, 0) = u0(x) =


1, x < −1,

0, x ∈ [−1, 0],

2, x ∈ [0, 1],

0, x > 1.

Draw a picture documenting your answer, being sure to illustrate what happens for all times t > 0.



2.3 List of exercises 3. Deadline: 28 April 2023, 23:59.

1. (Irreversibility) Let the solution of the Burgers equation

ut +
(u2
2

)
x
= 0,

at t = 1 be equal to:

u(x, 1) =

{
1, x < 0,

0, x > 0.
(1)

Construct infinitely-many different initial conditions u(x, 0) (and draw them up to time t = 1) such
that at t = 1 the solution coincides with (1).

2. Consider a scalar conservation law (u ∈ R)

ut + (f(u))x = 0, (2)

and the following finite-difference approximation of it:

uk+1
n − 1

2(u
k
n+1 + ukn−1)

h
+
f(ukn+1)− f(ukn−1)

2l
= 0. (3)

Here ukn = u(xn, tk) is defined on the grid xn = nl, tk = kh, l = ∆x > 0, h = ∆t > 0 and l ∈ Z,
k ∈ N ∪ {0}. Let u(x, 0) = u0(x), and u

0
n = u0(xn), and M := ∥u0∥∞.

Prove that:

|ukn| ⩽M for all n ∈ Z, k ∈ N ∪ {0}.

3. Write a computer program, modelling (12), using an explicit finite-difference scheme defined in (3).

Show the graphs of the solution u(·, t) for the following Riemann problems (at several subsequent time
moments):

1) u(x, 0) =

{
0, x < 0,

1, x > 0.
2) u(x, 0) =

{
1, x < 0,

0, x > 0.

Consider two cases for the flux function f :

a) f(u) = 2u− u2; b) f(u) =
u2

u2 + (1− u)2
.

Give a theoretical explanation to the observed results in all four cases (1a, 1b, 2a, 2b).

P.S. In the implementation of the numerical scheme remember to check that the CFL (Courant-
Friedrichs-Lewy) condition is fulfilled:1

A ·∆t
∆x

< 1,

where A = max
u∈[0,1]

|f ′(u)|.

1This guarantees the convergence of the numerical scheme (3) to a solution of the original PDE (12).



2.4 List of exercises 4. Deadline: 26 May 2023, 23:59.

Let us concentrate on the systems of conservation laws (U ∈ Rm, m > 1, F : Rm → Rm):

Ut + F (U)x = 0. (4)

1. For a fixed state Ul ∈ Rm define a shock curve (shock set or Hugoniot locus) the set of all U , such
that the Rankine-Hugoniot condition is valid:

S(Ul) = {U ∈ Rm : ∃σ = σ(Ul, U) ∈ R such that F (U)− F (Ul) = σ · (U − Ul)}

As we have proven the set S(Ul) consists of the union of m smooth curves Sk(Ul), k = 1, . . . ,m.

Prove that as U → Ul and U ∈ Sk(Ul), we have:

σ(Ul, U) =
λk(U) + λk(Ul)

2
+O(|U − Ul|2).

Here λk(U) are the eigenvalues of the Jacobian matrix DF (U).

Hint: differentiate two times the Rankine–Hugonit condition at point Ul. Do the same for the expres-
sion for the eigenvalues and eigenvectors of DF :

DF (U)rk(U) = λk(U)rk(U).

Combine these two equalities.

2. Let w = (v, u) and let φ(w) be a smooth scalar function. Consider the system of conservation laws

wt + (φ(w)w)x = 0. (5)

(a) Find the characteristic speeds λ1 and λ2 and the associated eigenvectors r1 and r2 for this system.

(b) Let φ(w) = |w|2/2. Then find the solution of the Riemann problem:

U(x, 0) =

{
Ul, x < 0,

Ur, x > 0.
(6)



2.5 List of exercises 5. Deadline: 16 June 2023, 23:59.

We concentrate on the maximum principle for ODEs & parabolic PDEs and its applications.
Consider second order differential operator of the form:

L = − d2

dx2
+ g(x)

d

dx
+ h(x), x ∈ (a, b) ⊂ R.

We suppose u ∈ C2((a, b)) ∩ C([a, b]), g(x) and h(x) are bounded functions.

1. (One-dimensional maximum principles for h ̸≡ 0)

(a) Suppose that h ≥ 0 and max
x∈[a,b]

u(x) =M ≥ 0.

If Lu ≤ 0, then u can attain maximum M at some interior point c ∈ (a, b) only if u ≡M .

(b) Suppose that h ≤ 0 and max
x∈[a,b]

u(x) =M ≤ 0.

If Lu ≤ 0, then u can attain maximum M at some interior point c ∈ (a, b) only if u ≡M .

(c) Suppose that max
x∈[a,b]

u(x) =M = 0.

If Lu ≤ 0, then u can attain maximum M at some interior point c ∈ (a, b) only if u ≡M .

Hint: It is helpful to start with simpler lemma (with strict inequalities)

Lemma 1. Suppose that h ≥ 0 and max
x∈[a,b]

u(x) =M ≥ 0.

If Lu < 0, then u can attain maximum M only at the endpoints a or b.

2. (One-dimensional Hopf lemma for h ̸≡ 0)

Suppose that h ≥ 0 and max
x∈[a,b]

u(x) =M ≥ 0.

If Lu ≤ 0, then:

(a) if u(a) =M , then either u′(a) < 0 or u ≡M .

(b) if u(b) =M , then either u′(b) > 0 or u ≡M .

3. (Comparison theorem for semilinear parabolic equations)

Consider a semilinear parabolic operator of the form

Su := ∂tu−∆u+ F (t, x, u,∇u), x ∈ RN , t > 0.

Assume that F is C1 jointly in all of its arguments.

Let u be a subsolution (Su ≤ 0) and v be a supersolution (Sv ≥ 0).
If u(0, x) ≤ v(0, x), then u(t, x) ≤ v(t, x).

4. (Boundedness of solution to diffusive Burgers’ equation)
Let u ∈ C2(R× (0, T ])∩C1(R× [0, T ]) be a solution to the one-dimensional diffusive Burgers’ equation{

∂tu = uux + uxx, in R× (0, T ],

u = u0, on R× {0}.

Prove that u is bounded.

In the class we mentioned the following problems. I put them here and if you are interested you can
think how to solve them.

1. Consider a one-dimensional boundary value problem (L > 0):{
−u′′ = eu, x ∈ [0, L],

u(0) = u(L) = 0.
(7)

Show that there exists L1 > 0 such that for all 0 < L < L1 there exists a positive solution (in (0, 1))
of (7), and for all L > L1 there does not exist a positive solution of (7).



3 Problem solving classes

3.1 Exercise session №1, 4 April 2023.

In this session let us concentrate on the Burgers equation:

ut +
(u2
2

)
x
= 0, (8)

with different initial (or boundary) conditions.

Definition 1. A shock-wave solution, connecting states uL and uR and moving with speed c, is the solution
of the form (for some constant states uL and uR):

u(x, t) =

{
uL, x < ct,

uR, x > ct,

For a general single conservation law ut + (f(u))x = 0 there is a relation between uL, uR and c:

(Rankine-Hugoniot condition = RH) c =
f(uL)− f(uR)

uL − uR
. (9)

1. Construct a shock-wave solution to the Burgers equation with the following conditions

u(x, t) =

{
1, x = 0,

0, t = 0,

2. Consider the Burgers equation with the following initial conditions:

(Riemann problem) u(x, 0) =

{
0, x < 0,

1, x > 0.

Construct:

(a) a smooth self-similar solution of the form: u = v
(
x
t

)
;

(b) a shock-wave solution.

So we have at least two solutions! Which one is “correct”?

3. Construct infinitely-many solutions to the following initial-value problem:

(Riemann problem) u(x, 0) =

{
−1, x < 0,

+1, x > 0.

Remark 1. A natural question to ask is what EXTRA condition do we need to choose one solution?
Such condition is usually called an “entropy” condition. An example of such condition is as follows:
there exists a constant E ∈ R (independent of x, t and a):

u(x+ a, t)− u(x, t)

a
≤ E

t
, a > 0, t > 0. (10)

This condition implies that if we fix t > 0 and let x go from −∞ to +∞, then we can only jump down.

Let us call the solutions that satisfy condition (10) the “entropy” solutions.

4. Which of the solutions from exercises 1–3 are entropy solutions?

5. Construct an entropy solution to the Burgers equation with the following initial conditions

u(x, 0) =


0, x < 0,

1, x ∈ [0, 1],

0, x > 1,

Consider two cases: t ∈ [0, 2] and t ≥ 2.

6. (Irreversibility) Let the solution at t = 1 be equal to:

u(x, 1) =

{
1, x < 0,

0, x > 0.
(11)

Construct infinitely-many different initial conditions u(x, 0) (and draw them up to time t = 1) such
that at t = 1 the solution coincides with (11).



3.2 Exercise session №2, 5 May 2023.

In this session let us concentrate on the systems of conservation laws (U ∈ Rm, m > 1, F : Rm → Rm):

Ut + F (U)x = 0, (12)

with Riemann initial data (Ul, Ur ∈ Rm — fixed):

U(x, 0) =

{
Ul, x < 0,

Ur, x > 0.
(13)

1. Consider a linear wave equation wtt − c2wxx = 0.

It can be rewritten in the form (12) for U =
(
wx wt

)T
as follows:

Ut +AUx = 0, U =

(
v
u

)
A =

(
0 −1

−c2 0

)
(a) Find eigenvalues and eigenvectors of A;

(b) Show that for c ̸= 0 the system is strictly hyperbolic;

(c) Show that the system is linearly degenerate;

(d) Find explicit solution to (global) Riemann problem (13) for any Ul, Ur ∈ Rm.

2. Consider a nonlinear wave equation wtt − (p(wx))x = 0 with p′ < 0, p′′ > 0.

This model comes from gas dynamics, where p is the pressure and typically p(w) = w−γ for γ ≥ 1.

It can be rewritten in the form (12) for U =
(
wx wt

)T
as follows:

Ut + F (U)x = 0, U =

(
v
u

)
, F (U) =

(
−u
p(v)

)
, DF (U) =

(
0 −1

p′(v) 0

)
.

(a) Find eigenvalues and eigenvectors of DF (U);

(b) Show that if p′ ̸= 0 the system is strictly hyperbolic;

(c) Show that if p′′ ̸= 0 the system is genuinely nonlinear for each characteristic family;

(d) For fixed Ul find explicitly shock curves. Which part of them correspond to admissible shock
waves (according to Lax admissibility criterion)? Draw 1-shock and 2-shock curves in (v, u)-
plane. Draw 1-shock and 2-shock waves in (x, t)-plane.

(e) For fixed Ul find explicitly rarefaction curves. Which part of them correspond to rarefaction
waves? Draw 1-rarefaction and 2-rarefaction curves in (v, u)-plane. Draw 1-rarefaction and 2-
rarefaction waves in (x, t)-plane.

(f) Show that shock and rarefaction curves from items (d) and (e) divide the neighbourhood of Ul

into 4 regions. Draw the solution to a (local) Riemann problem in (x, t)-plane considering Ur lies
in one of these 4 regions.

(g*) Show that if

∞∫
vl

√
−p′(y) dy = ∞,

then there exists a solution to a global Riemann problem, that is for any Ul and Ur (not necessarily
sufficiently close to each other). Is it unique?



3.3 Exercise session №3, 19 May 2023.

In this session let’s concentrate on the applications of the maximum principle for ODEs with second order
differential operators of the form:

L = − d2

dx2
+ g(x)

d

dx
+ h(x), x ∈ (a, b) ⊂ R.

Here g(x) and h(x) are bounded functions.

Theorem 1 (maximum principle). Let h ≡ 0 and Lu ≤ 0. Then if there exists c ∈ (a, b) such that
u(c) = maxu(x) for x ∈ [a, b], then u ≡ maxu(x).

1. Does the differential operator L defined on the interval [a, b] ⊂ R provide a maximum principle?
That is: if for u ∈ C2[a, b] ∩ C0(a, b) we have Lu ≤ 0, then maximum of u on [a, b] is obtained on the
boundary (either at x = a or at x = b).

a) L = − d2

dx2
− 1; b) L = − d2

dx2
+ 1.

An important application of (different forms of) maximum principle is the following comparison principle
for sub and supersolutions.

Theorem 2. Let f ∈ C1((a, b)× R), and let u be a subsolution and v be a supersolution, that is:

Lu ≤ f(x, u); Lv ≥ f(x, u).

Then if u(x) ≤ v(x) for all x ∈ [a, b], and there exists c ∈ (a, b) such that u(c) = v(c), then u ≡ v.

In other words, a sub-solution and a super-solution can not touch at a point: either u ≡ v or u < v.
This “untouchability” of a sub-solution and a super-solution is very helpful. See problems 2 and 3 (and the
so-called sliding method).

2. Consider the boundary-value problem:{
−u′′ = eu, 0 < x < L,

u(0) = u(L) = 0.
(14)

Prove that if L is sufficiently big, there does not exist a non-negative solution to this boundary-value
problem. Proceed by the following steps:

(a) Write a problem in terms of function w = u+ ε:{
−w′′ = e−εew, 0 < x < L,

w(0) = ε, w(L) = ε.
(15)

(b) Show that functions vλ(x) = λ sin(πx/L) satisfy{
−v′′λ = π2

L2 vλ, 0 < x < L,

vλ(0) = 0, vλ(L) = 0.
(16)

(c) Show that for big enough L > 0 and small enough λ > 0 the solution w of the problem (15) is a
supersolution of the problem (16).

(d) (Sliding method) Start increasing λ > 0 and consider the first value λ0 such that the graphs of w
and vλ touch each other. Come to a contradiction.

(e*) Show that there exists L1 > 0 so that non-negative solution of problem (14) exists for all
0 < L < L1 and does not exist for all L > L1.

3. Using sliding method from the previous exercise, prove that the solution u of the boundary value
problem: {

−u′′ − cu′ = f(u), −L < x < L,

u(−L) = 1, u(L) = 0.

is unique.

Read more material about different kinds of maximum principle on the web-page on Miles Wheeler —
Course “Theory of Partial Differential Equations”

https://people.bath.ac.uk/mw2319/ma40203/frontmatter-1.html


3.4 Exercise session №4, 20 May 2023.

In this session let’s concentrate on the applications of the maximum principle for linear parabolic equations:

∂tu = ∆u+ b · ∇u+ cu, x ∈ Ω ⊂ RN , t > 0. (17)

Here b = b(t, x) and c = c(t, x) are continuous bounded functions. The domain Ω is either a bounded
connected open set or RN . Using the maximum principle, we obtained the comparison principle for the
semilinear parabolic equations, e.g. reaction-diffusion equations (f ∈ C1 in u):

∂tu = ∆u+ f(t, x, u). (18)

Theorem 3 (Weak maximum principle). Let u be a subsolution of (17). If u(0, x) ≤ 0, then u(t, x) ≤ 0 for t > 0.

Theorem 4 (Weak comparison principle). Let u be a subsolution of (18) and v be a supersolution of (18).
If u(0, x) ≤ v(0, x), then u(t, x) ≤ v(t, x) for t > 0.

Here are some problems to solve using these theorems:

1. (Uniqueness for semilinear problems)
Let Ω ⊂ RN be bounded, f ∈ C1(R), u0 ∈ C0(Ω̄). Prove that the problem

∂tu = −∆u+ f(u), in D = Ω× (0, T ],

u = u0, on Ω× {0},
u = 0, on ∂Ω× (0, T ],

has at most one solution u ∈ C2(D) ∩ C1(D̄).

2. (Upper bound on solution for linear problems)
Let Ω ⊂ RN be a bounded domain, and u(t, x) be the solution of the initial boundary value problem

ut = ∆u+ b · ∇u+ c(x)u, in Ω× (0,+∞),

u = u0, on Ω× {0},
u = 0, on x ∈ ∂Ω× (0,+∞).

Assume that the function c(x) is bounded, with c(x) ≤M for all x ∈ Ω. Prove that u(t, x) satisfies

|u(t, x)| ≤ ∥u0∥L∞e
Mt, for all t > 0 and x ∈ Ω.

3. (Global solution vs. blow-up for reaction-diffusion equations)

Let u be a solution to the following reaction-diffusion equation
∂tu = ∆u+ u2, in DT = Ω× (0, T ],

u = u0, on Ω× {0},
∂u
∂n = 0, on ∂Ω× (0, T ].

Does the solution u blow-up in finite time?

4. (Asymptotics for the heat equation)
Let Ω = B1(0) ⊂ RN and suppose u ∈ C2(Ω× (0,+∞)) ∩ C0(Ω̄× [0,+∞)) satisfies for some M > 0:

∂tu = ∆u, in Ω× (0,+∞),

|u| ≤M, on Ω× {0},
u = 0, on x ∈ ∂Ω× (0,+∞).

Prove that u(x, t) → 0 as t→ ∞ uniformly in x.

Hint: combine the functions 2− |x|2 and ent and construct a supersolution to the heat equation with
appropriate behavior at +∞.



4 Lecture notes

.



Shock waves in conservation laws and 
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Motivation
Many phenomena in “nature” can be described using mathematical tools:

1. Physics (classical):
• Mechanics, thermodynamics, fluid dynamics, 

electrodynamics

Spread of Bubonic Plague in Europe (around 1350)

Leonardo Da Vinci describes turbulent 
motion of water (around 1500)

Oil recovery: displacement 
of oil by water

2. Biology and social sciences:
• Population dynamics 

– how animals / bacteria / viruses / tumours
spread?

Basic idea:
• Create a mathematical “model”
• Study the properties of its “solutions”

One of the conventional tools is: 
PDE (partial differential equation)

Not the only one!
Probability, algebraic geometry etc…

• Pattern formation 
– why do lizards have such a skin?
– why do birds fly forming a triangle?



What is a PDE?      First example:        Δ𝑇 = 0

Let 𝑇 𝑥, 𝑡 be a temperature in the classroom. Here 𝑥 ∈ Ω ⊂ ℝ3, 𝑡 ∈ ℝ+.

Pierre-Simon Laplace
(1749 – 1827)

• In equilibrium:

න
𝜕𝑉

Ԧ𝐹 ⋅ 𝜈 𝑑𝑆 = 0

Ԧ𝐹 - heat flux.

• Use Green-Gauss theorem:

න
𝜕𝑉

Ԧ𝐹 ⋅ 𝜈 𝑑𝑆 = න
𝑉

𝑑𝑖𝑣( Ԧ𝐹) 𝑑𝑥

• As this is true for all domains 𝑉, we get                       𝑑𝑖𝑣 Ԧ𝐹 = 0.

• Assume heat flux is proportional to gradient of temperature:

Ԧ𝐹 = −𝑎 ∇𝑇

(the more is the difference of the temperature between points, the faster is the heat flow)

Finally, we get:
𝑑𝑖𝑣(∇𝑇) = ∆𝑇 = 0 (Laplace equation)

What do you need to set up a PDE problem?
(1) Fix a domain 𝒙 = (𝒙𝟏, … , 𝒙𝒏) ∈ 𝛀 ⊂ ℝ𝒏 and consider an equation for an unknown function 𝒖 = 𝒖(𝒙) for 𝒙 ∈ 𝛀:

𝑃 𝑥, 𝑢 𝑥 ,
𝜕𝑢

𝜕𝑥1
, … ,

𝜕𝑢

𝜕𝑥𝑛
,
𝜕2𝑢

𝜕𝑥1𝜕𝑥2
, … ,

𝜕𝑘𝑢

𝜕𝑥𝑖1 …𝜕𝑥𝑖𝑘
= 0

The order of the highest derivative 𝑘 ∈ ℕ is called the order of the PDE.
If 𝑛 = 1, then it is called ODE (ordinary differential equation), otherwise PDE.

(2) Fix additional boundary or initial conditions on (possibly a part) of 𝝏𝛀.

(3) Fix to which functional space the function 𝒖 belongs.

It may be 𝐶 Ω , 𝐶𝑘(Ω) or some weaker spaces like 𝐿2 Ω , Sobolev space or BV functions (functions of bounded variation)
Another thing could be that one assumes different smoothness requirements for different variables (e.g. if one of the 
variables corresponds to time) 

Augustin-Louis Cauchy
(1789-1857)

Caution: for ODEs one “typically” considers the so-called Cauchy problem: 

𝑢′′ = 𝑓 𝑡, 𝑢 𝑡

𝑢 0 = 𝑢
𝑢′ 0 = 𝑣

For PDEs the situation is more tricky and more elaborate conditions often should be considered.



Typical questions of mathematical interest:

(1) Well-posedness (in Hadamard sense, around 1902)

a. The solution exists (∃)
b. The solution is unique (!)
c. There is a continuous dependence of the solution on the 

“initial”/”boundary” data

• Ill-posed problems – we will see in a course

(2) Qualitative properties of the solution: 
– How does  the solution look like?
– Does there exist a solution of special type? E.g. having some symmetries.

• If the problem is evolutionary (there is a time variable), then a natural question is:
– What is a long-time behaviour of the solution as 𝑡 → ∞?

Jacques Hadamard
(1865 – 1963)

Remark: 
from my experience working with engineers the questions of existence and uniqueness are not so important for them, but 
the continuous dependence, indeed, is important. The reason is that there is also some noise (in the measurements, 
modelling etc), so it can cause big problems for them if the small change in initial data lead to big changes in solution.

A ZOO of PDEs (see Evans book on PDEs for more examples)

Linear PDEs:

(Laplace equation)                                 ∆𝑢 = 0

(Heat equation)                                         𝑢t = ∆𝑢

(Linear transport equation)                𝑢𝑡 + σ𝑛=1
𝑘 𝑐𝑖𝑢𝑥𝑖 = 0

(Schrodinger equation)                       𝑖𝑢𝑡 + Δ𝑢 = 0

(Wave equation)                                     𝑢𝑡𝑡 − Δ𝑢 = 0

And many more….

Non-linear PDEs (and systems):

(Inviscid Burgers equation)                        𝑢𝑡 +
𝑢2

2 𝑥
= 0

(Scalar conservation law)                    𝑢t + 𝑑𝑖𝑣 𝐹(𝑢) = 0

(Scalar reaction-diffusion equation)           𝑢𝑡 = Δ𝑢 + 𝑓(𝑢)

(Euler equation) 𝑢𝑡 + 𝑢 ⋅ ∇ 𝑢 = ∇𝑝
∇ ⋅ 𝑢 = 0

(Navier-Stokes equation)    𝑢𝑡 + 𝑢 ⋅ ∇ 𝑢 − 𝜈Δ𝑢 = ∇𝑝
∇ ⋅ 𝑢 = 0

And many more….



A ZOO of PDEs (see Evans book on PDEs for more examples)

Linear PDEs:

(Laplace equation)                                 ∆𝑢 = 0

(Heat equation)                                         𝑢t = ∆𝑢

(Linear transport equation)                𝑢𝑡 + σ𝑛=1
𝑘 𝑐𝑖𝑢𝑥𝑖 = 0

(Schrodinger equation)                       𝑖𝑢𝑡 + Δ𝑢 = 0

(Wave equation)                                     𝑢𝑡𝑡 − Δ𝑢 = 0

And many more….

Non-linear PDEs (and systems):

(Inviscid Burgers equation)                        𝑢𝑡 +
𝑢2

2 𝑥
= 0

(Scalar conservation law)                    𝑢t + 𝑑𝑖𝑣 𝐹(𝑢) = 0

(Scalar reaction-diffusion equation)           𝑢𝑡 = Δ𝑢 + 𝑓(𝑢)

(Euler equation) 𝑢𝑡 + 𝑢 ⋅ ∇ 𝑢 = ∇𝑝
∇ ⋅ 𝑢 = 0

(Navier-Stokes equation)    𝑢𝑡 + 𝑢 ⋅ ∇ 𝑢 − 𝜈Δ𝑢 = ∇𝑝
∇ ⋅ 𝑢 = 0

And many more….

Typical principles from Evans book on PDEs

1. Nonlinear equations are more difficult than linear equations; and, indeed, the more the nonlinearity affects the 
higher derivatives, the more difficult the PDE is.

2. Higher-order PDE are more difficult than lower-order PDE

3. Systems are harder than single equations

4. PDEs entailing many independent variables are harder that PDEs entailing few independent variables

5. For most PDEs it is not possible to write out explicit formulas for solutions

None of these assertions is without important exceptions.



Four main PDEs in our course:

1. Transport equation:

2. Wave equation:

3. Scalar conservation law:

4. Reaction-diffusion equation:

𝑢𝑡 + 𝑐 𝑢𝑥 = 0

𝑢t + 𝐹 𝑢
𝑥
= 0

𝑢𝑡𝑡 − 𝑐2 𝑢𝑥𝑥= 0

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢)

P.S. I write the simplified version, that is for 𝑥 ∈ ℝ, 𝑢 ∈ ℝ, there exist various generalisations.

They are all different 
(linear/non-linear), require 
different mathematical tools to 
be analysed,

BUT

Solution to these equations exhibit 
a “propagation” phenomena: 

there are “waves” that are moving 

Transport equation

𝑢𝑡 + 𝑐 𝑢𝑥 = 0
𝑢 𝑥, 0 = 𝑢0(𝑥)

(Explain on the blackboard)



Wave equation

𝑢𝑡𝑡 − 𝑐2 𝑢𝑥𝑥= 0
𝑢 𝑥, 0 = 𝑢0(𝑥)

Show video

Intuition behind: 
in some sense we can “decompose” the wave equation into two transport equations “𝑢𝑡 − 𝑐𝑢𝑥”  and “𝑢𝑡 + 𝑐𝑢𝑥”
We will see how to make a mathematically rigorous understanding of this in the future.

Exercise 1: 
a) Using change of variables 𝜉 = 𝑥 − 𝑐𝑡 and 𝜂 = 𝑥 + 𝑐𝑡, get a simplified equation on 𝑣 𝜉, 𝜂 = 𝑢(𝑥, 𝑡).
b) Using item a) show that there exist functions 𝑓 and 𝑔 such that

𝑢 𝑥, 𝑡 = 𝑓 𝑥 − 𝑐𝑡 + 𝑔(𝑥 + 𝑐𝑡),
So this means that the solution is a sum of two travelling waves moving with opposite speeds 𝑐 and −𝑐.

Remark: 
Notice that adding two solutions of the wave equations will again be a solution (due to the linearity of the equation). 
This fact can be interpreted as “no interaction” of the waves. It will be not the case for the NON-linear equations 
(and is one of the sources of difficulty for mathematical analysis)

Next time we will discuss the wave equation in all mathematical detail.

Conservation (and balance) laws 1

• In problems of physics this equation is usually used to describe conservation of mass, momentum, energy etc
• This is the simplest model for water-oil displacement (the so-called Buckley-Leverett equation)
• If fact, no matter what is conserved: could be density in a crowd of people, cars, insects etc.

1
A guru in the field C. Dafermos gives a very intuitively clear explanation how PDE for a balance law 𝑑𝑖𝑣 𝐹 = 𝑃 appears from first 

principles. For those who are interested I advice to see Lecture 1 of his course at IMPA in 2013 (see links at the end of the slides).

• This formula, indeed, means “conservation”: if we take two points 𝑥 = 𝑎 and 𝑥 = 𝑏, then the change of total 

mass of 𝑢 between 𝑎 and 𝑏 is equal to 𝑓 𝑢 𝑎, 𝑡 − 𝑓 𝑢 𝑏, 𝑡 = [inflow at 𝑎] – [outflow at 𝑏]

• 𝑢 = 𝑢(𝑥, 𝑡) – the conserved quantity
• 𝑓(𝑢) – the flux of conserved quantity
• 𝑥 ∈ ℝ, 𝑡 ∈ ℝ+

• If the right-hand side is not zero (some function 𝑓, that plays a role of some “source” of mass), then this 
equations is called a balance law

𝑢𝑡+ (𝑓(𝑢))𝑥= 0
𝑢 𝑥, 0 = 𝑢0(𝑥)



Conservation (and balance) laws 1: Burgers equation

1
A guru in the field C. Dafermos gives a very intuitively clear explanation how PDE for a balance law 𝑑𝑖𝑣 𝐹 = 𝑃 appears from first 

principles. For those who are interested I advice to see Lecture 1 of his course at IMPA in 2013 (see links at the end of the slides).

𝑢𝑡+
𝑢2

2
𝑥

= 0

𝑢 𝑥, 0 = 𝑢0(𝑥)

Show video with shock wave

Show video with rarefaction wave

𝑢𝑡+ 𝑢 ⋅ 𝑢𝑥= 0
Assume 𝑢 is smooth and differentiate 𝑢2:

“speed”

shock wave

rarefaction wave Exercise 2:
Calculate mathematically the time 
of “blow-up” of the solution for 

𝑢0 𝑥 = ቐ
1, 𝑥 < 0

1 − 𝑥, 0 < 𝑥 < 1
0, 𝑥 > 1

Problems that we are faced:

1. In which sense the solution EXISTS?

• Classical solution: “𝑢 should be as smooth as many derivatives are in the equation”, thus
𝑢 ∈ 𝐶1 ℝ× ℝ+

but we see that solution may become even not a continuous function !!!
So we have a problem with existence of solutions.

• We need the notion of a “weak” solution (in the sense of distributions) – we want to consider a “wider” space. 
Idea: look at the solution not as a function, but as a functional.

Example: Dirac delta “function”: 𝛿𝑥: 𝐶 Ω → ℝ such that for any 𝜑 ∈ 𝐶(Ω) we define 𝛿𝑥 𝜑 = 𝜑 𝑥 .
We will consider this notion in detail later in the course.

2. Is the solution UNIQUE?

• As we will see, unfortunately, NOT. There are MANY weak solutions and this creates a problem.

• Fortunately, physics gives us a lot of restrictions (like second law of thermodynamics, entropy etc), 
so this helps to choose a unique physically relevant solution (with quite a lot of effort, though).



Important class of solutions

It is always very useful to look for some special solutions with symmetries 
(e.g. radially symmetric or having the symmetry of the equation)

Notice that our equation is scale-invariant: 𝑥, 𝑡 → (𝛼𝑥, 𝛼𝑡) for any 𝛼 > 0 does not change the equation.
If we take the initial data scale-invariant, we can look for a self-similar solution of the form

𝑢 𝑥, 𝑡 = 𝑣
𝑥

𝑡
which depends on one variable, thus it satisfies some ODE (and not PDE!)

𝑢𝑡+ (𝑓(𝑢))𝑥= 0
𝑢 𝑥, 0 = 𝑢0(𝑥)

We will see how to find such solutions and why they are important:
• They are building blocks for numerical scheme
• They help to prove existence of solution to a general initial data
• They appear as limiting ones when 𝑡 → ∞

They can be rather tricky!

Riemann problem (gas dynamics)

𝑢 – velocity, 𝜌 – density, 𝑝 - pressure



Example 4: reaction-diffusion equation

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢)

reproductiondisplacements

J.G. Skellam (1951) – describes spread of muskrats
– writes an equation like Fisher-KPP

At the beginning of the last century a few muskrats escaped 
from a farm in Czech republic. The result is shown below:

This is a muskrat, an animal very much liked for its fur

This equation naturally appears in biological invasions (population dynamics), where 𝑢 = 𝑢 𝑥, 𝑡 is a population density

The basic equation

Variation of number of individuals at time 𝑡 and place 𝑥

= Number of individuals arriving at 𝑥 at time 𝑡
− Number of individuals leaving 𝑥 at time 𝑡
+ Number of individuals created/annihilated at 𝑥 at time 𝑡

Main assumptions:
1. A living population is represented by its density 𝑢(𝑥, 𝑡): number of individuals per time 

and space unit.
2. Individuals move and reproduce.



Modelling reproduction

Ignore movements: 𝑢 𝑥, 𝑡 = 𝑢(𝑡)
Assume that reproduction rate depends only on local density

ሶ𝑢 𝑡 = 𝑓(𝑢)

1. Simplest way:   𝑓 𝑢 = 𝜇𝑢

2. A given piece of space can carry only a certain capacity of individuals:
⇒ 𝑓(𝑢) should be negative for large 𝑢

Simplest reproduction rate:          𝑓 𝑢 = 𝜇𝑢 1 −
𝛽

𝜇
𝑢

1

𝛽
is called carrying capacity

Modelling reproduction

Sometimes, population growth is limited by low densities:
• 𝑓 𝑢 < 0 if 𝑢 is small
• 𝑓 𝑢 > 0 if 𝑢 is moderately large
• 𝑓 𝑢 < 0 above carrying capacity

Simplest way:   𝑓 𝑢 = 𝜇𝑢 1 −
𝛽

𝜇
𝑢 (𝑢 − 𝜃)

Summing up:

𝑓 𝑢 = 𝑢 − 𝑢2 (Fisher-KPP nonlinearity) 𝑓 𝑢 = 𝑢(𝑢 − 𝜃)(1 − 𝑢)
(bistable nonlinearity)KPP =  Kolmogorov, Petrovsky, Piskunov (1937)

Fisher (1930), statistician



Fisher-KPP

Question:         what is the speed of invasion?

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢(1 − 𝑢)
𝑢 𝑥, 0 =“gaussian hat”∈ [0,1]

Step 1:       𝑢𝑡 = 𝑢 1 − 𝑢 pushes everything to 1

Start to model: let’s make a “splitting”

Step 2:       𝑢𝑡 = 𝑢𝑥𝑥 averages

State 0 is unstable
State 1 is stable
We see an invading front!  1 invades the domain with 0.

Step 3: Repeat steps 1 and 2 sequentially

Fisher KPP (first result)

Theorem [Kolmogorov-Petrovsky-Piskunov, 1937]:

Moral: the solution behaves as a travelling wave with speed equal to 2.

Let 𝑢0 be a Heavy-side function, that is 𝑢0 𝑥 = ቊ
1, 𝑥 < 0
0, 𝑥 > 0

Such that 𝑢(𝑥, 𝑡) has a representation

𝑢 𝑥, 𝑡 = 𝜙 𝑥 − 2𝑡 + 𝜎 𝑡 + 𝑜 1 , 𝑡 → ∞

There exists 

• a function 𝜎(𝑡) such that 
𝜎 𝑡

𝑡
→ 0 as 𝑡 → ∞

• A function 𝜙:ℝ → ℝ such that
• 𝜙 −∞ = 1 and 𝜙 +∞ = 0
• 𝜙′ < 0



Course content

1. Linear theory:
a. Well-posedness and exact solution for a one-dimensional wave equation
b. Reminder on Fourier transform
c. The notion of weak solution (distributions, weak-derivatives, convolution, fundamental solution)

2. Conservation and balance laws:
a. Definition of weak-solution
b. Jump condition (Rankine-Hugoniot condition)
c. Notion of hyperbolic system of conservation laws
d. Single conservation law: existence, uniqueness, asymptotic behaviour of the entropy solution.
e. Riemann problem: shock and rarefaction waves
f. Entropy, Riemann invariants
g. (if time permits) Vanishing viscosity method
h. (if time permits) The Glimm difference scheme

3. (if time permits) Reaction-diffusion equations:
a. Comparison theorems
b. Sub- and super- solutions
c. Speed of propagation for the Fisher-KPP equation (Aronson-Weinberger theorem)

References
Books that can be useful:

1. Evans, L.C. Partial differential equations (Vol. 19). American Mathematical Society. 
I advise this textbook for all who are interested in PDEs.
Sections 3, 10, 11 are related to hyperbolic conservation laws (but not only).

2. Smoller, J. Shock waves and reaction-diffusion equations (Vol. 258). Springer Science & Business Media.
My plan is to (mainly) follow this book (surely, not all the material)

3. Dafermos, C.M., 2005. Hyperbolic conservation laws in continuum physics (Vol. 3). Berlin: Springer.
If you want more physics about conservation laws, this book is a good option.
This is considered as an encyclopaedia of hyperbolic balance laws (and it is, indeed, a hard book to read). 
I advice to start with online lectures of Dafermos (see below), and if you want details on proofs see the book.

4. Bressan, A., Serre, D., Williams, M. and Zumbrun, K., 2007. Hyperbolic systems of balance laws: lectures given at 
the CIME Summer School held in Cetraro, Italy, July 14-21, 2003. Springer.

Links to online courses:

1. At IMPA in 2013 there was a mini-course of 9 lectures on “Hyperbolic conservation laws” from Constantine 
Dafermos. It is, indeed, very interesting, and may be I will take something from it:
https://www.youtube.com/watch?v=WF9WrjJOLCQ&list=PLo4jXE-LdDTTg8Z4iGDNOSDA74rcwoU2a
This is more informal interpretation of a Dafermos treatise book made by the same author.
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