"Shock waves in conservation laws and reaction-diffusion equations"

This course was done in the Department of Mathematics at PUC-Rio during semester I, March-June 2023 by Yulia Petrova. It consists of three (in some sense) independent parts joined by the similar phenomema - the solutions of the corresponding PDEs represent some "fronts" that are propagating with time:

- Part I: wave equation (derivation, D'Alambert formula, well-posedness, Duhamel principle, solution by Fourier series)
- Part II: introduction to conservation laws (weak solution, Rankine-Hugoniot condition, entropy conditions, existence of solutions to scalar conservation law with convex flux function, exact solution to Riemann problem, existence of solutions to a strictly hyperbolic genuinely nonlinear system of conservation laws)
- Part III: introduction to reaction-diffusion equations (maximum principle for linear parabolic PDEs, comparison principle, travelling wave solutions, invasion/extinction theorems for reaction-diffusion equations with monostable and bistable nonlinearities in unbounded domains, asymptotic speed of propagation)

In this file I have collected all the materials around the course. All (possible numerous) errors are entirely mine, and I will be happy if you tell me about them through the email: yu.pe.petrova@yandex.ru.

Contents

1 Questions for the exam 2
2 Exercises (homework) 4
2.1 List of exercises 1 4
2.2 List of exercises 2 5
2.3 List of exercises 3 6
2.4 List of exercises 4 7
2.5 List of exercises 5 8
3 Problem solving classes 9
3.1 Problem solving class 1 9
3.2 Problem solving class 2 10
3.3 Problem solving class 3 11
3.4 Problem solving class 4 12
4 Lecture notes 13
Lecture 1 (slides) - What this course is about? 13
Notes on wave equation (handwritten) 26
Notes on conservation laws (handwritten) 47
Notes on reaction-diffusion equations (handwritten) 126
Useful books:

1. Smoller, J., 1983. Shock waves and reaction-diffusion equations (Vol. 258). Springer Science \& Business Media.
2. Dafermos, C.M. and Dafermos, C.M., 2005. Hyperbolic conservation laws in continuum physics (Vol. 3). Berlin: Springer.
3. Evans, L.C., 1998. Partial differential equations (Vol. 19). American Mathematical Society.
4. Bressan, A.,, 2013. Hyperbolic conservation laws: an illustrated tutorial. Modelling and Optimisation of Flows on Networks: Cetraro, Italy 2009.

Useful video lectures:

1. Constantine Dafermos, course of 9 lectures at IMPA: "Hyberbolic conservation laws"
2. Henri Berestycki, mini course of 4 lectures at IMPA: "Reaction-diffusion propagation in nonhomogeneous media"

1 Questions for the exam.

Part 1: Around wave equation.

1. Wave equation: "physical" derivation (balls and springs).
2. Wave equation: derivation from general principles.
3. D'Alambert's formula for 1 D wave equation, and well-posedness of Cauchy problem on real line.
4. Inhomogeneous wave equation. Duhamel principle.
5. Mixed initial-boundary value problem for wave equation: existence and uniqueness of solution.
6. Mixed initial-boundary value problem for wave equation: solution by a Fourier series.

Part 2: Conservation and balance laws.
7. Fluid flow: Eulerian vs. Lagrangian point of view; flow map; incompressibility condition.
8. Fluid flow: scalar transport equation, conservation of mass.
9. Scalar conservation law. Weak form of solution. Rankine-Hugoniot condition.
10. Burgers equation: blow-up in finite time, explicit solutions to different Riemann problems, multiplicity of solutions, definition of entropy solution, irreversibility.
11. Scalar conservation law with convex flux function: various interpretations of entropy condition (Lax, Liu, vanishing viscosity).
12. Scalar conservation law with convex flux function: theorem on existence of entropy solution. Lemmas 1 and 2 describing properties for discrete approximation (boundedness, entropy condition).
13. Scalar conservation law with convex flux function: theorem on existence of entropy solution. Lemmas 3, 4 and 5 describing properties for discrete approximation (space and time estimates, stability).
14. Scalar conservation law with convex flux function: theorem on existence of entropy solution. Lemma 6 on convergence and properties of the limiting solution.
15. Scalar conservation law with convex flux function: theorem on existence of entropy solution. Lemmas 7 and 8 on properties of the limiting solution.
16. Scalar conservation law with convex flux function: uniqueness of entropy solution. General plan of proof without technical details.
17. Scalar conservation law with convex flux function: uniqueness of entropy solution. Proof that $\left|\psi_{x}^{m}\right|$ is bounded using the entropy condition.
18. Scalar conservation law with convex flux function: solution to a Riemann problem for two cases ($u_{l}<u_{r}$ and $u_{l}>u_{r}$).
19. Systems of conservation laws: weak solution, Rankine-Hugoniot condition, notion of hyperbolic and strictly hyperbolic systems, examples.
20. Systems of conservation laws: notion of genuinely nonlinear and linearly degenerate characteristic family; simple waves. Theorem on existence of k-rarefaction wave.
21. Systems of conservation laws: notion of shock curves (Hugoniot locus). Theorem on structure of shock waves (property (iii) without proof). Notion of Lax admissibility criteria for shocks.
22. Systems of conservation laws: notion of k contact discontinuity. Theorem on linear degeneracy (shock and rarefaction curves coincide). Example (linear wave equation).
23. Systems of conservation laws: theorem on local solvability of a Riemann problem for strictly hyperbolic systems (each characteristic family is genuinely nonlinear or linearly degenerate).
24. Systems of conservation laws: entropy criteria (Lax, Liu, vanishing viscosity, entropy/entropy-flux).
25. Buckley-Leverett equation (with S-shaped flux function): solution to a Riemann problem for two cases ($u_{l}<u_{r}$ and $u_{l}>u_{r}$).
26. Reaction-diffusion equations: probabilistic justification of laplacian, examples for nonlinearities (FKPP, monostable, bistable, ignition) and their interpretation in population dynamics. Formulation of the initial-value problem.
27. Maximum principles for linear ODEs of the second order with $h \equiv 0$ (with proofs).
28. Various versions of the maximum principles for linear ODEs of the second order without the assumption that $h \equiv 0$ (with proofs). Counterexamples.
29. The idea of the "sliding method" on two examples.
30. Weak and strong maximum principle for linear parabolic PDEs for bounded domains with Dirichlet boundary conditions (with proof).
31. Weak and strong maximum principle for linear parabolic PDEs for bounded domains with Neumann/Robin boundary conditions (with proof). Hopf lemma.
32. Notions of sub- and supersolution. Comparison theorems for parabolic PDEs (with proof). Application on concrete examples.
33. Well-posedness of the scalar reaction-diffusion equations (sketch of the proof for existence,
proof of uniqueness and continuous dependence on initial data).
34. Theorem on existence of traveling wave solutions to scalar reaction-diffusion equation with monostable (in particular, FKPP) nonlinearity. "Dynamical" proof (phase plane method).
35. Theorem on existence of traveling wave solutions to scalar reaction-diffusion equation with bistable nonlinearity. "Dynamical" proof (phase plane method).
36. Theorem on existence of traveling wave solutions to scalar reaction-diffusion equation with monostable nonlinearity. "PDE" proof.
37. Theorem on existence of traveling wave solutions to scalar reaction-diffusion equation with bistable nonlinearity. "PDE" proof.
38. "Hair-trigger" effect for FKPP equation (with proof).
39. Theorem on invasion for reaction-diffusion equation with bistable nonlinearity (with proof).
40. Theorem on extinction for reaction-diffusion equation with bistable nonlinearity (with proof).
41. Principle of asymptotic speed of propagation (Aronson-Wienberger theorem, with proof).

2 Exercises (homework)

2.1 List of exercises 1. Deadline: 24 March 2023, 23:59.

1. Consider a wave equation on $u(x, t)$:

$$
u_{t t}-c^{2} u_{x x}=0, \quad x \in \mathbb{R}, t \in \mathbb{R}_{+}
$$

Show that after the change of variables $\xi=x-c t$ and $\eta=x+c t$, the wave equation becomes

$$
v_{\xi \eta}=0
$$

where $v(\xi, \eta)=u(x, t)$. As we have shown in the lecture this immediately leads to the following general form of the solution of a wave equation (as a sum of two travelling waves moving with opposite speeds c and $-c$ and having profiles f and g, respectively):

$$
u(x, t)=f(x-c t)+g(x+c t)
$$

2. Consider the following initial value problem for the Burgers equation:

$$
\begin{aligned}
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \\
& u(x, 0)=u_{0}(x)= \begin{cases}1, & x<0 \\
1-x, & x \in[0,1] \\
0, & x>1\end{cases}
\end{aligned}
$$

(a) Using method of characteristics show that there exists time T, where at least two characteristic lines intersect (thus we can not define a solution u at this point). Denote by T_{0} the first moment of time when some of the characteristics intersect. We will refer to such a situation as a "blow-up at time T_{0} ".
(b) Calculate T_{0}.
(c) Draw all the characteristic lines till time T_{0} in the (x, t)-plane.
3. Draw a solution of the Cauchy problem for the wave equation:

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& u(x, 0)=\varphi(x) \\
& u_{t}(x, 0)=\psi(x)
\end{aligned}
$$

for $\varphi \equiv 0$ and ψ depicted in figure on the right.
P.S. D'Alambert formula may help.
4. Consider a Cauchy problem for the inhomogeneous wave equation:

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=h(x, t) \\
& u(x, 0)=\varphi(x) \\
& u_{t}(x, 0)=\psi(x)
\end{aligned}
$$

Derive that the solution $u\left(x_{0}, t_{0}\right)$ takes the form:

$$
u\left(x_{0}, t_{0}\right)=\frac{\varphi\left(x_{0}-c t_{0}\right)+\varphi\left(x_{0}+c t_{0}\right)}{2}+\frac{1}{2 c} \int_{x_{0}-c t_{0}}^{x_{0}+c t_{0}} \psi(s) d s+\frac{1}{2 c} \iint_{G} h(x, t) d x d t
$$

Here $G=\left\{(x, t): t \in\left(0, t_{0}\right)\right.$ and $\left.x_{0}+c\left(t-t_{0}\right)<x<x_{0}-c\left(t-t_{0}\right)\right\}$ is a triangular region (see figure). P.S. Integrate the equation over G and use the Green-Gauss theorem.
2.2 List of exercises 2. Deadline: 7 April 2023, 23:59.

1. Find a Fourier series solution to the initial-boundary value problem ($t>0, x \in[a, b] \subset \mathbb{R}$):

$$
u_{t t}-c^{2} u_{x x}=0
$$

with initial conditions

$$
u(x, 0)=\varphi(x)=\left\{\begin{array}{ll}
x, & x \in[0, \pi / 2] \\
\pi-x, & x \in[\pi / 2, \pi]
\end{array}, \quad u_{t}(x, 0)=0\right.
$$

and boundary conditions: $u(a, t)=u(b, t)=0$.
2. Assume that the vector field u is $\mathrm{C}_{t} \operatorname{Lip}_{x}$, and let $X(t, a)$ be a flow map, corresponding to particle trajectories under the flow of u, that is:

$$
\partial_{t} X(t, a)=u(t, X(t, a)), \quad X(0, a)=a \in \mathbb{R}^{d} .
$$

Consider a flow map as a map: $a \mapsto X(t, a)$ for some fixed $t>0$, and it's Jacobian:

$$
J(t, a):=\operatorname{det}\left(\nabla_{a} X\right)(t, a)=\sum_{i_{1}, \ldots, i_{d}=1}^{d} \varepsilon_{i_{1}, \ldots, i_{d}} \frac{\partial X_{i_{1}}}{\partial a_{1}}(t, a) \cdot \ldots \cdot \frac{\partial X_{i_{d}}}{\partial a_{d}}(t, a),
$$

where $\varepsilon_{\varepsilon_{1}, \ldots, \varepsilon_{d}}$ denotes the standard Levi-Civita symbol, that is

$$
\varepsilon_{\varepsilon_{1}, \ldots, \varepsilon_{d}}= \begin{cases}\operatorname{sign}(\sigma), & i_{n}=\sigma(n) \text { for all } n \in 1, \ldots, d \text { and some permutation } \sigma \in S_{d} \\ 0, & \text { otherwise. }\end{cases}
$$

Prove that

$$
\partial_{t} J(t, a)=J(t, a) \cdot \operatorname{div}(u)(t, X(t, a)) .
$$

3. Compute explicitly the unique entropy solution of Burgers equation:

$$
\begin{aligned}
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \\
& u(x, 0)=u_{0}(x)= \begin{cases}1, & x<-1, \\
0, & x \in[-1,0] \\
2, & x \in[0,1] \\
0, & x>1\end{cases}
\end{aligned}
$$

Draw a picture documenting your answer, being sure to illustrate what happens for all times $t>0$.

2.3 List of exercises 3. Deadline: 28 April 2023, 23:59.

1. (Irreversibility) Let the solution of the Burgers equation

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0
$$

at $t=1$ be equal to:

$$
u(x, 1)= \begin{cases}1, & x<0 \tag{1}\\ 0, & x>0\end{cases}
$$

Construct infinitely-many different initial conditions $u(x, 0)$ (and draw them up to time $t=1$) such that at $t=1$ the solution coincides with (1).
2. Consider a scalar conservation law $(u \in \mathbb{R})$

$$
\begin{equation*}
u_{t}+(f(u))_{x}=0 \tag{2}
\end{equation*}
$$

and the following finite-difference approximation of it:

$$
\begin{equation*}
\frac{u_{n}^{k+1}-\frac{1}{2}\left(u_{n+1}^{k}+u_{n-1}^{k}\right)}{h}+\frac{f\left(u_{n+1}^{k}\right)-f\left(u_{n-1}^{k}\right)}{2 l}=0 . \tag{3}
\end{equation*}
$$

Here $u_{n}^{k}=u\left(x_{n}, t_{k}\right)$ is defined on the grid $x_{n}=n l, t_{k}=k h, l=\Delta x>0, h=\Delta t>0$ and $l \in \mathbb{Z}$, $k \in \mathbb{N} \cup\{0\}$. Let $u(x, 0)=u_{0}(x)$, and $u_{n}^{0}=u_{0}\left(x_{n}\right)$, and $M:=\left\|u_{0}\right\|_{\infty}$.
Prove that:

$$
\left|u_{n}^{k}\right| \leqslant M \quad \text { for all } n \in \mathbb{Z}, k \in \mathbb{N} \cup\{0\}
$$

3. Write a computer program, modelling (12), using an explicit finite-difference scheme defined in (3).

Show the graphs of the solution $u(\cdot, t)$ for the following Riemann problems (at several subsequent time moments):

1) $u(x, 0)= \begin{cases}0, & x<0 \\ 1, & x>0\end{cases}$
2) $u(x, 0)= \begin{cases}1, & x<0, \\ 0, & x>0 .\end{cases}$

Consider two cases for the flux function f :
a) $f(u)=2 u-u^{2}$;
b) $f(u)=\frac{u^{2}}{u^{2}+(1-u)^{2}}$.

Give a theoretical explanation to the observed results in all four cases (1a, 1b, 2a, 2b).
P.S. In the implementation of the numerical scheme remember to check that the CFL (Courant-Friedrichs-Lewy) condition is fulfilled: ${ }^{1}$

$$
\frac{A \cdot \Delta t}{\Delta x}<1
$$

where $A=\max _{u \in[0,1]}\left|f^{\prime}(u)\right|$.

[^0]
2.4 List of exercises 4. Deadline: 26 May 2023, 23:59.

Let us concentrate on the systems of conservation laws ($U \in \mathbb{R}^{m}, m>1, F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$):

$$
\begin{equation*}
U_{t}+F(U)_{x}=0 . \tag{4}
\end{equation*}
$$

1. For a fixed state $U_{l} \in \mathbb{R}^{m}$ define a shock curve (shock set or Hugoniot locus) the set of all U, such that the Rankine-Hugoniot condition is valid:

$$
S\left(U_{l}\right)=\left\{U \in \mathbb{R}^{m}: \quad \exists \sigma=\sigma\left(U_{l}, U\right) \in \mathbb{R} \quad \text { such that } \quad F(U)-F\left(U_{l}\right)=\sigma \cdot\left(U-U_{l}\right)\right\}
$$

As we have proven the set $S\left(U_{l}\right)$ consists of the union of m smooth curves $S_{k}\left(U_{l}\right), k=1, \ldots, m$. Prove that as $U \rightarrow U_{l}$ and $U \in S_{k}\left(U_{l}\right)$, we have:

$$
\sigma\left(U_{l}, U\right)=\frac{\lambda_{k}(U)+\lambda_{k}\left(U_{l}\right)}{2}+O\left(\left|U-U_{l}\right|^{2}\right) .
$$

Here $\lambda_{k}(U)$ are the eigenvalues of the Jacobian matrix $D F(U)$.
Hint: differentiate two times the Rankine-Hugonit condition at point U_{l}. Do the same for the expression for the eigenvalues and eigenvectors of $D F$:

$$
D F(U) r_{k}(U)=\lambda_{k}(U) r_{k}(U) .
$$

Combine these two equalities.
2. Let $w=(v, u)$ and let $\varphi(w)$ be a smooth scalar function. Consider the system of conservation laws

$$
\begin{equation*}
w_{t}+(\varphi(w) w)_{x}=0 . \tag{5}
\end{equation*}
$$

(a) Find the characteristic speeds λ_{1} and λ_{2} and the associated eigenvectors r_{1} and r_{2} for this system.
(b) Let $\varphi(w)=|w|^{2} / 2$. Then find the solution of the Riemann problem:

$$
U(x, 0)= \begin{cases}U_{l}, & x<0, \tag{6}\\ U_{r}, & x>0 .\end{cases}
$$

2.5 List of exercises 5. Deadline: 16 June 2023, 23:59.

We concentrate on the maximum principle for ODEs \& parabolic PDEs and its applications.
Consider second order differential operator of the form:

$$
L=-\frac{d^{2}}{d x^{2}}+g(x) \frac{d}{d x}+h(x), \quad x \in(a, b) \subset \mathbb{R}
$$

We suppose $u \in C^{2}((a, b)) \cap C([a, b]), g(x)$ and $h(x)$ are bounded functions.

1. (One-dimensional maximum principles for $h \not \equiv 0)$
(a) Suppose that $h \geq 0$ and $\max _{x \in[a, b]} u(x)=M \geq 0$.

If $L u \leq 0$, then u can attain maximum M at some interior point $c \in(a, b)$ only if $u \equiv M$.
(b) Suppose that $h \leq 0$ and $\max _{x \in[a, b]} u(x)=M \leq 0$.

If $L u \leq 0$, then u can attain maximum M at some interior point $c \in(a, b)$ only if $u \equiv M$.
(c) Suppose that $\max _{x \in[a, b]} u(x)=M=0$.

If $L u \leq 0$, then u can attain maximum M at some interior point $c \in(a, b)$ only if $u \equiv M$.
Hint: It is helpful to start with simpler lemma (with strict inequalities)
Lemma 1. Suppose that $h \geq 0$ and $\max _{x \in[a, b]} u(x)=M \geq 0$.
If $L u<0$, then u can attain maximum M only at the endpoints a or b.
2. (One-dimensional Hopf lemma for $h \not \equiv 0$)

Suppose that $h \geq 0$ and $\max _{x \in[a, b]} u(x)=M \geq 0$.
If $L u \leq 0$, then:
(a) if $u(a)=M$, then either $u^{\prime}(a)<0$ or $u \equiv M$.
(b) if $u(b)=M$, then either $u^{\prime}(b)>0$ or $u \equiv M$.
3. (Comparison theorem for semilinear parabolic equations)

Consider a semilinear parabolic operator of the form

$$
S u:=\partial_{t} u-\Delta u+F(t, x, u, \nabla u), \quad x \in \mathbb{R}^{N}, t>0
$$

Assume that F is C^{1} jointly in all of its arguments.
Let u be a subsolution $(S u \leq 0)$ and v be a supersolution $(S v \geq 0)$.
If $u(0, x) \leq v(0, x)$, then $u(t, x) \leq v(t, x)$.
4. (Boundedness of solution to diffusive Burgers' equation)

Let $u \in C^{2}(\mathbb{R} \times(0, T]) \cap C^{1}(\mathbb{R} \times[0, T])$ be a solution to the one-dimensional diffusive Burgers' equation

$$
\begin{cases}\partial_{t} u=u u_{x}+u_{x x}, & \text { in } \mathbb{R} \times(0, T], \\ u=u_{0}, & \text { on } \mathbb{R} \times\{0\} .\end{cases}
$$

Prove that u is bounded.
In the class we mentioned the following problems. I put them here and if you are interested you can think how to solve them.

1. Consider a one-dimensional boundary value problem $(L>0)$:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=e^{u}, \quad x \in[0, L] \tag{7}\\
u(0)=u(L)=0
\end{array}\right.
$$

Show that there exists $L_{1}>0$ such that for all $0<L<L_{1}$ there exists a positive solution (in $(0,1)$) of (7), and for all $L>L_{1}$ there does not exist a positive solution of (7).

3 Problem solving classes

3.1 Exercise session №1, 4 April 2023.

In this session let us concentrate on the Burgers equation:

$$
\begin{equation*}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \tag{8}
\end{equation*}
$$

with different initial (or boundary) conditions.
Definition 1. A shock-wave solution, connecting states u_{L} and u_{R} and moving with speed c, is the solution of the form (for some constant states u_{L} and u_{R}):

$$
u(x, t)= \begin{cases}u_{L}, & x<c t \\ u_{R}, & x>c t\end{cases}
$$

For a general single conservation law $u_{t}+(f(u))_{x}=0$ there is a relation between u_{L}, u_{R} and c :

$$
\begin{equation*}
(\text { Rankine-Hugoniot condition }=\mathrm{RH}) \quad c=\frac{f\left(u_{L}\right)-f\left(u_{R}\right)}{u_{L}-u_{R}} . \tag{9}
\end{equation*}
$$

1. Construct a shock-wave solution to the Burgers equation with the following conditions

$$
u(x, t)= \begin{cases}1, & x=0 \\ 0, & t=0\end{cases}
$$

2. Consider the Burgers equation with the following initial conditions:
(Riemann problem)

$$
u(x, 0)= \begin{cases}0, & x<0 \\ 1, & x>0\end{cases}
$$

Construct:
(a) a smooth self-similar solution of the form: $u=v\left(\frac{x}{t}\right)$;
(b) a shock-wave solution.

So we have at least two solutions! Which one is "correct"?
3. Construct infinitely-many solutions to the following initial-value problem:

$$
\text { (Riemann problem) } \quad u(x, 0)= \begin{cases}-1, & x<0 \\ +1, & x>0\end{cases}
$$

Remark 1. A natural question to ask is what EXTRA condition do we need to choose one solution? Such condition is usually called an "entropy" condition. An example of such condition is as follows: there exists a constant $E \in \mathbb{R}$ (independent of x, t and a):

$$
\begin{equation*}
\frac{u(x+a, t)-u(x, t)}{a} \leq \frac{E}{t}, \quad a>0, \quad t>0 \tag{10}
\end{equation*}
$$

This condition implies that if we fix $t>0$ and let x go from $-\infty$ to $+\infty$, then we can only jump down. Let us call the solutions that satisfy condition (10) the "entropy" solutions.
4. Which of the solutions from exercises $1-3$ are entropy solutions?
5. Construct an entropy solution to the Burgers equation with the following initial conditions

$$
u(x, 0)= \begin{cases}0, & x<0 \\ 1, & x \in[0,1] \\ 0, & x>1\end{cases}
$$

Consider two cases: $t \in[0,2]$ and $t \geq 2$.
6. (Irreversibility) Let the solution at $t=1$ be equal to:

$$
u(x, 1)= \begin{cases}1, & x<0 \tag{11}\\ 0, & x>0\end{cases}
$$

Construct infinitely-many different initial conditions $u(x, 0)$ (and draw them up to time $t=1$) such that at $t=1$ the solution coincides with (11).

3.2 Exercise session №2, 5 May 2023.

In this session let us concentrate on the systems of conservation laws $\left(U \in \mathbb{R}^{m}, m>1, F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}\right)$:

$$
\begin{equation*}
U_{t}+F(U)_{x}=0, \tag{12}
\end{equation*}
$$

with Riemann initial data ($U_{l}, U_{r} \in \mathbb{R}^{m}$ - fixed):

$$
U(x, 0)= \begin{cases}U_{l}, & x<0 \tag{13}\\ U_{r}, & x>0\end{cases}
$$

1. Consider a linear wave equation $w_{t t}-c^{2} w_{x x}=0$.

It can be rewritten in the form (12) for $U=\left(\begin{array}{ll}w_{x} & w_{t}\end{array}\right)^{T}$ as follows:

$$
U_{t}+A U_{x}=0, \quad U=\binom{v}{u} \quad A=\left(\begin{array}{cc}
0 & -1 \\
-c^{2} & 0
\end{array}\right)
$$

(a) Find eigenvalues and eigenvectors of A;
(b) Show that for $c \neq 0$ the system is strictly hyperbolic;
(c) Show that the system is linearly degenerate;
(d) Find explicit solution to (global) Riemann problem (13) for any $U_{l}, U_{r} \in \mathbb{R}^{m}$.
2. Consider a nonlinear wave equation $w_{t t}-\left(p\left(w_{x}\right)\right)_{x}=0$ with $p^{\prime}<0, p^{\prime \prime}>0$.

This model comes from gas dynamics, where p is the pressure and typically $p(w)=w^{-\gamma}$ for $\gamma \geq 1$. It can be rewritten in the form (12) for $U=\left(\begin{array}{ll}w_{x} & w_{t}\end{array}\right)^{T}$ as follows:

$$
U_{t}+F(U)_{x}=0, \quad U=\binom{v}{u}, \quad F(U)=\binom{-u}{p(v)}, \quad D F(U)=\left(\begin{array}{cc}
0 & -1 \\
p^{\prime}(v) & 0
\end{array}\right) .
$$

(a) Find eigenvalues and eigenvectors of $D F(U)$;
(b) Show that if $p^{\prime} \neq 0$ the system is strictly hyperbolic;
(c) Show that if $p^{\prime \prime} \neq 0$ the system is genuinely nonlinear for each characteristic family;
(d) For fixed U_{l} find explicitly shock curves. Which part of them correspond to admissible shock waves (according to Lax admissibility criterion)? Draw 1 -shock and 2 -shock curves in (v, u)plane. Draw 1 -shock and 2 -shock waves in (x, t)-plane.
(e) For fixed U_{l} find explicitly rarefaction curves. Which part of them correspond to rarefaction waves? Draw 1-rarefaction and 2-rarefaction curves in (v, u)-plane. Draw 1-rarefaction and 2rarefaction waves in (x, t)-plane.
(f) Show that shock and rarefaction curves from items (d) and (e) divide the neighbourhood of U_{l} into 4 regions. Draw the solution to a (local) Riemann problem in (x, t)-plane considering U_{r} lies in one of these 4 regions.
(g^{*}) Show that if

$$
\int_{v_{l}}^{\infty} \sqrt{-p^{\prime}(y)} d y=\infty
$$

then there exists a solution to a global Riemann problem, that is for any U_{l} and U_{r} (not necessarily sufficiently close to each other). Is it unique?

3.3 Exercise session №3, 19 May 2023.

In this session let's concentrate on the applications of the maximum principle for ODEs with second order differential operators of the form:

$$
L=-\frac{d^{2}}{d x^{2}}+g(x) \frac{d}{d x}+h(x), \quad x \in(a, b) \subset \mathbb{R} .
$$

Here $g(x)$ and $h(x)$ are bounded functions.
Theorem 1 (maximum principle). Let $h \equiv 0$ and $L u \leq 0$. Then if there exists $c \in(a, b)$ such that $u(c)=\max u(x)$ for $x \in[a, b]$, then $u \equiv \max u(x)$.

1. Does the differential operator L defined on the interval $[a, b] \subset \mathbb{R}$ provide a maximum principle?

That is: if for $u \in C^{2}[a, b] \cap C^{0}(a, b)$ we have $L u \leq 0$, then maximum of u on $[a, b]$ is obtained on the boundary (either at $x=a$ or at $x=b$).
a) $L=-\frac{d^{2}}{d x^{2}}-1 ;$
b) $\quad L=-\frac{d^{2}}{d x^{2}}+1$.

An important application of (different forms of) maximum principle is the following comparison principle for sub and supersolutions.
Theorem 2. Let $f \in C^{1}((a, b) \times \mathbb{R})$, and let u be a subsolution and v be a supersolution, that is:

$$
L u \leq f(x, u) ; \quad L v \geq f(x, u)
$$

Then if $u(x) \leq v(x)$ for all $x \in[a, b]$, and there exists $c \in(a, b)$ such that $u(c)=v(c)$, then $u \equiv v$.
In other words, a sub-solution and a super-solution can not touch at a point: either $u \equiv v$ or $u<v$. This "untouchability" of a sub-solution and a super-solution is very helpful. See problems 2 and 3 (and the so-called sliding method).
2. Consider the boundary-value problem:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=e^{u}, \quad 0<x<L, \tag{14}\\
u(0)=u(L)=0 .
\end{array}\right.
$$

Prove that if L is sufficiently big, there does not exist a non-negative solution to this boundary-value problem. Proceed by the following steps:
(a) Write a problem in terms of function $w=u+\varepsilon$:

$$
\left\{\begin{array}{l}
-w^{\prime \prime}=e^{-\varepsilon} e^{w}, \quad 0<x<L, \tag{15}\\
w(0)=\varepsilon, \quad w(L)=\varepsilon .
\end{array}\right.
$$

(b) Show that functions $v_{\lambda}(x)=\lambda \sin (\pi x / L)$ satisfy

$$
\left\{\begin{array}{l}
-v_{\lambda}^{\prime \prime}=\frac{\pi^{2}}{L^{2}} v_{\lambda}, \tag{16}\\
v_{\lambda}(0)=0, \quad v_{\lambda}(L)=0
\end{array}\right.
$$

(c) Show that for big enough $L>0$ and small enough $\lambda>0$ the solution w of the problem (15) is a supersolution of the problem (16).
(d) (Sliding method) Start increasing $\lambda>0$ and consider the first value λ_{0} such that the graphs of w and v_{λ} touch each other. Come to a contradiction.
(e*) Show that there exists $L_{1}>0$ so that non-negative solution of problem (14) exists for all $0<L<L_{1}$ and does not exist for all $L>L_{1}$.
3. Using sliding method from the previous exercise, prove that the solution u of the boundary value problem:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}-c u^{\prime}=f(u), \\
u(-L)=1, \quad u(L)=0 .
\end{array}\right.
$$

is unique.
Read more material about different kinds of maximum principle on the web-page on Miles Wheeler Course "Theory of Partial Differential Equations"

3.4 Exercise session №4, 20 May 2023.

In this session let's concentrate on the applications of the maximum principle for linear parabolic equations:

$$
\begin{equation*}
\partial_{t} u=\Delta u+b \cdot \nabla u+c u, \quad x \in \Omega \subset \mathbb{R}^{N}, t>0 . \tag{17}
\end{equation*}
$$

Here $b=b(t, x)$ and $c=c(t, x)$ are continuous bounded functions. The domain Ω is either a bounded connected open set or \mathbb{R}^{N}. Using the maximum principle, we obtained the comparison principle for the semilinear parabolic equations, e.g. reaction-diffusion equations ($f \in C^{1}$ in u):

$$
\begin{equation*}
\partial_{t} u=\Delta u+f(t, x, u) . \tag{18}
\end{equation*}
$$

Theorem 3 (Weak maximum principle). Let u be a subsolution of (17). If $u(0, x) \leq 0$, then $u(t, x) \leq 0$ for $t>0$.
Theorem 4 (Weak comparison principle). Let u be a subsolution of (18) and v be a supersolution of (18). If $u(0, x) \leq v(0, x)$, then $u(t, x) \leq v(t, x)$ for $t>0$.

Here are some problems to solve using these theorems:

1. (Uniqueness for semilinear problems)

Let $\Omega \subset \mathbb{R}^{N}$ be bounded, $f \in C^{1}(\mathbb{R})$, $u_{0} \in C^{0}(\bar{\Omega})$. Prove that the problem

$$
\begin{cases}\partial_{t} u=-\Delta u+f(u), & \text { in } D=\Omega \times(0, T], \\ u=u_{0}, & \text { on } \Omega \times\{0\}, \\ u=0, & \text { on } \partial \Omega \times(0, T],\end{cases}
$$

has at most one solution $u \in C^{2}(D) \cap C^{1}(\bar{D})$.
2. (Upper bound on solution for linear problems)

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain, and $u(t, x)$ be the solution of the initial boundary value problem

$$
\begin{cases}u_{t}=\Delta u+b \cdot \nabla u+c(x) u, & \text { in } \Omega \times(0,+\infty), \\ u=u_{0}, & \text { on } \Omega \times\{0\}, \\ u=0, & \text { on } x \in \partial \Omega \times(0,+\infty)\end{cases}
$$

Assume that the function $c(x)$ is bounded, with $c(x) \leq M$ for all $x \in \Omega$. Prove that $u(t, x)$ satisfies

$$
|u(t, x)| \leq\left\|u_{0}\right\|_{L_{\infty}} e^{M t}, \quad \text { for all } t>0 \text { and } x \in \Omega .
$$

3. (Global solution vs. blow-up for reaction-diffusion equations)

Let u be a solution to the following reaction-diffusion equation

$$
\begin{cases}\partial_{t} u=\Delta u+u^{2}, & \text { in } D_{T}=\Omega \times(0, T], \\ u=u_{0}, & \text { on } \Omega \times\{0\}, \\ \frac{\partial u}{\partial n}=0, & \text { on } \partial \Omega \times(0, T] .\end{cases}
$$

Does the solution u blow-up in finite time?
4. (Asymptotics for the heat equation)

Let $\Omega=B_{1}(0) \subset \mathbb{R}^{N}$ and suppose $u \in C^{2}(\Omega \times(0,+\infty)) \cap C^{0}(\bar{\Omega} \times[0,+\infty))$ satisfies for some $M>0$:

$$
\begin{cases}\partial_{t} u=\Delta u, & \text { in } \Omega \times(0,+\infty), \\ |u| \leq M, & \text { on } \Omega \times\{0\} \\ u=0, & \text { on } x \in \partial \Omega \times(0,+\infty)\end{cases}
$$

Prove that $u(x, t) \rightarrow 0$ as $t \rightarrow \infty$ uniformly in x.
Hint: combine the functions $2-|x|^{2}$ and $e^{n t}$ and construct a supersolution to the heat equation with appropriate behavior at $+\infty$.

4 Lecture notes

Shock waves in conservation laws and reaction-diffusion equations

Contact info:
Telegram: @yulia_brazil
Email: yulia.petrova@mat.puc-rio.br
Site: yulia-petrova@github.io
Any questions are very welcome!
Group in Telegram: https://t.me/+gdqus0TfjQ44NWI6
Yulia Petrova
Curso PUC-Rio
Rio de Janeiro, Brazil

Matemática PUC-Rio

Motivation

Many phenomena in "nature" can be described using mathematical tools:

1. Physics (classical):

- Mechanics, thermodynamics, fluid dynamics, electrodynamics

2. Biology and social sciences:

- Population dynamics
- how animals / bacteria / viruses / tumours spread?
- Pattern formation
- why do lizards have such a skin?
- why do birds fly forming a triangle?

Basic idea:

- Create a mathematical "model"
- Study the properties of its "solutions"

One of the conventional tools is:
PDE (partial differential equation)
Not the only one!
Probability, algebraic geometry etc...

Leonardo Da Vinci describes turbulent motion of water (around 1500)

Oil recovery: displacement of oil by water

Spread of Bubonic Plague in Europe (around 1350)

29 weeks 48 weeks 61 weeks 162 weeks

What is a PDE? First example: $\quad \Delta T=0$

Let $T(x, t)$ be a temperature in the classroom. Here $x \in \Omega \subset \mathbb{R}^{3}, t \in \mathbb{R}_{+}$.

- In equilibrium:

$$
\int_{\partial V} \vec{F} \cdot v d S=0
$$

\vec{F} - heat flux.

- Use Green-Gauss theorem:

$$
\int_{\partial V} \vec{F} \cdot v d S=\int_{V} \operatorname{div}(\vec{F}) d x
$$

- As this is true for all domains V, we get

$$
\operatorname{div}(\vec{F})=0
$$

- Assume heat flux is proportional to gradient of temperature:

$$
\vec{F}=-a \nabla T
$$

(the more is the difference of the temperature between points, the faster is the heat flow)
Finally, we get:

$$
\operatorname{div}(\nabla T)=\Delta T=0 \quad \text { (Laplace equation) }
$$

Pierre-Simon Laplace (1749-1827)

What do you need to set up a PDE problem?

(1) Fix a domain $x=\left(x_{1}, \ldots, x_{n}\right) \in \Omega \subset \mathbb{R}^{\boldsymbol{n}}$ and consider an equation for an unknown function $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x})$ for $\boldsymbol{x} \in \Omega$:

$$
P\left(x, u(x), \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{n}}, \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}, \ldots, \frac{\partial^{k} u}{\partial x_{i_{1}} \ldots \partial x_{i_{k}}}\right)=0
$$

The order of the highest derivative $k \in \mathbb{N}$ is called the order of the PDE.
If $n=1$, then it is called ODE (ordinary differential equation), otherwise PDE.
(2) Fix additional boundary or initial conditions on (possibly a part) of $\boldsymbol{\partial \Omega}$.

Caution: for ODEs one "typically" considers the so-called Cauchy problem:

$$
\begin{aligned}
& u^{\prime \prime}=f(t, u(t)) \\
& u(0)=u \\
& u^{\prime}(0)=v
\end{aligned}
$$

For PDEs the situation is more tricky and more elaborate conditions often should be considered.

Augustin-Louis Cauchy (1789-1857)
(3) Fix to which functional space the function \boldsymbol{u} belongs.

It may be $C(\Omega), C^{k}(\Omega)$ or some weaker spaces like $L_{2}(\Omega)$, Sobolev space or BV functions (functions of bounded variation) Another thing could be that one assumes different smoothness requirements for different variables (e.g. if one of the variables corresponds to time)

Typical questions of mathematical interest:

(1) Well-posedness (in Hadamard sense, around 1902)
a. The solution exists (\exists)
b. The solution is unique (!)
c. There is a continuous dependence of the solution on the "initial"/"boundary" data

- III-posed problems - we will see in a course

(2) Qualitative properties of the solution:

- How does the solution look like?
- Does there exist a solution of special type? E.g. having some symmetries.

Jacques Hadamard (1865-1963)

- If the problem is evolutionary (there is a time variable), then a natural question is:
- What is a long-time behaviour of the solution as $t \rightarrow \infty$?

Remark:

from my experience working with engineers the questions of existence and uniqueness are not so important for them, but the continuous dependence, indeed, is important. The reason is that there is also some noise (in the measurements, modelling etc), so it can cause big problems for them if the small change in initial data lead to big changes in solution.

A ZOO of PDEs (see Evans book on PDEs for more examples)

Linear PDEs:

(Laplace equation)

$$
\begin{gathered}
\Delta u=0 \\
u_{\mathrm{t}}=\Delta u \\
u_{t}+\sum_{n=1}^{k} c_{i} u_{x_{i}}=0 \\
i u_{t}+\Delta u=0
\end{gathered}
$$

(Heat equation)
(Linear transport equation)
(Schrodinger equation)
(Wave equation)

$$
u_{t t}-\Delta u=0
$$

Non-linear PDEs (and systems):

(Inviscid Burgers equation)

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0
$$

(Scalar conservation law)

$$
u_{\mathrm{t}}+\operatorname{div}(F(u))=0
$$

(Scalar reaction-diffusion equation)
$u_{t}=\Delta u+f(u)$
(Euler equation)

$$
\begin{aligned}
u_{t}+(u \cdot \nabla) u & =\nabla p \\
\nabla \cdot u & =0
\end{aligned}
$$

(Navier-Stokes equation)

$$
\begin{aligned}
u_{t}+(u \cdot \nabla) u-v \Delta u & =\nabla p \\
\nabla \cdot u & =0
\end{aligned}
$$

And many more....

A ZOO of PDEs (see Evans book on PDEs for more examples)

Linear PDEs:

(Laplace equation)	$\Delta u=0$
(Heat equation)	$u_{\mathrm{t}}=\Delta u$
(Linear transport equation)	$u_{t}+\sum_{n=1}^{k} c_{i} u_{x_{i}}=0$
(Schrodinger equation)	$i u_{t}+\Delta u=0$
(Wave equation)	$u_{t t}-\Delta u=0$

And many more....

Non-linear PDEs (and systems):

(Inviscid Burgers equation)	$u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0$
(Scalar conservation law)	$u_{\mathrm{t}}+\operatorname{div}(F(u))=0$
(Scalar reaction-diffusion equation)	$u_{t}=\Delta u+f(u)$
(Euler equation)	$\begin{aligned} u_{t}+(u \cdot \nabla) u & =\nabla p \\ \nabla \cdot u & =0 \end{aligned}$
(Navier-Stokes equation) u_{t}	$\begin{aligned} +(u \cdot \nabla) u-v \Delta u & =\nabla p \\ \nabla \cdot u & =0 \end{aligned}$

And many more....

Typical principles from Evans book on PDEs

1. Nonlinear equations are more difficult than linear equations; and, indeed, the more the nonlinearity affects the higher derivatives, the more difficult the PDE is.
2. Higher-order PDE are more difficult than lower-order PDE
3. Systems are harder than single equations
4. PDEs entailing many independent variables are harder that PDEs entailing few independent variables
5. For most PDEs it is not possible to write out explicit formulas for solutions

None of these assertions is without important exceptions.

Four main PDEs in our course:

1. Transport equation:

$$
u_{t}+c u_{x}=0
$$

2. Wave equation:

$$
u_{t t}-c^{2} u_{x x}=0
$$

3. Scalar conservation law:

$$
u_{\mathrm{t}}+(F(u))_{x}=0
$$

They are all different (linear/non-linear), require different mathematical tools to be analysed,

Solution to these equations exhibit a "propagation" phenomena:
 there are "waves" that are moving

4. Reaction-diffusion equation:

$$
u_{t}=u_{x x}+f(u)
$$

P.S. I write the simplified version, that is for $x \in \mathbb{R}, u \in \mathbb{R}$, there exist various generalisations.

Transport equation

$$
\begin{aligned}
& u_{t}+c u_{x}=0 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

Wave equation

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

Show video

Intuition behind:
in some sense we can "decompose" the wave equation into two transport equations " $u_{t}-c u_{x}$ " and " $u_{t}+c u_{x}$ " We will see how to make a mathematically rigorous understanding of this in the future.

Exercise 1:

a) Using change of variables $\xi=x-c t$ and $\eta=x+c t$, get a simplified equation on $v(\xi, \eta)=u(x, t)$.
b) Using item a) show that there exist functions f and g such that

$$
u(x, t)=f(x-c t)+g(x+c t)
$$

So this means that the solution is a sum of two travelling waves moving with opposite speeds c and $-c$.

Remark:

Notice that adding two solutions of the wave equations will again be a solution (due to the linearity of the equation). This fact can be interpreted as "no interaction" of the waves. It will be not the case for the NON-linear equations (and is one of the sources of difficulty for mathematical analysis)

Next time we will discuss the wave equation in all mathematical detail.

Conservation (and balance) laws

$$
\begin{aligned}
& u_{t}+(f(u))_{x}=0 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

- $u=u(x, t)$ - the conserved quantity
- $f(u)$ - the flux of conserved quantity
- $x \in \mathbb{R}, t \in \mathbb{R}_{+}$
- This formula, indeed, means "conservation": if we take two points $x=a$ and $x=b$, then the change of total mass of u between a and b is equal to $f(u(a, t))-f(u(b, t))=$ [inflow at a] - [outflow at b]
- If the right-hand side is not zero (some function f, that plays a role of some "source" of mass), then this equations is called a balance law
- In problems of physics this equation is usually used to describe conservation of mass, momentum, energy etc
- This is the simplest model for water-oil displacement (the so-called Buckley-Leverett equation)
- If fact, no matter what is conserved: could be density in a crowd of people, cars, insects etc.

[^1]
Conservation (and balance) laws
 ${ }^{1}$: Burgers equation

$$
\begin{aligned}
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

Assume u is smooth and differentiate u^{2} :

Exercise 2:

Calculate mathematically the time of "blow-up" of the solution for

$$
u_{0}(x)=\left\{\begin{aligned}
1, & x<0 \\
1-x, & 0<x<1 \\
0, & x>1
\end{aligned}\right.
$$

[^2]
Problems that we are faced:

1. In which sense the solution EXISTS?

- Classical solution: " u should be as smooth as many derivatives are in the equation", thus

$$
u \in C^{1}\left(\mathbb{R} \times \mathbb{R}_{+}\right)
$$

but we see that solution may become even not a continuous function !!!
So we have a problem with existence of solutions.

- We need the notion of a "weak" solution (in the sense of distributions) - we want to consider a "wider" space. Idea: look at the solution not as a function, but as a functional.

Example: Dirac delta "function": $\delta_{x}: C(\Omega) \rightarrow \mathbb{R}$ such that for any $\varphi \in C(\Omega)$ we define $\delta_{x}(\varphi)=\varphi(x)$. We will consider this notion in detail later in the course.

2. Is the solution UNIQUE?

- As we will see, unfortunately, NOT. There are MANY weak solutions and this creates a problem.
- Fortunately, physics gives us a lot of restrictions (like second law of thermodynamics, entropy etc), so this helps to choose a unique physically relevant solution (with quite a lot of effort, though).

Important class of solutions

It is always very useful to look for some special solutions with symmetries (e.g. radially symmetric or having the symmetry of the equation)

$$
\begin{aligned}
& u_{t}+(f(u))_{x}=0 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

Notice that our equation is scale-invariant: $(x, t) \rightarrow(\alpha x, \alpha t)$ for any $\alpha>0$ does not change the equation. If we take the initial data scale-invariant, we can look for a self-similar solution of the form

$$
u(x, t)=v\left(\frac{x}{t}\right)
$$

which depends on one variable, thus it satisfies some ODE (and not PDE!)
We will see how to find such solutions and why they are important:

- They are building blocks for numerical scheme
- They help to prove existence of solution to a general initial data
- They appear as limiting ones when $t \rightarrow \infty$

Riemann problem (gas dynamics)

membrane	
$u \equiv 0, \rho \equiv \rho_{l}, p \equiv p_{l}$	$u \equiv 0, \rho \equiv \rho_{r}, p \equiv p_{r}$

u - velocity, ρ - density, p - pressure

Example 4: reaction-diffusion equation

$$
u_{t}=\underbrace{u_{x x}}_{\text {displacements }}+\underbrace{f(u)}_{\text {reproduction }}
$$

This equation naturally appears in biological invasions (population dynamics), where $u=u(x, t)$ is a population density

This is a muskrat, an animal very much liked for its fur

At the beginning of the last century a few muskrats escaped from a farm in Czech republic. The result is shown below:

J.G. Skellam (1951) - describes spread of muskrats

- writes an equation like Fisher-KPP

The basic equation

Main assumptions:

1. A living population is represented by its density $u(x, t)$: number of individuals per time and space unit.
2. Individuals move and reproduce.

Variation of number of individuals at time t and place x
$=$ Number of individuals arriving at x at time t

- Number of individuals leaving x at time t
+ Number of individuals created/annihilated at x at time t

Modelling reproduction

Ignore movements: $u(x, t)=u(t)$
Assume that reproduction rate depends only on local density

$$
\dot{u}(t)=f(u)
$$

1. Simplest way: $f(u)=\mu u$
2. A given piece of space can carry only a certain capacity of individuals:
$\Rightarrow f(u)$ should be negative for large u
Simplest reproduction rate: $\quad f(u)=\mu u\left(1-\frac{\beta}{\mu} u\right)$
$\frac{1}{\beta}$ is called carrying capacity

Modelling reproduction

Sometimes, population growth is limited by low densities:

- $f(u)<0$ if u is small
- $f(u)>0$ if u is moderately large
- $f(u)<0$ above carrying capacity

$$
\text { Simplest way: } f(u)=\mu u\left(1-\frac{\beta}{\mu} u\right)(u-\theta)
$$

$f(u)=u-u^{2} \quad$ (Fisher-KPP nonlinearity)
KPP = Kolmogorov, Petrovsky, Piskunov (1937)
Fisher (1930), statistician

Fisher-KPP

$$
\begin{aligned}
& u_{t}=u_{x x}+u(1-u) \\
& u(x, 0)=\text { "gaussian hat" } \in[0,1]
\end{aligned}
$$

Start to model: let's make a "splitting"
Step 1: $\quad u_{t}=u(1-u) \quad$ pushes everything to 1
Step 2: $\quad u_{t}=u_{x x} \quad$ averages
Step 3: Repeat steps 1 and 2 sequentially
State 0 is unstable
State 1 is stable
We see an invading front! 1 invades the domain with 0 .
Question: what is the speed of invasion?

Fisher KPP (first result)

Let u_{0} be a Heavy-side function, that is $u_{0}(x)= \begin{cases}1, & x<0 \\ 0, & x>0\end{cases}$

Theorem [Kolmogorov-Petrovsky-Piskunov, 1937]:

There exists

- a function $\sigma(t)$ such that $\frac{\sigma(t)}{t} \rightarrow 0$ as $t \rightarrow \infty$
- A function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that
- $\phi(-\infty)=1$ and $\phi(+\infty)=0$
- $\phi^{\prime}<0$

Such that $u(x, t)$ has a representation

$$
u(x, t)=\phi(x-2 t+\sigma(t))+o(1), \quad t \rightarrow \infty
$$

Moral: the solution behaves as a travelling wave with speed equal to 2 .

Course content

1. Linear theory:

a. Well-posedness and exact solution for a one-dimensional wave equation
b. Reminder on Fourier transform
c. The notion of weak solution (distributions, weak-derivatives, convolution, fundamental solution)
2. Conservation and balance laws:
a. Definition of weak-solution
b. Jump condition (Rankine-Hugoniot condition)
c. Notion of hyperbolic system of conservation laws
d. Single conservation law: existence, uniqueness, asymptotic behaviour of the entropy solution.
e. Riemann problem: shock and rarefaction waves
f. Entropy, Riemann invariants
g. (if time permits) Vanishing viscosity method
h. (if time permits) The Glimm difference scheme

3. (if time permits) Reaction-diffusion equations:

a. Comparison theorems
b. Sub- and super- solutions
c. Speed of propagation for the Fisher-KPP equation (Aronson-Weinberger theorem)

References

Books that can be useful:

1. Evans, L.C. Partial differential equations (Vol. 19). American Mathematical Society.

I advise this textbook for all who are interested in PDEs.
Sections 3, 10, 11 are related to hyperbolic conservation laws (but not only).
2. Smoller, J. Shock waves and reaction-diffusion equations (Vol. 258). Springer Science \& Business Media. My plan is to (mainly) follow this book (surely, not all the material)
3. Dafermos, C.M., 2005. Hyperbolic conservation laws in continuum physics (Vol. 3). Berlin: Springer. If you want more physics about conservation laws, this book is a good option. This is considered as an encyclopaedia of hyperbolic balance laws (and it is, indeed, a hard book to read). I advice to start with online lectures of Dafermos (see below), and if you want details on proofs see the book.
4. Bressan, A., Serre, D., Williams, M. and Zumbrun, K., 2007. Hyperbolic systems of balance laws: lectures given at the CIME Summer School held in Cetraro, Italy, July 14-21, 2003. Springer.

Links to online courses:

1. At IMPA in 2013 there was a mini-course of 9 lectures on "Hyperbolic conservation laws" from Constantine Dafermos. It is, indeed, very interesting, and may be I will take something from it: https://www.youtube.com/watch?v=WF9WriJOLCQ\&list=PLo4jXE-LdDTTg8Z4iGDNOSDA74rcwoU2a
This is more informal interpretation of a Dafermos treatise book made by the same author.

Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-a_{c}^{2} \frac{\partial^{2} u}{\partial x^{2}}=0, \quad(x, t) \in \mathbb{R} \times \mathbb{R}_{+}
$$

Plan: (1) Derivation
(2) D'Alambert exact solution
(3) Well-posedness
(4) Inhomogeneous wave equation (exercise)
(5) Mixed initial -boundary value problem (sa) \exists and: (55) Exact solution by spectral method
(1) Derivation 1: (from physics)

- Position at rest:

$$
x_{n}=n l, n \in \mathbb{Z}
$$

- k-spring constant (measure of the spring's stiffness)
$\left(\ldots, u_{n-1}, u_{n}, u_{n+1}, u_{n+2}, \ldots\right)$-vector of horizontal displacements
Second Newton's law for the nth mass:

$$
\text { Hooke's law: } F_{n}^{-}=-k\left(u_{n}-u_{n-1}\right) ; F_{n}^{+}=k\left(u_{n+1}-u_{n}\right)
$$

where k is the elastic constant of each spring.
So we get: $\quad m \ddot{u}_{n}=k\left(u_{n+1}+u_{n-1}-2 u_{n}\right)$
Another way to derive is through Lagrangian:

$$
L=\frac{m}{2} \sum_{n} i_{n}^{2}-\frac{k}{2} \sum_{n}\left(u_{n+1}-u_{n}\right)^{2}
$$

Euler-Lagrange equation: $\quad \frac{d}{d t} \frac{\partial L}{\partial u_{n}}-\frac{\partial L}{\partial u_{n}}=0, n \in \mathbb{Z}$

$$
\begin{array}{r}
\ddot{u}_{n}+k\left(u_{n}-u_{n-1}\right)-k\left(u_{n+1}-u_{n}\right)=0 \\
\text { A }_{n}=k\left(u_{n+1}+u_{n-1}-2 u_{n}\right) \\
\text { Assume slow" on on } n:
\end{array}
$$

$u_{n}(t) \approx u\left(x_{n}, t\right)$ is a smooth function

$$
\begin{aligned}
& u_{n+1}=u\left(x_{n+1}, t\right)=u\left(x_{n}+l, t\right)=u\left(x_{n}, t\right)+e \frac{\partial u}{\partial x}\left(x_{n}, t\right)+\frac{1}{2} e^{2} \frac{\partial^{2} u}{\partial x^{2}}\left(x_{n}, t\right) \\
& u_{n-1}=u\left(x_{n-1}, t\right)=u\left(x_{n}-l, t\right)=u\left(x_{n}, t\right)-e \frac{\partial u}{\partial x}\left(x_{n}, t\right)+\frac{1}{2} e^{2} \frac{\partial^{2} u}{\partial x^{2}}\left(x_{n}, t\right) \\
& u_{n}=u\left(x_{n}, t\right)
\end{aligned}
$$

$$
u_{n+1}+u_{n-1}-2 u_{n}=e^{2} \frac{\partial^{2} u}{\partial x^{2}}\left(x_{n}, t\right)+O\left(e^{3}\right)
$$

\Rightarrow So eq, (1) takes the form:

$$
m \frac{\partial^{2} u}{\partial t^{2}}=k e^{2} \frac{\partial^{2} u}{\partial x^{2}}+1.0 \cdot t
$$

Denoting $\frac{k e^{2}}{m}=c^{2} \quad\left(\right.$ so $c^{2}=\frac{k e}{m / e}=\frac{\text { constant of spring of length }}{\text { density per unit }}$
we ill call it sound speed.

Forgetting loot, we get $\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0$.
Wave equation is universal?
Derivation $2:\left[\begin{array}{l}\text { from symmetries and qualitative } \\ \text { assymptions. }\end{array}\right]$
space $x \in \mathbb{R}$, time $t \in \mathbb{R}_{+}, u(x, t) \in \mathbb{R}$
Estate of the system
(H1) For any $u_{0} \in \mathbb{R}$, the constant state $u(x) \equiv u_{0}$ is a stable equilibrium for any uso
$\left(H_{2}\right)$ We consider small oscillations near $u(x, t) \equiv 0$
(H3) The system is homogeneous in space and (H4) Parity symmetry: $x \mapsto-x$. (lime $\left.\begin{array}{l}\text { In } 3 d \text { it would } \\ \text { cbrresp. left hand }\end{array}\right)$ (H5) Time reversal symmetry $t \rightarrow-t$ right hand
(H6) Long -wave approximations (oscillations are large-scale in space and time) changing in spa ci time

The general equation of motion for $u(x, t)$

$$
u(x, t) \stackrel{\text { Taylor }}{\longleftrightarrow} u, \frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}, \frac{\partial^{2} u}{\partial t^{2}}, \ldots, \quad \text { at }(x, t)
$$

We are looking for a PDE that u satisfies

$$
F\left(x, t, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial t} \ldots .\right)=0
$$

$(H 3) \Rightarrow F$ does not depend on (x, t)
$\left(H_{2}\right) \Rightarrow$ we can linearize \exists at $o \quad\left(u=0 \quad \frac{\partial u}{3 x}=0, \ldots\right)$

$$
\begin{array}{r}
C+c_{00} u+c_{10} \frac{\partial u}{\partial t}+c_{01} \frac{\partial u}{\partial x}+c_{20} \frac{\partial^{2} u}{\partial t^{2}}+c_{11} \frac{\partial^{2} u}{\partial t_{0} \partial x}+c_{012} \frac{\partial^{2} u}{\partial x^{2}} \\
+\ldots=0
\end{array}
$$

$$
(H 1)^{2} \Rightarrow c=0
$$

$$
\text { (Hs) } u_{0} \not \equiv c o n s t \neq 0, \frac{\partial u}{\partial x}=0, \quad \frac{\partial u}{\partial t}=0, \ldots \Rightarrow c_{00} u_{0}=0 \Rightarrow c_{00}=0
$$

$x \mapsto-x \Rightarrow$
(H4) all odd derivatives w.r.t x change sigh \Rightarrow no terms with odd-order derivatives w.r.t.x (Hs) $t \rightarrow-t \Rightarrow$ no terms with odd-order derivatives w.r.t.t

$$
c_{20} \frac{\partial^{2} u}{\partial t^{2}}+c_{02} \frac{\partial^{2} u}{\partial x^{2}}+c_{40} \frac{\partial^{4} u}{\partial t^{4}}+c_{22} \frac{\partial^{4} u}{\partial t^{2} \partial x^{2}}+c_{04} \frac{\partial^{4} u}{\partial x^{4}}+
$$

(H6) Long-wave approximation: u changes on large scales L in x and
u changes on large scales T in t Change variables

$$
\begin{align*}
& \xi=\frac{x}{L}, \tau=\frac{t}{T} \\
& \begin{array}{l}
U(\xi, \tau) \\
=u(x, t)= \\
\\
=u(L \xi, T \tau)
\end{array}
\end{align*}
$$

$U(\xi, \tau)$ changes at characteristic scales $3 \sim 1,2 \sim 1$

$$
\Rightarrow \frac{\partial^{2 m+2 n} \downarrow}{\partial \xi^{2 m} \partial \eta^{2 n}} \sim 1
$$

$$
\frac{\partial^{2 m+2 n} u}{\partial x^{2 m} \partial t^{2 n}} \sim \frac{1}{T^{2 m} L^{2 n}} \frac{\partial^{2 m+2 n} u l}{\partial \xi^{2 m} \partial \eta^{2 n}}
$$

$$
\frac{\partial^{2 m+2 n} U}{\underbrace{\partial \xi^{2 m} \partial \eta^{2 n}}_{1}} \sim \frac{1}{T^{2 m} L^{2 n}}
$$

$x=L \zeta \quad t=T \tau \quad$ In long-wave approximation we conside T and L large, so
the higher - order derivative terms are small
\Rightarrow we can neglect terms with higher -order derivatives

$$
\Rightarrow \quad C_{20} \frac{\partial^{2} u}{\partial t^{2}}+C_{02} \frac{\partial^{2} u}{\partial x^{2}}=0 \quad\left|\frac{C_{02}}{C_{20}}\right|=a c^{2}
$$

before

$$
\frac{\partial^{2} u}{\partial t^{2}} \pm c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \text {. What is the sign of } c \text { ? }
$$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}} \pm c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 . \quad \text { Wh } \\
& \oplus \text {, then } \frac{\partial^{2} u}{\partial t^{2}}+c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \text {. }
\end{aligned}
$$

If \oplus, then $\frac{\partial^{2} u}{\partial t^{2}}+c^{2} \frac{\partial^{2} \varphi}{\partial x^{2}}=0$.
Then $\quad u(x, t)=c e^{a k t} \cos \left(k_{x}\right)$ is a solution for any c and k !.

$$
t=0: u(x, 0)=c \cdot \cos (k x) \quad \text { if } c \text { is small. }
$$

But $u(x, t) \rightarrow \infty$ as $t \rightarrow \infty$
So you start with arbitrary small initial condition, you grow to infinity, so the $u=0$ is unstable equilibrium.

$$
(H 1) \Rightarrow \text { say } \because \text { unstable equilibrium. } \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

We never used any physical origind
Observation: $x \in \mathbb{R}^{3}(H 7)$ Isotropy in space

$$
\begin{aligned}
& \text { Observation: } x \in \mathbb{R}^{3} \quad(H 7) \text { Isotropy } \\
& \Rightarrow \frac{\partial^{2} u}{\partial t^{2}}-a^{2} \Delta u=0 ; \quad \Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}
\end{aligned}
$$

a is what characterizes the physical/biolocical.
Examples: (1) String oscillation of a sting

$$
a=\sqrt{T / S}, \begin{aligned}
& T \text {-tension } \\
& \rho-\text { density }
\end{aligned}
$$

$$
u(x, t) \text {-oscillation }
$$

from an equilibrium
(2) Sound wave in gas or liquid

- u can be pressure or displacement of partides Here a is a sound speed.
(3) Electromagnetic wave
-u is a field (electric or magnetic)
- a is a light speed
(4) Shallow water waves
- small amplitude

- "long" waves: $H \ll L$
depth is much smaller than the length of $C=\sqrt{g H}$; $u(x, t)$-displacement of the equilibrium
Well-posedness of Cauchy problem for $1 D$ wave eq.

$$
u_{t t}-c^{2} u_{x x}=0, \quad c \in \mathbb{R}, x \in \mathbb{R}, \quad t \in \mathbb{R}+
$$

Let's find a general form of solution.
Make the change of variables: $\xi=x$-ct

$$
\eta=x+c t
$$

$$
u(x, t)=v(\xi, \eta)
$$

Using exercise 1, we get

Integrate w.r.t. $\xi \Rightarrow v(\xi, \eta)=\frac{\int F(\xi) d \xi}{\text { arbitrary }}+\frac{g(\eta)}{\text { arbitrary }}$

$$
\Rightarrow v(\xi, \eta)=f(\xi)+g(\eta)-\text { general solution }
$$

Thus, $u(x, t)=f(x-c t)+g(x+c t)$
f represents wave g represents moving to the right
 moving to the left

Well-posedness i, 1) \exists (existence)
2) I (uniqueness)
3) continuous dependence on initial data

$$
\left.\left\{\begin{array}{ll}
u_{t t}-c^{2} u_{x x}=0 & \text { We will prove the } \exists \text { and! by } \\
u(x, 0)=\varphi(x) & \text { providing an explicit formula } \\
u_{t}(x, 0)=\psi(x) & \text { for solution. }
\end{array}\right\} \begin{aligned}
& u(x, 0)=\varphi(x) \Rightarrow \quad f(x)+g(x)=\varphi(x) \\
& u_{t}(x, 0)=\psi(x) \Rightarrow-c f^{\prime}(x)+c g^{\prime}(x)=\psi(x)
\end{aligned} \right\rvert\, \Rightarrow \begin{aligned}
& f^{\prime}+g^{\prime}=\varphi \\
& -f^{\prime}+g^{\prime}=\frac{\psi}{c}
\end{aligned}
$$

Thus, $f^{\prime}=\frac{1}{2} \varphi^{\prime}-\frac{1}{2 c} \psi \Rightarrow\left\{\begin{array}{l}f=\frac{1}{2} \varphi-\frac{1}{2 c} S \psi(z) d z+c_{1} \\ g^{\prime}=\frac{1}{2} \varphi^{\prime}+\frac{1}{2 c} \psi \\ g=\frac{1}{2} \varphi+\frac{1}{2 c} S \psi(z) d z+c_{2}\end{array}\right.$
Note that $f+g=\varphi \Rightarrow c_{1}+c_{2}=0$
Then

$$
u(x, t)=\frac{\varphi(x-c t)+\varphi(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(z) d z
$$

D'Alambert formula

Example: φ

$\left.\frac{\partial u}{\partial t}\right|_{t=0} \equiv 0$. Then $u(x, t)=\frac{\varphi(x-c t)+\varphi(x+c t)}{2}$. That means we will have exactly 2 waves with profiles $\frac{\varphi(x)}{2}$ going to left and right

Exercise 3 :

Draw a solution u in this case.

$$
\begin{aligned}
& \text { Wave equation }\left\{\begin{array}{ll}
u_{t t}-c^{2} u_{x x}=0, & c \in \mathbb{R} \text {-wave speed Lecture } 3 \\
u(x, 0)=\varphi(x) & x \in \mathbb{R}, t>0 \\
u_{t}(x, 0)=\psi(x) &
\end{array}\right]
\end{aligned}
$$

Last time we proved that \exists ! solution to (*). To And derived D'Alambert formula for $u(x, t)$:

$$
u(x, t)=\frac{\varphi(x-c t)+\varphi(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(z) d z
$$

To finish the proof of well-posedness, we need to show the continuous dependence on initial data.

Remark: for classical solution we see that we "need $u(x, t) \in C^{2}(\mathbb{R} \times[0,+\infty))$. So it makes sense ti ask that $\varphi \in C^{2}(\mathbb{R})$ and $\psi \in C^{1}(\mathbb{R})$.
For simplicity, let us show the continuous dependence in the uniform norm $C(\mathbb{R})$, that is:
Lemma (cont. dependence in $C(\mathbb{R})$):
Let $\left\|\varphi-\varphi_{1}\right\|_{c(\mathbb{R})}<\varepsilon$ and $\left\|\psi-\psi_{1}\right\|_{c(\mathbb{R})}<\varepsilon$, $\varepsilon>$ and v is the solution of (*) with $v(x, 0)=\varphi 0$

$$
v_{t}(x, 0)=\psi 0
$$

and v_{1} is the solution of (*) with $v_{1}(x, 0)=\varphi_{1} 0$

$$
v_{1 t}(x, 0)=\psi_{1}
$$

Then, for any $T>0$ if $\varepsilon \rightarrow 0$
we have $v-v_{1} \rightarrow 0$ uniformly in $x \in[0, T$
Proof:

$$
\begin{aligned}
\mid\left\|v-v_{1}\right\|_{C(\mathbb{R})} \leqslant & \frac{\left|\varphi(x-c t)-\varphi_{1}(x-c t)\right|^{<\varepsilon}}{2}+\underbrace{|\varphi(x+c t)-\varphi(x+c t)|^{<\varepsilon}}
\end{aligned}
$$

Thus

$$
\left\|v-v_{1}\right\|_{c(\mathbb{R})} \leq \varepsilon(1+t) \leq \varepsilon(1+T) \rightarrow 0 \text { as } \varepsilon \rightarrow \tau
$$

- Domain of dependence: $D_{0}:=\left\{x: x_{0}-c_{0} t_{0}<x<x_{0}+c t_{0}\right\}$

So by D'Alambert formula we see that $u\left(x_{0}, t_{0}\right)$ depends only on values φ in points (x_{0}-cto) and $\left(x_{0}+c t_{0}\right)$ and ψ on D_{0}. If we change e and ψ outside D_{0}, the solution $u\left(x_{0}\right.$ i will not change. That's why
we call Do the domain of dependence.
Notice that for any point $\left(x_{1},-1\right)$ insinde triangle the domain of dependence is also inside

- Reversed question: what points are influenced by
 the data in an interval I on $t=0$

$$
\begin{aligned}
& J=[a, b] \\
& D_{I}-\text { domain of influer } \\
& D_{I}=\{(x, t): t \in[0, T] \text { and } \\
& \quad a-c t \leq x \leq b+c t\}
\end{aligned}
$$

$$
\begin{aligned}
& I=[a, b] \\
& D_{I} \text {-domain of influence of } I
\end{aligned}
$$

We say that disturbances propagate at speed c
We mean the following: φ be supported on $I \quad(\varphi=0, \psi=0$ out of I) Imagine the observer is at point 4 be supported on $\dot{x} \in$, say $\bar{x}>b$ For all times $t<\frac{\bar{x}-b}{c}$ the solution u will be o (the observer doesn't feel the disturbance). However, once $t \geqslant \frac{\bar{x}-b}{c}$ the solution will depend on φ, ψ forever!
Remark: interesting observation that we do not touch in these lectures:
think of \rightarrow in \mathbb{R}^{3} (in fact in $\mathbb{R}^{2 d+1}, d \in \mathbb{N}$) if we hear some the sound! \rightarrow hear it at some point, that is the solution $\exists t_{1} \leqslant t_{2}$ st.

$$
u(x, t)=0, \text { if } t<t_{s} \text { and } u(x, t)=0 \text { if } t>t_{2} \text {. }
$$

As we see in \mathbb{R}^{1} this is not the case!
Also it is not the case for $\mathbb{R}^{2 d}, d \in \mathbb{N}$.

Inhomogeneous wave equation:
$\begin{cases}u_{t t}-c^{2} u_{x x}=h(x, t) & h \in C(\mathbb{R} \times[0,+\infty))\end{cases}$
(**) $\begin{cases}u(x, 0)=\varphi(x) & \varphi \in C^{2} \\ u_{t}(x, 0)=\psi(x) & \psi \in C^{1}\end{cases}$
\rightarrow Use linearity: consider

1) $\left\{\begin{array}{l}\left(u_{1}\right)_{t t}-c^{2}\left(u_{1}\right)_{x x}=h(x, t) \\ u_{1}(x, 0)=0 \\ \left(u_{1}\right)(x, 0)=0\end{array}\right.$ and $\quad\left\{\begin{array}{l}\left(u_{2}\right)_{t t}-c^{2}\left(u_{2}\right)_{x x}=0 \\ u_{2}(x, 0)=\varphi(x) \\ \left(u_{2}\right)_{t}(x, 0)=\psi(x)\end{array}\right.$

$$
\text { then } u(x, t)=u_{1}(x, t)+u_{2}(x, t)
$$

We know how to solve (2). How to solve (1)? Let me give you "a general construction" that allow to solve (1) if you know how to solve (2). It is called Duhamel principle.
The idea is to move $h(x, t)$ from RHS right handsid to the initial data in (2). Intuition (physical): the term $h(x, t)$ acts as an
external force at every point x in space and time t.

Let's divide the (x, t)-place into strips of infinitesimal the forcing there is consta $h(x, T) \Rightarrow u_{t t} \sim h(x, T)$

$$
U_{t} \sim h(x, T) d T
$$

So we can consider an auxiliary ${ }_{x+c(t-T)}$ problem:

$$
\left\{\begin{array}{lc}
u_{t t}-c^{2} u_{x x}=0 \\
U_{(x, t)}=0 & \left.U(x, t)=\frac{1}{2 c} \int_{x-c(t-T)}^{x+c t-T}\right) \\
u_{t}(x, T)=h(x, T) d T & D^{\prime} \text { Alamb. }
\end{array} \quad \begin{array}{ll}
t=0 \text { to } t=T+d
\end{array}\right.
$$

If we now consider the time from $t=0$ to $t=T+d$ d we need to sum up all $\frac{1}{2 c} \int_{x-c(t-T)}^{x+c(t-T)} h(z, T) d z$. diT, that is to take integral:

$$
\frac{1}{2 c} \int_{-}^{t} \int_{x-\infty(t-T)}^{x+c(t-T)} h(z) T z d T
$$

Let's prove this mathematically rigpivus.
Duhamel principle: take $v=v(x, t ; s)$ such that

$$
\left\{\begin{array}{l}
v_{t t}-c^{2} v_{x x}=0, t>s \\
v(x, t ; s)=0, t=s \\
v_{t}(x, t ; s)=f\left(x, t{ }^{2} s\right), t=s
\end{array}\right.
$$

Then
$u(x, t)=\int_{0}^{t} v(x, t ; s) d s$ is a solution to (1)
Proof:

$$
\begin{aligned}
& \text { Proof : } \\
& \Gamma_{t}=v(x, t ; t)+\int_{0}^{t} v_{t}(x, t ; s) d s \\
& u_{t t}=v_{t}(x, t ; t)+\int_{0}^{t} v_{t t}(x, t ; s) d s= \\
&=f(x, t)+\int_{0}^{t} v_{t t}(x, t ; s) d s \\
& u_{x x}=\int_{0}^{t} v_{x x}(x, t ; s) d s \\
& \text { Then } u_{t t}-c^{2} u_{x x}=f(x, t)+\int_{0}^{t}\left(v_{t t}(x, t ; s)-c^{2} v_{x x}(x, t ; s)\right) d s \\
& \text { LT }
\end{aligned}
$$

There is an exercise 3 to solve inhomogeneous wave equation in a different manner (using Green's then Thus, the solution to (**) looks like:

$$
\text { Thus, the solution to } u(x, t)=\frac{\varphi(x-c t)+\varphi(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(z, t) d z+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-T)}^{x+c(t-T)} h(z, T) d z d T \text {. }
$$

Remark: Duhamel principle is a powerful (universal) method of solving inhomogeneous problems It works for ODES, heat equation etc...

Mixed initial-boundary value problem
Consider a string of a guitar

$$
u_{t t}-c^{2} u_{x x}=h(x, t), x \in[a, b]
$$

$\left.\begin{array}{l}u(x, 0)=\varphi(x) \\ u_{t}(x, 0)=\psi(x)\end{array}\right\} \quad$ "initial" conditions

(***)

One can solve this problem explicitly using Fourier
sums (we will do it later). But let us show that even if we do not know the exact form of solution, we can prove \exists and !
Thm (uniqueness for wave equation)
There exists at most one function $u \in C^{2}([a, b] \times[0, T$ solving $(* * *)$.

Proof:
T. We will prove using "energy method". Suppose w, v are two solutions of (***) Then $u=w-v$ is a solution to homogeneous problem: $\quad\left\{\begin{array}{l}u_{t t}-c^{2} u_{x x}=0 \\ u(x, 0)=u_{t}(x, 0)=0 \\ u(a, t)=u(b, t)=0 .\end{array}\right.$
Let us show that $u \equiv 0$.
Define the "energy":

$$
I(t)=\frac{1}{2} \int_{a}^{b}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x
$$

Kinetic potential energy energy
How does $I(t)$ change with time?

$$
\begin{aligned}
\frac{d I(t)}{d t} & =\frac{1}{2} \int_{a}^{b}\left(2 u_{t} \cdot \frac{u_{t t}}{N}+c^{2} \cdot 2 \cdot u_{x} \cdot u_{x t}\right) d x= \\
& =c^{2} \int_{a}^{b}\left(u_{t} \cdot u_{x x}+u_{x} \cdot u_{x} t\right) d x=c^{2} \int_{a}^{b} \frac{d}{d x}\left(u_{t} \cdot u_{x}\right) d x \\
& =\left.c^{2} u_{t} \cdot u_{x}\right|_{a} ^{b}=0 \Rightarrow I(t) \equiv \text { cost } \\
I(0) & =0 \Rightarrow I(t) \equiv 0 . \text { Thus } u_{t} \equiv 0, u_{x} \equiv 0 \Rightarrow u_{0} \equiv c o n
\end{aligned}
$$

$$
A \quad, \cdots \cdots \cdots \cdots \quad \Rightarrow \equiv 0
$$

The (existence of solution to a wave equari...
There exists a solution to problem (***) u $\in C^{3}([a, G] \times(\mathbb{C O})$ Proof:
For simplicity, let $c=1$ (the same thing for $c \neq 1$, let Before we prove, let me formulate and prove Useful lemma: $u(x, t) \in C^{3}$. The following statements are equivalent:
(1) u satisfies PDE $u_{t t}-u_{x x}=0$
(2) u satisfies the difference equation $u(x-k, t-h)+u(x+k, t+h)=u(x-h, t-k)+u(x+h, t+k)$ $\forall(x, t) \in \mathbb{R} \times \mathbb{R}$ and $k, h>0$. See remark below'.

refoctangle
$(2) \Rightarrow(1)$ Let $h=0$.
difference equation in (2).
$u(x, t)$ satisfies the difference equation i
Subtrack $2 u(x, t)$ and divide for k^{2} :
$\frac{u(x-k, t)-2 u(x, t)+u(x+k, t)}{k^{2}}=\frac{u(x, t-k)-2 u(x, t)+u(x, t+k)}{k^{2}}$
By Taylor expansion, we get
$u(x-k, t)=u(x, t)-k u_{x}(x, t)+\frac{1}{2} k^{2} u_{x x}(x, t)+O\left(k^{3}\right) d_{c^{3}}^{\text {for }}$
$u(x+k, t)=u(x, t)+k u_{x}(x, t)+\frac{1}{2} k^{2} u_{x x}(x, t)+O\left(k^{3}\right)$
So we have $u_{x x}+O\left(k^{n}\right)=u_{t t}+O(k), k \rightarrow 0$
LAs a limit we get the wave equation.

[^3]Proof of existence: simple geometric idea.
Divide the domain

$\Omega=[a, b] \times \mathbb{R}_{+}$into 5 pieces as shown Q n the picture draw a line with slope $\frac{1}{c}$ from point a, and a line with slope $-\frac{1}{c}$ from point B; and consider a rectange such that these two lines are its diagonals. Then the following observations are valid.
I. The solution in region I is completely determined by D'Alambert formula. the following characteristic rectangle (see picture) and use useful lemma.

Thus we know u in region I.
III. Analogously, we construct u in region III.

IV . To construct u in region IV we use the following characteristic rectangle and use useful lemma.

Thus, we have constructed the Solution for $x \in[a, b]$

$$
t \in\left[0, \frac{b-a}{c}\right]
$$

Repeat this procedure to construct u for all $t>0$

$$
\text { Exact solution to: }\left\{\begin{array}{l}
u_{t t}-c^{-} u_{x x}=0 \\
\left.u\right|_{x=0}=\left.u\right|_{x=\pi}=0 \\
u(x, 0)=\varphi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

Lecture 4) Last time: mixed tritial-boundary value probler guitar string oscillation

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=0 & \text { We proved } \exists! \\
u(x, 0)=\varphi(x) \\
u_{t}(x, 0)=\psi(x) & \text { (ic) } \\
\left.\begin{array}{ll}
u(a, t)=a(t) \\
u(b, t)=b(t)
\end{array}\right)(b c) & \text { of solution } \\
& \end{cases}
$$

Today let us find explicitly the solution to:

$$
\left\{\begin{array}{l}
u_{t t}-\otimes c^{2} u_{x x}=0 \\
u(x, 0)=\varphi(x) \\
u_{t}(x, 0)=\psi(x) \\
u(a, t)=u(b, t)=0
\end{array}\right.
$$

we will do it using
Fourier series.

Small reminder on fourier series
Def: Fourier series of function f is a representation:
(1) $f(x)=\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}, \quad c_{n} \in \mathbb{C}, x \in \mathbb{R}, \quad f: \mathbb{R} \rightarrow \mathbb{R}$

Here the series converges absolutely.
It is enough to assume that $\sum_{n \in \mathbb{Z}}\left|c_{n}\right|<+\infty$ (in fact, f is periódi with period (z

$$
\sum_{n \in \mathbb{Z}}\left|c_{n}\right|<+\infty
$$

$\underline{\text { Rok }}$: if f is real $\Rightarrow f(x)=\bar{f}(x)=\sum_{n \in \mathbb{Z}} \bar{c}_{n} e^{-i n x}=$

$$
=\sum_{n \in \mathbb{C}} \bar{c}_{-n} e^{i n x}
$$

$$
\Rightarrow \quad \bar{C}_{-n}=C_{n}
$$

\Rightarrow let's define

$$
\begin{aligned}
c_{0}=\frac{a_{0}}{2} \quad, c_{n} & =\left(a_{n}-i b_{n}\right) \frac{1}{2} \\
c_{-n} & =\left(a_{n}+i b_{n}\right) \frac{1}{2}
\end{aligned}
$$

Thus, $f(x)=\frac{a_{0}}{2}+\sum_{n \in \mathbb{N}}\left(a_{n} e^{i n x}+c_{-n} e^{-i n x}\right)=\frac{a_{0}}{2}+\sum_{n \in \mathbb{N}}\left(\frac{a_{n}}{2} \cos (n)\right.$

$$
\left.+\frac{b n}{2} \sin (n x)\right)+\sum_{n \in \mathbb{N}^{\prime}}\left(\frac{a_{n}}{2} \cos (n x)+\frac{b_{n}}{2} \sin (n x)\right)
$$

$$
\begin{equation*}
\Rightarrow f(x)=\frac{a_{0}}{2}+\sum_{n \in \mathbb{N}^{r}}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right] \tag{2}
\end{equation*}
$$

The 1: For a function given by fourier series (1), we can define a coefficient Fourier coed. $\quad c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x$

Proof:

$$
\begin{aligned}
& \sqrt{\int_{-\pi}^{\pi}} f(x) e^{-i n x} d x=\int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} C_{m} e^{i m x} e^{-i n x} d x=\int_{\text {can change Sand: }}^{\text {as the sum is abs }} \begin{array}{l}
\text { convergent }
\end{array} \\
& =\sum_{m \in \mathbb{Z}} \int_{-\pi}^{\pi} e^{i(m-n) x} d x=2 \pi c_{n} \\
& \text { because } \int_{-\pi}^{\pi} e^{i(m-n) x} d x=\left\{\begin{array}{l}
2 \pi, m=n \\
0, m \neq n
\end{array}\right.
\end{aligned}
$$

Observation:

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x ; \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x ; b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x)
$$

Remark: from point of view of functional analysis: consider a Hilbert space

$$
\begin{array}{r}
L^{2}[0,2 \pi]=\{f:[0,2 \pi] \rightarrow \mathbb{Q} \text {-measurable: } \\
\left.\int_{0}^{2 \pi}|f(x)|^{2} d x<+\infty \quad\right\}
\end{array}
$$

where $f \stackrel{\downarrow}{\sim} \underset{\sim}{\sim}$ means $f=g$ w.r.t. Lebegue
that is $\quad \mu_{\mathbb{L} \text { Lebegue }}\{x: f(x) \neq g(x)\}=0$.

$$
\text { Then } \begin{aligned}
\left(\int_{0}^{2 \pi}|f(x)|^{2} d x\right)^{1 / 2} & =\|f\|_{L^{2}[0,2 \pi]} \text { - norm } \\
\cdot \int_{0}^{2 \pi} f(x) \overline{g(x)} d x & =\langle f, g\rangle_{L^{2}[0,2 \pi] \text { product }} \text { - scalar }
\end{aligned}
$$

Actually, $\left\{e^{i n x}\right\}_{n \in \mathbb{Z}}$ is an orthogonal basis ($\left\{\frac{e^{i n x}}{\sqrt{2 \pi}}\right\}_{n \in \mathbb{Z}}$ is an orthonormall basis)
And $\forall f \in L^{2}[0,2 \pi]$ can be represented by formula (1)

$$
\begin{aligned}
& \int\left\langle\frac{e^{i n x}}{\sqrt{2 \pi}}, \frac{e^{i m x}}{\sqrt{2 \pi}}\right\rangle=\delta_{n m} \leqslant\left\{\begin{array}{l}
1, n=m
\end{array}\right. \\
& \text { in the sense of } L_{2}: \int_{0}^{2 \pi}\left|f(x)-\sum_{|n| \leqslant N} c_{n} e^{i n x}\right| d x \underset{N \rightarrow \infty}{\rightarrow c}
\end{aligned}
$$

In finite dimensions we have $u \in \mathbb{R}^{u}$ and $\left\{e_{1}, \ldots, e_{d}\right\}$ basis, then $\exists!u_{k}: \quad u=\sum_{k=1}^{d} u_{k} e_{k}$

To find u_{k} we just take scalar product with en

$$
\begin{aligned}
& \left\langle u, e_{n}\right\rangle=\sum_{k=1}^{d} u_{k} \cdot\left\langle e_{k}, e_{n}\right\rangle=u_{n}\left\langle e_{n}, e_{n}\right\rangle \\
& \Rightarrow u_{n}=\frac{\left\langle u, e_{n}\right\rangle}{\left\langle e_{n}, e_{n}\right\rangle}
\end{aligned}
$$

For infinitedimensional space it is similar.

$$
\begin{aligned}
& \left.\left.f(x)=\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}\right\rangle, e^{i n x}\right\rangle \\
& \left\langle f(x), e^{i n x}>=c_{m}<e^{i m x}, e^{i n x}\right\rangle \\
& \Rightarrow c_{m}=\frac{1}{2 \pi}<f(x), e^{i n x}>
\end{aligned}
$$

- The same story for $\{1, \cos (n x), \sin (n x)\}-\operatorname{basis} \quad \ln L^{2}[0,2 \pi$ for real-valued f.
Thy 2: Let $f(x) \in C^{\infty}\left(S^{1}\right)$ - ${ }^{\text {smooth }}$ periodic function on a eide $S^{1}=[0,2 \pi] /\{0=2 \pi\}$
Then for any $a \geq 0$ there exists a constant C (which depend on f and a, but independent of n) such that

$$
\left|c_{n}\right|=\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x\right| \leq C \cdot|n|^{-a} \quad \text { for } \quad|n| \neq 0
$$

(a goes to very fast -faster than any polynig
Proof:

$$
\nabla a=0:|c n| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f(x) e^{-i n x}\right| d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)| d x
$$

$a=1$: integrate by parts:

$$
\begin{aligned}
\left|C_{n}\right| & \left.=\left|\frac{1}{2 \pi} f(x) \frac{e^{-i n x}}{-i n}\right|_{-\pi}^{\pi}+\frac{1}{2 \pi i n} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \right\rvert\, \leq \\
& \leq \frac{1}{n} \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f^{\prime}(x)\right| d x=: \frac{C}{\Omega} \text { proved! } \sqrt{3}
\end{aligned}
$$

1 And so on....

Corollary: For any $f(x) \in C^{\infty}\left(S^{\prime}\right)$ the corresponding fourier
series $\sum_{n \in \mathbb{Z}} c_{n} e^{t^{i n x}}$, where $c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x$, converges for all $x \in \mathbb{R}$.
Proof:
1 Absolute convergence is clear:

$$
\left|\sum c_{n} e^{i n x}\right| \leq \sum\left|c_{n}\right| \cdot\left|e_{\mid 1}^{i n x}\right|_{1} \leq \sum \frac{c}{n^{2}}<+\infty
$$

L

Summing up:
Thin 1 : $f(x)=\sum c_{n} e^{i n x} \Rightarrow c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d$
The $2: f \in C^{\infty}\left(S^{1}\right) \Rightarrow$ we can write a series. $\sum c_{n} e^{-i n x}$ and it converges.
Does this series always converge to $f(x)$?
Not always! (in general)
The 3 (without proof):

$$
\begin{aligned}
& \text { (without proof): } f(x)=\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}, c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i}\left(S^{1}\right) \text {, then }
\end{aligned}
$$

e.g. Arnold's book

Spectral method: we have constant coefficients, let's try \& we will need to solution of the form: $\begin{aligned} & \text { solve auxiliary eigenvalue } \\ & \text { problem }\end{aligned} \quad u(x, t)=\varphi(x) \cdot e^{\lambda t}$ for some

$$
\text { So we have }\left\{\begin{array}{l}
\lambda^{2} \cdot \varphi(x) \cdot e^{c^{\prime}} \cdot e^{\prime \prime}(x) \cdot e^{\lambda t}=0 \\
\varphi^{\prime \prime}+\mu \varphi=0 \quad \text { for } \mu=-\frac{\lambda^{2}}{c^{2}} \in \mathbb{C} \\
\varphi(0)=\varphi(\pi)=0 \quad \rightarrow \text { eigenvalue problem }
\end{array}\right.
$$

$\begin{cases}\varphi^{\prime \prime}+\mu \varphi=0 & \text { Let's find all } \mu \text { for which the } \\ \varphi(0)=\varphi(\pi)=0 & \text { solution exists. }\end{cases}$
Case $\mu<0: \varphi^{\prime \prime}+\mu \varphi=0 \Rightarrow \varphi(x)=A e^{\sqrt{\mu / 1}}+B e^{-\sqrt{\mu / 1} x}$

$$
\begin{aligned}
& \varphi(0)=0 \\
& \varphi(\pi)=0
\end{aligned} \quad \Rightarrow\left\{\begin{array}{c}
A+B=0 \\
A \cdot e^{\sqrt{\mu \pi}}+B e^{-\sqrt{\mu} \pi}=0
\end{array} \Rightarrow A=B=0\right.
$$

only trivial solution $\varphi \equiv 0$.
Case $\mu=0$: $\varphi^{\prime \prime}=0 \Rightarrow \varphi(x)=A x+B$

Obs: μ can be only real and positive

$$
\begin{array}{ll}
\varphi^{\prime \prime}+\mu \varphi^{t}=0 & \mid<0, \varphi_{L^{2}} \\
\int_{0}^{2 \pi} \varphi^{\prime \prime} \cdot \varphi+\mu \varphi^{2}=0 & \mu \cdot \int_{0}^{2 \pi} \varphi^{2}=\int_{0}^{2 \pi}\left(\varphi^{\prime}\right)^{2} \\
\mu=\frac{\int_{0}^{2 \pi}\left(e^{\prime}\right)^{2}}{2 \pi}>0
\end{array}
$$

Then

$$
\lambda^{2}=-c^{2} k^{2}
$$

solutions:

$$
\begin{aligned}
& \lambda=i c k \quad \text { and } \quad \text { we have } \\
& u_{k}(x, t)=\sin (k x) \cdot \underbrace{e^{i k t}}_{\text {complex }}
\end{aligned}
$$ $\lambda=i c k$

$u_{k}(x, t)=\sin (k x) \cdot \underbrace{e^{i k t}}_{\text {complex }}$
interested only in real solution any sums like this:
der any

$$
\left.u(x, t)=\sum_{k=1}^{\infty} \sin (k x)\left[A_{k} \cos (k k t)+B_{k} \sin (k) t\right)\right]
$$

 overtone

main mode (fundamental tone)

$$
\begin{aligned}
& \varphi(0)=\varphi(\pi)=0 \Rightarrow A=B=0 \Rightarrow \varphi \equiv 0 . \\
& \text { Case } \mu>0: \quad \varphi^{\prime \prime}+\mu \varphi=0 \Rightarrow \varphi(x)=A \cdot e^{i \sqrt{\mu} x}+B \cdot e^{-i \sqrt{\mu} x} \\
& \text { better } \varphi(x)=A \sin (\sqrt{\mu} x)+B \cos (\sqrt{\mu}) \\
& \varphi(0)=0 \Rightarrow B=0 \Rightarrow \varphi(x)=A \sin (\sqrt{\mu} x) \\
& \varphi(\pi)=0 \Rightarrow A \sin (\sqrt{\mu} \pi)=0 \Rightarrow \sqrt{\mu} \pi=\pi k, k \in \mathbb{Z} \\
& \mu=k^{2}, k \in \mathbb{Z}
\end{aligned}
$$

Let us show that this solution is general.
First, notice that $\varphi(x)$ can be represented only as a sum of $\sin (k x)$ in its fourier series.

\rightarrow similar with $\varphi(x)$:

$$
\psi(x)=\sum_{k=1}^{\infty} b_{k} \sin (k x)
$$

Second, we have

$$
u(x, t)=\sum_{k=1}^{\infty} \sin (k x)\left(A_{k} \cos (k t)+B_{k} \sin (k t)\right)
$$

$$
\begin{aligned}
& u(x, 0)=\varphi(x)=\sum A_{k} \operatorname{A} \sin (k x) \Rightarrow A_{k}=a_{k} \\
& u_{t}(x, 0)=\psi(x)=\sum c_{k} B_{k} \sin (k x) \Rightarrow B_{k}=b_{k} \Rightarrow B_{k}=\frac{b_{k}}{k c} . \\
& \Rightarrow u(x, t)=\sum_{k=1}^{\infty} \sin (k x)\left(a_{k} \cos (k t)+\frac{b_{k}}{k c} \sin (k t)\right)
\end{aligned}
$$

where $a_{k}=\frac{2}{\pi} \int_{0}^{\pi} \varphi(x) \sin (k x) d x, b_{k}=\frac{2}{\pi} \int_{0}^{\pi} \psi(x) \sin (k x) d$
Exercise: Find a fourier series solution to

$$
\varphi x)= \begin{cases}x, & x \in\left[0, \frac{\pi}{2}\right] \\ \pi-x, & x \in\left[\frac{\pi}{2}, \pi\right]\end{cases}
$$

$$
\psi(x) \equiv 0
$$

Various space dimensions: $\Omega \subset \mathbb{R}^{d}$

$$
u_{t t}-c^{2} \Delta u=0
$$

$u / \partial_{\Omega}=0$

One can look for solutions of the form: $u(r, t)=\varphi(r) \cdot e^{i \omega t}$ and have the following eigenvalue problem:

$$
\left\{\begin{array}{l}
\Delta \varphi+\frac{\omega^{2}}{a^{2}} \varphi=0 \\
\varphi \mid \partial \Omega=0
\end{array}\right.
$$

For compact Ω with smooth boundary, we usually have a family $\left\{\frac{\omega_{k}^{2}}{c^{2}}, 6\right\}_{k \in \mathbb{N}}^{\}_{k}}$ of eigenvalues/functio $u(x, t)=\sum^{c^{2}} \varphi_{k}(x)\left(A_{k} \sin \left(\omega \omega_{r} t\right)+R_{1} \quad \cos \left(c \omega_{k} t\right)\right)$.

Lecture 5: Conservation \& Balance laws
Plan: 1. General definition

1. General definition $d y$ (conservation of)
2. Example 2: scalar conservation law
(1) Balance law

$D \subset \Omega$ with $\underset{\text { Lipchitz }}{\text { (smooth) boundary }}$ (smooth)
\vec{N}-normal vector towards the exterior of the domain D

$$
\begin{array}{r}
\begin{array}{l}
\text { Production } \\
\text { in } D
\end{array}=\begin{array}{c}
\text { flux through the } \\
\text { boundary of } \partial D
\end{array}
\end{array}
$$

- production in Φ is some measure (Radon) P
- flux

$$
\begin{align*}
& F_{D}(e)=\int_{e} q_{D}(x) d S(x) \\
& P(D)=\int_{\partial D} q_{D}(x) d S(x) \tag{*}
\end{align*}
$$

Assume:

$$
\begin{aligned}
& q D_{1}(x)=q D_{2}(x) \\
& \forall x \in C
\end{aligned}
$$

Take-home

$$
(\text { Take-home } \quad \operatorname{div} A=0
$$

Miracles:
Consequences of $(*)$:

(1) $\exists a_{\vec{N}}(x)=q_{D}(x)$

$$
\forall x \in \Omega
$$

for any $\hbar \subset \Omega$ sit. D has \vec{N} as a normal verctor at x.
$(2) \exists \vec{A}(x): \Omega \rightarrow \mathbb{R}^{d}:$

$$
a_{\vec{N}}(x)=\vec{A}(x) \cdot \vec{N}
$$

(3) $\exists P D E: \operatorname{div} \vec{A}=P$
$P(D)=\int_{\partial D} \frac{q_{D}(x) d S(x)}{\vec{A}(x) \cdot \vec{N}}$

$$
\int \sim o(\varepsilon) \quad \varepsilon^{2} \sim
$$

$$
\Rightarrow \quad \int q_{D_{1}}(x)^{d s(x)}=\int_{\prod} q_{D_{2}}(x) d s(x) \quad-\int q_{D_{2}(x)^{d x}}
$$

$$
\begin{aligned}
& \Rightarrow \exists a_{N}(x)=q_{D}(x) \quad \text { Cauchy } \\
& \text { (2) } \\
& \varepsilon \varepsilon^{2} \sim P(\Delta)=\int_{\Delta} a_{\vec{N}}(x) d x \\
& N_{2} \varepsilon \quad a_{\vec{N}}(x) \cdot \varepsilon=a_{e_{2}}(x) \cdot \underline{\underline{N_{2}} \&+} \\
& +a_{e_{1}}(x) \cdot N_{1} \& \\
& \Rightarrow a_{\vec{N}}(x)=a_{e_{j}}(x) N_{1}+a_{e_{2}}(x) N_{2} \\
& \Rightarrow \quad a_{N}(x)=\vec{A}(x) \cdot \vec{N} \\
& A(x)=\left(a_{e_{1}}, a_{e_{2}}\right)
\end{aligned}
$$

(3) $\int_{\partial D} \vec{A}(x) \cdot \vec{N} d S(x)=\int_{\underset{D}{ }} \operatorname{div}(\vec{A}) d x$

$$
\begin{aligned}
& \text { (11111) })^{\text {Grpen-Gaus }} \text { theorem } \\
& P=\int_{D} p(x) d x \\
& \Rightarrow \operatorname{div}(\vec{A})=P \text {-balance law } \\
& d: v(\vec{A})=0-\text { conservation } \\
& \text { law }
\end{aligned}
$$

Dafermos
Example 1 : fluid flow, continuum rechanies different scales

1. atoms / molecules

-

2. representative

3. domain
(macroscale)

$$
\Omega
$$

- Eulerian vs. Lagrangian point of view

Eulerian : $(x, t)-f: x$

- velocity: $u(x, t)=\left(u, \ldots, u_{d}\right): \mathbb{R}_{\times(0, \infty)}^{d}$ has units $\left[\frac{L}{T}\right]$
- density: $\quad g(x, t): \mathbb{R}^{d} \times[0,+\infty) \rightarrow \mathbb{R}$ with units $\left[\frac{M}{L^{d}}\right]$
- pressure : $p(x, l): \mathbb{R}^{d} \times[0,+\infty) \rightarrow \mathbb{R}$ with units $\left[M L^{-d+2} T^{-2}\right]$
Lagrangian: particles, $a \in \mathbb{R}^{d}$ trajectories of particles
flow map $X(t, a)=\left(X_{1}, \ldots, X_{d}\right)$-position of particle a at time t

$$
x(0, a)=a
$$

ODE theory (Canchy-Lipschitz theorem):

$$
u \in C_{t} \operatorname{Lip}_{x} \Rightarrow \exists!\text { solution to }(* *)
$$

$$
X(t, \cdot) \text { - is } c^{1} \text {-differ }: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

Define inverse: $\quad A(t, x):[0,+\infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$

$$
\begin{gathered}
A(t, X(t, a))=a \quad X(t, A(t, x))=x \\
\forall x, a \in \mathbb{R}^{d}
\end{gathered}
$$

"back-to-labels" map (a -"labels")
Imcompressibity condition : "div $u=0$ "
Take $V \subset \Omega$ - volume of fluid

$$
V(t)=X(t, V)=\{X(t, a): a \in V\}
$$

Def: velocity field ic called incompressible if

$$
\left.\rightarrow|V(t)| \equiv V_{\uparrow}\right|_{\text {Lebesgue }} \text { measure of } V
$$

Lemma: $u \in C_{t}$ Lip
u is incompressible $\Leftrightarrow \operatorname{div} u=0 \quad(u$ is Proof: divergence. -free)

$$
\begin{aligned}
& V(t)=\int_{V(t)} 1 \cdot d x ; a \in V \subset \mathbb{R}^{d} \\
& \int_{V(t)} f(x, t) d x=\int_{V} f(X(t, a), t) \cdot \underbrace{\downarrow} \operatorname{dot(\nabla XX)} \text { (t,a)} d a \\
& J(t, a)=\sum_{i_{1}, \ldots i d=1}^{d} \varepsilon_{i_{1} \ldots i d} \frac{\partial X_{i_{1}}}{\partial a_{1}} \ldots \cdot \frac{\partial X_{i d}}{\partial a_{d}}
\end{aligned}
$$

Exercise:,$\partial_{t} J(t, a)=J(t, a) \cdot(\operatorname{div} a)(t, X(t, a))$

$$
\begin{aligned}
& \text { Corolkary: } J(t, a) \equiv 1 \Leftrightarrow \quad \operatorname{div}(u)=0 \\
& \rightarrow J(t, a)=J(0, a) \cdot e^{\int_{0}^{t}(\operatorname{diva)(s,x(s,a)}) d s} \\
& J(0, a)=1 \\
& J(t, a)=J(0, a) \quad \forall t \Rightarrow \operatorname{div}(a)=0 \\
& V(t)=\int_{V(t)} s d x=\int_{V} J(t, a) d a=\int_{V} d a=V \\
& \text { iff } \quad \operatorname{div}(a)=0
\end{aligned}
$$

Transport equation
Let's $f(t, x):[0,+\infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$-scalar
Eulerian: $\partial_{t} f$-change of f at (t, x)
Lagrangian:

$$
\begin{align*}
& \partial_{t} f(t, X(t, a))=: D_{t} f-\begin{array}{l}
\text { convectiv } \\
\text { derivative }
\end{array} \\
& \partial_{t}^{\prime \prime} f+u \cdot \nabla f \tag{t}
\end{align*}
$$

Thm (transport thm): u-velocity field, $u \in C^{1}$; f be C^{1} $V(t)$ is pushforward of V by the $f(t, \alpha)$ maf

$$
\begin{aligned}
& \frac{d}{d t}\left(\begin{array}{l}
\int_{V(t)} f(x, t) d x
\end{array}\right)=\int_{V(t)}\left(\partial_{t} f+\operatorname{div}(f u)\right)(t, x) d x \\
& \quad P_{\text {roof }}: \\
& \int_{V(t)} f(x, t) d x=\int_{V} f(x(t, a), t) \underset{ }{\downarrow(t, a) d a}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(\int_{v(t)} f(x, t) d x\right)=S_{v}\left(D_{t} f\right)(X(t, a), t) J(t, a) \\
& +\int_{V} f(x(t, a), t) \cdot \frac{\partial_{t} J(t, a) d a}{J(t, a) \cdot \operatorname{div}(u)}= \\
& =\int_{v}(\partial_{t} f+\underbrace{u \cdot \nabla f+f \cdot \operatorname{div}(u)}_{\operatorname{div}(u f)})(X(t, a), t) \cdot \underset{d a}{J(t, a ́} \\
& =\int_{V}\left(\partial_{t} f+\operatorname{div}(f u)\right)(X(f, a), t) \cdot J(t, a) d a= \\
& =\int_{v(t)}\left(\partial_{t} f+\operatorname{div}\left(f_{u}\right)\right) d x
\end{aligned}
$$

Conservation of mass: $g(x, t)$

$$
\begin{aligned}
& m(t, v)=\int s(x, t) d x \\
& \frac{d}{d t} m(t, v(t))=0
\end{aligned}
$$

The: conservation of mass is equivalut to the following integral eq:

$$
\int_{V(t)}\left(\rho_{t}+\operatorname{div}(\rho u)\right) d x=0
$$

If S_{t} and $\operatorname{div}(g u)$ are C, then

$$
\rho_{t}+\operatorname{div}(\rho u)=0
$$

Rok: scalar transport eq

$$
\begin{aligned}
& \text { Proof: }=\frac{d}{d t} m(t, X(t, a))=\frac{d}{d t} \int \\
& v(t) \\
&=\int_{v(t)} \underbrace{}_{\text {are continuous }}\left(\rho_{t}+\operatorname{div}(\rho u)\right) d x \\
& f(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\left|B_{\varepsilon}(x)\right|} \int_{\left.B_{\varepsilon} \mid x\right)} f(y) d y \\
& L \rho_{t}+\operatorname{div}(g u)=0 .
\end{aligned}
$$

Rok: $\quad 0=\rho_{t}+\operatorname{div}(\rho u)=\rho_{t}+u \cdot \nabla \rho+\operatorname{div}(u) \rho$
Next tine incompressibility $\Rightarrow \operatorname{div}(u)=0$

$$
\begin{aligned}
& \rho_{t}+(\rho u)_{x}=0 \\
& u=u(\rho) \\
& u(\rho)=\frac{\rho}{2} \Rightarrow B_{\text {wagers }}
\end{aligned}\left\{\begin{array}{c}
\frac{d}{d t}(\rho(t, x(t, a)))=0 \\
\Rightarrow \\
\rho(t, x(t, a))=\text { cons. }
\end{array}\right.
$$

Lecture 6 Last time: Balance laws: $\operatorname{div} A=P$
Conservation laws: $\operatorname{div} A=0$

- Conservation of mass = scalar transport equation

$$
\partial_{t} \rho+\operatorname{div}(g u)=0
$$

trajectories do not intersect for given $u \in C_{t}^{0} L_{i f x}$

Rok: $\left\{\begin{array}{l}\operatorname{div} u=0 \\ \partial_{t \rho}+\operatorname{div}(\rho u)=0\end{array}\right.$

$$
\Rightarrow \quad s(t, x(t, a))=\text { cons }
$$ density is conserved along the trajectory for incompressible flow

Example 2: traffic flow: cars choose their velocity depending on "density" of

S_{m} - density of cars corresp. to "bum per-to-bumber"
scalar conservation
(aw

$$
\Rightarrow \quad \rho_{t}+f(\rho)_{x}=0
$$

Here $f(g)$ is called flux (flow function)

$$
\xrightarrow[a]{\mid \cdot / /\left(1 / 1 / 1 /\left.\right|_{b} ^{f(g(b))}\right.} \stackrel{d}{d t} \int_{a}^{b} \rho(x, t) d x=f(g(b))-f(g(a))
$$

Rank: 1) taking $u(g)=\frac{s}{2} \Rightarrow$ Burgers eq: $S t+\left(\frac{s^{2}}{2}\right)_{x}=0$ We will analyze it in detail today.
2) for oil recovery the simplest s-dim model for displacement water-oil is again

$$
\begin{aligned}
& s_{t}+(f(s))_{x}=0 \quad \text { for } \\
& s-\text { water saturation } \\
& f(s) \text {-fractional flow function }
\end{aligned} \xlongequal[0]{ } \quad\left\{\begin{array}{l}
f(s): \begin{array}{l}
f(0)=0 \\
f(1)=1 \\
f \uparrow \text { and } \\
s-s h a p e d
\end{array} \\
1
\end{array}\right.
$$

S-water saturation

- One can easily create more sophisticated models such as: take drivers anticipation into account If a driver observe an upstream increase in the density, they show a tendency to brake slightly

$$
u-v(S) \sim-S x
$$

The simplest law: $u=v(\rho)-\varepsilon g x, 0<\varepsilon \ll 1$ which leads to the "weakly" parabolic eq:

$$
s_{t}+f(g)_{x}=\varepsilon\left(s S_{x}\right)_{x}
$$

Example 3: wave equation!

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& \operatorname{div}\left(u_{t,}-c^{2} u_{x}\right)=0
\end{aligned}
$$

Consider $\quad U=\binom{u_{x}}{u_{t}} \Rightarrow U_{t}+A U_{x}=0$

$$
A=\left(\begin{array}{cc}
0 & -1 \\
-c^{2} & 0
\end{array}\right)
$$

Indeed, this is just: $\left\{\begin{array}{l}u_{x t}-u_{t x}=0 \\ u_{t t}-c^{2} u_{x x}=0\end{array}\right.$
Eigenvalues of $A: \operatorname{dt}\left|\begin{array}{cc}0-\lambda & -1 \\ -c^{2} & -\lambda\end{array}\right|=\lambda^{2}-c^{2}, \lambda_{ \pm} \pm \pm$ They correspond to propagation modes:

This is general fact that we will see in the future:

$$
U \in \mathbb{R}^{d}, F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \quad U_{t}+(F(U))_{x}=0 \text { - } \begin{aligned}
& \text { system of } \\
& \text { conservation }
\end{aligned}
$$

Then for "smooth" solutions we have:

$$
U_{t}+F^{\prime}(u) \cdot U_{x}=0
$$

eigenvalues of this matrix play an important role!.
If they are real, they correspond to velocity of propagation of waves.

Example 4: isentropic (= constant entropy) gas (p-system) dynamics
in Lagrangian coordinates: $\quad \Rightarrow \quad\left\{\begin{array}{l}v_{t}-u_{x}=0 \\ u_{t}+\rho(v)_{x}=0\end{array} \Rightarrow v_{t t}+p(v)_{x x}=0\right.$
Rank: $\quad V_{t}=u_{x} \Rightarrow$ (in a simply connected regions.

$$
\begin{array}{ll}
& \exists \Phi: \\
\Rightarrow \quad & v=\Phi_{x} \\
\Rightarrow \quad \Phi_{t t}+\left(p\left(\Phi_{x}\right)\right)_{x}=0 & \\
\Phi_{t t}+p^{\prime}\left(\Phi_{x}\right) \cdot \Phi_{x x}=0 & \text { - nonlinear wave } \\
\text { equation }
\end{array}
$$

And many other examples:

- conservation of mass \quad conservation of momentum $\quad\} \Rightarrow\left\{\begin{array}{l}\partial_{t} u+u \cdot \nabla u=\nabla p+f \\ \operatorname{div}(u)=0\end{array}\right.$ This is Euler equations for ideal fluid (1755, second PDE !)
- Navier-Stokes eqs (1845): adds viscosity

$$
\partial_{t} u+(u \cdot \nabla) u-D \Delta u=\nabla p
$$

- gas dynamics
- electro Magnetism (Maxwell eggs)
- magneto-hydrodynamics (M.H.D.) - motion of fluid in the presence of electromagnetic field (think of a Sun)
Etc
Burgers equation

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \quad u_{t}+u \cdot u_{x}=0
$$

Observation 1: if $u \in C^{1}$ for all $t>0$, then u is monotonically nondecreasing in x for all $t>0$.

If $u \in C^{1}$ for $\forall t>0$, then characteristics should not intersect $\Rightarrow \quad u_{0}\left(x_{1}\right)<u_{0}\left(x_{2}\right)$ if $x_{1}<x_{2} \Rightarrow u_{0}$ is non-decreasing $(u(x, 0)) \Rightarrow u(x, t)$ is non-decreasing ${\underset{i n}{i n}}^{i}$
Exercise 2 from list 1:
exists a unique?
shock wave?

$$
\begin{gathered}
x=x_{0}+\left(1-x_{0}\right) t \\
t=1: \quad x=1
\end{gathered}
$$

At $t=1$ there is a blow-up

Rmk:In general scalar conservation law:

$$
\begin{aligned}
& u_{t}+f(u)_{x}=0 \\
& u_{t}+f^{\prime}(u) \cdot u_{x}=0
\end{aligned}
$$

Characteristics are $x=x_{0}+f^{\prime}\left(u_{0}\left(x_{0}\right)\right) \in$ $u \in C^{1} \forall t>0 \Rightarrow f^{\prime}\left(u_{0}\left(x_{1}\right)\right)<f^{\prime}\left(u_{0}\left(x_{2}\right)\right)$ if $x_{1}<x_{2}$, otherwise characteristics will intersect that leads to a blow-up!
So no matter how smooth f and u_{0} are, the solution $u(x, t)$ must become discontinuars This is a purely non-linear phenomenon!!!

- Assume $f \in C^{2}$ and $f^{\prime \prime}>0$

$$
\begin{aligned}
& u_{0}\left(x-t f^{\prime}(u(x, t))\right)=u(x, t) \\
& u_{t}=u_{0}^{\prime} \cdot\left(-f^{\prime}(u(x, t))-t f^{\prime \prime}(u(x, t)) \cdot u_{t}\right) \\
& u_{t}\left(1+t f^{\prime \prime} u_{0}^{\prime}\right)=-u_{0}^{\prime} f^{\prime} \\
& u_{t}=-\frac{u_{0}^{\prime} f^{\prime}}{1+t f^{\prime \prime} u_{0}^{\prime}}
\end{aligned}
$$

Analogously, $u_{x}=\frac{u_{0}^{\prime}}{1+t f^{\prime \prime} u_{0}^{\prime}}$
If $u_{0}^{\prime} \geqslant 0$ (and $f^{\prime \prime}>0$) u_{t} and u_{x} stay bounded.
If $u_{0}^{\prime}<0$, then u_{t} and u_{x} become unbounded as $1+t f^{\prime \prime} u_{0}^{\prime}$ tends to 0 .
So we need a notion of weak solution!
Weak solutions to conservation laws

$$
\left\{\begin{array}{l}
u_{t}+f(u)_{x}=0 \tag{1}\\
\left.u\right|_{t=0}=u_{0}(x)
\end{array}\right.
$$

Let u be a classical solution and $\phi \in C^{1}$ with compact support:

$$
\operatorname{supp}(\phi) \subset D=[a, b] \times[0, T]
$$

that is ϕ is zero

$$
\text { at } x=a, x=b, t=T
$$

Multiply (1) by Φ and integrate over $\mathbb{R} \times \mathbb{R}_{+}$

$$
\begin{aligned}
& \iint_{t>0}\left(u_{t}+f(u)_{x}\right) \varphi d x d t=\iint_{D}\left(u_{t}+f(u)_{x}\right) \Phi d x d t= \\
& =\int_{a}^{b} \int_{0}^{T}\left(u_{t}+f(u)_{x}\right) \varphi d x d t=\left.\int_{a}^{b} u \cdot \varphi\right|_{0} ^{T} d x-\int_{a}^{b} \int_{0}^{T} u \cdot \varphi_{t} d x \\
& +\left.\int_{0}^{T} f(u) \cdot \varphi\right|_{a} ^{b} d t-\int_{0}^{T} \int_{a}^{b} f(u) \cdot \Phi_{x} d x d t=
\end{aligned}
$$

$$
\begin{align*}
& =-\int_{a}^{b} u_{0}(x) \phi(x) d x-\int_{a 0}^{b}\left(u \phi_{t}+f(u) \phi_{x}\right) d x d t \\
& \Rightarrow \quad \tag{2}\\
& \quad \iint_{t \geqslant 0}\left(u \phi_{t}+f(u) \phi_{x}\right) d x d t+\int_{t=0} u_{0}(x) \phi(x) d x=0
\end{align*}
$$

$u \in C^{1}$ and satisfies (1) $\Rightarrow u$ satisfies (2)
But in (2) u not necessarily needs to be $c^{1 \text { ! }}$ It can be measurable / bounded.

Definition: A bounded measurable function $u(x, t)$ is called a weak solution of IVD:

$$
u_{t}+f(u)_{x}=0,\left.u\right|_{t=0}=u_{0}(x)
$$

provided that
(2) $\quad \iint_{t \geqslant 0}\left(u \phi_{t}+f(u) \phi_{x}\right) d x d t+\int_{t=0} u_{0} \Phi d x=0$
for all $\phi \in C^{1}$ (ϕ is C^{1} with corpact supp)
Rok : it is clear that if u is in fact c^{1}, then the original eq. is true: $u_{t}+f(u)_{x}=0$

Lemma (Rankine - Hugoniot condition)

Let Γ be a smooth curve across which u has a jump discontinuity. Take $P \in \Gamma$ and $u_{e}=\lim _{(k, t) \rightarrow P} u$ from "the left" $u_{r}=\lim _{(x, t)-p} u \quad$ from "the right"
Let the tangent line of Γ at P have the slope

$$
S=\frac{d x}{d t} \text {. Then: (3) } S \cdot\left(u_{e}-u_{r}\right)=f\left(u_{e}\right)-f\left(u_{r}\right)
$$

Often a jump across the shock is denoted: $[g(u)]=g\left(u_{e}\right)-g\left(u_{r}\right)$, thus we have $s[u]=[f]$ This is called the Rankine-Hugoniot condition

Proof:
$\int \sim^{D} \Gamma$ Let D be a small ball centered at P and let Γ devide D into two regions D_{1} and D_{2} (see fig)
Let $\Phi \in C_{0}^{1}$ on D and consider

$$
0=\iint_{D}\left(u_{\Phi_{t}}+f(u) \phi_{x}\right) d x d t=\int S_{D_{1}}+\iint_{D_{2}}
$$

Divergence theorem: $\quad \int P d x+Q d y=\iint_{\text {Ger en }}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$

$$
\begin{aligned}
& \iint_{D_{1}} u \varphi_{t}+f(u) \phi_{x} d x d t=\iint_{D_{1}}(u \phi)_{t}+(f(u) \phi)_{x} d x d t= \\
& \text { as } u \in C^{1}\left(D_{1}\right) \text { and } u_{t}+f(u)_{x}=0 \\
& =\int_{t_{2}} f(u) \phi d t-u \phi d x \int_{t_{1} \cdots} f(u) \phi d t-u \phi d x= \\
& =\int_{t_{1}}\left[f\left(u_{e}\right) \phi\left(u_{e}\right)-u_{e} \cdot \phi\left(u_{e}\right) \cdot s\right] d t
\end{aligned}
$$

Similarly,

$$
\iint_{D_{1}} u \varphi_{t}+f(u) \Phi_{x} d x d t=-\int_{t_{1}}^{t_{2}}\left(f\left(u_{r}\right)-s u_{r}\right) \phi\left(u_{r}\right) d t
$$ tion of minus because of oriente.

Combining together:

$$
0=\int_{t_{1}}^{t_{2}}([f]-s[u]) \Phi\left(u_{e}\right) d t
$$

Since P was arbitrary, we get $[f]-s[u]=0$

Example: Burgers eq:

$$
S=\frac{\left.\left[\frac{u^{2}}{2}\right]\right|_{0} ^{1}}{\left.[u]\right|_{0} ^{1}}=\frac{1}{2}
$$

in general $s=\frac{u_{e}+u_{r}}{2}$

Lecture 7] Scalar conservation law: $\quad \begin{aligned} & \mathbb{R}^{\times+} \rightarrow \mathbb{R} \text {-bounded, measurable }\end{aligned} \quad\left\{\begin{array}{l}u_{t}+(f(u))_{x}=0 \\ u_{t=0}=u_{0}(x)\end{array}\right.$
$f: \mathbb{R} \rightarrow \mathbb{R}, f \in C^{2}, f^{\prime \prime}>0$ on the convex hull of values of u_{0}
We understand solutions in weak sense:

$$
\begin{equation*}
\iint_{t>0}\left(u \Phi_{t}+f(u) \Phi_{x}\right) d x d t+\int_{t=0} u_{0} \Phi d x=0 \tag{**}
\end{equation*}
$$

for every test function $\phi \in C_{0}^{1}$.
We want to prove theorems on \exists, and asymptotic behavior of solutions to (*). From exercise session 1 we remember that we need some extra conditions for
The (\exists):
Let $u_{0} \in L_{\infty}(\mathbb{R}), f \in C^{2}(\mathbb{R}), f^{\prime \prime}>0$ on $\left\{u:|u| \leq\left\|u_{0}\right\|_{\infty}\right.$. Then there exists a solution withe the following properties:
(a) $|u(x, t)| \leq\left\|u_{0}\right\|_{\infty}=M, \quad(x, t) \in \mathbb{R} \times \mathbb{R}_{+}$
(b) $\exists E>0$ (which depends on $M, \mu=\min \left\{f^{\prime \prime}(u):|u| \leq M_{0}\right.$. and $\left.A=\max \left\{\left|f^{\prime}(x)\right|:|u| \leqslant\left\|u_{0}\right\|\right\}\right)$ s
such that $\forall a>0, t>0, x \in \mathbb{R}$

$$
\begin{equation*}
\frac{u(x+a\}, t)-u(x, t)}{a}<\frac{E}{t} \tag{E}
\end{equation*}
$$

(C) u is stable and depends continuously on u_{0} ' if $v_{0} \in L_{\infty}(\mathbb{R})$ with $\left\|v_{0}\right\| \infty \leq\left\|u_{0}\right\|_{\infty}$ and v is the corresponding constructed solution of $(*$, with initial data vo, then for $\forall x_{1}, x_{2} \in 1$ with $x_{1}<x_{2}$ and $\forall t>0$

$$
\int_{x_{1}}^{x_{2}}|u(x, t)-v(x, t)| d x \leq \int_{x_{1}-A t}^{x_{2}+A t}\left|u_{0}(x)-v_{0}(x)\right| d x
$$

Than (!):
Let $f \in C^{2}, f^{\prime \prime}>0$ and let u and v be 2 solutions of (*) satisfying condition (E). Then $u=v$ almost everywhere in $t>0$.
Rok: we call the solution from Thin 1 (that is satisf. (E)
may be there exist more solutions' which do not satisfy cond. (E) or (c)
2) property (a) is not valid for systems!

Sup-norm of solution can increase! It is nontrivial to prove the bounds on the sup-norm.
3) Cond. (E) implies some regularity: u is of locally bounded total variation (for $\forall t$ as a function of x)
Indeed, let c_{1} be a constant such that $c_{1}>\frac{E}{t}$ and let $v=u-c_{1} x$. Then

$$
v(x+a, t)-v(x, t)=u(x+a, t)-u(x, t)-c_{1} a<a\left(\frac{E}{t}-c_{l}\right)<c
$$

Thus, v is a non-decreasing function, and v is a function of local boundedrvariation.
Sine $c_{1} x$ is also of bounded total variation, then u is of local bounded total variation. (\Rightarrow countable number of jump discontinuities)
4) finite speed of propagation:

$$
v=v_{0} \equiv 0 \Rightarrow \quad \int_{x_{1}}^{x_{2}}|u(x, t)| d x \leq \int_{x_{1}-A t}^{x_{2}+A t}\left|u_{0}(x)\right| d x
$$

Before proving the 1 and 2 let us understand better condition (E). Let us give some equivalent formulations and interpetations.
Lemmal: (a) A smooth solution $u(x, t)$ satisfies condition (E)
(b) If u has a discontinuity at point x_{0} : If u has a discontinuity at a fight of x_{0})
(but is smooth ia to the left and to the fight and
$\lim _{x \rightarrow x_{0}-0} u(x, t)=u_{L}$ and $\lim _{x \rightarrow x_{0}+0} u(x, t)=u_{R}$ and $u_{1}>u_{R}$. satisfies condition (E) $\Rightarrow u_{L}>u_{R}$. (discontinuities can be only down).
Proof:
(a) Indeed, let us write:

$$
\begin{aligned}
& u(x, t)=u_{0}\left(x-t f^{\prime}(u(x, t))\right) \\
& u_{x}=u_{0}^{\prime} \cdot\left(1-t f^{\prime \prime} \cdot u_{x}\right) \Rightarrow u_{x}=\frac{u_{0}^{\prime}}{1+t f^{\prime \prime} u_{0}^{\prime}}
\end{aligned}
$$

If u is smooth for $\forall t>0$, then $u_{0}^{\prime}>0$.
Then $u_{x} \leqslant \frac{u_{0}^{\prime}}{t f^{\prime \prime} u_{0}^{\prime}}=\frac{E}{t}$ for $E=\frac{1}{\inf f^{\prime \prime}}$.

Using Lagrange theorem: $\frac{u(x+a, t)-u(x, t)}{a}=u_{x}(3, t)$ for some $\xi \in[x, x+a)$, and (a) is proved
(b) Either $u_{L}>u_{R}$ or $u_{L}<u_{R}$ (the case $u_{L}=u_{R}$ is not a discontinuity).

- For $u_{L}<u_{R}$ the converse of cong. (E) is true: $\forall E>0 \quad \exists x, a>0, t:$

$$
\frac{u(x+a)-u(x)}{a}>\frac{E}{t} .
$$

Indeed, fix E and take small enough neighbourhood of x_{0} such that

- for $x \in\left(x_{0}-\delta, x_{0}\right) \quad\left|u-u_{L}\right| \leqslant \varepsilon=\frac{u_{R}-u_{L}}{4}$
- for $x \in\left(x_{0}, x_{0}+\delta\right) \quad\left|u-u_{R}\right| \leqslant \varepsilon=\frac{u_{R}-u_{2}}{4}$.

This means that for $\forall x_{1} \in\left(x_{0}-\delta, x_{0}\right)$ and $x_{2} \in\left(x_{0}, x_{0}+\delta\right)$ $u\left(x_{2}\right)-u\left(x_{1}\right) \geqslant \frac{u_{R}-u_{L}}{2}$.
Fix t and take small

$$
x_{2}-x_{1}=a
$$

$$
x_{1} \in\left(x_{0}-\delta, x_{0}\right)
$$

$$
x_{2} \in\left(x_{0}, x_{0}+\delta\right)
$$

$$
\begin{aligned}
& \frac{u\left(x_{2}\right)-u\left(x_{1}\right)}{a} \\
& \frac{u_{R}-u_{L}}{2 a}=\frac{E}{t}
\end{aligned}
$$

- For $u_{L}>u_{R} \frac{u(x+a)-u(x)}{a} \leq 0$, thus $\forall E>0$ is

Lemma 2 (Remark): u satisfies condition (E) and $\left.\uparrow^{t}\right|^{x=x_{0}+c t}$ is a shock wave solution $u= \begin{cases}u_{L}, & x<c t \\ u_{R}, & x>c t\end{cases}$ then $f^{\prime}\left(u_{L}\right)>c>f^{\prime}\left(u_{R}\right) \quad$ (Lax condition "Characteristics come to the tine ${ }^{1}$ discontinuity"

We will generalize the Lax, condition to the case of systems.

Indeed, $f^{\prime \prime}>0 \Rightarrow$ (see picture)

$$
f^{\prime}\left(u_{L}\right)>c=\frac{f\left(u_{L}\right)-f\left(u_{R}\right)}{u_{L}-u_{R}}>f^{\prime}\left(u_{R}\right)
$$

Remark (on Liu criterion) "internal stability of shock" Remember the situation with Burgers equation:

In some sense if

smaller" shocks, they could have a tendency of eigher gluing into 1 shock (some kind of stability or going further ane from another (instability) Condition (E) \Rightarrow this kind of internal stability of a shock, more precisely the inequalities

$$
c\left(u_{L}, u_{R}\right)=\frac{f\left(u_{R}\right)-f\left(u_{L}\right)}{u_{R}-u_{L}} \leq c\left(u_{L}, u_{M}\right)=\frac{f\left(u_{L}\right)-f\left(u_{M}\right)}{u_{L}-u_{M}}
$$

If $\left[\begin{array}{l}u_{M} \rightarrow u_{L} \\ u_{M} \rightarrow u_{R}\end{array}\right.$ we have Lax condition.

Vanishing viscosity criterion for shock waves.

- We think of equation $u_{t}+(f(u))_{x}=0$ as a first approximation to the following parabolic eq

$$
u_{t}+(f(u))_{x}=\varepsilon u_{x x}, \quad \varepsilon>0
$$

small regularizing term
Rok 1: it is well-known (and we see in future when dealing with reaction-diffusion equations) that solutions of (P) are very regular (no shocks) "opposite"
Rmk2: equation (P) is a combination of 2 effects
$\rightarrow u_{t}+(f(u))_{x}=0 \leadsto$ creates shocks:

$$
\rightarrow u_{t}=\varepsilon u_{x x} \quad \leadsto \text { "smooths": }
$$

As a consequence of this confrontation there exist very special solutions, called travelling waves (TW) such that:

$$
u(x, t)=v(x-c t)
$$

for $c \in \mathbb{R}$ and v-some smooth profile.
They look like "smoothed" shocks!!!
This motivates the following definition:
Def 1 (vanishing viscosity criterion for shock waves): A shock wave is an entropy solution if is a limit in of a travelling wave solution of (P) as $\quad \varepsilon \rightarrow 0$.

$$
f \in c^{2}, \quad f^{\prime \prime}>0
$$

Lemma: a shock wave is an entropy solution in sense of def 1, iff $u_{L}>u_{R}$.

Proof: Let's look for travelling wave solutions for eq. (p): $v\left(\frac{x-c t}{\varepsilon}\right)$: $v(-\infty)=u_{L}, v(+\infty)=u_{1}$

$$
-c v^{\prime}+(f(v))^{\prime}=\& v^{\prime \prime}
$$

Integrate $\int_{-\infty}^{+\infty}:-c\left(u_{R}-u_{L}\right)+f\left(u_{R}\right)-f\left(u_{L}\right)=1$
Interesting feature: it is exactly RHCcondition ok, let us integrate $\int_{-\infty}^{\xi}:-c\left(v(\xi)-u_{2}\right)+\left(f(v(\xi))-f\left(u_{i}\right.\right.$ $=V^{\prime}(\xi) \Gamma$

ODE) $\quad v^{\prime}=f(v)-f\left(u_{L}\right)-c\left(v-u_{L}\right)=F(v)$ Note that RHS $F\left(u_{L}\right)=0$ and $F\left(u_{R}\right)=0$ (due to RH!) Thus u_{L} and u_{R} are two fixed points of this ODE Consider 2 cases: $u_{L}>u_{R}$ and $u_{L}<u_{R}$

In this case: $F(v)<0$ $\forall v \in\left(u_{R}, u_{L}\right)$
And there exists a
 solution v of ODE: And there DOES NOT $v(-\infty)=u_{L} ; v(+\infty)=u_{R}$
exist a solution V of ODI $v(-\infty)=u_{L}, \quad v(+\infty)=u_{R}$

Lecture 8: Scalar conservation law: $\left\{\begin{array}{l}u_{t}+(f(u))_{x}=0 \\ \left.u\right|_{t=0}=u_{0}(x)\end{array}\right.$

- $u: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$-bounded, measurable
$f: \mathbb{R} \rightarrow \mathbb{R}, f \in C^{2}, f^{\prime \prime}>0$. As we will see it is of up enough to define f on the convex hull of values ${ }^{\text {of }}$
We understand solutions in weak sense:

$$
\begin{equation*}
\iint_{t>0}\left[u \varphi_{t}+f(u) \Phi_{x}\right] d x d t+\int_{t=0} u_{0} \varphi d x=0 \tag{**}
\end{equation*}
$$

for every test function $\phi \in C_{0}^{1}$.
Define $M:=\left\|u_{0}\right\|_{\infty}, A:=\max _{|u| \leqslant M}\left|f^{\prime}(u)\right|, \mu:=\min _{|u| \leqslant M} f^{\prime \prime}(u)$
Today we will start proving theorem on existence.
Thu 1 (\exists) : Let $u_{0} \in L_{\infty}(\mathbb{R}) ; f \in C^{2}(\mathbb{R}), f^{\prime \prime}>0$ on $\{u:|u| \leq M\}$
There exists a solution with the following properties
(a) $|u(x, t)| \leqslant M, \quad(x, t) \in \mathbb{R} \times \mathbb{R}_{+}$ $x \in \mathbb{R}$
(b) $\exists E=E(M, \mu, A)>0$ such that $\forall a>0, \forall t>0$

$$
\begin{equation*}
\frac{u(x+a, t)-u(x, t)}{a}<\frac{E}{t} \tag{E}
\end{equation*}
$$

"entropy" cond.
(c) u is stable and depends continuously on u_{0} : if $v_{0} \in L_{\infty}(\mathbb{R})$ with $\left\|v_{0}\right\|_{\infty} \leq\left\|u_{0}\right\|_{\infty}$ and v is the corresponding constructed solution of (x) with initial data v_{0}, then for $\forall x_{1}, x_{2} \in \mathbb{R}$ with $x_{1}<x_{2}$ and $t>0$

$$
\int_{x_{1}}^{x_{2}}|u(x, t)-v(x, t)| d x \leq \int_{x_{1}-A t}^{x_{1}<x_{2}}\left|u_{0}(x)-v_{0}(x)\right| d x \text { and } \text { (s) }
$$

How to prove this theorem?
There exist (at last) 5 approaches:
(a) Calculus of variations and Hamilton -Jacobi theory
(b) Vanishing viscosity method
(c) Non-linear semigroup theory
(d) Method of characteristics
(e) Finite -difference method

We will follow Smaller (Chapter 16) and use (e).
Here is the scheme of the proof:
Step 1: discretization in space and time

$$
\begin{array}{ll}
x_{n}=n l, n \in \mathbb{Z} & l=\Delta x>0 \\
t_{k}=k h, k \in \mathbb{N} \cup\{0\} & h=\Delta t>0 \\
u_{n}^{k}=u(n e, k h) &
\end{array}
$$

Consider a finite-difference (explicit) scheme:
(D) $u_{n}^{k+1}=\frac{u_{n+1}^{k}+u_{n-1}^{k}}{2}-\frac{h}{2 e} \cdot\left(f\left(u_{n+1}^{k}\right)-f\left(u_{n-1}^{k}\right)\right)$

$$
u_{n}^{\circ}=u_{0}(n e), n \in \mathbb{Z}
$$

In what follows we will always assume:

$$
\frac{A h}{e} \leq 1 \quad(C F L \quad \text { condition) }
$$

Courant-Friedrichs - Lew
It is important for the stability of the numerical scheme and tells that the time step h should be small enough.
First, we will formulate and prove some properties of solutions $u_{n}{ }^{k}$ of a discrete eq. (D): (1a) solution exists (evident!)

$$
u_{n-1}^{k} \cdot \dot{u}_{n}^{u_{n+1}^{k+1}} \uparrow
$$

(ib) if $\left|u_{n}^{\circ}\right| \leq M$, then $\left|u_{n}^{k}\right| \leq M \forall k \in \mathbb{N}$ (boundedness)

$$
\text { (ic) } \exists E=E(M, A, \mu)>0: \quad \frac{u_{n}^{k}-u_{n-2}^{k}}{2 e} \leq \frac{E}{k h} \quad(E-\text { disc })
$$

discrete entropy condition
NB: the discrete entropy condition is a natural consequence of a finite difference approximation (D).
(id) local bounded variation: $\forall x>0$ and $k h>d>0$ $\exists c(X, \alpha)$ (but independent of h and e):

$$
\sum_{|n| \leq x_{/ e}}\left|u_{n+2}^{k}-u_{n}^{k}\right| \leq C \quad \text { and } \quad \text { sone }
$$

Step 2: We will prove convergence as $h, l \rightarrow 0$.

Consider

$$
\begin{aligned}
& U_{n, e}(x, t)=u_{n}^{k} \quad \text { if } \\
& n l \leq x \leq(n+1) l \\
& k h \leq t \leq(k+1) h
\end{aligned}
$$

We will prove that there exists subsequence $U_{h_{i}, e_{i}}$ of $U_{h, e}$ such that $U_{h_{i}, e_{i}} \rightarrow u(x, t)$ - Some measurable function

Step 3: We will prove that this limiting function satisfies integral equality ($* *$) and all properties of theorem on J. Proof of the theorem 1.
Lemma 1 c boundedness of $\left.u_{n}^{k}\right\rangle:\left|u_{n}^{k}\right| \leqslant M, n \in \mathbb{Z}$ This is an exercise 2 from list 3 .
Lemma 2 (discrete entropy condition)
If $\quad c=\min \left(\frac{\mu}{2}, \frac{A}{4 M}\right)$, then

$$
\frac{u_{n}^{k}-u_{n-2}^{k}}{2 e} \leq \frac{E}{k h} \quad \text { where } \quad E=\frac{1}{c}
$$

Proof:
[Let $z_{n}^{k}=\frac{u_{n}^{k}-u_{n-2}^{k}}{2 e}$ and first let us prove some recurrent relation for z_{n}^{k+1} of the form

$$
{ }^{\prime} z_{n}^{k+1}=A z_{n+1}^{k}+B z_{n-1}^{k}+C "
$$

$$
\begin{aligned}
z_{n}^{k+1}=\frac{1}{2}\left[z_{n+1}^{k}+z_{n-1}^{k}\right] & -\frac{h}{(2 e)^{2}}\left(f\left(u_{n+1}^{k}\right)-f\left(u_{n-1}^{k}\right)\right) \\
& +\frac{h}{(2 e)^{2}}\left(f\left(u_{n-1}^{k}\right)-f\left(u_{n-3}^{k}\right)\right)
\end{aligned}
$$

Notice that due to $f \in C^{2}$ we can write

$$
\begin{aligned}
& \text { notice that due to } f \in C^{2} \text { we can write } \\
& \left.f\left(u_{n+1}^{k}\right)=f\left(u_{n-1}^{k}\right)+f^{\prime}\left(u_{n-1}^{k}\right)\left(u_{n+1}^{k}-u_{n-1}^{k}\right)+f^{\prime \prime}\left(Q_{1}\right)_{n+1}-u_{n-1}^{k}\right)^{2} \\
& \hline
\end{aligned}
$$

for some Q_{1} between u_{n+1}^{k} and u_{n-1}^{k}

$$
=f\left(u_{n-1}^{k}\right)+f^{\prime}\left(u_{n-1}^{k}\right) \cdot 2 l \cdot z_{n+1}^{k}+f^{\prime \prime}\left(Q_{1}\right) \cdot \frac{(2 l)^{2}}{2}\left(z_{n+1}^{k}\right)^{2}
$$

Analogously,

$$
f\left(u_{n-3}^{k}\right)=f\left(u_{n-1}^{k}\right)-f^{\prime}\left(u_{n-1}^{k}\right) \cdot 2 l \cdot z_{n-1}^{k}+f^{\prime \prime}\left(\theta_{2}\right) \frac{\left(2 e^{e}\right)^{2}}{2}\left(z_{n-1}^{k}\right)^{2}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, }_{z_{n}^{k+1}=z_{n+1}^{k}}^{k} \cdot\left[\frac{1}{2}-\frac{h}{2 e} f^{\prime}\left(u_{n-1}^{k}\right)\right]+z_{n-1}^{k}\left[\frac{1}{2}+\frac{h}{2 e} f^{\prime}\left(u_{n-1}^{k}\right)\right] \\
&-\frac{h}{2} \cdot\left[f^{\prime \prime}\left(Q_{1}\right) \cdot\left(z_{n+1}^{k}\right)^{2}+f^{\prime \prime}\left(Q_{2}\right) \cdot\left(z_{n-1}^{k}\right)^{2}\right]
\end{aligned}
$$

Note that $A+B=1$ and $A, B \geqslant 0$
Define $\tilde{z}_{n}^{k}=\max \left\{z_{n-1}^{k}, z_{n+1}^{k}, 0\right\}$
If $\tilde{z}_{n}^{k}=0 \quad \forall n$, then (E-disc) is true since

$$
z_{n}^{k} \leq \tilde{z}_{n}^{k}=0 \leq \frac{E}{k W} \quad \forall E>0 .
$$

Thus, wog. we can assume $\tilde{z}_{n}^{k} \neq 0$. Suppose $\tilde{z}_{n}^{k}=z_{n+1}^{k}$ (the other case is similar)

$$
\begin{aligned}
z_{n}^{k+1} & \leq z_{n+1}^{k} \cdot[A+B]-h \frac{\mu}{2}\left(z_{n+1}^{k}\right)^{2} \leq \\
& \leq \tilde{z}_{n}^{k}+h \cdot c \cdot\left(\tilde{z}_{n}^{k}\right)^{2}
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& z_{n}^{k} \leq\left|z_{n}^{k}\right| \leq \frac{M}{l} \leq \frac{M}{A h} \leq \frac{M}{h} \cdot \frac{1}{4 M C}=\frac{1}{4 c h} \\
& c \leq \frac{A}{4 M}
\end{aligned}
$$

Let $M^{k}=\max _{n \in \mathbb{Z}}\left\{\tilde{z}_{n}^{k}\right\} \geqslant 0$.
Let $\phi(y)=y$-ch. y^{2}. Since $\phi^{\prime}=1-2$ ch y, ϕ is
increasing if $y \leq \frac{1}{2 c h}$. But we have

$$
\tilde{z}_{n}^{k} \leq M^{k} \leq \frac{1}{4 c h}<\frac{1}{2 c h}
$$

So that $P\left(\tilde{z}_{n}^{k}\right) \leq \Phi\left(M^{k}\right)$ and we have

$$
\tilde{z}_{n}^{k}-\operatorname{ch}\left(\tilde{z}_{n}^{k}\right)^{2} \leq \mu^{k}-c h\left(\mu^{k}\right)^{2}
$$

Thus, $z_{n}^{k+1} \leq M^{k}-c h\left(M^{k}\right)^{2} \quad \forall n \in \mathbb{Z}$.
It follows that

$$
\begin{equation*}
M^{k+1} \leqslant M^{k}-c h\left(M^{k}\right)^{2} \tag{M}
\end{equation*}
$$

Claim: $\quad M^{k} \leqslant \frac{1}{c h k+1 / M^{0}}$.
Suppose we have proven claim. Let us see how it helps to prove lemma 2. Indeed,

$$
z_{n}^{k} \leqslant M^{k} \leqslant \frac{1}{c h k+1 / \mu^{0}} \leqslant \frac{1}{c h k}=\frac{E}{h k}, E=\frac{1}{c}
$$

Proof of claim: first - intuition why such estimate could be true

Inequality (M) for M^{K} is a discrete analog of ODinEquality: $\varphi^{1} \leqslant-c h \varphi^{2}$
if it was an equality $\varphi^{\prime}=-c h \varphi^{2}$, then the solution is:

$$
\begin{aligned}
\frac{d \varphi}{\varphi^{2}} & =-\operatorname{ch} d t \\
-\frac{1}{\varphi} & =-\operatorname{ch} t+C_{1}
\end{aligned}
$$

$$
\varphi(t)=\frac{1}{c h t-c_{1}} \text { and with ic } \varphi(0)=\varphi_{0}
$$

we will have $\varphi(t)=\frac{1}{c h t+1 / \varphi_{0}}$.
So one can try to prove $\varphi(t) \leqslant \frac{1}{c h t+1 / \varphi_{0}}$. Second, let us make the formal proof. We will do it by induction.

Base: $k=0:$-clear: $\quad M^{0} \leq 1 / 1 / \mu^{0}=M^{0}$.
$K>0$: suppose that

$$
M^{k} \leq \frac{1}{c h k+1 / \mu^{0}}
$$

and we want to prove that

$$
M^{k+1} \leq \frac{1}{c h(k+1)+1 / \mu^{0}}
$$

We have: $\quad \frac{1}{M^{k}} \geq \operatorname{ch} k+\frac{1}{M^{0}}$, so

Thus $1-\left(\operatorname{ch} \mu^{k}\right)^{2} \geq 0$.

$$
1-\operatorname{ch} M^{k} \geqslant 1-\operatorname{chk} M^{k} \geqslant \frac{\mu^{k}}{\mu^{0}} \geqslant 0
$$

We have $M^{k+1} \leq M^{k}\left(1-\hat{c h} M^{k}\right)$, so that

$$
\frac{\mu^{k+1}}{1-\operatorname{ch} \mu^{k}} \leq M^{k} \leq \frac{\mu^{k}}{1-\left(\operatorname{ch} \mu^{k}\right)^{2}}
$$

and thus $M^{k+1} \leq \frac{\mu^{k}}{1+c h \mu^{k}}=\frac{1}{c h+1 / \mu^{k}} \leqslant$

$$
\leq \frac{1}{c h(k+1)+1 / \mu 0} \quad 9 \cdot e-d
$$

Lemma (space estimate): For any $X>0$ and $k h \geqslant \alpha>0$, there is a constant $C=C(x, \alpha, \mu)$ (but independent on h, e) such that:

$$
\sum_{|n| \leq x / e}\left|u_{n+2}^{k}-u_{n}^{k}\right| \leq c
$$

Proof:
IS et $v_{n}^{k}=u_{n}^{k}-c_{1} n l$, where c_{1} is chosen so large that $E / \alpha<c_{l}$. Then

$$
\begin{aligned}
v_{n+2}^{k}-v_{n}^{k} & =u_{n+2}^{k}-u_{n}^{k}-2 c_{1} l \leq \frac{2 l E}{k h}-2 c_{1} l \leq \\
& \leq 2 l\left(\frac{E}{\alpha}-c_{1}\right)<0 \text {, so } v_{n}^{k} \text { is decreas.inn }
\end{aligned}
$$

Thus $\sum_{|n| \leq x_{/ e}}\left|u_{n+2}^{k}-u_{n}^{k}\right| \leq \sum\left|v_{n+2}^{k}-v_{n}^{k}\right|+\sum 2 c_{1} e=$

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
|n| \leq X / e \\
\\
=-\sum^{\sum}\left(v_{n+2}^{k}-v_{n}^{k}\right)+2 c_{1} e\left(\frac{2 X}{e}+1\right) \leq 4 M+2 c_{1} X+c_{2} X \\
\text {-telescopic sum } \leq 4(M+c, X)
\end{array}\right] . \text { ed. }
\end{aligned}
$$

Lecture 9: We continue proving theorem on existence of entropy solution for scalar conslaw. Lemma 4 (time estimate - u_{n}^{k} are L^{1} locally Lipshits in k) If $h / e \geqslant \delta>0$ and $h, l \leq 1$, then exists $L>0$ (independent of h, e) such that
if $k>p$, where $(k-p)$ is even and $p h \geqslant \alpha>0$, then

$$
\sum_{|n| \leq x_{l e}}\left|u_{n}^{k}-u_{n}^{p}\right| e \leq L(k-p) h
$$

A similar estimate holds if $(k-p)$ is odd.
Proof:
T Let us express u_{n}^{k} in terms of u_{n}^{p} where ($k-p$) is even.

$$
\begin{aligned}
u_{n}^{k} & =\frac{1}{2}\left(u_{n+1}^{k-1}+u_{n-1}^{k-1}\right)-\frac{h}{2 l} f^{\prime}(\theta)\left(u_{n+1}^{k-1}-u_{n-1}^{k-1}\right)= \\
& =u_{n+1}^{k-1}\left(\frac{1}{2}-\frac{h}{2 e} f^{\prime}(\theta)\right)+u_{n-1}^{k-1}\left(\frac{1}{2}+\frac{h}{2 e} f^{\prime}(\theta)\right)
\end{aligned}
$$

or $\quad u_{n}^{k}=a_{n+1}^{k-1} u_{n+1}^{k-1}+a_{n+1}^{k-1} u_{n+1}^{k-1}$, where

$$
a_{n-1}^{k-1}+a_{n-1}^{k-1}=1 \text { and } a_{n+1}^{k-1}, a_{n-1}^{k-1} \geq 0 \text {. }
$$

Applying this to u_{n-1}^{k} and u_{n+1}^{k} gives a formula

$$
u_{n}^{k+1}=A u_{n+2}^{k-1}+B u_{n}^{k-1}+C u_{n-2}^{k-1}
$$

where $\quad A, B, C \geqslant 0, \quad A+B+C=1$.
Hence, $\quad\left|u_{n}^{k+1}-u_{n}^{k-1}\right| \leq A\left|u_{n+2}^{k-1}-u_{n}^{k-1}\right|+C\left|u_{n-2}^{k-1}-u_{n}^{k-1}\right|$
Multiplying this by $\Delta x=l$ and summing, we get: $\quad \sum_{\text {in i } \leq x_{l e}}\left|u_{n}^{k+1}-u_{n}^{k-1}\right| \Delta x \leq c \Delta x$
Now if (kp) is even, we can do this operation several times and using the triangle inequality, we get:

$$
\sum_{|n| \leq x / e}\left|u_{n}^{k}-u_{n}^{p}\right| \Delta x \leqslant \sum_{i=p}^{k-2} \sum_{\mid n i \leq x / e}\left|u_{n}^{i+2}-u_{n}^{i}\right| \Delta x \leqslant(k-p) c \Delta x \leqslant
$$

$$
\leq \frac{\Delta t}{\delta}(k-p) c=L(k-p) h \quad \text { for } L=\frac{c}{\delta}, h=\Delta t
$$

Lemma s (stability): Let u_{n}^{k} and v_{n}^{k} be solutions to the finite-difference scheme (D) corresponding to the initial conditions u_{n}° and v_{n}°, respectively, where

$$
\sup _{n \in \mathbb{Z}}\left|u_{n}^{0}\right| \leq M \quad \text { and } \quad \sup _{n \in \mathbb{Z}}\left|v_{n}^{0}\right| \leq M
$$

Then, if $k>0$,

$$
\sum_{|n| \leq N}\left|u_{n}^{k}-v_{n}^{k}\right| \cdot l \leq \sum_{|n| \leq N+k}\left|u_{n}^{0}-v_{n}^{0}\right| \cdot l
$$

Proof:

1. $w_{n}^{k}=u_{n}^{k}-v_{n}^{k}$. from (D) we have

$$
\begin{aligned}
w_{n}^{k+1}= & u_{n}^{k+1}-v_{n}^{k+1}=\frac{u_{n+1}^{k}+u_{n-1}^{k}}{2}-\frac{h}{2 e}\left(f\left(u_{n+1}^{k}\right)-f\left(u_{n-1}^{k}\right)\right) \\
& -\frac{v_{n+1}^{k}+v_{n-1}^{k}}{2}+\frac{h}{2 e}\left(f\left(v_{n+1}^{k}\right)-f\left(v_{n-1}^{k}\right)\right)= \\
= & \frac{w_{n+1}^{k}+w_{n-1}^{k}}{2}-\frac{h}{2 e}\left(f\left(u_{n+1}^{k}\right)-f\left(v_{n+1}^{k}\right)\right) \\
& +\frac{h}{2 e}\left(f\left(u_{n-1}^{k}\right)-f\left(v_{n-1}^{k}\right)\right)= \\
= & w_{n+1}^{k}\left[\frac{1}{2}-\frac{h}{2 e} f^{\prime}\left(Q_{1}\right)\right]+w_{n-1}^{k}\left[\frac{1}{2}+\frac{h}{2 e} f^{\prime}\left(Q_{2}\right)\right]
\end{aligned}
$$

Now proceed by induction.

$$
\begin{aligned}
\sum_{|n| \leq N}\left|w_{n}^{k+1}\right| & \leq \sum_{|m| \leq N}\left|w_{n+1}^{k}\right| \cdot A_{n+1}^{k}+\sum_{n}\left|w_{n-1}^{k}\right| \cdot B_{n+1}^{k}= \\
& =\sum_{1-N}^{N+1}\left|w_{m}^{k}\right| A_{m}^{k}+\sum_{-1-N}^{N-1 \leq N}\left|w_{m}^{k}\right| \cdot B_{m}^{k} \leq \\
& \leq \sum_{|m| \leq N+1}\left|w_{m}^{k}\right| A_{m}^{k}+\sum_{|m| \leq N+1}\left|w_{m}^{k}\right| \cdot B_{m}^{k} \leq \sum_{|m| \leq N+1}\left|w_{m}^{k}\right|
\end{aligned}
$$

Step 2: Rather than define u_{n}^{k} in mesh points let us continue u_{n}^{k} as a piecewise constant function in the upper half plane.

$$
\begin{aligned}
U_{h . e}(x, t)=u_{n}^{k} \text { if } & n l \leq x \leq(n+1) l \\
& k h \leq t \leq(k+1) h
\end{aligned}
$$

So we have a family of functions $\left\{U_{h, e}\right\}$ and would like to choose a convergent subsequence $\quad U_{h_{i,}, l_{i}}$ as $h_{i}, l_{i} \rightarrow 0 \quad i \rightarrow \infty$.

Lemma 6 (convergence: the set of functions $\left\{U_{h, e}\right\}$ is compact in the topology of L_{1}-convergence on compacta)
There exists a subsequence $\left\{U_{h i, e_{i}}\right\} \quad i \in \mathbb{N}$ which converges to a measurable function $u(x, t)$ in the sense that for $\forall X>0, t>0, T>0$ both

$$
\int_{x \mid \leq X}\left|U_{h_{i}, e_{i}}(x, t)-u(x, t)\right| d x \rightarrow 0 \quad \text { as } h_{i}, l_{i} \rightarrow 0
$$

and

$$
\int_{0}^{T} \int_{|x| \leq x}\left|U_{h_{i} e_{i}}(x, t)-u(x, t)\right| d x d t \rightarrow 0
$$

Furthemore, the function $u(x, t)$ satisfies:
(a) $\sup _{x \in \mathbb{R}}|u(x, t)| \leq M ; \quad$ (b) in equality

$$
\begin{equation*}
t>0 \tag{S}
\end{equation*}
$$

Proof:
$\left\lceil\right.$ First, take $t=$ const and consider $U_{h, e}(x, t)$ as functions of x. By Lemma 1 and Lemma 3 the set of functions $\left\{U_{h, e}\right\}$ is bounded and have uniformly bounded total variation on each bounded interval in x.

Helly's theorem (simple version):
A uniform bounded sequence of monotone, real functions admits a convergent subsequence.
Welly's theorem (generalized version):
A uniform bounded sequence of BVeoc (locally of bounded variation) real functions admits a convergent subsequence on every compact set.
Rok: a function of BVeoc can be written as a sum of increasing and decreasing functions (on each compact interval). This is why the generalized version of the Helly's theorem is true.
So by Helly's theorem on each interval
U we have a convergent subsequence Uh,e.
By a standard diagonal process we can construct a subsequence $\left\{U_{h, e}^{\prime \prime}\right\}$ from $\left\{U_{h, e}^{\prime}\right\}$ which converges at every $x \in \mathbb{R}$ for this particular $t=$ cost >0.

Second, take $\left\{t_{m}\right\}_{m=1}^{\infty}$ - a countable and dense subset of $(0, T)$, e.g. $\mathbb{Q}_{\cap}(0, T)$.
For $t=t_{1}$ we have $\left\{U_{h_{i}, e_{i}}^{1}\right\}$ a convergent subsequence.
For $t=t_{2}$ take a convergent sub. $\left\{U_{h_{i}, l_{i}}^{2}\right\}$ from $\left\{U_{h i, l_{i}}^{1}\right\}$ etc. So we have:

$t=t_{1}:$	$U_{h_{1}, e_{1}}^{1}$	$U_{h_{2}, e_{2}}^{1}$	$U_{h_{3}, e_{3}}^{1}$
$t=t_{2}:$	$U_{h_{1, e_{1}}}^{2}$	$U_{h_{2}, e_{2}}^{2}$	$U_{h_{4}, e_{4}}^{2}$
$t=t_{3}:$	$U_{h_{3}, e_{3}}^{3}$	$U_{h_{2}, e_{2}}^{3}$	$U_{h_{3}, e_{3}}^{3}$
$t=t_{4}:$	$U_{h_{1, e_{1}}}^{4}$	$U_{h_{4}, e_{4}}^{4}$	$U_{h_{2}, e_{2}}^{3}$
	$U_{h_{3,}, e_{3}}^{4}$	$U_{h_{4}, e_{4}}^{4}$	

By a standard diagonal process, we can choose a subsequence $U_{h i, e_{i}}$ which converges for all $\left\{t_{m}\right\}_{m=1}^{\infty}$ and all $x \in \mathbb{R}$.

Third, we want to show that there is a convergence for all $t \in(0, T)$. So that in the limit we indeed obtain a function defined in the strip octet Let $U_{i}=U_{e i, h i}$ and we want to show that

$$
I_{i, j}=\int_{-X}^{x}\left|U_{i}(x, t)-U_{j}(x, t)\right| d x \rightarrow 0 \quad \forall i j \rightarrow \infty
$$

i.e. that $\left\{U_{i}\right\}$ is a Cauchy sequence in $L_{1}(|x| \leq X)$

For $t \in(0, T)$ we find a subsequence $\left\{t_{m_{s}}\right\} \subset\left\{t_{m}\right\}$ such that $t_{m_{s}} \rightarrow t$ as $s \rightarrow \infty$. Let $\tau_{s}=t_{m_{s}}$. Then

$$
\begin{aligned}
I_{i j}(t) & \leq \int_{-x}^{x}\left|v_{i}(x, t)-U_{i}\left(x, \tau_{s}\right)\right| d x+\int_{-x}^{x}\left|U_{i}\left(x, \tau_{s}\right)-U_{j}\left(x, \tau_{s}\right)\right| \\
& +\int_{-x}^{x}\left|U_{j}(x, t)-U_{j}\left(x, \tau_{s}\right)\right| d x=: I_{1}+I_{2}+I_{3}
\end{aligned}
$$

For $t=\tau_{s}$ we have a convergence of U_{i}, thus for s large enough we have $I_{2}<\varepsilon / 3$
Let's estimate I_{1} :

$$
\begin{aligned}
& I_{1}=\int_{-x}^{x}\left|v_{i}\left(x,\left[\frac{t}{h_{i}}\right] h_{i}\right)-v_{i}\left(x,\left[\frac{\tau_{s}}{h_{i}}\right] h_{i}\right)\right|= \\
& =\sum_{|n|<\frac{x}{e_{i}}+1} \int_{n e_{i}}^{(n+1) e_{i}}\left|v_{i}\left(x,\left[\frac{t}{h_{i}}\right] h_{i}\right)-v_{i}\left(x,\left[\frac{\tau_{s}}{h_{i}}\right] h_{i}\right)\right| d x= \\
& =\sum_{|n|<\frac{x}{e_{i}+1}}\left|u_{n}^{\left[t / h_{i}\right]}-u_{n}^{\left[t_{s} / h_{i}\right]}\right| \underset{\substack{ \\
\\
\\
\\
l_{i} \leq \operatorname{mma} 4}}{\substack{h_{i}}}\left|\left[\frac{t}{h_{i}}\right]-\left[\frac{r_{s}}{h_{i}}\right]\right| \\
& \leq L\left|t-\tau_{s}\right|<\frac{\varepsilon}{3} \text { for } s \text { large enough. }
\end{aligned}
$$

Ana logously, $I_{3}<\frac{\varepsilon}{3}$. Thus $I_{i j} \leq 3 \cdot \frac{\varepsilon}{3}=\varepsilon$. We have proved pointwise limit for every $t \in(0, T)$, that is $\exists u(x, t) \in L_{1}(|x| \leq X$) (in part, measurable)

Fourth, let us show that $I_{i j} \rightarrow 0$ uniformly in t, $0<\tau \leq t \leq T$. Indeed, fix $\varepsilon>0$. Choose finite subset $\mathcal{F} \subset\left\{t_{m}\right\}$ such that if $0 \leq t \leq T$ there is a $t_{m} \in \mathcal{F}$ such that $L\left(t-t_{m}\right)<\frac{\varepsilon}{3}$. Then we choose i, j so large that $I_{2}<\frac{\varepsilon}{3}$ for all $t_{m} \in \mathcal{F}$ (it is possible because \mathcal{F} is finite) This reasoning gives us the desired uniformity

Fifth, using uniform convergence, we have

$$
\forall \tau \in(0, T] \quad \int_{\tau}^{T} I_{i j} d t \rightarrow 0 .
$$

Now we write $\int_{0}^{T}=\int_{0}^{\tau}+\int_{\tau}^{T}$:

$$
\int_{0}^{T} \int_{-x}^{x}\left|U_{i}-U_{j}\right| d x d t=\int_{0}^{\tau} \int_{-x}^{0}\left|U_{i}-U_{j}\right| \quad+\int_{\tau}^{T} \int_{-x}^{x}\left|U_{i}-U_{j}\right|<\varepsilon
$$

$$
<\varepsilon / 2 \text { if } \quad 8 M X_{2}<\varepsilon
$$

That means

$$
\int_{0}^{T} I_{i j} d t \rightarrow 0 \text { as } i, j \rightarrow+\infty
$$

Sixth, since local convergence in L_{1} implies poinwise convergence a.e. of a subsequence, we see $\left|U_{i}\right| \leq M \quad \Rightarrow \quad|u| \leq M$
L and Lemma $5 \Rightarrow(S)$
Step 3: Let us show that the limiting function $u(x, t)$, indeed, satisfies the properties from this. Lemma 7 (entropy inequality):u satisfies (E).

Proof:

I It is sufficient to show that if $\left(x_{1}-x_{2}\right)>2 l_{i}$ and $t>h_{i}$ then

$$
\frac{U_{i}\left(x_{1}, t\right)-U_{i}\left(x_{2}, t\right)}{x_{1}-x_{2}}<\frac{2 E}{t-h_{i}}
$$

Let $x_{1}>x_{2}$ and note that

$$
U_{i}\left(x_{j}, t\right)=U_{i}\left(x_{j}-\eta_{j},\left[\frac{t}{h_{i}}\right] h_{i}\right) j=1,2
$$

for some $0 \leqslant \eta_{j}<l_{j}$. Thus,

$$
\frac{U_{i}\left(x_{1}, t\right)-U_{i}\left(x_{2}, t\right)}{x_{1}-x_{2}}=\frac{1}{x_{1}-x_{2}} \sum_{\substack{\text { over all integers in the interval }\left[x_{2}-\eta_{2}, x_{1}-\eta_{1}\right]}}\left(u_{n}^{k}-u_{n-2}^{k}\right) \quad \text { for } k=\left[\frac{t}{h_{i}}\right]
$$

Using Lemma 2 , we have

$$
\begin{aligned}
\frac{U_{i}\left(x_{1}, t\right)-U_{i}\left(x_{2}, t\right)}{x_{1}-x_{2}} & \leqslant \frac{E\left(x_{1}-\eta_{1}-x_{2}+\eta_{2}\right)}{\left[\frac{t}{h_{i}}\right] h_{i}\left(x_{1}-x_{2}\right)} \leqslant \frac{E\left(x_{1}-\eta_{1}-x_{2}+\eta_{2}\right)}{\left(t-h_{i}\right)\left(x_{1}-x_{2}\right)}= \\
& =\frac{E}{t-h_{i}}+\frac{E\left(\eta_{2}-\eta_{1}\right)<l_{i}}{\left(t-h_{i}\right)\left(x_{1}-x_{2}\right)}<\frac{2 E}{t-h_{i}}<
\end{aligned}
$$

Lecture 10 : Let's finish proving theorem on \exists entropy solution entropy solution
Reminder: Scalar conservation law: $\left\{\begin{array}{l}u_{t}+(f(u))_{x}=0 \\ \left.u\right|_{t=0}=u_{0}(x)\end{array}\right.$

- $u: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$-bounded, measurable
$f: \mathbb{R} \rightarrow \mathbb{R}, f \in C^{2}, f^{\prime \prime}>0$. As we will see it is enough to define f on the convex hull of values We understand solutions in weak sense:

$$
\begin{equation*}
\iint_{t>0}\left[u \varphi_{t}+f(u) \varphi_{x}\right] d x d t+\int_{t=0} u_{0} \varphi d x=0 \tag{**}
\end{equation*}
$$

for every test function $\phi \in C_{0}^{1}$.
Lemma 8 (last lemma)
Let U_{i} be a convergent subsequence from Lemma 6.
We know that $U_{i} \longrightarrow u(x, t), i \rightarrow+\infty$, and $\forall x \in \mathbb{R}$

$$
\int_{-x}^{x}\left|v_{i}(x, 0)-u_{0}(x)\right| d x \rightarrow 0
$$

Then u satisfies $(* *)$, ie. u is a weak solution
Proof.
[Rewrite (D) in such a form:

$$
\frac{u_{n}^{k+1}-u_{n}^{k}}{h}-\frac{u_{n+1}^{k}-2 u_{n}^{k}+u_{n-1}^{k}}{2 e^{2}} \cdot \frac{e^{2}}{h}+\frac{f\left(u_{n+1}^{k}\right)-f\left(u_{n-1}^{k}\right)}{2 e}=0
$$

Multiply this equality by $\phi_{n}^{k}=\phi(n e, k h)$ and get

$$
\begin{aligned}
& \frac{\phi_{n}^{k+1} u_{n}^{k+1}-\phi_{n}^{k} u_{n}^{k}}{h}-u_{n}^{k+1} \frac{\phi_{n}^{k+1}-\phi_{n}^{k}}{h}+\frac{e^{2}}{h} \cdot u_{n}^{k} \cdot \frac{2 \phi_{n}^{k}-\phi_{n+1}^{k}-\phi_{n-1}^{k}}{e^{2}} \\
& +\frac{\phi_{n+1}^{k} u_{n}^{k}-\varphi_{n}^{k} u_{n-1}^{k}}{2 h}+\frac{\phi_{n-1}^{k} u_{n}^{k}-\phi_{n}^{k} u_{n+1}^{k}}{2 h}+ \\
& +\frac{\varphi_{n+1}^{k} f\left(u_{n+1}^{k}\right)-\phi_{n-1}^{k} f\left(u_{n-1}^{k}\right)}{2 e}-f\left(u_{n+1}^{k}\right) \frac{\phi_{n+1}^{k}-\phi_{n}^{k}}{2 e} \\
& -f\left(u_{n-1}^{k}\right) \frac{\varphi_{n}^{k}-\phi_{n-1}^{k}}{2 e}=0
\end{aligned}
$$

 $\phi_{n}^{k}=0 \quad$ if $\quad k \geqslant\left[\frac{T}{n}\right]$

Multiply this equality by $h l$ and sum
over
$n \in \mathbb{Z}, k \in \mathbb{N} v$ \{o\}.

- $\sum_{k, n} \frac{\Phi_{n}^{k+1} u_{n}^{k+1}-\Phi_{n}^{k} u_{n}^{k}}{h}=-\sum_{n} \Phi_{n}^{0} u_{n}^{0} \quad$ (telescopic sum)
- $\sum_{k, n} \frac{\phi_{n+1}^{k} u_{n}^{k}-\phi_{n}^{k} u_{n-1}^{k}}{2 h}=0$ and $\sum_{k, n} \frac{\phi_{n-1}^{k} u_{n}^{k}-\phi_{n}^{k} u_{n+1}^{k}}{2 h}=0$

Thus, u_{n}^{k}

$$
\begin{aligned}
-h \sum_{n} \phi_{n}^{0} u_{n}^{0} & +h l\left[\sum_{k, n}\left[-u_{n}^{k+1} \frac{\phi_{n}^{k+1}-\phi_{n}^{k}}{h}-\frac{e^{2 v}}{2 h} \frac{\phi_{n+1}^{k}+\phi_{n-1}^{k}-2 \phi_{n}^{k}}{2 e}\right]\right. \\
& \left.-\sum_{k, n} f\left(u_{n+1}^{k}\right) \frac{\Psi_{n+1}^{k}-\phi_{n}^{k}}{2 e}-\sum_{k, n} f\left(u_{n-1}^{k}\right) \frac{\phi_{n}^{k}-\Phi_{n-1}^{k}}{2 e}\right]=0
\end{aligned}
$$

Instead of a sum for u_{n}^{k} we can write integsal for $U_{n, e}$

$$
\begin{aligned}
-\int_{t=0} U_{h, e} \Phi+ & \delta_{1}-\iint_{t \geqslant 0} U_{h, e} \Phi_{t}+\delta_{2}-\frac{e^{2}}{2 h} \iint_{t \geqslant 0} U_{h, e} \Phi_{x x} \\
& +\delta_{3}-\iint_{t \geqslant 0} f\left(U_{h, e}\right) \Phi x+\delta_{4}=0
\end{aligned}
$$

where $\delta_{i} \rightarrow 0$ as $h_{1} l \rightarrow 0$. Replace $U_{h . e}$ by U_{i} :

$$
\begin{aligned}
& -\int_{t=0} U_{i} \Phi-\iint_{t \geqslant 0} U_{i} \Phi_{t}-\frac{e_{i}^{2}}{2 h_{i}} \iint_{t \geqslant 0} U_{i} \varphi_{x x}-\iint_{t \geqslant 0} f\left(U_{i}\right) \Phi_{x}=\delta\left(h_{i}, l_{i}\right) \\
& l_{i} \rightarrow 0, \quad \frac{e_{i}}{h_{i}} \text { is bounded } ; \frac{e_{i}^{2}}{h_{i}} \rightarrow 0 ; U_{i} \rightarrow u \quad i \Omega L^{1}-l_{0} \\
& \Rightarrow \iint_{t \geqslant 0} U_{i} \varphi_{t}-\frac{e_{i}^{2}}{2 h i} \iint_{t \geqslant 0} U_{i} \Psi_{x x} \rightarrow \iint_{t \geqslant 0} u \Phi_{t}
\end{aligned}
$$

By choice of initial values: $\int_{t=0} U_{i} \varphi \rightarrow \int_{t=0} u_{0} \phi$
$A\left(s 0, \quad\left|\iint_{t \rightarrow 0}\left(f\left(u_{i}\right)-f(u)\right) \varphi_{x}\right| \leqslant\left\|\varphi_{x}\right\|_{\infty} \iint_{D: Q \neq 0}\left|f\left(u_{i}\right)-f(u)\right|\right.$

$$
\leqslant\left\|Q_{x}\right\|_{\infty} \iint_{D: \Phi \neq 0}\left|f^{\prime}(3)\right| \cdot\left|v_{i}-u\right| \rightarrow 0
$$

And we have:

$$
\iint_{t \geqslant 0} f\left(v_{i}\right) \varphi_{x} \rightarrow \iint_{t \geqslant 0} f(u) \varphi_{x} .
$$

We have proved $(* *)$ for $\forall \phi \in C_{0}^{3}$.
$C_{0}^{3} \subset C_{0}^{1}$ is a dense subset, then $(* *)$ are also true for $\phi \in C_{0}^{1}$.

Now, let's prove the theorem on uniqueness. The (!): Let $f \in C^{2}, f^{\prime \prime}>0$.
Let u, v be 2 solutions of $(* *)$, satisfying entropy condition $(E): \exists E \quad \forall a>0, t>0, x \in \mathbb{R}$

$$
\begin{equation*}
\frac{u(x+a)-u(x)}{a}<\frac{E}{t} . \tag{E}
\end{equation*}
$$

Then $u=v$ almost everywhere in $t>0$.
Rok 1: we call such a solution - an entropy sol.
Rok: If we had a linear operator, then the main idea of the proof could be as follows (we will adapt this idea to Let H be a Hilbert space.
$A: H \rightarrow H, \eta(A)=\{g \in H: A(g)=0\}-\underset{\substack{\text { null } \\ \text { space }}}{ }$

$$
R(A)=\{f \in H: \exists g \in H: A(g)=f\} \text {-range of } A
$$

A^{*} is the adjacent operator:

$$
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle
$$

$R\left(A^{*}\right)$ is the
Fact: $\quad R\left(A^{*}\right) \oplus \eta(A)=H$ orthogonal complement

The "bigger" is $R\left(A^{*}\right)$, the "smaller" is $\eta(A)$. That means that if there exist sufficiently many solutions to the adjoint equation, then the null space of A is zero $\Rightarrow A$ has a unique solution
If $A x=A y$ we can choose $w: A^{*} w=x-y$:

$$
\|x-y\|=\langle x-y, x-y\rangle=\left\langle x-y, A^{*} w\right\rangle=\langle A x-A y, w\rangle=0
$$

$\Rightarrow x=y$ (idea of Holgrem ~1901) But we have a nonlinear eq! Let us adapt this idea.

Proof of tho 2 .
\lceil Let uv be 2 solutions of (**).
In order to prove that $u=v$ a.e. in $t>0$ it suffices to show that $\forall \phi \in C_{0}^{!}$:

$$
\int_{t>0}(u-v) \Phi=0
$$

What we know? Let $\psi \in C_{0}^{1}$, then
(1) $\iint_{t \geqslant 0}\left[u \psi_{t}+f(u) \Psi_{x}\right] d x d t+\int_{t=0} u_{0} \psi d x=0$
(2) $\int_{t \geqslant 0}\left[v \varphi_{t}+f(v) \psi_{x}\right] d x d t+\int_{t=0} u_{0} \varphi d x=0$

Subtract (1)-(2) and we get:

$$
\begin{aligned}
& \iint_{t \geqslant 0}(u-v)[\psi_{t}+\frac{\underbrace{\frac{f(u)-f(u)}{u-v}}, \psi_{x}] d x d t=0}{=: F(x, t)} \\
& \quad \iint_{t \geqslant 0}(u-v)\left[\psi_{t}+F \psi_{x}\right] d x d t=0 \\
& ?_{?}^{\prime \prime} P \in C_{0}^{\prime}
\end{aligned}
$$

Now if for $\forall \phi \in C_{0}^{1}$ we could solve the linear (adjoint!) equation and have a solution $\psi \in C_{0}^{\prime}$, we could conclude that $u=v$ are.

However, there is an obstruction to this approach: "velocity field" F is not smooth (not even continuous), so it is not clear why solution $\psi \in C_{0}^{1}$.

To struggle this difficulty, one can approximate u and v by smooth functions and solve corresponding linear eqs:

$$
(M) \quad \psi_{t}^{m}+F_{m} \psi_{x}^{m}=\varnothing, \quad F_{m}=\frac{f\left(u_{m}\right)-f\left(v_{m}\right)}{u_{m}-v_{m}}
$$

Then $\iint_{t \geqslant 0}(u-v) \phi=\iint_{t \geqslant 0}(u-v)\left[\psi_{t}^{m}+F_{m} \Psi_{x}^{m}\right]=$

$$
\begin{aligned}
& =\underbrace{-\iint_{t \geqslant 0}(u-v)\left[\psi_{t}^{m}+F \psi_{x}^{m}\right]}+\int_{t \geqslant 0}(u-v)\left[\psi_{t}^{m}+F_{m} \psi_{x}^{m}\right]= \\
& =\int_{t \geqslant 0}^{\iint_{t}(u-v) \cdot\left[F_{m}-F\right] \cdot \psi_{x}^{m}}
\end{aligned}
$$

If $\quad F_{m} \rightarrow F$ locally in L_{1}
ψ_{x}^{m} is bounded (independently of m), then we could pass to the limit and get $=0$.
So our plan is:
(1) approximate u, v by smooth functions u_{m}, v_{m} such that $\left.\begin{array}{l}u_{m} \rightarrow u \\ v_{m} \rightarrow v \\ F_{m} \rightarrow F\end{array}\right)$ locally in L_{1}
(2) show that for $\forall \Phi \in C_{0}^{\prime}$ there exists $\psi^{n} \in C_{0}^{\prime}$ - a solution of $\psi_{t}^{m}+F_{m} \psi^{m}=P$ and it's derivali, Ψ_{x}^{m} is bounded (independently of m) We will use entropy ineq. (E) HERE!
Step (1): One of the classical ideas to get a "smoother" function from any function u is to use convolution with "good kernel". Consider $\omega(x)$ the standard "hat" function (bump)

$$
\int_{-1} \omega(x)= \begin{cases}e^{-\frac{1}{\mid x x^{2}-1}}, & |x| \leq 1 \\ 0 & ,|x| \geq 1\end{cases}
$$

$\omega_{m}=c \cdot m \omega(m x)$ is a "hat" on the interval $\left[-\frac{1}{m}, \frac{1}{m}\right]^{-\frac{1}{m} \frac{1}{m}}$

Properties:

1) $\omega_{m} \in C^{\infty}(\mathbb{R})$ (exercise)
2) $\omega_{m} \geqslant 0, \operatorname{supp}\left(\omega_{m}\right)=\left[-\frac{1}{m}, \frac{1}{m}\right]$
3) $\int_{\mathbb{R}} \omega_{m}=1$
4) $w_{m} \rightarrow \delta(x)$

Let $u_{m}=u * \omega_{m}$ and $v_{m}=v^{*} \omega_{m}$, where

$$
(f * g)(y)=\int_{\mathbb{R}} f(x) g(y-x) d x \text { - convolution }
$$

Have in mind such a picture

$f * g$ at point y is just averaging of f in a small neigh bour hood of point y.

Properties of $u_{m}=u * \omega_{m}$:
(a) $u \in L_{l o c}^{1} \Rightarrow u_{m} \in C^{\infty}$
(b) $u_{m} \rightarrow u$ in L'eoc
(c) $\quad F_{m} \rightarrow F$ in L^{1} eos.

Proof:
a)
$u_{m}(y)=\int_{\mathbb{R}} u(x) \omega_{m}(y-x) d x$

$$
\frac{u_{m}(y+h)-u_{m}(y)}{h}=\int_{\mathbb{R}} u(x) \cdot \frac{w_{m}(y+h-x)-w_{m}(y-x)}{h} d x
$$

$$
\int_{\mathbb{R}} u(x) \cdot \frac{\partial \text { Lebesgue theorem }}{\partial y} \omega_{m}(y-x) d x e^{+c}
$$

and $\omega_{m} \in C^{\infty}$
c) Write F_{m} as follows:

$$
\left.F_{m}(x, t)=\frac{f\left(u_{m}\right)-f\left(v_{m}\right)}{u_{m}-v_{m}}=\frac{1}{u_{m}-v_{m}} \int_{u_{m}}^{v_{m}} f^{\prime} / s\right) d s=\int_{0}^{1} f^{\prime}\left(u_{m} \theta+v_{m}(1-\theta)\right)
$$

$$
\begin{aligned}
& \text { b) } u_{m}-u=\int_{\mathbb{R}} \omega_{m}(y-x)[u(x)-u(y)] d x= \\
& =\int_{\mathbb{R}} w_{m}(z)[u(y+z)-u(y)] d z= \\
& =\int_{-\frac{1}{m}}^{1 / m} \omega_{m}(z)[u(y+z)-u(y)] d z \\
& \Rightarrow \quad \int_{k}\left|u_{n}-u\right| d y \leq \int_{k} d y \int_{-\frac{1}{m}}^{\frac{1}{m}} \omega_{m}(z)[u(y+z)-u(y)] d z \\
& K \text {-compact set }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow u_{n} \rightarrow u \text { in } L_{\text {loo. }}^{1}
\end{aligned}
$$

Analogously, $\quad F(x, t)=\int_{0}^{1} f^{\prime}(u \theta+v(1-\theta)) d \theta$.
Let $c:=\max _{|u| \leq M}\left|f^{\prime \prime}(u)\right|$. Then

$$
\begin{aligned}
F-F_{n} & =\int_{0}^{1}\left[f^{\prime}(u \theta+(1-\theta) v)-f^{\prime}\left(u_{m} \theta+(1-\theta) v_{m}\right)\right] d \theta= \\
& =\int_{0}^{1} f^{\prime \prime}(\xi)\left[\theta\left(u-u_{n}\right)+(1-\theta)\left(v-v_{m}\right)\right] d \theta \text {, where }
\end{aligned}
$$

3 is between $\theta u+(1-\theta) v$ and $\theta_{m}+(1-\theta) v_{m}$. Due to estimates $|u|,|v|,\left|u_{m}\right|,\left|v_{m}\right| \leq M$, we have $|\xi| \leq M$.
Thus,

$$
\begin{aligned}
\left|F(x, t)-F_{m}(x, t)\right| & \leq c \int_{0}^{1}\left[\theta\left|u-u_{m}\right|+(1-\theta)\left|v-v_{m}\right|\right] d \theta \leq \\
& \leq c\left(\left|u-u_{m}\right|+\left|v-v_{m}\right|\right)
\end{aligned}
$$

Then for any compact set K in $\{t \geq 0\}$

$$
\iint_{K}\left|F(x, t)-F_{m}(x, t)\right| \leq c \iint_{K}\left|u-u_{m}\right|+c \cdot \iint_{K}\left|v-v_{m}\right| \rightarrow 0
$$

Lecture 11: Let's finish proving uniqueness of entropy sol.
Reminder: Scalar conservation law: $\left\{\begin{array}{l}u_{t}+(f(u))_{x}=0 \\ \left.u\right|_{t=0}=u_{0}(x)\end{array}\right.$

- $u: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$-bounded, measurable
$f: \mathbb{R} \rightarrow \mathbb{R}, \quad f \in C^{2}, \quad f^{\prime \prime}>0$.
We understand solutions in weak sense:

$$
\begin{equation*}
\iint_{t>0}\left[u \Phi_{t}+f(u) \Phi_{x}\right] d x d t+\int_{t=0} u_{0} \Phi d x=0 \tag{**}
\end{equation*}
$$

for every test function $\phi \in C_{0}^{1}$.
Tho 2 (!):
Let u, v be 2 solutions of $(* *)$, satisfying entropy condition $(E): \exists E \forall a>0, t>0, x \in \mathbb{R}$

$$
\begin{equation*}
\frac{u(x+a)-u(x)}{a}<\frac{E}{t} \tag{E}
\end{equation*}
$$

Then $u=v$ almost everywhere in $t>0$.
Proof:
plan is as follows:
TOur plan is as follows:
(1) We want to show that $\forall \phi \in C_{0}^{1}$:

$$
\iint_{t>0}(u-v) \Phi=0 \quad[\Rightarrow \quad u=v \quad \text { a.e. }]
$$

From $(* *)$ we have $\quad \int_{t>0}(u-v)\left[\psi_{t}+F(x, t) \psi_{x}\right]=0$
$\forall u \in C!$ $\forall \psi \in C_{0}^{\prime}$
for $F(x, t)=\frac{f(u(x, t))-f(v(x, t))}{u(x, t)-v(x, t)}$.
So if $\forall \varphi \in C_{0}^{1} \exists \psi \in C_{0}^{1}$ such that
$\psi_{t}+F(x, t) \psi_{x}=\Phi \quad$-we would be done! Unfortunately this is not true as u, v can be discontinuous and F is not necessarily smooth We need to use a PDE trick - "smoothen"
(2) Consider

$$
\begin{aligned}
& u_{m}=u * \omega_{m} \in C^{\infty} ; u_{m} \xrightarrow{L^{1}} u \\
& v_{m}=v * \omega_{m} \in C^{\infty} ; v_{m} \xrightarrow{L^{1}} v \\
& F_{m}=\frac{f\left(u_{m}\right)-f\left(v_{m}\right)}{u_{m}-v_{m}} ; F_{m} \xrightarrow{L^{1}} F
\end{aligned}
$$

We have identity: fix $\phi \in C_{0}^{\prime}$: it is enough to prove

$$
\iint_{t \geqslant 0}(u-v) \Phi=\iint_{t \geqslant 0}(u-v)\left[F_{m}-F\right] \cdot \Psi_{x}^{m} \xrightarrow[m \rightarrow \infty]{\longrightarrow}
$$

where U_{m} is the solution of the equation:

$$
\left(M_{1}\right)\left\{\begin{array}{l}
\psi_{t}^{m}+F_{m}(x, t) \psi_{x}^{m}=\Phi \\
\psi^{m}(x, T)=0
\end{array}\right.
$$

Here we may choose T so big such that $\phi(x, t)=0$ for $t \geqslant T$.

Notice that as F_{m} at least C^{1}, we obtain that the characteristic $O D E:\left\{\begin{array}{l}\frac{d x_{m}}{d s}=F_{m}\left(x_{m}, s\right) \\ \left.x_{m}\right|_{s=t}=x\end{array}\right.$
has a unique solution $x_{m}(s)$. It will be importtank for us the initial point (x, t), so we will denote such solution $x_{m}(s ; x, t)$.

Lemma (solution to inhomogeneous transport equation) The solution of the problem $\left(M_{1}\right)$ is given by:

$$
\psi^{n}(x, t)=\int_{T}^{t} \Phi\left(x_{m}(s ; x, t), s\right) d s
$$

Proof: This is once again Duhamel principle Indeed, let's check directly:

$$
\begin{aligned}
& \psi_{t}^{m}=\underbrace{\varphi\left(x_{m}(t ; x, t), t\right)}_{\Phi(x, t)}+\int_{T}^{t} \frac{d}{d t} \varphi\left(x_{m}(s ; x, t), s\right) d s \\
& \psi_{x}^{m}=\int_{T}^{t} \frac{d}{d x} \phi\left(x_{m}(s ; x, t), s\right) d s
\end{aligned}
$$

Thus, $\psi_{t}^{m}+F \psi_{x}^{m}=\varnothing+\int_{T}^{t}\left[\frac{d}{d t}+F \frac{d}{d x}\right] \varphi\left(x_{m}(s ; x, t), s\right) d s$

Indeed, $\left[\frac{d}{d t}+F \frac{d}{d x}\right]$ is the derivative along the characteristics. But if we move the starting point (x, t) along characteristics, the function p does not change $\Rightarrow\left[\frac{d}{d t}+F \frac{d}{d x}\right] \phi\left(x_{m}\left(s ; x_{1} t\right), s\right)=0 \quad \forall s$.

Corollary of Lemma: $\Psi^{m} \in C_{0}^{1}(t \geqslant 0)$.
${ }^{\top}$ By Lemma $\quad \frac{P_{\text {roof }}}{\psi^{m}}=\int_{T}^{t} \Phi\left(x_{m}(s ; t, x), s\right) d s$
As $\Phi \in C^{\prime}(t \geqslant 0) \Rightarrow \psi^{m} \in C^{1}(t \geqslant 0)$.
Why Ψ^{m} has a compact support?
Let S be support of Φ (as $\Phi \subset C_{0}^{1}$)

As $F_{m}(x, t)=\int_{0}^{1} f^{\prime}\left(\theta u_{m}+(1-\theta) u_{m}\right) d \theta$

$$
\Rightarrow \quad\left|F_{m}\right|<M_{1} \quad\left(\text { as } f \in C^{2}\right)
$$

Consider a trapezoid R as on the figure,
(a) $S \subset R$
(b) R is bounded by four lines: $t=0, t=T$ and $\quad t=-\frac{1}{\mu_{1}} x+$ cons $_{1} ; \quad t=\frac{1}{M_{1}} x+$ cons $_{2}$

Let's show that $\psi^{m} \equiv 0$ out of R :

1. $\Psi^{m}=0$ for $t \geqslant T$ because $\varphi \equiv 0$ there
2. Take $P=\left(x_{1}, t_{1}\right) \notin R, t_{1}<T$.

$$
\begin{aligned}
& x_{m}\left(s ; x_{1}, t_{1}\right) \notin \forall s \Rightarrow x_{m}\left(T ; x_{1}, t_{1}\right) \notin R \\
& \Rightarrow P\left(x_{m}\left(s ; x_{1}, t_{1}\right), s\right)=0 \quad \forall s \Rightarrow \psi^{m}=0 .
\end{aligned}
$$

Lemma (boundedness of $\left|\psi_{x}^{m}\right|$)
$\exists \mathrm{C}$ (independent of m):

$$
\left|\psi_{x}^{m}\right|<C
$$

Proof:
Γ The main ingredient of proof is the entropy condition : $\forall a>0, t>0$

$$
\frac{u(x+a, t)-u(x, t)}{a}<\frac{E}{t}
$$

We see that close to $t=0$ the entropy condition spoils $\left(\frac{E}{t} \rightarrow \infty\right.$ as $\left.t \rightarrow 0\right)$. Let $\alpha>0$ be arbitrary. Then for $\forall t \geq \alpha$ the function $u(x, t)-\frac{E x}{\alpha}$ is non-increasing

$$
u(x+a, t)-\frac{E(x+a)}{\alpha}-u(x, t)+\frac{E x}{\alpha} \leq \frac{E_{a}}{t}-\frac{E_{a}}{\alpha}=E_{a}\left(\frac{1}{t}-\frac{1}{\alpha}\right)
$$

In what follows we will consider 2 cases:
(a) $t \geqslant \alpha$
(b) $0 \leqslant t \leqslant \alpha$

Case $t \geqslant \alpha$
Claim: $\frac{\partial u_{m}}{\partial x} \leq \frac{E}{\alpha} ; \frac{\partial v_{m}}{\partial x} \leq \frac{E}{\alpha}$

$$
\text { and } \exists K=K_{\alpha}: \quad \frac{\partial F_{m}}{\partial x} \leq K_{\alpha}
$$

- Indeed, the function $\omega_{n} *\left(u-\frac{E x}{\alpha}\right)=u_{m}-\frac{E \omega_{n} * x}{\alpha}$ is also non-increasing (and smooth)

$$
\Rightarrow \quad \frac{\partial}{\partial x}\left(u_{m}-\frac{E \omega_{n} * x}{\alpha}\right)^{\partial}=\frac{\partial u_{m}}{\partial x}-\frac{E}{\alpha} \leq 0
$$

Ana logously, $\frac{\partial v_{m}}{\partial x} \leq \frac{E}{\alpha}$.

$$
\begin{aligned}
\frac{\partial F_{m}}{\partial x} & =\int_{0}^{1} f^{\prime \prime}\left(\theta u_{m}+(1-\theta) v_{m}\right)\left[\theta \frac{\partial u_{m}}{\partial x}+(1-\theta) \frac{\partial v_{m}}{\partial x}\right] d \theta \\
\Rightarrow \frac{\partial F_{m}}{\partial x} & \leq \int_{0}^{1} f^{\prime \prime}\left(\theta u_{m}+(1-\theta) v_{m}\right)\left[\theta \frac{E}{\alpha}+(1-\theta) \frac{E}{\alpha}\right] d \theta \\
& =\frac{E}{\alpha} \int_{0}^{1} f^{\prime \prime}\left(\theta u_{m}+(1-\theta) v_{m}\right) d \theta
\end{aligned}
$$

Therefore, $\quad \frac{\partial F_{m}}{\partial x} \leq K_{\alpha}=\frac{E}{\alpha} \max _{\text {(u ism }} f^{\prime \prime}(u)$.
Let's use this to prove $\left|\frac{\partial \varphi^{m}}{\partial x}\right| \leq C, t \geqslant \alpha$

$$
\frac{\partial \psi^{m}}{\partial x}=\int_{T}^{t} \underbrace{\frac{\partial \varphi}{\partial x_{m}} \cdot \frac{\partial x_{m}}{\partial x}(s ; x, t) d s}_{\text {is bounded }} \begin{aligned}
& \text { Let's examine } \frac{\partial x_{m}}{\partial x}
\end{aligned}
$$

For convinience, denote $a_{m}(s)=\frac{\partial x_{m}}{\partial x}(s ; x, t)$
Here (x, t) - some fixed point in $\{t>0\}$.
Notice $X_{m}(t ; x, t)=x$

$$
\Rightarrow \quad a_{m}(t)=\frac{\partial x_{m}}{\partial x}=1 .
$$

How $a_{m}(s)$ is changing with s ?

$$
\begin{aligned}
\frac{\partial a_{m}}{\partial s} & =\frac{\partial}{\partial s} \frac{\partial x_{m}}{\partial x}=\frac{\partial}{\partial x} \frac{\partial x_{m}}{\partial s}=\frac{\partial}{\partial x} F_{m}\left(x_{m}, s\right)= \\
& =\frac{\partial}{\partial x} F_{m}\left(x_{m}(s ; x, t), s\right)=\frac{\partial F_{m}}{\partial x} \cdot \frac{\partial x_{m}}{\partial x}= \\
& =\frac{\partial F_{m}}{\partial x} \cdot a_{m} \quad \Rightarrow \quad \frac{\partial a_{m}}{\partial s}=\frac{\partial F_{m}}{\partial x} \cdot a_{m}
\end{aligned}
$$

We can solve it: $a_{m}(s)=\exp \left(\int_{t}^{s} \frac{\partial F_{m}}{\partial x}\left(X_{m}(\tau), \tau\right) d r\right)$
Since we have $\alpha \leq t \leq s \leq T$

$$
\left|\frac{\partial x_{m} c e w e ~ h a v e ~}{\partial x}\right|=\left|a_{m}(s)\right|=a_{m}(s) \leq t \leq s \leq 1
$$

Thus, $\left|\frac{\partial \psi^{m}}{\partial x}\right| \leq \int_{T}^{t}\left|\frac{\partial \phi}{\partial x}\right| \cdot\left|\frac{\partial x_{m}}{\partial x}\right| d s \leq$

$$
\leq(T-\alpha) \cdot C_{1} \cdot e^{k_{2}(T-\alpha)}=: C
$$

The most important is that C does not depend or m !
Case $0 \leq t \leq \alpha$ Consider the total variation of ψ^{m}

$$
V_{t}\left(\psi^{m}\right)=\int_{\mathbb{R}}\left|\frac{\partial \psi^{m}}{\partial x}\right| d x
$$

as a function of x
for each fixed to
As $\psi^{m} \in C_{0}^{1}$ and for $t \geqslant \alpha \quad\left|\frac{\partial \psi^{m}}{\partial x}\right| \leq C$ we have

$$
V_{t}\left(\psi^{m}\right) \leq C_{\alpha}, \quad t \geq \alpha
$$

τ does not depend on n.
Rok: let's show that $\exists N \quad \forall n>N$

$$
V_{t}\left(\psi^{n}\right) \leq C_{1 / n} \quad \forall t: 0<t<\frac{1}{n}<\frac{1}{N}
$$

Since D has a compact support in $\{t>0\}$, there exists $N=\Phi(x, t)=0$ if $t<1 / N$.
Thus, $\quad \psi_{t}^{m}+F_{m} \psi_{x}^{m}=0 \quad$ if $t<1 / N$

$$
\xrightarrow[(x, t)]{ } \underbrace{}_{t=0}\left(6_{t}(x), 1 / 2\right) \underbrace{}_{t} \quad 1 / n, n>N
$$

Let $\sigma_{t}: \mathbb{R} \rightarrow \mathbb{R}$ - bijection that takes Ψ^{m} at time t as initial condition and sends it to solution 4^{m} at time $t=\frac{1}{n}$. As ψ^{m} is constant along characterristics, it is clear that

$$
\sum_{k=1}^{p-1}\left|\psi^{m}\left(x_{k+1}, t\right)-\psi^{m}\left(x_{k}, t\right)\right|=\sum_{k=1}^{p-1} \left\lvert\, \psi^{m}\left(\sigma_{t}\left(x_{k+1}\right), \frac{1}{n}\right)-\right.
$$

for any finite sequence $\left.x_{1}<x_{2}<\ldots<x_{p}-\varphi^{m}\left(\sigma_{t}\left(x_{k}\right), \frac{1}{n}\right) \right\rvert\, \leqslant$

$$
\leq V_{1 / 2}\left(\psi^{n}\right) \leq C_{1 / n}
$$

Let's complete the proof of tho 2.
Fix $\varepsilon>0$-arbitrary. Take N from Rok above. Choose $\alpha>0$ so small s.t. $\alpha<\frac{l}{n} \leq \frac{1}{N}$ and

$$
4 M M_{s} C_{1 / n} \alpha<\frac{\varepsilon}{2} .
$$

For this α choose \tilde{M} so large that

$$
\iint_{t \rightarrow \alpha}|u-v| \cdot\left|F_{m}-f\right| \cdot\left|\psi_{x}^{m}\right|<\frac{\varepsilon}{2} \quad \text { if } \quad n \geqslant \tilde{M}
$$

This can be done since $|u-v| \leq 2 M,\left|\frac{\partial \psi^{m}}{\partial x}\right| \leq K_{\alpha}$ and $F_{m} \rightarrow F$ in $L_{\text {eos. }}$

Then $\left|\iint_{t \geqslant 0}(u-v) \phi\right| \leq \iint_{t \geqslant \alpha}+\int_{t<\alpha} \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$
Now since $\alpha<\frac{l}{n} \leqslant \frac{l}{N}$

$$
\begin{aligned}
& \iint_{t<\alpha}|u-v| \cdot\left|F_{m}-F\right| \cdot\left|\psi_{x}^{n}\right| \leq 2 M \cdot 2 M_{1} \iint_{t<2}\left|\psi_{x}^{m}\right|=4 M M_{1} \int_{\circ R}^{\alpha}\left|\psi_{x}^{m}\right| \\
& =4 M M_{1} \int_{0}^{\alpha} v_{t}\left(\psi^{m} \left\lvert\, d t \leq 4 M M_{1} C_{1 / n} \alpha<\frac{\varepsilon}{2}\right.\right.
\end{aligned}
$$

Thus, $\quad \iint_{t \geqslant 0}(u-v) \phi=0 \quad \forall \varphi \in C_{0}^{\prime} \Rightarrow u=v$ ae.

Lecture 12. Riemann problem:

$$
(R P)\left\{\begin{array}{l}
u_{t}+(f(u)) x_{x}=0 \\
u(x, 0)=\left\{\begin{array}{l}
u_{e}, x<0-\text { left state } \\
u_{r}, x>0-\text { right state }
\end{array}\right.
\end{array}\right.
$$

As before assume $f \in C^{2}, f^{\prime \prime}>0$.
Theorem (solution to a Riemann problem):
(i) If $u_{e}>u_{r}$, the unique entropy solution of the Riemann problem is

$$
u(x, t)=\left\{\begin{array}{lll}
u_{e}, & \text { if } & x / t<6 \\
u_{r}, & \text { if } & x / t>6
\end{array}\right.
$$

where

$$
\sigma=\frac{f\left(u_{e}\right)-f\left(u_{r}\right)}{u_{e}-u_{r}}
$$

(ii) If $u_{e}<u_{r}$, the unique entropy solution is

$$
u(x, t)=\left\{\begin{array}{lll}
u_{e} & \text { if } & x / t<F^{\prime}\left(u_{e}\right) \\
\left(F^{\prime}\right)^{-1}(x / t) & \text { if } & F^{\prime}\left(u_{e}\right)<x / t<F^{\prime}\left(u_{r}\right) \\
u_{r} & \text { if } & x / t>F^{\prime}\left(u_{r}\right)
\end{array}\right.
$$

Such solution is called rarefaction wave

Proof:
F (i) As this is shock "down" it satisfies entropy condition \Rightarrow this is a unique entropy sol.
(ii) Let's look for solution of the form:

$$
\begin{aligned}
u(x, t)=v\left(\frac{x}{t}\right) \Rightarrow & \left.u_{t}+(f(u))\right)_{x}=-v^{\prime}\left(\frac{x}{t}\right) \frac{x}{t^{2}}+f^{\prime}(v) v^{\prime} \frac{1}{t} \\
& =v^{\prime}\left(\frac{x}{t}\right) \frac{1}{t}\left(f^{\prime}(v)-\frac{x}{t}\right)
\end{aligned}
$$

If v^{\prime} never vanishes $\Rightarrow f^{\prime}(v)=\frac{x}{t} \Rightarrow \quad v=\left(f^{\prime}\right)^{-1}\left(\frac{x}{t}\right)$
Also it is easy to check that v satisfies entropy gond

Systems of conservation laws.
The most general: $u=\vec{u}(x, t)=\left(u_{2}(x, t), \ldots, u_{m}(x, t)\right)$

$$
\begin{gather*}
x \in \mathbb{R}^{n}, t \geqslant 0 \\
\quad \frac{d}{d t} \int_{v} u(x, t) d x=-\int_{\partial v} F(u) \nu d S=-\int_{v} \operatorname{div} F(u) d x \\
\Rightarrow\left\{\begin{array}{l}
u_{t}+\operatorname{div} F(u)=0, x \in \mathbb{R}^{n} \quad(*) \\
\left.u\right|_{t=0}=u_{0}
\end{array}\right.
\end{gather*}
$$

$u \in \mathbb{R}^{m}$-state space. We will consider only

$$
F \in \mathbb{R}^{m}-f l u x
$$

$$
x \in \mathbb{R} \quad(n=1)
$$

Example 1: (linear) wave equation: $u_{t t}-c^{2} u_{x x}=0$

$$
U=\binom{u_{x}}{u_{t}} \Rightarrow \quad U_{t}+A U_{x}=0 \quad A=\binom{0-1}{-c^{2} 0}
$$

Eigenvalues of $A: \lambda_{ \pm}= \pm c$ correspond to propagation modes

Example 2: (non-linear) wave equation:

$$
\left.\begin{array}{l}
u_{t t}-\left(p\left(u_{x}\right)\right)_{x}=0 \\
U=\binom{u_{x}}{u_{t}} \Rightarrow \quad v_{t}+F(v)_{x}=0
\end{array}\right\} \begin{aligned}
& \left\{\begin{array}{l}
u_{x t}-u_{t x}=0 \\
u_{t t}-\left(p\left(u_{x}\right)\right)_{x}=0
\end{array}\right. \\
& \left.\begin{array}{l}
U=\binom{-u_{t}}{-p\left(u_{x}\right)}
\end{array}\right) \\
& F(U)=\left(\begin{array} { l }
{ - w (v)) } \\
{ - p (v) }
\end{array} \quad \left\{\begin{array}{l}
v_{t}-w_{x}=0 \\
w_{t}-(p(v))_{x}=0
\end{array}\right.\right.
\end{aligned}
$$

This system is called p-system (or isentropic gas dynamics)

Example 3: Euler eggs for compressible gas flow:

$$
\begin{gathered}
\rho_{t}+(\rho v)_{x}=0 \quad \begin{array}{c}
\text { (conservation of mass) }
\end{array} \\
(\rho v)_{t}+\left(\Omega v^{2}+p\right)_{x}=0 \quad \begin{array}{r}
\text { (conservation of } \\
\text { momentum) }
\end{array} \\
(\Omega E)_{t}+(\Omega E v+p v)_{x}=0 \quad \begin{array}{c}
\text { (conservation of } \\
\text { energy) }
\end{array}
\end{gathered}
$$

Unknowns:

- 3 -mass density
-v - velocity

$$
\begin{aligned}
& P=(\rho, e) \\
& E=e+\frac{v^{2}}{2} \ll \begin{array}{l}
\text { kinetic } \\
\text { energy }
\end{array} \\
& \text { ternal }
\end{aligned}
$$

- E- energy
$U=\left(\begin{array}{c}s \\ s v \\ s E\end{array}\right) \Rightarrow$ can be written as $U_{t}+F()_{x}=0$
Weak solutions:
Let $v: \mathbb{R} \times[0,+\infty) \rightarrow \mathbb{R}^{m}$ - smooth $\left(C^{1}\right)$
with compact support, $v=\left(v^{2}, \ldots, v^{m}\right)$
Do standard procedure: multiply the eq. by v and integrate by parts:

$$
(* *) \int_{0}^{\infty} \int_{\mathbb{R}}\left[u \cdot v_{t}+F(u) v_{x}\right] d x d t+\int_{\mathbb{R}} u_{0} v d x=0
$$

Def: we say $u \in L^{\infty}\left(\mathbb{R} \times(0,+\infty) ; \mathbb{R}^{m}\right)$ is a weak solution of (*) provided (**) holds for all v as above.
Lemma (Rankine - Hugoniot condition)

U has a jump discontinuity at C parametrized by smooth function $s(\cdot):[0,+\infty) \rightarrow \mathbb{R} \quad(x, t)=(s(t), t)$ and let U_{e} be left values of G along the curve C;
U_{r} be right values of U along the curve C.
Then:

$$
\begin{equation*}
F\left(v_{e}\right)-F\left(v_{r}\right)=\dot{s}\left(v_{e}-v_{r}\right) \tag{RW}
\end{equation*}
$$

Rok 1: proof is totally analogous to the scalar case - we omit it
Rok: this equality (RH) is vector?
-What fluxes are reasonable?
Consider a wider class of semilinear systems
(GL)

$$
u_{t}+B(u) u_{x}=0 \quad, B: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{m}
$$

If our solutions of (*) are smooth, this system ${ }^{(t)}$ is equivalent to $U_{t}+D F \cdot U_{x}=0$

$$
B=D F=\left(\begin{array}{ccc}
F_{z_{1}}^{1} & \cdots & F_{z_{m}}^{1} \\
\vdots & \ddots & \vdots \\
F_{z_{1}}^{m} & \cdots & F_{z_{m}}^{m}
\end{array}\right)_{m \times m}
$$

Let's find formally the solutions in the form of a travelling wave:

$$
u(x, t)=v(x-6 t) \Rightarrow-6 v^{\prime}+B(v) v^{\prime}=0
$$

Here v-profile $\begin{aligned} \sigma \text {-velocity } & \left.\begin{array}{l}\text { Observe that this means } \\ \text { that } 6 \text { is eigenvalue of } B(0) \\ \text { and } v \text { is an eigenvector. }\end{array}\right) .\end{aligned}$ If we want have some waves propagating, we should make some sort of "hyperbolicity" condition.
Def: If for each $z \in \mathbb{R}^{m}$ all eigenvalues of $B(z)$ are real and distinct, we call the system (SL) strictly hyperbolic.

From now on we will assume the system (SL) always strictly hyperbolic. We will write
(i) $\lambda_{1}(z)<\lambda_{2}(z)<\ldots<\lambda_{m}(z), z \in \mathbb{R}^{m}$ real and distinct eigenvalues of $B(z)$
(ii) $r_{k}(z)$ - eigenvectors of $B(z), k=9 \ldots m$

$$
B(z) r_{k}(z)=\lambda_{k}(z) \Gamma_{k}(z)
$$

Strict hyperbolicity $\Rightarrow \operatorname{span}\left\{r_{1}(z), \ldots, r_{m}(z)\right\} \equiv \mathbb{R}^{m}$ $\forall z \in \mathbb{R}^{n}$
(iii) $\ell_{k}(z)$ - eigenvectors of $B^{\top}(z)$, correspond. to $\lambda_{k}(z)$

$$
B^{\top}(z) l_{k}(z)=\lambda_{k}(z) l_{k}(z)
$$

or

$$
l_{k} B(z)=\lambda_{x} l_{x}
$$

Thus, we can regard r_{k} as right eigenvectors l_{k} as left eigenvector
Rok: $\quad r_{k} \cdot l_{s}=0$ if $k \neq l$

$$
\begin{aligned}
\lambda_{k}\left(l_{s} \cdot r_{k}\right) & =l_{s} \cdot\left(\lambda_{k} r_{k}\right)=l_{s}\left(B \cdot r_{k}\right)=\left(l_{s} B\right) r_{k}= \\
& =\left(\lambda_{s} l_{s}\right) r_{k}=\lambda_{s} \cdot l_{s} r_{k} \\
\text { As } \quad \lambda_{k} \neq \lambda_{s} & \Rightarrow \quad l_{s} \cdot r_{k}=0, k \neq s
\end{aligned}
$$

Let us formulate some theorems that sound reasonable (without proof):
Theorem (invariance of hyperbolicity under change of coordinates)
Let u be smooth solution of (SL)
Assume $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be a smooth diffed Ψ it's inverse
Then: $\tilde{u}=\Phi(u)$ solves the strictly hyperbolic system: $\quad \tilde{u}_{t}+\tilde{B}(\tilde{u}) \tilde{u}_{x}=0$
for $\quad \widetilde{B}(\tilde{z})=D \Phi(\Psi(\tilde{z})) B(\psi(\tilde{z})) D \psi(\tilde{z})$
Rok: weak solutions are not preserved under smooth nonlinear transformations of the equations: consider scalar eq: $u_{t}+(f(u))_{x}=0$ f">0

$$
\begin{aligned}
& u \mapsto v=f^{\prime}(u) \\
& v_{t}=f^{\prime \prime}(u) \cdot u_{t} \quad \Rightarrow \quad v_{t}+v \cdot v_{x}=0 \\
& v_{x}=f^{\prime \prime}(u) \cdot u_{x} \quad \text { Burgers! }
\end{aligned}
$$

But this map doesn't map discontinuous solutions into themselves. Just write RH1 condition: the original eq: $s=\frac{f\left(u_{r}\right)-f\left(u_{e}\right)}{u_{r}-u_{e}}$ and for the transformed eq: $s=\frac{f^{\prime}\left(u_{c}\right)-f^{\prime}\left(u_{r}\right)}{u_{e}-u_{r}}$
Theorem (dependence of eigenvalues and eigenvectors on parameters)
Assume matrix function B is smooth, strictly hyperbolic. Then:
(i) the eigenvalues $\lambda_{k}(z)$ depend smoothly on z
(ii) we can select the right eigenvectors $r_{k}(z)$ and left eigenvectors $C_{e}(z)$ to depend smoothly on $z \in \mathbb{R}^{m}$ and satisfy the normalization:

$$
\left|r_{k}(z)\right|=1,\left|e_{k}(z)\right|=1
$$

Example 1 (continued): $c \neq 0 \Rightarrow \underset{\text { system is }}{\substack{\text { hyperbolic }}}$ strictly hyperbolic
Example 2 (continued): $p^{\prime}>0 \Rightarrow$ system is strictly

$$
D\binom{-w}{-p(v)}=\left(\begin{array}{cc}
0 & -1 \\
-p^{\prime} & 0
\end{array}\right) \quad \lambda_{ \pm}= \pm \sqrt{p^{\prime}}
$$ hyperbolic

$\underline{\text { Riemann }} \underset{(R P)}{\text { problem }}:\left\{\begin{array}{l}u_{t}+(F(u))_{x}=0, u \in \mathbb{R}^{m} \\ u(x, 0)=\left\{\begin{array}{l}u_{l}, x<0 \\ u_{r}, x>0\end{array}\right.\end{array}\right.$
We will call use, ur left and right unitial states

We aim at finding exact solutions to a Riemann problem. Why they are useful?
(1)

Often the solution to a Riemann problem appear as limiting one when $t \rightarrow+\infty$. $u^{\prime}=f(u)$ - steady states: $f(u)=0 \int \varepsilon u_{x x}=u_{t}+(f(u)) x-$ steady states: ut t $(f(h))_{x}=0$
(2)

$$
t=1 ?
$$

$$
t=0
$$

 One can approximate initial condition by piecewise constant initial data and solve many Riemann problems.
The obtained solution is some approximation So using RP one can prove existence of solutions to Cauchy problem (with arbitrary initial data)
Rok: notice that both equation and initial condition in RP stay the same if we consider $\quad(x, t) \mapsto(\alpha x, \alpha t)$
Thus the solution depends only on $\frac{x}{t}$
 it is constant on rays $t=k x$

Let us be engineers: to construct the general solution we need "building blocks":
\rightarrow smooth solutions \leadsto rarefaction waves
\rightarrow discontinuous solutions \leadsto shock waves
\rightarrow constant states.
\oint Simple waves: $u(x, t)=v(w(x, t))$

$$
\begin{aligned}
& \begin{array}{l}
v: \mathbb{R}^{\prime} \rightarrow \mathbb{R}^{m} \\
\left.w: \mathbb{R}_{x}(0,+\infty) \rightarrow \mathbb{R}\right) \text { to be found }
\end{array} \\
& u_{t}+F(u)_{x}=0 \Rightarrow \dot{v} \cdot w_{t}+D F \cdot \dot{v} \cdot w_{x}=0 \\
& \text { ? } \lambda_{x} \dot{\rightharpoonup} \\
& (S \omega)\left\{\begin{array}{l}
w_{t}+\lambda_{k}(v(w)) w_{x}=0 \\
\dot{v}=r_{k}(v(s))
\end{array}\right.
\end{aligned}
$$

Def: $u(x, t)=v(\omega(x, t))$ is called a simple wave if (sw) holds.
The main point is that we can consider first $\dot{v}=\Gamma_{k}(v)$, and then regard $w_{t+\lambda_{k} \omega_{k}=0}$ as a scalar conservation law!

Def: given a fixed state $z_{0} \in \mathbb{R}^{n}$, we define $k^{\text {th }}$-rarefaction curve $R_{k}\left(z_{0}\right)$ to be path in \mathbb{R}^{n} of the solution of the ODF $\dot{V}=\Gamma_{k}(v)$ which passes through
 point z_{0}.
for $\quad f_{k}(s)=\int_{0}^{s} \lambda_{k}(v(t)) d t$
Given solution R_{k} we can rewrite PDE as $\omega_{t}+F_{k}(\omega)_{x}=0$

If F_{k} is convex, we know that the solution exists and is unique.
So this PDE will fall into general theory provided F_{k} is strictly convex. Let us therefore compute:

$$
\begin{gathered}
F_{k}^{\prime}(s)=\lambda_{k}(v) \cdot \dot{v}=\lambda_{k}(v) \\
F_{k}^{\prime \prime}=D \lambda_{k} \cdot \dot{v}=\underbrace{D \lambda_{k}(v(s)) \cdot r_{k}(v(s))}_{\begin{array}{l}
\text { this is the derivative } \\
\text { along the k-rarefaction curve }
\end{array}}
\end{gathered}
$$

So F_{k} will be convex if

$$
\begin{array}{ll}
D \lambda_{k}(z) \cdot r_{k}(z)>0 & \forall z \in \mathbb{R}^{m} \\
F_{k}-\text { concave if } & \\
D \lambda_{k}(z) \cdot r_{k}(z)<0 & \forall z \in \mathbb{R}^{m} \\
F_{k}-\text { linear if } \quad & \\
& D \lambda_{k}(z) \cdot r_{k}(z) \equiv 0
\end{array} \quad \forall z \in \mathbb{R}^{m}
$$

Def: (i) the pair $\left(\lambda_{k}(z), r_{k}(z)\right)$ is called genuinely nonlinear provided

$$
D \lambda_{k}(z) \cdot \Gamma_{k}(z) \neq 0 \quad \forall z \in \mathbb{R}^{n}
$$

(ii) the pair $\left(\lambda_{k}(z), r_{k}(z)\right)$ is called linearly degenerate provided

$$
D \lambda_{k}(z) \cdot r_{k}(z) \equiv 0 \quad \forall z \in \mathbb{R}^{n}
$$

Notation: if the pair is genuinely nonlinear,

$$
\begin{array}{rlrl}
& \text { write } & R_{k}^{+}\left(z_{0}\right) & =\left\{z \in R_{k}\left(z_{0}\right):\right. \\
& \left.\lambda_{k}^{+}(z)>\lambda_{k}\left(z_{0}\right)\right\} \\
R_{k}\left(z_{0}\right)=R_{k}^{-}=R_{k}^{+}\left(z_{0}\right) \cup\left\{z_{0}\right\} \cup R_{k}^{-}\left(z_{0}\right) & R_{k}^{-}\left(z_{0}\right) & =\left\{z \in R_{k}\left(z_{0}\right):\right. \\
& & \left.\lambda_{k}(z)<\lambda_{k}\left(z_{0}\right)\right\}
\end{array}
$$

Lecture 13: Reminder: we consider systems of conservation laws
$x \in \mathbb{R}, t>0, U(x, t)=\left(u_{1}(x, t), \ldots, u_{m}(x, t)\right)$
(*) $U_{t}+F(U)_{x}=0$

- $U \in \mathbb{R}^{m}$ - state
- $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ - flux
- $D F \in M^{m \times m}$

Def: the system (*) is called hyperbolic if $D F(U)$ has m real eigenvalues:

$$
\lambda_{1}(U) \leq \ldots \leq \lambda_{m}(U)
$$

and the corresponding eigenvectors $\Gamma_{i}(U)$, $i=1, \ldots, m$, are linearly independent (form bass)
Def: the system (*) is called strictly hyperbolic if $(+)$ is hyperbolic and all eigenvalues are distinct: $\lambda_{1}(\theta)<\ldots<\lambda_{m}(v)$
In what follows we consider strictly hyperbolic systems of conservation laws.

- $U_{t}+B(v) U_{x}=0$; eigenvalues of $B(v): \lambda_{1}(v)<\ldots \lambda_{n}(v)$

$$
\begin{array}{ll}
B(v) r_{i}(v)=\lambda_{i}(v) r_{i}(v), & i=1 \ldots m \\
l_{i}(\tau) B(v)=\lambda_{i}(v) e_{i}(v), & i=1 \ldots m
\end{array}
$$

Our goal for today: give a "constructive" proof that a Riemann problem
(RP) $U(x, 0)= \begin{cases}U_{e}, x<0 & \text { has a solution } \\ U_{r}, x>0 & \text { if } u_{e} \text { and }\end{cases}$ (local solution to a Riemann problem) ur are dose.

Our "building blocks": i-rarefaction wave

$$
i=1 \ldots \mathrm{~m}
$$

i-shock wave
(i-contact discontinuity) constant states

Global picture:
\mathbb{R}^{n} : at each point U
we will construct m eigenvectors
$m C^{2}$-smooth curves
 such that taking point \checkmark on i-curve would mean that we have eigher smooth or discontinuous solution from U to V
"corresponding to i-characteristic" $\longleftrightarrow \lambda_{i}$

We can construct a sequence of waves:

$$
U_{e} \rightarrow U_{\uparrow} \rightarrow U_{M_{1}} \rightarrow \ldots \rightarrow U_{\uparrow}
$$

1-charact. 2-charac. m-charac.
\oint Simple waves: $\quad U(x, t)=V(w(x, t))$

$$
\begin{aligned}
& w: \mathbb{R} \times[0,+\infty) \rightarrow \mathbb{R} \text { - scalar } \\
& V: \mathbb{R} \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

$$
\dot{V} w_{t}+\underbrace{D F(V(w)) \cdot \dot{V}}_{\lambda_{k} \cdot V} w_{x}=0
$$

$$
\left\{\begin{array}{l}
\dot{V}=r_{k}(V(s)) \\
w_{t}+V, \underset{k}{\lambda_{k}(V(w))} w_{x}=0 \\
\text { plays a role } \\
\text { of the seed }
\end{array}\right.
$$ of the speed of propagation

$$
w_{t}+\left(F_{k}(w)\right)_{x}=0 \quad \text { for }
$$ by r_{k}

scalar conservation law across the integral curve of the vector field induced

$$
F_{k}(s)=\int_{0}^{s} \lambda_{k}(V(s)) d s
$$

Def: the pair $\left(\lambda_{k}, r_{k}\right)$ [or sometimes called k-charac. teristic family] is called genuinely nonlinear if $\quad D \lambda_{\lambda_{k}}(z) \cdot r_{k}(z) \neq 0 \quad \forall z \in \mathbb{R}^{n}$

- is called linearly degenerate if $D \lambda_{k} \cdot r_{k} \equiv 0$

$$
\left.\begin{array}{ll}
R_{k}^{+}\left(z_{0}\right) & R_{k}^{+}\left(z_{0}\right)
\end{array} \quad\left\{z \in R_{k}\left(z_{0}\right): \lambda_{k}(z)>\lambda_{k}\left(z_{0}\right)\right\} \right\rvert\, 子 R_{k}^{-}\left(z_{0}\right)=\left\{z \in R_{k}\left(z_{0}\right): \lambda_{k}(z)<\lambda_{k}\left(z_{0}\right)\right\}
$$

Thy (existence of k-rarefaction waves):
Suppose that for some $k=1, \ldots, m$:
(i) the pair $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear and (ii) $U_{r} \in R_{k}^{+}\left(z_{0}\right)$.
Then there exists a continuous integral solution U of a Riemann problem (RP), which is a K-simple wave constant along lines through origin

Proof:
Γ_{1} 1. Take $w_{e}, w_{r} \in \mathbb{R}: \quad U_{e}=V\left(w_{e}\right) ; U_{r}=V\left(w_{r}\right)$ Suppose $w_{e}<\omega_{r}$.
2. Consider a scalar Riemann problem consisting of PDE $\quad \begin{cases}\omega_{t}+\left(F_{k}(\omega)\right) & x=0 \\ \omega(x, 0)= \begin{cases}\omega_{e}, & x<0 \\ \omega_{r}, & x>0\end{cases} \end{cases}$

$$
\begin{align*}
F_{k}^{\prime} & =\lambda_{k}(V(s)), \quad F_{k}^{\prime \prime}=D \lambda_{k}(V(s)) \cdot \sigma_{k}(V(s)) \neq 0 \\
(i i) & \Rightarrow \lambda_{k}\left(U_{r}\right)>\lambda_{k}\left(U_{e}\right) \tag{i}\\
& \Rightarrow F_{k}^{\prime}\left(w_{r}\right)>F_{k}^{\prime}\left(w_{e}\right) \Rightarrow F \text {-strictly convex }
\end{align*}
$$

\Rightarrow this scalar conservation law admits a continuous solution - a rarefaction wave

$$
w(x, t)= \begin{cases}w_{e} & \text { if } \frac{x}{t}<F_{k}^{\prime}\left(w_{e}\right) \\ \left(F_{k}^{\prime}\right)^{-1}\left(\frac{x}{t}\right) & \text { if } F_{k}^{\prime}\left(w_{e}\right)<\frac{x}{t}<F_{k}^{\prime}\left(w_{r}\right) \\ w_{r} & \text { if } F_{k}^{\prime}\left(w_{r}\right)<\frac{x}{t}\end{cases}
$$

Thus $U(x, t)=V(w(x, t))$ solves PDE. The case we >mr is treated similarly (F_{K} is concave)

Shock waves: by RH condition, $\sigma \in \mathbb{R}-a$ shock wave speed

$$
F\left(U_{e}\right)-F\left(U_{r}\right)=\sigma\left(U_{e}-U_{r}\right)
$$

Deft: for a given (fixed) state $U_{0} \in \mathbb{R}^{m}$ we define a shock set (Hugoniot locus)

$$
\begin{aligned}
& S\left(U_{0}\right)=\left\{U \in \mathbb{R}^{m}: \exists \sigma \in \mathbb{R}: F(U)-F\left(U_{e}\right)=\sigma\left(U-v_{2}\right)\right\} \\
& T_{\sigma}=\sigma\left(v, U_{0}\right)
\end{aligned}
$$

That is this is a set of all states to which there possibly exist a shock wave (with some speed) from U_{0}.
Tho (structure of shock set) Fix $U_{0} \in \mathbb{R}^{m}$. In some neighborhood of U_{0} $S\left(U_{0}\right)$ consists of the union of m smooth curves $S_{k}\left(U_{0}\right), k=1 \ldots m$, with the following properties:
(i) The curve $S_{k}\left(U_{0}\right)$ passes through U_{0} with tangent $r_{k}\left(\sigma_{0}\right)$
(ii) $\lim _{U T \rightarrow U_{0}} G\left(U, U_{0}\right)=\lambda_{k}\left(z_{0}\right)$
(iii) $\sigma\left(U, U_{0}\right)=\frac{\lambda_{k}(U)+\lambda_{k}\left(U_{0}\right)}{2}+O\left(\left|v-v_{0}\right|^{2}\right)$ as $U \rightarrow U_{0}$ with $U \in S_{k}\left(U_{0}\right)$.

Proof:

$$
F(U)-F\left(U_{0}\right)=B(U)\left(U-U_{0}\right) \text {, where }
$$

$$
B(U)=\int_{0}^{1} D F\left(U_{0}(1-t)+v^{1}\right) d t, v \in \mathbb{R}^{m}
$$

- "averaged" Jacobi matrix $D F$

$$
\begin{equation*}
U \in S\left(U_{0}\right) \text { iff } \quad(B(U)-\sigma I)\left(U-U_{0}\right)=0 \tag{1}
\end{equation*}
$$

for some scalar $\sigma=\sigma\left(U, U_{0}\right)$.

$$
B\left(v_{0}\right)=D F\left(\tau_{0}\right)
$$

Strict hyperbolicity $\Rightarrow \quad \operatorname{det}\left(\lambda I-B\left(\tau_{0}\right)\right)$ has m
$\Rightarrow \operatorname{det}(\lambda I-B(U))$ has m distinct real roots if U is close to U_{0}.
More over, $\quad \hat{\lambda}_{1}(U)<\ldots<\hat{\lambda}_{m}(U)$ are smooth functions and $\hat{r}_{k}(U), \hat{e}_{k}(U)$ unit vectors: of U

$$
\begin{aligned}
& \hat{\lambda}_{k}\left(U_{0}\right)=\lambda_{k}\left(U_{0}\right) \\
& \hat{r}_{k}\left(\tau_{0}\right)=\Gamma_{k}\left(\tau_{0}\right) \\
& \hat{l_{k}}\left(U_{0}\right)=e_{k}\left(\tau_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& B(v) \hat{r}_{k}(v)=\hat{\lambda}_{k}(v) \hat{r}_{k}(U) \\
& \hat{e}_{k}(U) B(v)=\hat{\lambda}_{k}(U) \hat{l}_{k}(U)
\end{aligned} \quad k=1 . m
$$

Note that both $\left\{\hat{r}_{k}\right\}$ and $\left\{\hat{e}_{k}\right\}$ are bases of ${\underset{\mathbb{R}}{ }}^{m}$ and $\hat{r}_{k} \cdot \hat{e}_{n}=0, n \neq k$.
Eq. (1) will hold provided $\sigma=\hat{\lambda}_{k}$ for some and $U-U_{0}$ is parallel to \vec{F}_{x}. This is equivalent to:

$$
\hat{e}_{e}(v) \cdot\left(v-\tau_{0}\right)=0, e \neq k
$$

These are $(m-1)$ equations to m components of U, so we can use Implicit Function Theorem to solve it.

Define $D_{k}: \mathbb{R}^{m} \rightarrow \mathbb{Q}^{m-1}$

$$
\begin{gathered}
\Phi_{k}(U)=\left(\ldots, \hat{e}_{k-1}(U)\left(U-U_{0}\right), \hat{e}_{k+1}(U)\left(U-U_{0}\right)_{1} . .\right) \\
\Phi_{k}\left(U_{0}\right)=0 \text { and } D \Phi_{k}\left(U_{0}\right)=\left(\begin{array}{c}
e_{1}\left(U_{0}\right) \\
\dot{e}_{k-1}\left(v_{0}\right) \\
e_{k+1}\left(U_{0}\right) \\
\cdots
\end{array}\right)
\end{gathered}
$$

Since $\left\{e_{i}\right\}$ form a basis, we have rank $D \Phi_{k}\left(\tau_{0}\right)=m-1$
Hence, \exists a smooth curve $\Phi_{k}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ such that $\Phi_{k}(0)=U_{0}$ and

$$
\Phi_{k}\left(\Phi_{k}(t)\right)=0 \quad \forall t \text { close to } 0
$$

The path of curve Φ_{k} define $S_{k}\left(\tau_{0}\right)$ We may choose parametrization:

$$
\left|\dot{\Phi}_{k}(t)\right|=1
$$

Thus we have found m smooth curves $S_{k}\left(U_{0}\right)$. Let us now properties (i)-(iii)
Property (i):

$$
\Phi_{k}(t)-U_{0}=\mu(t) \cdot \hat{r}_{k}\left(\Phi_{k}(t)\right)
$$

where μ is a smooth function satisfying $\mu(0)=0, \dot{\mu}(0)=1$
Thus, $\dot{\Phi}_{k}(0)=\hat{r}_{k}\left(U_{0}\right)=r_{k}\left(U_{0}\right) \quad$ at v_{0} Hence, the curve $S_{k}\left(\tau_{0}\right)$ has tangent $r_{k}\left(v_{0}\right)$

Property (ii): According to what we have proved, there exists a smooth function $\sigma: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}: \quad \forall t$ close to 0

$$
F\left(\Phi_{k}(t)\right)-F\left(U_{0}\right)=\sigma\left(\Phi_{k}(t), U_{0}\right)\left(\Phi_{k}(t)-U_{0}\right)
$$

Thus,

$$
\begin{aligned}
& D F\left(U_{0}\right) \cdot \dot{\varphi}_{k}(0)=\sigma\left(U_{0}, \tau_{0}\right) \dot{\varphi}_{k}(0) \\
& \Rightarrow \sigma\left(U_{0}, U_{0}\right)=\lambda_{k}\left(U_{0}\right)
\end{aligned}
$$

Property (iii): for simplicity write $\sigma(t)=\sigma\left(Q_{k}(t), U_{0}\right)$

$$
F\left(\phi_{k}(t)\right)-F\left(\tau_{0}\right)=\sigma(t)\left(\phi_{k}(t)-\tau_{0}\right) .
$$

Differenciate twice writ t :

$$
\begin{gathered}
\frac{d}{d t}: \quad D F\left(\Phi_{k}(t)\right) \cdot \dot{\Phi}_{k}(t)=\dot{\sigma}\left(\phi_{k}(t)-v_{0}\right)+\sigma \cdot \dot{\phi}_{k} \\
\frac{d^{2}}{d t^{2}}:\left(D^{2} F\left(\Phi_{k}(t)\right) \cdot \dot{\phi}_{k}\right) \dot{\phi}_{k}+D F\left(\Phi_{k}(t)\right) \cdot \ddot{\phi}_{k}= \\
=\ddot{\sigma}\left(\Phi_{k}-v_{0}\right)+2 \dot{\sigma} \cdot \dot{\phi}_{k}+6 \ddot{\varphi}_{k}
\end{gathered}
$$

Evaluate this expression at $t=0\binom{\phi_{k}(0)=\sigma_{0}}{\dot{\phi}_{k}(0)=r_{k}\left(\theta_{0}\right)}$
(2) $\left(D^{2} F\left(\sigma_{0}\right) r_{k}\left(\sigma_{0}\right)-2 \dot{\sigma} I\right) r_{k}\left(\sigma_{0}\right)=\left(\lambda_{k}\left(\sigma_{0}\right)-D F\left(\sigma_{0}\right)\right) \cdot \ddot{\phi}_{k}$

Let $U_{K}(t)=V(t)$ be a unit speed parametrization of the rarefaction curve $R_{k}\left(U_{0}\right)$ near U_{0}.
Then $\psi_{k}(0)=U_{0}, \dot{\psi}_{k}(t)=r_{k}\left(\psi_{k}(t)\right)$
Thus, $\quad \operatorname{DF}\left(\psi_{k}(t)\right) r_{k}(t)=\lambda_{k}(t) r_{k}(t)$
Differenciate this wit t and evaluate at $t=0$
(3) $\left(D^{2} F\left(v_{0}\right) r_{k}\left(v_{0}\right)-\dot{\lambda}_{k}(0) I\right) r_{k}\left(v_{0}\right)=-\left(D F+\lambda_{k} I\right) \dot{r}_{k}$

Subtract (3) from (2) and obtain:

$$
\left(\dot{\lambda}_{k}(0)-2 \dot{\sigma}\right) r_{k}\left(U_{0}\right)=\left(D F-\lambda_{k} I\right)\left(\dot{r}_{k}-\ddot{\varphi}_{k}\right)
$$

Take dot product with $e_{k}\left(\tau_{0}\right)$, we obtain

$$
\begin{aligned}
\dot{\lambda}_{k}(0)=2 \dot{\sigma}(0) \Rightarrow 2 \sigma(t)=\lambda_{k}\left(U_{0}\right) & +\lambda_{k}(U) \\
& +O\left(t^{2}\right)
\end{aligned}
$$

So we have $S_{k}\left(v_{0}\right)$ and $R_{k}\left(U_{0}\right)$ agree at least to first order at U_{0}.
$\vec{r}_{k} S_{k}\left(\tau_{\delta}\right)$-shock curve
$R_{k}\left(\tau_{0}\right)$-rare faction curve
coincide

In the linearly degenerate case these curves
The (linear degeneracy).
Suppose for some $k=1 \ldots m$ the pair $\left(\lambda_{k}, i_{n}\right)$ is linearly degenerate. Than for each $U_{0} \in \mathbb{R}^{p}$:
(i) $R_{k}\left(U_{0}\right)=S_{k}\left(U_{0}\right)$
(ii) $\sigma\left(U, U_{0}\right)=\lambda_{k}(U)=\lambda_{k}\left(U_{0}\right) \quad \forall U \in S_{k}\left(f_{0}\right)$

Proof:
T Let $V=V(s)$ solve $O D E$

$$
\left\{\begin{array}{l}
\dot{V}(s)=r_{k}(V(s)) \\
V(0)=U_{0}
\end{array}\right.
$$

Then as $D \lambda_{k} \cdot r_{k} \equiv 0$, the mapping $s \mapsto \lambda_{k}(V(s))$ is constant.

$$
\begin{aligned}
& \text { So } F(V(s))-F\left(U_{0}\right)=\int_{0}^{s} D F(V(t)) \cdot \dot{V}(t) d t= \\
& =\int_{0}^{s} D F(V(t)) \cdot r_{k}(V(t)) d t=\int_{0}^{s} \lambda_{k}(V(t)) r_{k}(V(t)) d t \\
& =\lambda_{k}\left(U_{0}\right) \int_{0}^{s} \dot{V}(t) d t=\lambda_{k}\left(v_{0}\right)\left(V(t)-U_{0}\right)
\end{aligned}
$$

Contact discontinuities: Let $\left(\lambda_{k}, r_{k}\right)$ be $\overline{U_{e} \in \mathbb{R}^{m}}, \overline{U_{r} \in S_{k}\left(U_{e}\right)} \quad$ linearly degenerate Then $U(x, t)=\left\{\begin{array}{l}U_{e}, x<\sigma t \\ U_{r}, x>\sigma t\end{array} \quad \sigma=\sigma\left(U_{e}, U_{r}\right)=\lambda_{k}\left(U_{e}\right)\right.$
 K. contact discontinuity
$\frac{\text { Shock }}{U_{e} \in \frac{\text { waves }}{\mathbb{R}^{m}}: \text { Let }\left(\lambda_{r}, r_{k}\right) \text { be genuinely nonlinear } S_{k}\left(U_{e}\right)}$ $U_{e} \in \mathbb{R}^{m}, \quad U_{r} \in S_{k}\left(U_{e}\right)$

Consider $U(x, t)=\left\{\begin{array}{ll}U_{c}, & x<\sigma t \\ U_{r}, & x>\sigma t\end{array} \quad\right.$ for $\sigma=\sigma\left(U_{e}, U_{r}\right)$
There are 2 essentially different cases:
case I: $\lambda_{k}\left(U_{r}\right)<\lambda_{k}\left(U_{e}\right)$
case II: $\lambda_{k}\left(U_{e}\right)<\lambda_{k}\left(U_{r}\right)$
In view of tho of structure of shock curve, we have: case I: $\lambda_{k}\left(U_{r}\right)<\sigma\left(U_{e}, U_{r}\right)<\lambda_{k}\left(U_{e}\right)$

$$
\lambda_{k}\left(U_{e}\right)<\sigma\left(U_{e}, U_{r}\right)<\lambda_{k}\left(U_{r}\right)
$$

provided that U_{r} is close to U_{e}
Def: assume the pair $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear at U_{e}. We say that the pair $\left(U_{e}, U_{r}\right)$ is admissible provided:
(a) $U_{r} \in S_{k}\left(U_{e}\right)$
(b) $\lambda_{k}\left(U_{\sigma}\right)<\sigma\left(U_{e}, U_{r}\right)<\lambda_{k}\left(U_{2}\right)$

We rater to this condition as LaX entropy condition.
Def: If $\left(U_{e}, U_{r}\right)$ is admissible, we call our solution U defined as above a k-shock wave.
Def: Let $S_{k}^{+}\left(U_{0}\right)=\left\{U \in S_{k}\left(U_{0}\right): \lambda_{k}\left(U_{0}\right)<\sigma\left(U, U_{0}\right)\right.$ $\left.<\lambda_{c}(U)\right\}$

$$
S_{k}^{-}\left(U_{0}\right)=\left\{U \in S_{k}\left(U_{0}\right): \lambda_{k}\left(U_{0}\right)>\sigma\left(U, U_{0}\right)>\lambda_{k}(u)\right\}
$$

Then $S_{k}\left(U_{0}\right)=S_{k}^{+}\left(U_{0}\right) \cup\left\{z_{0}\right\} \cup S_{k}^{-}\left(U_{0}\right)$
Note that the pair $\left(U_{e}, \Psi_{r}\right)$ is adm. iffy $U_{r} \in S_{k}\left(J_{e}\right)$

Now let us glue everything together.
Deft: (i) if pair $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear, write $T_{k}\left(U_{0}\right)=R_{k}^{+}\left(U_{0}\right) \cup\left\{U_{0}\right\} \cup S_{k}^{-}\left(U_{0}\right)$
(ii) if pair $\left(\lambda_{k}, r_{k}\right)$ is linearly degenerate, write $T_{k}\left(U_{0}\right)=R_{k}\left(U_{0}\right)=S_{k}\left(U_{0}\right)$
Rok: the carve $T_{k}\left(\tau_{0}\right)$ is C^{d}
So if $U_{r} \in T_{k}\left(U_{R}\right)$, then there exists a solution to a Riemann problem (being or k-rarefaction wave or k-shock wave or k-contact discontinuity)

Finally, we want to prove theorem:
The (local solution of Riemann problem) Assume that for each $k=1 \ldots \mathrm{~m}$ the pair $\left(\lambda_{k}, r_{k}\right)$ is either genuinely nonlinear or linearly degenerate. Suppose we have fixed V_{e}. Then for each right state Ur sufficiently dose to U_{e} there exists an integral solution U of (RP) which is constant on lines through the origin.

Proof:
Again Implicit Function Theorem (Next time)

Now let us glue everything together.
Deft: (i) if pair $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear, write $T_{k}\left(U_{0}\right)=R_{k}^{+}\left(U_{0}\right) \cup\left\{U_{0}\right\} \cup S_{k}^{-}\left(U_{0}\right)$
(ii) if pair $\left(\lambda_{k}, r_{k}\right)$ is linearly degenerate, write $T_{k}\left(U_{0}\right)=R_{k}\left(U_{0}\right)=S_{k}\left(U_{0}\right)$
Rok: the carve $T_{k}\left(\tau_{0}\right)$ is c^{d}
So if $U_{r} \in T_{k}\left(U_{R}\right)$, then there exists a solution to a Riemann problem (being or k-rarefaction wave or k-shock wave or k-contact discontinuity)

Finally, we want to prove theorem:
The (local solution of Riemann problem) Assume that for each $k=1 \ldots \mathrm{~m}$ the pair $\left(\lambda_{k}, r_{k}\right)$ is either genuinely nonlinear or linearly degenerate. Suppose we have fixed V_{e}. Then for each right state Ur sufficiently dose to U_{e} there exists an integral solution U of (RP) which is constant on lines through the origin.

Proof:
T. Again Implicit Function Theorem: $\Phi: \tilde{\mathbb{R}}-\mathbb{R}^{\tilde{R}}$ First, for each family of curves $T_{k}, k=1 . . m$, choose the nonsingular parameter τ_{k} to measure are length: $\forall U, \tilde{U} \in \mathbb{R}^{m}$ with
$\tilde{v}_{\in} T_{K}(U)$ we have
$\tau_{k}(\tilde{U})-\tau_{k}(U)=$ (signed) distance from \tilde{U} to U along the curve $T_{k}(z)$
We take " t " if $\tilde{U} \in R_{k}^{+}(U)$ and

$$
\because-" \text { if } \tilde{v} \in S_{k}^{-}(U) \text {. }
$$

Second, given $t=\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{R}^{m}$ with $|t|$ small we define $\Phi(t)=U$ as follows.

- $D(0)=U_{0}$
- Then choose states U_{1}, \ldots, U_{m} :

$$
\begin{aligned}
& U_{1} \in T_{1}\left(U_{0}\right), \tau_{1}\left(U_{1}\right)-\tau_{1}\left(U_{0}\right)=t_{1} \\
& U_{2} \in T_{2}\left(U_{1}\right), \tau_{2}\left(U_{2}\right)-\tau_{2}\left(U_{1}\right)=t_{2} \\
& \ldots \ldots \\
& U_{m} \in T_{m}\left(U_{m-1}\right), \tau_{m}\left(U_{m}\right)-\tau_{m}\left(U_{m-1}\right)=t_{m}
\end{aligned}
$$

Now write $\Phi(t)=z_{m}$.

- $\Phi \in C^{1}$

$$
P(0)=z_{0}
$$

- $D P(0)$ is nonsingular

$$
P\left(0, \ldots, t_{k}, \ldots, 0\right)-P(0, \ldots, 0)=t_{k} r_{k}\left(\sigma_{0}\right)+0\left(t_{k}\right), t_{k} \rightarrow 0
$$

Thus,

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial t_{k}}(0)=r_{k}\left(v_{0}\right) \text { and so } \\
& D \Phi(0)=\left(r_{1}\left(v_{0}\right), \ldots, r_{m}\left(v_{0}\right)\right)_{m \times m}
\end{aligned}
$$

Since $\left\{r_{i}\right\}$ is a basis, $D \Phi(0)$ is nonsingular.
Thus, by the inverse function theorem $\forall U_{r}$ sufficiently dose to $v_{e} \exists!t=\left(t_{1}, \ldots t_{m}\right)$

$$
\Phi(t)=v_{r} .
$$

So we get a sequence: $V_{e} \rightarrow V_{1} \rightarrow V_{2} \rightarrow \ldots \rightarrow V_{m}$.

Recall that if U_{k-1} and U_{k} are joined by k-rarefaction wave, this wave is:

$$
\begin{cases}U_{k-1} & \text { if } \frac{x}{t}<\lambda_{k}\left(U_{k-1}\right) \\ \left(f_{k}^{\prime}\right)^{-1}\left(\frac{x}{t}\right) & \text { if } \lambda_{k}\left(U_{k-1}\right)<\frac{x}{t}<\lambda_{k}\left(U_{k}\right) \\ U_{k} & \text { if } \lambda_{k}\left(U_{k}\right)<\frac{x}{t}\end{cases}
$$

Moreover, if U_{k-1}, U_{k} are joined by k-shock, it has the form:

$$
\left\{\begin{array}{lll}
U_{k-1} & \text { if } & \frac{x}{t}<6\left(U_{k}, U_{k-1}\right) \\
U_{k} & \text { if } & \frac{x}{t}>6\left(U_{k}, U_{k-1}\right)
\end{array}\right.
$$

In both cases the waves are constant outside the regions $\lambda_{k}\left(U_{0}\right)-\varepsilon<\frac{x}{\epsilon}<\lambda_{k}\left(U_{0}\right)+\varepsilon \quad \underset{\text { small } \varepsilon>0}{\text { for }}$ provided U_{k}, U_{k-1} are dose enough. This is true for $k=1, \ldots, m$.
Since $\lambda_{1}\left(U_{0}\right)<\ldots<\lambda_{m}\left(U_{0}\right)$, we see that rarefactions, shock or contact discontinuities connecting V_{0} to $V_{1} \leadsto \approx \lambda_{1}\left(V_{0}\right)$
U_{1} to $U_{2} \rightarrow \approx \lambda_{2}\left(U_{0}\right)$

$$
U_{m-1} \text { to } U_{m} \leadsto \approx \lambda_{m}\left(v_{0}\right)
$$

do not intersect.
L Thus, we have constructed a solution.

$$
m=2
$$

Lecture 14: Solution to exercise 3 from HW_{3}.

$$
S_{t}+f(s)_{x}=0
$$

$f(s)$ - S-shaped

- $f(0)=0, f(1)=1$
- $f^{\prime}>0$
- $\exists s=\frac{1}{2}$:

$$
\begin{gathered}
f^{\prime \prime}(s)>0, s<\frac{1}{2} \\
f^{\prime \prime}\left(\frac{1}{2}\right)=0 \\
f^{\prime \prime}(s)>0, \quad s>\frac{1}{2} . \\
s_{t}+\underbrace{f^{\prime}(s)}_{\lambda(s)} s_{x}=0
\end{gathered}
$$

$D \lambda=f^{\prime \prime}(s)$ is 0 at point $s=\frac{1}{2}$

シ
not genuinely nonlinear not linearity degenerate
How does the solution hole live?
The naive idea is that the solution consists of 2 parts (say, we are trying to solve the Riemann problem 1 Le):

slope $=$ shock speed
but this is a strange solution

tangents $=\begin{aligned} & \text { speed } \\ & \text { for a care faction }\end{aligned}$ for a rarefaction wave

To avoid such situation, we see that only $s \geqslant s^{*}$ are valid for left state of a shock. Here u^{*} is the abscissa of the tangent s* line from $u=0$ to graph of f Then we get too many solutions:

On the other hand, may be not all the shocks satisfy additional entropy condition? Let's consider the vanishing viscosity criterion

$$
s_{t}+(f(s))_{x}=\varepsilon s_{x x}
$$

We seek for solutions of the form

$$
\begin{aligned}
s & =s\left(\frac{x-v t}{\varepsilon}\right)=s(3) \\
\Rightarrow \quad-v s^{\prime}+(f(s))^{\prime} & =s^{\prime \prime}
\end{aligned}
$$

Integrate from $\xi=-\infty$ till ξ :

$$
\begin{aligned}
& -v s+f(s)=s^{\prime} \\
& \left\{\begin{array}{l}
s^{\prime}=f(s)-v s \\
s(-\infty)=0 \\
s(+\infty)=S_{R}
\end{array}\right.
\end{aligned}
$$

Necessary condition : $f(s)-v s<0$ $f(s)<v s$.
This is valid orly for points $s \leq s *$,
Thus, the only admissible shock wave is

In general there is the following algorithm of constructing a solution to a R :iceman problem

$$
S(x, 0)=\left\{\begin{array}{ll}
S_{L}, & x<0 \\
S_{R}, & x>0
\end{array} \quad S_{L}>S_{R}\right.
$$

Take convex hull of $f(s)$: say $\tilde{f}(s)$:

- if $f(s)=f(s)$, then this s is moving with $f^{\prime}(s)$ (as a part of rarefaction wave)
- if $\tilde{f}>f$, then this corresponds to a shock
(*) $U_{t}+F(U)_{x}=0, \quad J \in \mathbb{R}^{n}$
Entropy criteria for weak solutions
(1) Lax: $\exists k=1 \ldots m$:

$$
\begin{aligned}
& \lambda_{k}\left(U_{r}\right)<\sigma\left(U_{e}, U_{r}\right)<\lambda_{k}\left(U_{e}\right) \\
& \lambda_{k-1}\left(U_{e}\right)<\sigma\left(U_{e}, U_{r}\right)<\lambda_{k+1}\left(U_{r}\right)
\end{aligned}
$$

There is only one index k such that the shock speed 6 is intermediate to the characteristic speed λ_{k} on both sides of the shock.
There exists an "empirical" explanation that the total amount of characteristics that "come" to shock should be $(n+1)$.
] $u_{t}+a u_{x}=0$ in $\quad x>0, t>0$:

we reed to define $u(0, t)$
] $U_{t}+A U_{x}=0$ linear system
Let $\quad P^{-1} A P=\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$
Then for $V=P^{-1} U$ the system $v_{t}^{i}+\lambda_{i} v_{x}^{i}=0$ decouples into m equations.
If $k: \quad \lambda_{i}<0, i \leq k$

$$
\lambda_{i}>0, \quad i=k+1, \ldots
$$

Thus we need ($n-k)$ conditions on the components of $v($ and $w)$ on the bound. $x=0$

3 More generally, if we have a boundary that moves with speed $s<s=0$ was for quarter plane problem) and if

$$
\lambda_{1}<\ldots<\lambda_{k}<s<\lambda_{k+1}<\ldots<\lambda_{m}
$$

we must give ($n-k$) conditions on u in order to be able to specify the solution in the region $x-s t>0, t>0$.

Now extend this to a discontinuity of a hyperbolic system: Let $\quad \lambda_{1}(u)<\lambda_{2}(u)<\ldots<_{m}(u)$ be eigenvalues of $D F(u)$. Suppose,

$$
\lambda_{k}\left(U_{r}\right)<s<\lambda_{k+1}\left(U_{s}\right) \quad \text { on the sight }
$$

on he right
Then we should specify (n-k) conditions Similarly, if we assume

$$
\lambda_{j}\left(u_{e}\right)<s<\lambda_{j+k}\left(u_{e}\right)
$$

then we must specify j conditions on the left boundary of disc.
We have (ns) jump conditions from RH:

$$
(n-k)+j=n-1 \text { or } j=k-1 \text {. That are }
$$ exactly the Lax conditions above.

(2) Vanishing viscosity (limit of traveling wave' $u^{\varepsilon}(x, t)=v\left(\frac{x-\delta t}{\varepsilon}\right), v: \mathbb{R}_{\text {solve }} \rightarrow \mathbb{R}^{m}$
Then v must solve $O D E$:

$$
\left\{\begin{array}{l}
\ddot{v}=-\sigma \dot{v}+(F \dot{(v)}) \\
v(-\infty)=U_{k}, v(+\infty)=U_{r},
\end{array} \lim _{s \rightarrow \pm \infty} \dot{v}=0\right.
$$

Integrating we get:

$$
\dot{v}=F(v)-F\left(U_{c}\right)-\sigma\left(v-V_{0}\right)
$$

Now the sysmem is m-dimensional and in general more difficult
(Thy) ($\begin{gathered}\text { existence of traveling waves for genuinely } \\ \text { nonlinear systems) }\end{gathered}$ nonlinear systems)
Assume $\left(\lambda_{k}, r_{u}\right)$ is genuinely nonlinear for $k=1 \ldots m$. Let U_{r} be sufficiently close to U_{e} Then there exists a travelling wave soluton connecting U_{e} and U_{r} iff $U_{r} \in S_{k}^{-}\left(v_{e}\right)$ (without proof)
(3) Lie criterion (internal stability of a shock) Let $U_{r} \in S_{F}\left(U_{e}\right)$ for some $k=1 \ldots m$ and $\quad \sigma\left(z, U_{e}\right)>\sigma\left(U_{r}, \sigma_{e}\right)>\sigma\left(U_{r}, z\right)$ for each z lying on the curve $S_{c}\left(\tau_{e}\right)$ between G_{r} and G_{e}.
v_{c}

(4) Entropy/Entropy-flux pair

Def: we say two smofunctions $\Phi, \Psi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ comprise an entropy (entropy-flux pair for the conservation law $U_{t}+F(U)_{x}=0$ provided:
(a) Φ is convex
(b) $D \Phi(z) \cdot D F(z)=D \Psi(z), z \in \mathbb{R}^{m}$

Rok: if solution of $U_{t}+F(U)_{x}=0$ is smooth,
then

$$
\begin{aligned}
& D \Phi \cdot U_{1}+\underbrace{D \Phi \cdot D f} \cdot U_{x}=0 \\
& \Rightarrow \Phi(U)_{t}+\Psi(U)_{x}=0 \text { - This is just } \\
& \begin{array}{l}
\text { an additional } \\
\\
\\
\end{array} \quad \begin{array}{l}
\text { conservation law! }
\end{array}
\end{aligned}
$$

For shocks we do not have this equiality, but instead we could replace $\Phi_{t}+\psi_{x}=0$ with inequality: $\Phi(U)_{t}+\Phi(U)_{x} \leqslant 0, \underset{x \in \mathbb{R}}{t>0}$

In applications, Φ sometimes is negative of physical entropy and Ψ is entropy $f(u x$ (this explains the terminology)
The rigorous understanding of the inequality in weak sense: $\forall \varphi \in C_{c}^{\infty}(\mathbb{R} \times(0,+\infty)), \varphi \geqslant 0$:

$$
(E E F) \quad \int_{0}^{\infty} \int_{\mathbb{R}}\left(\Phi(u) \varphi_{t}+\Psi(u) \varphi_{x}\right) d x d t \geqslant 0
$$

Def: we call $U \in \mathbb{R}^{m}$ an entropy solution of $(*)$ provided U is a weak solution
of ($*$) and satisfies inequalities (EEF) for every entropy lentropy-flux pair (Φ, Ψ)

Why such inequality? This can be easily seen if we think of u as a limit of U^{ε} - solution of vanishing viscosity method

$$
\begin{aligned}
& U_{t}^{\varepsilon}+F\left(U^{\varepsilon}\right)_{x}=\varepsilon U_{x x}^{\varepsilon} \quad \mid \cdot D \Phi\left(\tilde{U}^{\ell}\right. \\
& \Phi\left(U^{\varepsilon}\right)_{t}+\Psi\left(U^{\varepsilon}\right)_{x}=\varepsilon D \Phi\left(U^{\varepsilon}\right) U_{x x}^{\varepsilon}
\end{aligned}
$$

$$
\begin{gathered}
D \Phi\left(U^{\varepsilon}\right) U_{x x}^{\varepsilon}=\left(\Phi\left(v^{\varepsilon}\right)\right)_{x x}-\left(D^{2} \Phi\left(U^{\varepsilon}\right) v_{x}^{\varepsilon}\right) v_{x}^{\varepsilon} \\
\Phi \text { - convex } \Rightarrow \quad\left(D^{2} \Phi\left(v^{\varepsilon}\right) \cdot U_{x}^{\varepsilon}\right) U_{x}^{\varepsilon} \geqslant 0 \\
\Phi\left(U^{\varepsilon}\right)_{t}+\Psi\left(U^{\varepsilon}\right)_{x} \leq \varepsilon\left(\Phi\left(U^{\varepsilon}\right)\right)_{x x} \quad \forall \varepsilon \\
\leq 0
\end{gathered}
$$

When we can find an entropy?
Example: $m=1$ scalar conservation Law for any convex Φ we can find

$$
\Psi(z)=\int_{z_{0}}^{z} \Phi^{\prime}(\omega) f^{\prime}(\omega) d \omega, z \in \mathbb{R}
$$

With this notion of entropy solution one can prove that there exists at most 1 weak solution of a scalar conservation law [m=2 p-system: $\left(\Phi_{z_{1},} \Phi_{z_{2}}\right)\left(\begin{array}{cc}0 & -1 \\ p^{\prime}\left(z_{1}\right) & 0\end{array}\right)=\binom{\Psi_{z_{1}}}{\psi_{z_{2}}}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
p^{\prime}\left(z_{1}\right) \Phi_{z_{2}}=\Psi_{z_{1}} \\
-\Phi_{z_{1}}=\psi_{z_{2}}
\end{array}\right. \\
\Rightarrow & \left\{\begin{array}{l}
\Phi=\frac{z_{2}^{2}}{2}-\int_{0}^{z_{1}} p(w) d w-\text { convex as } p^{\prime}<0 \\
\psi=p\left(z_{1}\right) z_{2}
\end{array}\right.
\end{aligned}
$$

Lecture 15: Reaction-diffusion equations

$$
u=u(t, x), x \in \mathbb{R}^{N}, t>0, u \in \mathbb{R}^{n}
$$

(*) $\partial_{t} u-\underbrace{\Delta u}=\underbrace{f(u)}$
(local) diffusion reaction

- excitible medium : more generally $f=f(t, x, u)$
- Δu - comes from particles moving according to Brownian motion (in a rough way, the population tends spread out uniformly, to move towards areas where there are fewer individuals)
"Intuitive" probabilistic justification:
Let the population consist of finite number n of individuals. Consider a discrete space:

$$
\left\{\lambda k: k \in \mathbb{Z}^{N}\right\} \subset \mathbb{R}^{N}, \quad \lambda>0
$$

For a given individual we denote:
$p(t, x)$ - probability that the individual is at point x at time t.
$X_{k}(t, x)=\left\{\begin{array}{l}1, \text { if } k-t h \text { individual is at point } x \\ 0,\end{array}\right.$
Then $U(t, x)=\frac{1}{n} \sum_{k=1}^{n} X_{k}(t, x)$ - normalized distrib.
Assuming the movements of individuals are independent of each other, $U(t, x) \rightarrow p(t, x)$.
At each instant an individual can:

- move to a neighbouring point with prob. $q<\frac{1}{2 n}$
- do not move with probability $1-q \cdot 2 n$

Note that the probability 9 does not depend on the position in time and space, nor on the previous position \Rightarrow random walk \Rightarrow

$$
p(t+\tau, \lambda k)=(1-2 n q) p(t, \lambda k)+q \sum_{j=1}^{n}\left[p\left(t, \lambda\left(k+e_{j}\right)\right)+p\left(t, \lambda\left(k-e_{j}\right)\right]\right.
$$

Assume that there exists a regular $P(t, x)$ for which the same relation is true for all x, t. So

$$
\partial_{t} P+O(\tau)=\frac{q \lambda^{2}}{2} \sum_{j=1}^{n} \frac{\partial^{2} p}{\partial x_{j}^{2}}+O\left(\frac{\lambda^{3}}{\tau}\right)
$$

Now let $\lambda, \tau \rightarrow 0$ such that $\frac{q \lambda^{2}}{\tau} \rightarrow D \in(0,+\infty)$
Thus, we get $\partial_{t} p=D \cdot \Delta p$.
Examples: (1) population dynamics: u-concentration
(ecology) density

$$
u_{t}-u_{x x}=f(u)
$$

For a moment forget about diffusion and consider an $D D E: \quad u_{t}=f(u), u(0)=u_{0}$
Cases: (a) $f(u)=r u$ (Malthus equation'1798)
Solution: $\quad u(t)=u_{0} e^{r t}, r \in \mathbb{R}$ r-growth rate, the population grows infinitely (which is not natural)
(b) $f(u)=r u\left(1-\frac{u}{K}\right)$ (logistic equation, ~ 1838) $r \in \mathbb{R}, \quad k \in \mathbb{R}$
Explicit solution: $u(t)=\frac{k}{1+\left(\frac{k}{u_{0}}-1\right) e^{-r t}}$
We observe, that:
(i) whenever $u_{0}>0$, the solution is well-defined for $\forall t>0, u(t)>0$ and $u(t) \underset{t \rightarrow+\infty}{\longrightarrow} k$
(ii) $u_{0}=0 \Rightarrow u(t) \equiv 0$

This corresponds to more general fact that we will see later!
\rightarrow When u increases, there is a competition for sesourses. Here k is called the capacity of environment

More general: monostable equations: $\dot{u}=f(t, u)$
 assumptions:

$$
\begin{array}{ll}
f(0)=f(k)=0, f-L_{i p c h} \\
f>0 \quad \text { for } u \in(0, k)^{i n u} \\
f<0 \quad \text { for } u \in[0, k]
\end{array}
$$

Sometimes, there is an extra assumption: $\frac{f(u)}{u}$
Lemma: $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$-continuous, floc. Lipschitz in u
(i) If $f(t, 0)=0 \quad \forall t$, then if $u(0)>0 \Rightarrow u(t)>0 \mathrm{tt}$
(ii) If u, v-two solutions and $u(0)>v(0)$, then $u(t)>v(t)$ (in the domain where both sol. exist)
(iii) If $u^{\prime} \leq f(t, u(t))$ and $v^{\prime}>f(t, v(t))$ and $u(0) \leq v(0)$, then $u(t)<v(t) \quad \forall t$.
Rok 1: when u satisfies the differential inequality $u^{\prime} \leq f(t, u(t))$ we say that u is a sub-solution; other wise super-solution
Rmk2: these statements are true for a single equation, but in general are not true for systems of eggs.
Rmk3: items (ii) and (iii) are the so-called "comparison theorems" in this very simple setting We will see more of them for reaction--diffusion eggs.
Here $u=0$ is unstable equilibrium point (asymp.) $u=k$ is stable equilibrium point (asymp)
Thus, the name "monostable" (1 stable point)
(C) $f(u)=u(1-u)(u-\theta)$, Bistable equations

$$
\begin{array}{ll}
\text { or more general assu } \\
\text { A } f(0)=f(\theta)=f(1)=0 \\
\text { strong Allee effect } f>0 \text { for } u \in(\theta, 1) \\
\text { - } f<0 \text { for } u \in(0, \theta)
\end{array}
$$ or more general assumptions:

Weak Allee effect: monostable equation without condition $\frac{f(u)}{u}$ is decreasing

Theorem: for $u(0) \in[0,1]$ the equation admits global-in-time solution $u(t) \in[0, e] \quad \forall t \in \mathbb{R}$
Moreover, if $u(0)<\theta \Rightarrow u(t) \underset{t \rightarrow+\infty}{\rightarrow 0}$

$$
u(0)>\theta \Rightarrow u(t) \rightarrow 1
$$

(the small population will turn off - may be not enough sexual partners or can not form big enough groups for fighting against predators)
This theorem explains the term "bistable":
$u=0$ and $u=1$ are stable equilibrium state $u=0$ - unstable equilibrium state
Concluding: we will consider 3 different $f(u)$:

F-KPP

Monostable

Bistable

Fisher, Kolmogorov
Petrovskii, Piskunov (1937)

- monostable case

There is also a case with condition that $f(u)$ lies below the tangent line at $u=0$ (think of $f(u)=u(1-u)$) of ignition / combustion non- linearity: $f(u)=0, u \in[0,0]$

Rok: there is one more notion of stability: $\begin{array}{lll}\text { linear stability } & & \\ \text { state called } & \alpha \text { is linearly stable if } f^{\prime}(\alpha)<0 \\ \text { state } \alpha \quad 11 \text { - } & \text { linearly unstable if } f^{\prime}(\alpha)>0\end{array}$
The: $f \in C^{1}$ in the vicinity of $\alpha \quad(f(\alpha)=0)$
$\begin{array}{cc}\text { (i) If } & f^{\prime}(\alpha)<0 \text { and } u(0) \text { is sufficiently close to } \alpha \text {, } \\ \text { then } & u(t) \rightarrow \alpha \text { as } t \rightarrow+\infty\end{array}$
(ii) If $f^{\prime}(\alpha)>0$, then no solution (except $u \equiv \alpha$) converges to α as $t \rightarrow+\infty$.
On the other hand, if $u(0)$ is close enough to α, then $u(t) \rightarrow-\alpha$ as $t \rightarrow-\infty$.

Proof:

$$
\begin{array}{lll}
f(u)>0 & \text { for } & u \in[\alpha-\varepsilon, \alpha) \\
f(u)<0 & \text { for } & u \in(\alpha, \alpha+\varepsilon]
\end{array}
$$

$$
\dot{u}=f(u)
$$

If $u(0)<\alpha \Rightarrow u(t)<\alpha$ and \uparrow
$u(t)$ can converge only to α..

$$
\begin{array}{lll}
f(u)<0 & \text { for } & u \in[\alpha-\varepsilon, \alpha) \\
f(u)>0 & \text { for } & u \in(\alpha, \alpha+\varepsilon] \\
\dot{u}=f(u) & &
\end{array}
$$

If $u(0)<\alpha \Rightarrow \dot{u}=f(u)<0 \Rightarrow u d$ and $u(t)<u(0)<\alpha$

$$
L^{\text {If } u(0)>\alpha \Rightarrow \dot{u}=f(u)>0 \Rightarrow u T \text { and } u(t)>u(0)>\alpha}
$$

There are many-many ways to generalize these
equations: equations:

$$
\int_{\Omega} k(x-y) u(y) d y \quad-\begin{gathered}
\text { non-local } \\
\text { diffusion }
\end{gathered}
$$

general (uniformly elliptic) term

$$
\begin{aligned}
& f(u) \sim f(t, x, u) \text { - depend on space } x \\
& u \in \mathbb{R} \rightarrow \vec{u} \in \mathbb{R}^{n}-\text { many species } \\
& \text { (Lotka-Volterra, predate or-prey }
\end{aligned}
$$

line of "fast"
diffusion C"roads" in
forests)
etc....

Other contexts: \rightarrow combustion theory (propagation of flame, thermo-diffusive model)
\rightarrow probability (BBM- Branching Brownian Motion
\rightarrow statistical physics etc....
Reaction-diffusion eggs: problem statement
(*) $\quad \partial_{t} u=D \Delta u+f(t, x, u)$

- $t \in(0,+\infty)$
- $D>0$
- $x \in \Omega \rightarrow \Omega=\mathbb{R}^{N}$
- $u \in \mathbb{R}$ - scalar
-bounded,
connected
- $f(u)$ is of one of the types above
+ Initial condition: $\left.u\right|_{t=0}=u_{0}(x) \in C(\Omega) \cap L^{\infty}(\Omega)$
+ Boundary conditions:

(Neumann)	$\partial_{n} u=0$	for	$(t, x) \in(0,+\infty) \times \partial \Omega$
(Dirichlet)	$u=0$	for $-l l$	
$($ Robin $)$	$\partial_{n} u+q u=0$	for $-l($	

Interpretations: (in any direction)
Neumann: no individuals cross the boundary
Dirichlet: exterior of Ω is extremely unfavorable so population density is zero at boundary
Robin : there is a flow of individuals entering $(q>0)$ or leaving the domain $(q<0)$
We consider classical solution u which satistirs

$$
(* *)\left\{\begin{array}{l}
u \in C^{0}([0,+\infty) \times \bar{\Omega}) \\
\partial_{t} u \in C^{0}((0,+\infty) \times \Omega) \\
\forall i \quad \partial_{x_{i}} u \in C^{0}((0,+\infty) \times \bar{\Omega}) \\
\forall i, j \quad \partial_{x_{i} x_{j}} u \in C^{0}((0,+\infty) \times \Omega)
\end{array}\right.
$$

equation $(*)$, initial and one of the boundary If $\Omega=\mathbb{R}^{N}$ we also assume some growth cord. at infinity: $\forall T>0 \quad \exists A, B>0$:

$$
|u(t, x)| \leqslant A e^{B|x|}, x \in \mathbb{R}^{N}, t>0
$$

What are the important topics?
(1) Comparison theorems: roughly speaking if $u(0, x) \leq v(0, x)$ are both solutions of (t) then $u(t, x) \leq v(t, x) \quad \forall t>0$
Closely connected to maximum principle for para-
This can be very helpful:
example 1: $\quad u_{t}=\Delta u+u(1-u)$

$$
u(0, x) \in[0,1] \quad \forall x \in \mathbb{R}^{N}
$$

- $u \equiv 0$ is solution and $u(0, x) \geqslant 0$

$$
\Rightarrow u(t, x) \geqslant 0
$$

- $u \equiv 1$ is solution and $u(0, x) \leq 1$

$$
\Rightarrow \quad u(t, x) \leq 1
$$

Thus, $u(0, x) \in[0,1] \Rightarrow u(t, x) \in[0,1]$
example 2:

$$
\begin{array}{ll}
u_{t}=\Delta u-u^{3} & \mathbb{R}^{N} \\
\left.u\right|_{t=0}=u_{0} \in[m, M], & x \in \Omega
\end{array}
$$

These are sub and supersolutions:

$$
\begin{aligned}
& v(t) \leq u(x, t) \leq w(t) \\
& -\frac{d v}{v^{3}}=d t \Rightarrow \quad \begin{array}{l}
\quad \frac{1}{2 v^{2}}-\frac{1}{2 \mathrm{~m}^{2}}=t \Rightarrow v=\left(\frac{1}{m^{2}}+2 t\right)^{-\frac{1}{2}} \\
v(t) \rightarrow 0 \text { as } t \rightarrow \infty
\end{array} \\
& \text { Analogously, } w(t) \rightarrow 0 \text { as } t \rightarrow \infty
\end{aligned}
$$

Thus, if u exists, then

$$
\begin{gathered}
v(t) \leq u(x, t) \leq w(t) \quad \Rightarrow \quad u \quad u \rightarrow 0 \\
d \\
d \\
0
\end{gathered} \quad \begin{gathered}
t \rightarrow+\infty
\end{gathered}
$$

\rightarrow well-posedress of $(t): \exists!$ cont. dependence
\rightarrow special solutions: traveling waves (planar) take direction $e \in \mathbb{R}^{\prime \prime}$ and consider a solution of the form:

$$
\begin{aligned}
& u(t, x)=\tilde{u}\left(\tilde{x}^{\text {scalar }}-v t\right) \\
& \tilde{u}: \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

V-speed of propagation

We will see that for different nonlinearrities there exist travelling waves (TW) $x \in \mathbb{R}^{1}: F K P P: \exists c^{*}: \forall c \geqslant c^{*} \nexists T W$

Bistable: ヨ!c: ヨTW
$\rightarrow x \in \mathbb{R}^{1}$: long-time behaviour as $t \rightarrow+\infty$ for some initial data (like 1 a Heavy) the solution u of (*) "converges" to a TW

$$
S \overbrace{\text { for para bolic }}^{\text {Maximum }} \underbrace{\text { principle }}_{\text {equations }}
$$

This is an extension of the results that we have seen for ODEs. First, some definitions:
Def 1: $u(t, x)$ is called sub-solution of (*) if it satisfies $(* *)$ and inequalities:

$$
\partial_{t} u \leq \Delta u+f(t, x, u)
$$

and on the boundary (if applicable): on $\partial \Omega$ (Neumann) $\partial_{n} u \leq 0 ;\left(D_{i r i c h l e t) ~} u \leq 0 ;\left(R_{0} b_{i n}\right) \partial_{n} u+g u \leq 0\right.$ If $\quad \Omega=\mathbb{R}^{N}$, then $\quad|u| \leq A e^{B(x)}, A, B>0$

Analogously, $v(t, x)$ is called a super solution if all inequalities are reversed (except $|v| \leq A e^{B(x)}$) We want to prove the following theorem:
Theorem (comparison principle)
Let u and v be sub- and super-solutions of the reaction-diffusion eq (6).
(i) If $u(0, x) \leq v(0, x)$ for $x \in \bar{\Omega}$, then $u(t, x) \leqslant v(t, x)$ for $t>0, x \in \bar{\Omega}$
(ii) If moreover, $u\left(t_{0}, x_{0}\right)=v\left(t_{0}, x_{0}\right)$ for some $t_{0}>0, x_{0} \in \Omega$, then $u \equiv V$.
(iii) If Ω is bounded and the boundary condition is of Neumann or Robin type, then (ii) is true even for $x_{0} \in \partial \Omega$
Note that the difference $(u-v)$ satisfies

$$
\partial_{t}(u-v) \leq \Delta(u-v)+f(t, x, u)-f(t, x, v)
$$

Thanks to regularity of u, v, f we can rewrite this equation as follows: $w=u-v$
(1) $\partial_{t} w \leq \Delta w+g(t, x) w$
where

$$
g(t, x)= \begin{cases}\frac{f(t, x, u)-f(t, x, v)}{u-v} & \text { if } u \neq v \\ \partial_{u} f(t, x, u) & \text { if } u=v\end{cases}
$$

is continuous and uniformly bod function
So we seduced a problem to studying the linear eq (1) and showing $\omega \leqslant 0$ $\forall t>0, x \in \bar{\Omega}$.

Linear problem and maximum principle
Let us consider a more general case:
(2) $\partial_{t} u=\Delta u+\sum b_{i}(t, x) \partial_{i} u+c(t, x) u$ Let b_{i}, c be uniformly bod.
Tho 1(weak maximum principle)
(i) Let be a sub-solution of linear eq If $u(0, x) \leq 0$, then $u(t, x) \leq 0 \quad \forall t>0$
(ii) Let v be super-solution of linear eq (2). If $v(0, x) \geqslant 0$, then $\quad v(t, x) \geqslant 0 \quad \forall t>0$.

The 2 (strong maximum principle)
(i) Let u be a subsolution of (2) and $u(0, x) \leqslant 0$. If $\exists t_{0}>0, x_{0} \in \Omega: u\left(t_{0}, x_{0}\right)=0 \Rightarrow u \equiv 0$ on $\left[0, t_{0}\right] \in \Omega$
(ii) Let v be a supersolution of (2) and $v(0, x) \geq 0$. If $\exists t_{0}>0, x_{0} \in \Omega: v\left(t_{0}, x\right)=0 \Rightarrow v \equiv 0$ on $\left[0, t_{0}\right] \times \Omega$
(iii) If Ω is bod, then for Neumann and Robing the same statement as in (i), (ii) are true if $x_{0} \in \partial \Omega$.

Rok: it is clear that it is sufficient to consider subsolutions. For the supersolutions just consider $v=-u$.
Proof of maximum principle:
Γ We will prove in 2 cases: (a) Ω-bod, Dirichlet
(b) $\Omega=\mathbb{R}^{N}$

First, let's prove the simple case:
Lemma: let u be a subsolution with strict ineq: $\begin{aligned} & \partial_{t} u-\Delta u-\sum b_{i}(t, x) \partial_{i} u-c(t, x) u<0, u(0, \cdot)<0,4 b_{r}^{<0} 0 \\ & \Rightarrow u(t, x)<0\end{aligned}$

$$
\Rightarrow u(t, x)<0
$$

| | Proof of lemma: | |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| | $r_{\text {Indeed, take first time }} \quad t_{0}>0$ such that | | $u\left(x_{0}, t_{0}\right)=0 \quad$ for $\quad x_{0} \in \Omega$.

At this point: $\partial_{t} u \geqslant 0$
$\Delta u \leq 0$ (the local picture
$\partial_{i} u=0$ (as it is local maximum)

$$
\begin{aligned}
& u=0 \\
& L \quad \Rightarrow \quad \partial_{t} u-\Delta u-\sum b_{i} \partial_{i} u-c u \geqslant 0 \quad(!?)
\end{aligned}
$$

Lecture 16: Maximum principles for ODEs.

a non-constant function that achives
 its maximum over an interval $[a, b]$

Let $[a, b] \subset \mathbb{R}$

$$
u \in C^{2}((a, b)) \cap C^{0}([a, b])
$$

$$
L=-\frac{d^{2}}{d x^{2}}+g \frac{d}{d x}+h
$$

- g,h -bounded functions on (abb)

Let

$$
M=\max _{[a, b]} u
$$

Question: how inequalities for L_{u} can lead to conclusions about M ?

Lemma 1 (basic lemma for $h \equiv 0$):
Let $h \equiv 0$ and $L u<0$. Then u can equal to M only at the endpoints $x=a$ or $x=b$.

Proof:
By contradiction: suppose $\exists x_{0} \epsilon_{0}^{(a, b)} u\left(x_{0}\right)=M$

$$
\begin{array}{c|l}
\text { Then } & u^{\prime}\left(x_{0}\right)=0 \\
u^{\prime \prime}\left(x_{0}\right) \leq 0 \\
\Rightarrow & \left.L u\right|_{x_{0}} \geqslant 0 \quad(!?)
\end{array}
$$

Thm 1 (one-dimensional maximum principle for $h \equiv 0$) Let $h \equiv 0$ and $L u \leqslant 0$.
Then if $\exists c \in(a, b): u(c)=M \Rightarrow u \equiv M$.

Suppose $\quad u \neq M \Rightarrow$ $\exists d \in(a, b)$ such that $u(d)<M(w .1 .0 .9 . d x)$

We would like to construct a "barrier" $z(x)$ such that for $\omega=u+\varepsilon z$:

$$
L_{w}<0 \text { on }(a, b)
$$

and we could apply lemma 1.
Take

$$
\begin{aligned}
& \text { Take } \quad z=e^{\alpha(x-c)}-1 . \\
& z(c)=0, z>0 \text { for } x \in(c, b) \\
& L z=\left(-\alpha^{2}+g \alpha\right) e^{\alpha(x-c)}
\end{aligned}
$$

Since g is bounded we can choose $\alpha>0$ Targe enough such that $L z<0$

Thus, $\quad L w=L u+\varepsilon L z<0$.
Moreover, $\quad w(a)=u(a)+\varepsilon z(a)<u(a) \leq M$人

$$
w(d)=u(d)+\varepsilon z(d)<M
$$

\hat{M} by taking very small ε we can guarantee that $w(d)<M$
Thus, we have a contradiction with Lemma 1. So, $u \equiv M$.

Rok: this idea of "adding a small barrier" is very useful and we will encounter this many times in future.
The choice of z is not unique!
Tho (one-dimensional Hopf lemma for $h \equiv 0$) Let $h \equiv 0$ and $L u \leq 0$.
If $u(a)=M$, then either $u^{\prime}(a)<0$ or $u \equiv M$ Similarly, if $u(B)=M$, then either $u^{\prime}(b)>0$ or $u \equiv M$

Rok: the essence of the Hopf lemma is in strict inequality $u^{\prime}(a)<0$. Because the non-strict inequality is straight forward: if $u(a)=M \Rightarrow u^{\prime}(a) \leq 0$ So if the maximum is on the boundary, this point can not be a critical point (unless $u \equiv$ constant)
Proof:
Let $u(a)=M$ and by contradiction $\exists d \in(a, b): u(d)<M$
We can use the same "barrier"

$$
z=e^{\alpha(x-a)}-1
$$

and consider $\quad \omega=u+\varepsilon z$.
First, $L w<0$ for sufficiently large α.
And $\omega(a)=M>\omega(d)$ for sufficientlysmalle.
So w achieves its maximum at $x=a$.

$$
\begin{aligned}
& \quad \omega^{\prime}(a)=u^{\prime}(a)+\varepsilon \alpha \leq 0 \\
& L \Rightarrow \quad u^{\prime}(a) \leq-\varepsilon \alpha<0 .
\end{aligned}
$$

Interestingly, if we relax condition $h \equiv 0$, the statements are no longer valid. Consider the following counter-example:

- $L u=-u^{\prime \prime}-u$

Take $L u=0$

$$
\sin (x)!
$$

- $L u=-u^{\prime \prime}+u, x \in[-1,1] \quad \int^{u}=-x^{2}+a, a \in \mathbb{R}$

Look for the solution of the form

In these examples h.M ≤ 0. If $\quad \forall-M \geqslant 0$, then everything ok!

Thy 3 (ose-dimensional maximum principle for) Let $h \geqslant 0$ and $M \geqslant 0$.
exercise If $\mathrm{Lu} \leq 0$ on (a, b)
then u can attain maximum at some point $c \in(a, b)$ only if $u \equiv M$.
Rok: this theorem should also work for $h \leq 0, \mu \leq 0$
Tho 4 (one-dimensional Hoff lemma for $h \geqslant 0$) Let $h \geqslant 0$.
exercise Let $L u \leq 0$ on (a, b) and $M \geqslant 0$. If $u(a)=M$, then either $u^{\prime}(a)<0$ or $u \equiv M$. Similarly, if $u(b)=M$, then either $u^{\prime}(b)>0$ or $u \equiv M$.

Thm5 (comparison principle)
Let $h \equiv 0, f \in c^{1}$

$$
\begin{array}{ll}
L_{u} \leqslant f(x) & x \in(a, b) \\
L_{v} \geqslant f(x), & x \in(a, b)
\end{array}
$$

Then if $\left\{\begin{array}{l}u(a) \leq v(a) \\ u(b) \leq v(b)\end{array}\right.$, then $\begin{array}{r}u(x) \leq v(x) \\ \forall x(a, b)\end{array}$
Moreover, if $\exists x_{0}: u\left(x_{0}\right)=v\left(x_{0}\right) \Rightarrow u \equiv v$
Proof:

$$
\begin{aligned}
\left.w=u-v ; \quad \begin{array}{c}
L w \leq 0 \\
w(a) \leq 0 \\
w(b) \leq 0
\end{array}\right\} \Rightarrow & w(x) \leq 0 \text { as } \\
& \text { maximum is } \\
& \text { obtained on } \\
& \text { the boundary } \\
& {\left[\begin{array}{l}
x=a \\
x=b
\end{array}\right.}
\end{aligned}
$$

LAnd if $\omega\left(x_{0}\right)=0$ fo some $x_{0} \in(a, b) \Rightarrow \omega \equiv 0$
Rok: if $f=f(x, u)$ the theorem does not

Rok: The above strong max. principles say that subsolution u and supersolution v can NOT touch at a point: either $u \equiv v$ or $u<v$
This "untouchability" condition can be very helpful. Consider such an example.
Example: consider a boundary value problem:

$$
\text { (1) }\left\{\begin{array}{l}
-u^{\prime \prime}=e^{u} \quad, \quad x \in[0, L] \\
u(0)=u(L)=0
\end{array}\right.
$$

One can interpret the " u " as an equilibrium temperature: conditions $u(0)=u(L)=0$ say that we have a "cold" boundary, while e^{u} is the "heating term".
They compete with each other and non-negative solution corresponds to an equilibrium between these two effects. We would like to show that if the length of the interval L is suff. large, then no such equilibrium is possible The physical reason is that the cold boundary is too far from the middle of the interval so that the heating term wins.

Task: show that for large enough $L>0$ there is no non-negative solution of (1)
Step 1: consider

$$
w=u+\varepsilon \Rightarrow\left\{\begin{aligned}
-w^{\prime \prime} & =e^{-\varepsilon} e^{w} \\
(2) & =w(L)=\varepsilon
\end{aligned}\right.
$$

Step 2: consider family of functions.

$$
V_{\lambda}(x)=\lambda \sin \left(\frac{\pi x}{L}\right)
$$

They are solutions of the following problem:

$$
\text { (3) }\left\{\begin{array}{l}
-V_{\lambda}^{\prime \prime}=\frac{\pi^{2}}{L^{2}} V_{\lambda} \\
V_{\lambda}(0)=V_{\lambda}(L)=0
\end{array}\right.
$$

Step 3: Notice that for L large enough

$$
e^{-\varepsilon} e^{s}>\frac{\pi^{2}}{L^{2}} s \quad, \quad \forall s>0
$$

Thus, w as solution of (2) is a supersolution to (3): $\omega(0)=\omega(L)=\varepsilon>0$

$$
\left\{\begin{array}{l}
-w^{\prime \prime} \geqslant \frac{\pi^{2}}{L^{2}} w \\
w(0)=\omega(L) \geqslant 0
\end{array}\right.
$$

We assume that $\omega \geqslant 0$.
Clearly, for small enough $\lambda>0$

$$
V_{x}(x)<\omega(x)
$$

Step 4: (Sliding method) Now start increasing λ until some $\lambda_{0}>0$ st. the grophs of v_{λ} and w "touch"
at some point: at some point:

$$
\lambda_{0}=\sup \left\{\lambda>0: \quad v_{\lambda}(x) \leq w(x), 0 \leq x \leq L\right\}
$$

Look at the difference: $p=v_{\lambda}-w$

$$
\begin{array}{ll}
\therefore \quad-p^{\prime \prime} \leq \frac{\pi^{2}}{L^{2}} p & p(x) \leq 0 \\
\therefore & p(0)=p(L)=-\varepsilon \quad
\end{array}
$$

In addition, $\exists x_{0}$: $p\left(x_{0}\right)=0$. It can not be in (a, b) because of maximum principle and it can not be on the boundary (!?)

Exercise (for interest):
Show that $\exists L_{s}>0$ so that nonnegative solution of (1) exists for all $0<L<L_{1}$ and does not exist for all $L>L_{1}$.

Exercise (for now): consider

$$
\left\{\begin{array}{c}
-u^{\prime \prime}-c u^{\prime}=f(u), \quad x \in[-L, L] \\
u(-L)=1, u(L)=0
\end{array}\right.
$$

Prove that if solution exists, then it is unique and decreasing ($u^{\prime}<0$)
Hint: use sliding method for 2 solutions u and $\circlearrowleft v$, e.g. consider

$$
V_{h}(x)=v(x+h)
$$

- Strong maximum principle for any h with assumption $\quad M=0$.
Tho 6 (one-dimensional maximum principle for) Let $M=0$.
exercise If $L u \leq 0$ on (a, b),
then u can attain maximum at some point $c \in(a, b)$ only if $u \equiv 0$.
Rok: no assumptions on the sign of h !
That (comparison principle):

$$
\begin{array}{ll}
f \in C^{\prime} & \\
L_{u} \leq f(x, u) \quad & x \in(a, b) \\
L_{v} \geqslant f(x, u), & x \in(a, b)
\end{array}
$$

Then if $\left\{\begin{array}{l}u(x) \leq v(x) \quad \forall x(a, 6) \\ \exists x_{0}: u\left(x_{0}\right)=v\left(x_{0}\right)\end{array} \quad \Rightarrow u \equiv v\right.$

Lecture 17: Maximum principle for linear parabolic PDEs
Let us consider a linear parabolic PDE:
(1) $\partial_{t} u=\Delta u+\sum b_{i}(t, x) \partial_{i} u+c(t, x) u=:-L u$

Here: $\quad x \in \Omega$ (either bounded open connected set or $\mathbb{R}^{N}, N \geqslant 1$)

- $t \geqslant 0$
- $u:[0,+\infty) \times \Omega \rightarrow \mathbb{R}$ - scalar function
- coefficients b_{i}, c are continuous and uniformly bod (-bounded)
Initial condition: $u(0, x)=u_{0}(x)$
Boundary conditions:
- Ω-bod :
(Dirichlet) $\left.u\right|_{\partial \Omega}=0$
(Neumann) $\left.\frac{\partial u}{\partial r}\right|_{\partial \Omega}=0$

$$
\text { (Robin) } \quad \frac{\partial u}{\partial \Omega}+\left.q u\right|_{\partial \Omega}=0
$$

- $\Omega=\mathbb{R}^{N}: \exists A, B>0: \quad|u| \leq A e^{B|x|}, x \in \Omega$

Deft: u - subsolution of (1) if $\partial_{t} u+L u \leq 0$ and either $\left.u\right|_{\partial \Omega} \leq 0 \quad$ or $\left.\quad \frac{\partial u}{\partial n}\right|_{\partial \Omega} \leq 0 \quad$ or $\quad \frac{\partial u}{\partial n}+\left.q u\right|_{\partial \Omega} \leq 0$ Analogously, v - supersolution if $\quad \partial_{t} v+L v \leqslant 0-11-$

Thm1 (weak maximum principle $=$ weak MP)
(i) Let u be a subsolution of (s) st. $u(0, x) \leqslant 0$, Then $\quad \forall t>0 \quad u(t, x) \leq 0$.
(ii) Let v be a supersolution of (1) s.t. $u(0, x) \geqslant 0$, Then $\quad \forall t>0 \quad v(t, x) \geqslant 0$.
Rok: it is clear that it is sufficient to consider subsolutions. For the supersolutions just consider $v=-u$.

Tho (strong maximum principle $=$ strong MP)
(i) Let u be a subsolution of (1) and $u(0, x) \leqslant 0$. If $\exists t_{0}>0, x_{0} \in \Omega: u\left(t_{0}, x_{0}\right)=0 \Rightarrow u \equiv 0$ on $\left[0, t_{0}\right] \times \Omega$
(ii) Let v be a supersolution of (2) and $v(0, x) \geqslant 0$. If $\exists t_{0}>0, x_{0} \in \Omega: V\left(t_{0}, x\right)=0 \Rightarrow V \equiv 0$ on $\left[0, t_{0}\right] \times \Omega$
(i ii) If Ω is bid, then for Neumann and Pobink the same statement as in (i), (ii) are true if $\quad x_{0} \in \partial \Omega$.
Proof of maximum principle (weak and strong):
Case 1: Dirichlet boundary conditions
Lemma 1: Let $\quad \partial_{t} u-\operatorname{Lu}<0, u(0, x)<0,\left.u\right|_{\partial \Omega}<0$
Then $\quad \forall t>0 \quad u(t, x)<0$.
Proof
Γ By contradiction. Let t_{0} be the first time when $\exists x_{0} \in \Omega: u\left(x_{0}, t_{0}\right)=0$

Thus at $\forall x \in \Omega, t>0 \quad u(t, x)<0$
Observation : take $u=e^{k t} w$ for some $k \in \mathbb{R}$ $u<0 \Leftrightarrow v<0$ and $u \leqslant 0 \Leftrightarrow w \leqslant 0$ But now ω satisfies:

$$
\partial_{t} w-\Delta w-\sum b_{i} \partial_{i} w-(c-k) w<0
$$

Taking $k>\max |c|$ we can $g^{(\leq)}$uarartite that $c-k<0$, or taking $k<-\max l d$ we have $c-k>0$.

Let's take $k \geqslant \max (c)+1$, and thus $c-k \leqslant-1$ In order not to change the notation we stay with letter " u " and consider $c \leq-1<0$ in (1).

Now we are ready to prove thm 1 (i).
By contradiction. Take the first moment $t_{0}>0$ s.t. $\exists x_{0} \in \Omega: u\left(t_{0}, x_{0}\right)=\delta$ for some $\delta>0$.

At this point $\left(t_{0}, x_{0}\right): \quad \partial_{t} u \geq 0$

$$
\begin{array}{ll}
& \begin{array}{l}
\Delta u \leq 0 \\
\partial_{x_{i}} u
\end{array} \\
\Rightarrow \quad \partial_{t} u+L_{u} \geq \delta>0 & (!?)
\end{array}
$$

Thus, for all $x \in \Omega, t>0 \quad u(t, x) \leq 0$. be
We have proven the weak MP for Dirichlet
Let's prove the strong maximum principle for Dirichlet.
Lemma 2: Let u be subsolution of (1) with Dirichlet and $u(0, x)<0 \quad \forall x \in \Omega \Rightarrow u(t, x)<0 \quad \forall t>0$
Proof:
T It is enough to consider $\Omega=B_{\delta}(0)$. The idea is to construct a "barrier" Let $\quad \omega=u+\varepsilon\left(\delta^{2}-|x|^{2}\right)^{2} e^{-\alpha t}$

Take $\varepsilon>0$ so small st.

$$
w(0, x)<0 \text {. Moreover, }\left.w\right|_{\partial B_{\varepsilon}}=\left.u\right|_{\partial B_{\varepsilon}} \leq 0
$$

We can choose α such that ω is a subsolution Indeed, $\partial_{i}\left(\delta^{2}-|x|^{2}\right)^{2}=2\left(\delta^{2}-|x|^{2}\right) \cdot\left(-2 x_{i}\right)$

$$
\partial_{i i}^{2}\left(\delta^{2}-|x|^{2}\right)^{2}=-4\left(\delta^{2}-|x|^{2}\right)+8 x_{i}^{2}
$$

Then $(-L)\left(\delta^{2}-|x|^{2}\right)^{2}=\left(\Delta+\sum b_{i} a_{i}+c\right)\left(\delta^{2}-\left(\left.x\right|^{2}\right)^{2}=\right.$

$$
=8|x|^{2}-4 N\left(\delta^{2}-|x|^{2}\right)-4 b \cdot x\left(\delta^{2}-|x|^{2}\right)+c\left(\delta^{2}-|x|^{2}\right)^{2}
$$

By estimating $|B(t, x)| \leq\|b\|_{\infty}$ and $|c(t, x)| \leq\|c\|_{\infty}$ we obtain:

$$
\begin{gathered}
\left(\partial_{t}+L\right) z \leq \varepsilon e^{-\alpha t}\left[-\alpha \cdot\left(\delta^{2}-|x|^{2}\right)^{2}-8|x|^{2}+4 N\left(\delta^{2}-x^{2}\right)+\right. \\
\left.+4|x| \cdot\|b\|_{\infty}\left(\delta^{2}-|x|^{2}\right)+\|c\|_{\infty}\left(\delta^{2}-|x|^{2}\right)^{2}\right]
\end{gathered}
$$

We would like: $\left(\partial_{t}+L\right) z \leq 0$.
Naive idea : just fake the first term $\alpha>0$ very big and then the first term $-\alpha\left(\delta^{2}-|x|^{2}\right)^{2} C_{\text {will }}$ be very negative and dominate all other (positive) terms.
Bad news: the term $-\alpha^{2}\left(\delta^{2}-|x|^{2}\right)^{2}$ is small close to the boundary of the By (0) So the previous idea works only inside some smaller ball

$$
B_{\delta} \cdot(0) \subset B_{\delta}(0) \quad\left(0<\delta^{\prime}<\delta\right)
$$

What to do? Divide the ball into 2 parts: $B_{\delta}(0)$
(1) $B_{\delta}(0), B_{\delta^{\prime}}(0)$
(2) $B_{\delta},(0)$
and estimate $\left(\partial_{t}+L\right) z$ in each part separately.
(1) If δ^{\prime} is close to δ, then all terms that have $\left(\delta^{2}-|x|^{2}\right)$ are small and the dominating term is - $\delta|x|^{2}$. Take δ^{\prime} such that $\forall x \in B_{\delta}(0)-B_{\delta^{\prime}}(0)$ the following ines is tine

$$
8|x|^{2}>\left(\delta^{2}-x^{2}\right) \cdot\left[4 N+4|x| \cdot\|b\|_{\infty}+\|c\|_{\infty} \cdot\left(\delta^{2}-|x|^{2}\right)\right]
$$

Or

$$
\delta\left(\delta^{\prime}\right)^{2}>\left(\delta^{2}-\left(\delta^{\prime}\right)^{2}\right) \cdot\left[4 N+4 \delta\|\Omega\|_{\infty}+\delta^{2} \cdot\|c\|_{\infty}\right]
$$

Such δ^{\prime} exists as $8\left(\delta^{\prime}\right)^{2} \approx 8 \delta^{2}$ when $\delta^{\prime} \approx \delta$ and right hand side is almost 0 .
Thus, for $x \in B_{\delta} \backslash B_{\delta}$: $\left(\partial_{t}+L\right) z \leqslant-\alpha \varepsilon e^{-\alpha t}\left(\delta^{2}-|x|^{2}\right)^{2}<0$
(2) Now take α so big such that for all $x \in B_{\delta^{\prime}}(0)$ we have:

$$
\alpha\left(\delta^{2}-|x|^{2}\right)^{2}>\left(\delta^{2}-|x|^{2}\right)\left[4 N+4 \cdot|x| \cdot\|b\|_{\infty}+\|c\|_{\infty}\left(\delta^{2}-|x|^{2}\right)\right]
$$

Divide by $\delta^{2}-|x|^{2}$ and it is enough to have

$$
\begin{array}{r}
\alpha \cdot\left(\delta^{2}-\left(\delta^{\prime}\right)^{2}\right)^{2}>\delta^{2}\left[4 N+4 \delta^{1} \cdot\|b\|_{\infty}+\|c\|_{\infty} \delta^{2}\right] \\
\alpha>\frac{\delta^{2}\left[4 N+4 \delta^{\prime}\|b\|_{\infty}+\|c\|_{\infty} \delta^{2}\right]}{\left(\delta^{2}-\left(\delta^{\prime}\right)^{2}\right)^{2}} \text { fixed value) }
\end{array}
$$

(remember, here δ^{\prime} is already some fixed value)
Thus, for $x \in B_{\delta^{\prime}}(0):\left(\partial_{t}+L\right) z<-8 \varepsilon e^{-\alpha t}|x|^{2}<0$

$$
\begin{gathered}
\Rightarrow\left(\partial_{t}+L\right) w=\left(\partial_{t}+L\right) u+\left(\partial_{t}+L\right)\left(\varepsilon\left(\delta^{2}-\left(\left.x\right|^{2}\right) e^{-\alpha t}\right) \leq 0\right. \\
\Rightarrow \quad{ }_{0}^{0} \\
\Rightarrow \quad w \leq 0 \quad \Rightarrow \quad u<\omega \leq 0 \text {;q.e.d. }
\end{gathered}
$$

weak MP
Now let's finish proving the strong MP for (D).
Take $\left(t_{0}, x_{0}\right): u\left(t_{0}, x_{0}\right)=0$.
It is enough to prove that $u \equiv 0$ for $t \in[a t]$ By contradiction, there exists a point $\left(t_{1}, x_{1}\right), t_{1}<t_{0}$ such that $u\left(t_{1}, x_{1}\right)<0$.

Assume that the segment connecting x_{1} and x_{0} in Ω lies in Ω (eeg. Ω-convex) for all x in this segment $\left[x_{1}, x_{0}\right]$ (this can be done by compactness of segment)
Now consider $\omega(t, x)=u\left(t, x+\frac{t-t_{1}}{t_{0}-t_{1}} \cdot\left(\left(x_{0}-x_{1}\right)\right)\right.$

$$
\partial_{t} w=\partial_{t} u+\sum_{i=1}^{N} \partial_{i} u
$$

Clearly, w satisfies the equation of type (1)
By previous lemma: $w\left(t_{1}, x_{1}\right)=u\left(t_{1}, x_{1}\right)$

$$
\begin{array}{r}
w\left(t_{0}, x_{1}\right)=u\left(t_{0}, x_{0}\right) \\
w\left(t_{1}, x_{1}\right)<0 \quad \Rightarrow \quad w\left(t_{0}, x_{1}\right)<0 \Rightarrow u\left(t_{0}, x_{0}\right)<0(!?)
\end{array}
$$

It is easy to generalize this argument for arbitrary connected domains Ω, as there
 exists a path between α_{1} and x_{0} and this path can be approximated by segments.
Both weak and strong MP for Dirichlet bc are proven (case 1)

Case 2: Neumann and Robin bc.
Lemma 3 (Hop lemma)
Let u be subsolution of (1) with NO boundary conditions. And let $u(t, x)<0$ for all $t \in[0, T]$ and $x \in \Omega$.
If $u\left(T, x_{0}\right)=0$ at $x_{0} \in \partial \Omega$,
then

$$
\frac{\partial u}{\partial n}\left(T, x_{0}\right)>0 .
$$

Rok: the sign $\frac{\partial u}{\partial n} \geq 0$ is clear, the important statement in lemma is STRICT inequal.
Proof:

By contradiction.
Let $\exists x_{0} \in \partial \Omega$ st.

$$
u\left(T, x_{0}\right)=\frac{\partial u}{\partial r}\left(T, x_{0}\right)=0
$$

Take a ball $B_{\delta} \subset \Omega$ s.t. $x_{0}=\partial B_{\delta} \cap \partial \Omega$ (this is just

For simplicity we can always assume that the center of the ball B_{δ} is in the origin and the normal $\Omega=(-1,0, \ldots 0)$

As $u<0$ in $\Omega \times[0, T]$, then $\forall 0<5<\delta$

$$
\sup _{t \in[0, T]} \sup _{x \in B_{s}} u(t, x)<0 .
$$

Consider

$$
w=u+\varepsilon_{1}(t-T)+\varepsilon_{2}\left[e^{-\alpha|x|^{2}}-e^{-\alpha \delta^{2}}\right]
$$

$\alpha, \varepsilon_{1}, \varepsilon_{2}>0$ will be chosen soon.
We want to prove: for domain $A:=B_{\delta}(0) \cdot \overline{B_{r}(0)}$
(a) $\left\{\begin{array}{l}\partial_{t} w+L w \leq 0, \quad x \in A, \quad t \in[0, T] \\ w(0, x)<0, \quad x \in A\end{array}\right.$ $(-1, \ldots) \quad 0<r<\delta$
(c) $w \mid \partial A(t, x) \leqslant 0$
for $x \in A$
Thus, by Dirichlet weak $M P \Rightarrow{ }^{`} \omega(T, x) \leq 0$
This will be a contradiction with

$$
\begin{aligned}
\omega(T,-\delta, 0 \ldots 0) & =\left.u\right|_{t=x_{0}} ^{x=x_{0}}=0 \\
\frac{\partial}{\partial_{n}} \omega\left(T_{1}\right)=-\partial_{x_{1}} \omega(T,-\delta, 0 \ldots 0) & =-\partial_{x_{1}} u+\left.\varepsilon_{2} \alpha \cdot 2 x_{1} e^{-\alpha|x|^{2}}\right|_{\ldots} \\
& =0-\varepsilon_{2} \cdot 2 \alpha \delta \cdot e^{-\alpha \delta^{2}}<0
\end{aligned}
$$

Letis show (a), (b), (c).
(a)

$$
\begin{aligned}
& \partial_{t} \omega+L \omega=\partial_{t} \omega-\Delta \omega-b \cdot \nabla \omega-c \omega \leq \\
& \quad \leq \varepsilon_{1}(1+C T)-\varepsilon_{2} e^{-\alpha|x|^{2}} \cdot\left[4 \alpha^{2}|x|^{2}-2 N \alpha-2 C \alpha|x|-c\right]
\end{aligned}
$$

where C is $\max \left(\left\|b_{i}\right\|_{\infty},\|\subset\|_{\infty}\right)$.

$$
\begin{aligned}
& L\left[e^{-\alpha|x|^{2}}-e^{-\alpha \delta^{2}}\right]=\sum \frac{d}{d x_{i}}\left(-2 \alpha x_{i} e^{-\alpha|x|^{2}}\right)+\sum b_{i}\left(-2 \alpha x_{i} e^{\cdots}\right) \\
& +c\left(e^{-\alpha|x|^{2}}-e^{-\alpha \delta^{2}}\right)=-2 \alpha N e^{-\alpha|x|^{2}}+4 \alpha^{2} \sum x_{i}^{2} e^{-\alpha|x|^{2}}
\end{aligned}
$$

$$
+\sum b_{i}\left(-2 \alpha x_{i} e^{-\alpha|x|^{2}}\right)+c\left(e^{-\alpha|x|^{2}}-e^{-\alpha \delta^{2}}\right)
$$

$$
\text { Fix } \quad \alpha>0 \text { s.t. } \quad 4 \alpha^{2}|x|^{2}-2 N \alpha-C_{\alpha}|x|-C \geqslant \alpha
$$ for $x \in B_{\delta} \backslash B_{\delta / 2}: \quad d_{1} \alpha^{2}+d_{2} \alpha+d_{3} \geqslant 0$

This can be done if $|x|$ is not dose to 0, e.g. $|x|>\delta / 2$ (that's why we take the domain A to be a ring!)

Then w is a subsolution in A if

$$
\text { A if }\left(\text { con } \alpha_{1}\right) \frac{\varepsilon_{2}}{\varepsilon_{1}} \geqslant \frac{(1+c T) e^{\alpha \delta^{2}}}{\alpha}
$$

(b) $w(0, x)=u(0, x) \underbrace{-\varepsilon_{1} T+\varepsilon_{2}\left[e^{-\alpha|x|^{2}}-e^{-\alpha \delta^{2}}\right]}_{\varepsilon_{2}}<0$ for $x \in B_{\delta} \cdot \bar{B}_{r}$
(condz) $\frac{\varepsilon_{2}}{\varepsilon_{1}} \leq \frac{T}{e^{-\alpha \Gamma^{2}}-e^{-\alpha \delta^{2}}}$
If we choose r very close to δ, then RHS of (cond 1) $<$ RHS of $(\operatorname{con} 2)$
(c) Boundary consists of 2 pieces: $\partial B_{\delta}, \partial B_{r}$

- Clear that $\omega\left(t, \partial B_{\delta}\right)=u\left(t, \partial B_{\delta}\right)+\varepsilon_{1}(t-\tau)$

$$
\begin{gathered}
\forall t \in[0, T]
\end{gathered} \begin{gathered}
\hat{0}+\varepsilon_{1}(t-T) \leq 0 \\
\hat{o}\left(t, \partial B_{r}\right)=u\left(t, \partial B_{r}\right)+\varepsilon_{1}(t-\tau)+\varepsilon_{2}\left(e^{-\alpha r^{2}}-e^{-\alpha \delta^{2}}\right)
\end{gathered}
$$

It is enough to take small $\varepsilon_{2}>0$, e.g.

$$
\varepsilon_{2}<\frac{-\sup _{t \in \Gamma_{0}, \infty 3} u\left(t, \partial B_{r}\right) \neq 0}{e^{-\alpha \delta^{2}}-e^{-\alpha \delta^{2}}}
$$

L Then will $\omega\left(t, \partial B_{r}\right)<0$.
Next time v finish the proof of the weak MP for Neumann / Robin bc.

Lecture 18: Today we will finish proving the maximum principles (weak and strong) for the Neumann, Robin b.c. and $\Omega=\mathbb{R}^{N}$ and briefly talk about the existence of the solutions to react.-diff. eggs.
Case 2 (Neumann, Robin b.c.)
W.l.o.g. $c<-1$.

- Want to prove: $u(0, x) \leq 0 \Rightarrow u(t, x) \leq 0 \quad \begin{gathered}\forall t>0 \\ x \in \Omega\end{gathered}$ By contradiction: $\exists \delta>0$ and $\exists\left(t_{0}, x_{0}\right): u\left(t_{0}, x_{0}\right)=\delta$ and t_{0} is the first time when $u\left(t_{0}, x_{0}\right)=\delta$: for $0 \leq t<t_{0} \quad \forall x \in \bar{\Omega} \quad u(t, x)<\delta$.
(a) If $x_{0} \in \Omega$, then the same argument as for Dirichlet case gives a contradiction:

$$
\left(\partial_{t}+L\right) u \geqslant-c u \geqslant \delta>0 \quad \text { (!?) }
$$

(b) If $x_{0} \in \partial \Omega$, we are in the context of the Hopf lemma for $w=u-\delta$.
Indeed, $w\left(t_{0}, x_{0}\right)=0$ and $w(t, x)<0$ if $\left\{\begin{array}{l}x \in \Omega \\ 0 \leq t \leq t\end{array}\right.$ and w is a subsolution:

$$
\partial_{t} \omega-\Delta \omega-b \cdot \nabla \omega-c \omega \leq-\delta c \leq 0
$$

Thus, by Hopf lemma

$$
\frac{\partial u}{\partial n}\left(t_{0}, x_{0}\right)=\frac{\partial w}{\partial n}\left(t_{0}, x_{0}\right)>0
$$

which contradicts the inequality $\frac{\partial 4}{\partial n} \leqslant 0$ for the Neumann bic.
This is a contradiction also for Robin bic. as $\left.\left(\frac{\partial u}{\partial n}+q u\right)\right|_{\left(t_{0}, x_{0}\right)}>\left.q u\right|_{\left(t_{0}, x_{0}\right)}>q \delta>0$
We assume $q>0$ for the Robin b.c.
So we have proven the weak MP for (N),

Let's prove the strong maximum principle for (N) and (R). As we already know $u(x, t) \leq 0 \quad \forall x \in \Omega$ and $x \in \partial \Omega$, we can apply the same argument as for the case of the Dirichlet bic. In particular, if $u \neq 0$, then $u<0 \quad \forall t>0, x \in \Omega$ Apply the Hopf lemma again to see that $u<0$ for $x \in a \Omega, t>0$.

Case 3: $\Omega=\mathbb{R}_{\infty}^{N}$. Take $\omega=u \varphi(x)$, where $\varphi \in C^{\infty}(\Omega)$ is strictly positive and

$$
\frac{|\nabla \varphi|}{\varphi}, \frac{|\Delta \varphi|}{\varphi} \in L^{\infty}\left(\mathbb{R}^{N}\right)
$$

and

$$
\varphi(x)=e^{-2 B|x|} \text { for }|x| \gg 1
$$

$$
\begin{aligned}
& \omega_{t}=u_{t} \varphi \quad \stackrel{\omega}{\omega} \varphi \\
& \partial_{i} \omega=\partial_{i} u \cdot \varphi+u^{L} \cdot \partial_{i} \varphi \quad \frac{\omega}{\varphi} \\
& \partial_{i i}^{2} \omega=\partial_{i i} u \cdot \varphi+\partial_{i} u \cdot \partial_{i} \varphi+u \partial_{i i} \varphi \\
& \Rightarrow\left(\partial_{t}+L\right) u=\left(\partial_{t}+L\right) w-w \cdot \frac{\nabla \varphi \cdot \rho}{\varphi}-\nabla u \cdot \nabla \varphi-w \cdot \frac{\Delta \varphi}{\varphi}
\end{aligned}
$$

Under the above conditions this operator is of the same type as for u, but for ω we have:

$$
|w|=\left|u e^{-2 B|x|}\right| \leq A \cdot e^{-B|x|} \underset{\text { as } \operatorname{lx}_{x} \mid \rightarrow \infty}{0}
$$

So the proof of the weak MP stays the same. The proof of the strong MP did not involve that Ω is bounded.

Well_posedness of reaction-diffusion eq.
(*) $\left\{\begin{array}{l}u_{t}=\Delta u+f(t, x, u), \Omega \subseteq \mathbb{R}^{N}, \mathbb{R}^{N} \\ u(0, x)=u_{0}(x) \\ +b . c .\end{array}\right.$
(1) \exists (existence)
(2) ! (uniqueness)
(3) Continues dependence on initial data

Tho (uniqueness of solution to react.-diff. eq.) Let u, v be 2 solutions with the same initial conditions (D) or (N) or (R), then $u \equiv v$.
Proof: just by comparison theorem!
The (continuity of initial data)
Let u, v be 2 solutions with the same boundary conditions (D) or (N) or (R), but different initial data u_{0}, v_{0}. Then, $\forall t>0$ $\exists K=\left\|\partial_{u} f\right\|_{\infty}$:

$$
\|u(t, \cdot)-v(t, \cdot)\|_{\infty} \leq\left\|u_{0}-v_{0}\right\|_{\infty} e^{k t}
$$

Proof
$\Gamma \quad \omega=u-v: \quad \partial_{t} \omega-\Delta \omega=g(t, x) \omega$ g is uniformly bounded and $|g(t, x)| \leq K=\left\|\partial_{u} f\right\|_{\infty}$ and $M e^{k t}$ is a supersolution.
Taking $M=\|u-v\|_{\infty}$ we arrive at

$$
u-v \leq\|u-v\|_{\infty} e^{k t}
$$

L Analogously, $v-u \leqslant\|u-v\|_{\infty} e^{k t}$

The (continuous dependence on f)
Let $\quad f_{n} \in C^{1}(\mathbb{R})$ and $\begin{aligned} f_{n} & \rightarrow f \\ \partial_{u} f_{n} & \rightarrow \partial_{u} f\end{aligned}$ cunifornef,
Let u_{n} and u be solutions with seartion term f_{n} and f, respectively, and the same initial and boundary conditions.
Then $u_{n} \rightarrow u$ (locally uniformly in t)
Existence (only formulations and sketches of proof)
(1) linear case:
(sa) $\partial_{t} u=\Delta u+k u$
Easy to pass to the heat equation by the change of variables: $u=e^{k t} w$:

$$
w_{t}=\Delta w
$$

We know a lot about the heat eq'
(ib) non-homogeneas heat equation:

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u+g(t, x) \\
u(0, x)=u_{0}(x) \\
+b . c . \text { or boundress at }|x| \rightarrow+\infty
\end{array}\right.
$$

We can write an explicit formula for $\Omega=\mathbb{R}^{N}$

$$
u(t, x)=\int_{\mathbb{R}^{N}} K(x-y, t) u_{0}(y) d y+\int_{0}^{t} \int_{\mathbb{R}^{N}} K(x-y, t-s) g(s, y) d s d y
$$

where $K(x, t)=\frac{1}{(4 \pi t)^{N / 2}} e^{-\frac{|x|^{2}}{4 t}}$ - heat kernel
(2) non-linear case: $\quad \partial_{t} u=\Delta u * f(t, x, u)$

Let f, u_{0} satis fy the following assumptions:
$\left(u_{0}\right): \quad \exists M>0: \quad\left|u_{0}\right| \leq M$
(F): $f \in C^{1}, f(t, x, 0) \in L^{\infty}, \partial_{u} f \in L^{\infty}$

In particular, we can $f i x ~ K>s, \forall u \in \mathbb{R}$

$$
|f(t, x, u)| \leqslant K(1+|u|)
$$

- Moreover, $\forall u \geqslant-M, t \geqslant 0, x \in \Omega$ $f(t, x, u) \leqslant K(1+u+\mu)$,
- and $\forall u \leqslant M, t \geqslant 0, x \in \Omega$,

$$
f(t, x, u) \geqslant k(-1+u-\mu)
$$

Observation: we can always assume $\partial_{u} f>0$ by using the following trick:

$$
\begin{aligned}
& u(t, x)=e^{-N t} \tilde{u}(t, x), w h e r e N=\sup \mid \partial_{u} f(\\
& \partial_{t} u+L u=\underbrace{f(t, x, u)} \tilde{\tilde{f}(t, x, \tilde{u})} \\
& \left(\partial_{t}+L\right) \tilde{u}=\underbrace{N \tilde{u}+e^{N t} f\left(t, x, e^{-N t} \tilde{u}\right)} \\
& \partial_{\tilde{u}} \tilde{f}=N+e^{N t} \partial_{u} f \cdot e^{-N t}>0 .
\end{aligned}
$$

So in this section (existence) we will assume

$$
\partial_{u} f>0 \text {. }
$$

Thm (existence of solution to reaction-diff. eq) Under the above conditions on Ω, u_{0}, f there exists a solution of (*) for b.c. (D) or (N) or (R).
Idea: approximate the solution by a sequence $\left(\begin{array}{c}\text { monotone } \\ i t e r a t i o n \\ \text { method }\end{array}\right)$ of solutions $\left(u^{k}\right)_{k=1}^{\infty}$ of some linear probl. $\binom{$ iteration }{ method } which solutions we already know.

Sketch of proof:

- First, consider u - the solution of the eq:
$(\underline{U})\left\{\begin{array}{l}\partial_{t} \underline{u}-\Delta \underline{u}=K(-1+\underline{u}-M) \\ \underline{u}(0, x)=u_{0}(x) \\ +b . c .\end{array}\right.$
Solution exists (after change of variables we obtain just a heat equation) Clearly, M is a supersolution of $(\bar{V}) \Rightarrow \underline{u} \leq M$ Thus, $\quad k(-1+\underline{u}-M) \leq f(t, x, \underline{u})$ by assumption (F). Hence, \underline{u} is a sub-solution of (*)

Analogously, consider \bar{u} - the solution of

$$
(\bar{U})\left\{\begin{array}{l}
\partial_{t} \bar{u}-\Delta \bar{u}=K(1+\bar{u}+M) \\
\bar{u}(0, x)=u_{0}(x) \\
+b \cdot c
\end{array}\right.
$$

Solution exists and \bar{u} is a supersolution of $(*)$
Moreover, $\quad \underline{u}<\bar{u}$ for $t>0$ (by strong comp. the)
Second, lets built an approximating seq. Take $u^{\circ}=\underline{u}$, and consider u^{1} the solution of the following nonhomogeneous heat eq:

$$
\left\{\begin{array}{l}
\partial_{t} u^{1}-\Delta u^{1}=f\left(t, x, u^{0}\right) \\
u^{1}(0, x)=u^{0}(x) \\
+b \cdot c .
\end{array}\right.
$$

By comparison principle: $u^{0} \leqslant u^{1}$.

Due to monotonicity of f :

$$
f\left(t, x, u^{0}\right)=f(t, x, \underline{u})<f(t, x, \bar{u}),
$$

and comparison principle, we have

$$
u^{1} \leqslant \bar{u}
$$

In total, we get: $\underline{u}=u^{0} \leqslant u^{1} \leqslant \bar{u}$.
Proceeding for $k=1,2,3, \ldots$ as follows:

$$
\partial_{t} u^{k+1}-\Delta u^{k+1}=f\left(t, x, u^{k}\right)
$$

we obtain

$$
\underline{u}=u^{0} \leqslant u^{k} \leqslant u^{k+1} \leqslant \bar{u} \quad \forall k \in \mathbb{N}
$$

Third, at each point (t, x) the sequence converges $\quad u^{k}(t, x) \rightarrow u(t, x)$.
We would like to pass to the limit in the equation and get:

$$
\partial_{t} u-\Delta u=f(t, x, u) .
$$

Never the less, we know only that $u^{k} \rightarrow u$, bat don't know the same result about the derivatives?

It would be enough to know that:

- $\left\|\partial_{x_{i}} u\right\|_{C^{0, \alpha}([\tau, \tau] \times k)} \leq \widetilde{C}$
- $\left\|\partial_{t} u\right\|_{c^{0, \alpha}}([\tau, T] \times k) \leq \widetilde{C}$
(est.)
- $\left\|\partial_{x_{i} x_{j}} u\right\|_{C^{0, \alpha}}([\tau, T] \times k) \leq \widetilde{C}$
for constant \tilde{C} depending on τ, T, K

Here $C^{0, \alpha}([r, T] \times k)$ is a space of α-Ḧ̈lder τ compact set $(0<\alpha<1)$ continuos functions, that is $g \in C^{0, \alpha}$ means there exists a constant $C>0$:

$$
\left|g\left(t_{1}, x_{1}\right)-g\left(t_{2}, x_{2}\right)\right| \leq C_{c}^{C}\left(\left|t_{1}-t_{2}\right|^{\alpha}+\left|x_{1}-x_{2}\right|^{\alpha}\right)
$$

supplied with the norm:

$$
\|\cdot\| c_{c^{0, \alpha}(\ldots)}=\|\cdot\|_{L^{\infty}(\ldots)}+C
$$

Why enough to know estimates (est.)? Because of Arzela-Ascoli theorem: a set of functions f_{n} defined on a compact set, whose $C^{0, \alpha}$-norm is bounded, admits a subsequence which converges in c°.

So by using (est.) and Arzela-Ascoli
theorem, we Eon (several times) take a theorem, we Eon (several times) take a convergent subsequence, and pass to the limit in the equation. By uniqueness of the limit this is u that satisfies the reaction-diffusion eq.
Rok: let us put under the carpet how to obtain estimates like (est.) Sometimes they are called Schauder estimates and are based on fine properties of the heat kernel and the exact formula for solution: $u_{t}=\Delta u+g$

Just for the sake of completeness, let me give the formulation of Schauder-type estimates: compact
Tho (Schauder estimates):
Let $0<\alpha^{\prime}<\alpha<1, \quad g \in C_{l o c}^{0, \alpha}((0,+\infty) \times \Omega)$.
Let u be a solution of

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=g(x, t) \\
u(0, x)=u_{0}(x) \in C^{0}(\Omega)
\end{array}\right.
$$

Then:

- for all $0<\tau<T<+\infty$ and $\forall K \subset \bar{\Omega}$

$$
\begin{aligned}
& \|u\|_{c^{0, \alpha}([\tau, T] \times k)}+\left\|\partial_{x_{i}} u\right\|_{c^{0, \alpha}([\tau, T] \times k)} \leq \\
& \leq C \cdot\left[\|g\|_{L^{\infty}([0, T+1] \times \bar{\Omega})}+\|u\|_{L^{\infty}([0, T+1] \times \bar{\Omega})}\right.
\end{aligned}
$$

- for all $0<\tau<T<+\infty$ and $\forall k^{\prime} \subset k \subset \Omega$ $k^{\prime} \neq K$ - two compact sets:

$$
\begin{aligned}
& \left\|\partial_{t} u\right\|_{c^{0, \alpha^{\prime}}\left([r, T] \times k^{\prime}\right)}+\left\|\partial_{x_{i} x_{j}} u\right\|_{c^{0, \alpha}\left([z, T] \times k^{\prime}\right)} \leq \\
& \leq C \cdot\left[\left\|g c^{0, \alpha}\left(\left[\frac{r}{2}, T+1\right] \times k\right)+\right\| u \|_{L^{\infty}([0, T+1] \times k)}\right)
\end{aligned}
$$

Here constant C may depend on $\tau, T, K, K^{\prime}, \alpha$.
Last comment on the proof of the tho \exists. As \underline{u} and \bar{u} satisfy the initial cong. and $\quad \underline{u} \leq u^{k} \leq \bar{u}$, then u^{k} will also satisfy the initial condition.

Lecture 19: Existence of travelling wave (TW) solutions
to reaction-diffusion egs
(*) $\quad u_{t}=\Delta u+f(u), \quad u: \mathbb{R}_{+} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$
Candidates for the reaction term $f(u)$:

F-KPP
Fisher, Kolmogorov
Petrovskii, Piskunav (1937)

- monostable case with condition that $f(u)$ lies below the tangent line at $u=0$ (think of $f(u)=u(1-u)$)

$$
f^{\prime}(0)=\sup _{u \in(0,1]} \frac{f(u)}{u}
$$

Monostable

Bistable

There is also a case of ignition / combustion non-linearity: $f(u)=0, u \in[0,0]$

Consider $u(0, x)=u_{0}(x) \in[0,1] \Rightarrow u(t, x) \in[0,1]$ by comparison principle.
We are interested in traveling wave (TW) solutions (sometimes are also called traveling fronts $=T F$) Fix direction $\vec{e} \in \mathbb{R}^{N}$ and consider the solution of the form: $\tilde{u}: \mathbb{R} \rightarrow[0,1]$ such that (**) $u(t, x)=\tilde{u}(x \cdot \vec{e}-c t), c \in \mathbb{R}$-speed of TW (apriori unknan)
Rok 1: \tilde{u} is constant on hyperplanes or thogonal to \vec{e} and for this reason sometimes is called planar TW.
Rmk2: for simplicity of notation we will omit " \sim " and just write u istead of \tilde{u} Putting form (**) into (*), we get an

$$
(T W)_{\infty}\left\{\begin{array}{l}
-u^{\prime \prime}-c u^{\prime}=f(u) \\
u(-\infty)=1, u(+\infty)=0, u^{\prime}(-\infty)=u^{\prime}(+\infty)=0
\end{array}\right.
$$

Question: for which $c \in \mathbb{R}$ does there exist a solution of (TW) ∞ problem?

The (existence of TW solutions)
(i) In the bistable and combustion cases there exists a unique $c \in \mathbb{R}$ for which there exists a solution of (TW) ∞.
Moreover, u is unique and decreasing;

- sign of c coincides with the sign of

$$
\int_{0}^{1} f(u) d u
$$

(ii) In the monostable case $\exists c>0$ such that there exists a solution (TW) iff $c \geqslant c^{*}$. When it exists the solution is unique and is decreasing.
(iii) In FKPP case $\quad c^{*}=2 \sqrt{f^{\prime}(0)}$.

Rok: (i) in the bistable case if $c>0$, this means that the state one invades 0 ; if $c<0$ the state 0 invades 1 ; if $c=0$ there is a co-existence of two states.
(ii) The sign of speed c is easy to understand: multiply (TW) $+\infty$ by u^{\prime} and $\int_{-\infty}^{+\infty} . . d z$:

$$
-\int_{-\infty}^{+\infty} u^{\prime \prime} \cdot u^{\prime}-c \int_{-\infty}^{+\infty} u^{\prime 2}=\left.\int_{-\infty}^{\infty} f(u) u^{u d \xi} d u\right|^{-\infty}+\infty \mapsto 1
$$

$$
-\frac{1}{2}\left(u^{\prime}\right)^{2} T_{-\infty}^{+\infty}-c \int_{\mathbb{R}}\left(\mu^{\prime}\right)^{2}=\int_{1}^{0} f(u) d u \Rightarrow \operatorname{sign}(c)=\operatorname{sign} \int_{0}^{1} f_{0}
$$

Proof:
There exists 2 proofs: $\varlimsup_{\longrightarrow}^{\text {dynamical" (phase }}$ plane method)
Sketch of "dynamical" proof
Write (TW) as a system of two ODEs of first order: $u^{\prime}=v$

$$
\left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=-c v-f(u)
\end{array} \quad u \in[0,1]\right.
$$

Eq. (TW) $)_{\infty}$ has a solution $u \Leftrightarrow \exists$ heteroclinic orbit $\binom{u(\xi)}{v(3)}$ such that $\binom{u(3)}{v(3)}_{\xi \rightarrow-\infty}=\binom{1}{0}$ and $\binom{u(\xi)}{v(\xi)}_{\xi \rightarrow+\infty}=\binom{0}{0}$

Step 1: Zoom into vicinicity of fixed point:

$$
\left\{\begin{array} { l l }
{ u = 1 } \\
{ v = 0 }
\end{array} \text { and } \left\{\begin{array} { l l }
{ u = 0 } & { \{ } \\
{ v = 0 }
\end{array} \left\{\begin{array} { l }
{ u = 0 } \\
{ v = 0 }
\end{array} \text { and } \left\{\begin{array} { l }
{ u = \theta } \\
{ v = 0 }
\end{array} \text { and } \left\{\begin{array}{l}
u=1 \\
v=0
\end{array}\right.\right.\right.\right.\right.
$$

Consider a linearized system at equilibrium point $(\alpha, 0)$

$$
\left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=-c v-f^{\prime}(\alpha) \cdot u
\end{array} \quad\binom{u}{v}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-f^{\prime}(\alpha) & -c
\end{array}\right)\binom{u}{v}\right.
$$

Eigenvalues are: $\left|\begin{array}{lc}-\lambda & 1 \\ -f^{\prime}(\alpha) & -c-\lambda\end{array}\right|=\lambda^{2}+c \lambda+f^{\prime}(\alpha)$

$$
\lambda_{ \pm}=\frac{-c \pm \sqrt{c^{2}-4 f^{\prime}(\alpha)}}{2} ; \quad r_{ \pm}=\binom{1}{\lambda_{ \pm}}
$$

$$
\left\{\begin{array}{l}
u=1 \\
v=0
\end{array}\right.
$$

$$
f^{\prime}(1)>0 \quad \Rightarrow \quad \lambda \pm \in \mathbb{R}
$$

In particular, $\lambda_{+}>0$ and $\lambda_{-}<0$.
This is a saddle point.
Local behavior in the vicinity of $\binom{1}{0}$:
This picture is for the linearized system. By Grobman-Martman theorem similar picture is true for the original nonlinear system.
Notice that there is exactly one orbit that leaves the point $\binom{1}{0}$, and our goal is to understand for which c it enters ($\begin{aligned} & 0 \\ & 0\end{aligned}$ without crossing $\{u=0\}$ (we want $u \in[0,1]$)
$\left\{\begin{array}{l}u=0 \\ v=0\end{array}\right.$ Local behavior depends on the $\operatorname{sig} n\left(c^{2}-4 f^{\prime}(0)\right)$, and is different for monostable and bistable cases

Case I : monostable

- If $0<c<2 \sqrt{f^{\prime}(0)}$, then $\lambda_{ \pm} \in \mathbb{C}-\mathbb{R}$ and this is a spiral point. This
 would immediately make $u<0$ at some point along the orbit. This is forbidden as $u \in[0,1]$.
- So $c \geqslant 2 \sqrt{f^{\prime}(0)}$ (look at the statement for the FKPP case !)
- For $c>2 \sqrt{f^{\prime}(0)} \quad \lambda \pm<0$, so $\binom{0}{0}$ is a node For the FKPD case $f^{\prime}(0)=\sup _{u \in[0,1]} \frac{f(u)}{u}$.

Lemma: let $c>\sup ^{\frac{f(u)}{u} \text {. Then the orbit }\binom{u}{v} ~}$ s.t. $\left.\binom{u}{v}\right|_{3 \rightarrow-\infty} ^{u \in(0,1]}=\binom{1}{0}$, does not intersect the line $v=-\frac{c}{2} u$ in the quarter plane $\{v<0\} \cap\{u>0\}$
Rok: as a consequence we get that this orbit comes to point ($\left.\begin{array}{l}0 \\ 0\end{array}\right)$ as $t \rightarrow \infty$ without crossing $u=0$.
Proof
[1) At $+\rightarrow-\infty$ the "red" orbit is above $v=-\frac{c u}{2}$
2) By contradiction: $\exists \xi_{0} \in \mathbb{R}$ - the first v point of intersection of $v=-\frac{c u}{2}$ and
 the "red" orbit
At this point we have $\left\{\begin{array}{l}-u^{\prime \prime}\left(\xi_{0}\right)-c u^{\prime}\left(\xi_{0}\right)=f\left(u \xi_{0}\right) \\ u^{\prime}\left(\xi_{0}\right)=-\frac{c}{2} u\left(\xi_{0}\right)\end{array}\right.$
For $c>2 \sqrt{\sup \frac{f(u)}{u}}$, we obtain

$$
u^{\prime \prime}\left(3_{0}\right)=-c u^{\prime}\left(3_{0}\right)-f\left(u\left(3_{0}\right)\right)>-\frac{c u^{\prime}\left(3_{0}\right)}{2}
$$

This is a contradiction because this means that $\binom{u}{v}$ was already under the line $v=-\frac{c u}{2}$ for $\xi<\xi 0$.

$$
\begin{aligned}
& \text { trajectory } \\
& \left.\frac{d}{d j}\binom{u}{u^{\prime}}=\binom{u^{\prime}}{u^{\prime \prime}}=u^{\prime}\binom{l^{\xi_{0}}}{a} \quad \begin{array}{c}
\text { line } \\
u^{\prime}=-\frac{c u}{2} \\
u^{\prime}
\end{array}\right)=\binom{5}{-\frac{c \xi}{2}} \Rightarrow\binom{u^{\prime}}{u^{\prime \prime}}=\binom{1}{-\frac{c}{2}}
\end{aligned}
$$

a Thus the angle as $3<3$, is $-\frac{c}{2}$ smaller as in the picture. Thus, in a monostable case there exists at least 1 necessary orbit

In fact, we can say more. There is some mono. tonicity argument in how trajectories depend on c. Here are 2 observations:
Observation 1: locally in the vicinity of point ($\left.\begin{array}{l}1 \\ 0\end{array}\right)$ the trajectory $\binom{u_{1}}{v_{1}}$ for c_{1} is above the trajectory $\binom{u_{2}}{v_{2}}$ for c_{2} if $c_{1}>c_{2}$ Indeed, their tangent vector is $\binom{1}{\lambda_{+}}$and $\lambda_{+}=\frac{-c+\sqrt{c^{2}-4 f^{\prime}(1)}}{2}$ is a decreasing function of c.
Observation 2: in fact, these two trajectories for $c_{1}>c_{2}$ do not intersect in the whole strip $\left\{u^{\prime}<0\right\} \cap\{0<u<1\}$ By contradiction, assume they intersect at some point $(s a y, \xi=0)$

$$
\left\{\begin{array}{l}
u_{1}(0)=u_{2}(0) \\
u_{1}^{\prime}(0)=u_{2}^{\prime}(0)
\end{array}\right.
$$

This means:

$$
\begin{aligned}
& u_{1}^{\prime \prime}(0)=-c_{1} u_{1}^{\prime}(0)-f\left(u_{1}(0)\right)>-c_{2} u_{2}^{\prime}(0)-f\left(u_{2}(0)\right)=u_{2}^{\prime \prime}(0) \\
& \left.\frac{d}{d \xi}\binom{u_{1}}{u_{1}^{\prime}}\right|_{0}=\binom{u_{1}^{\prime}(0)}{u_{1}^{\prime \prime}(0)}
\end{aligned}
$$

So the intersection can not exist, at most they can "touch".
So this monotonicity argument teaches us, that the set of C such that there exists a front is of the form:
either $\left[c^{*},+\infty\right)$ or $\left(c^{*},+\infty\right)$
c^{*} is necessarily finite by previous lemma

It suffices to prove that for $c=c^{*}$ there exists a trajectory between $\binom{1}{0} \rightarrow\binom{0}{0}$ A continuity argument works:
if for some C_{c} the trajectory does not give a front, then it crosses the $\{u=0\}$-axis. One can show that for \tilde{c} close to $c^{(\tilde{\varepsilon} x)}$ the orbit also crosses the $\{u=0\}$-axis, which will lead to a contradiction. This continuity of an orbit w.r.t. c is nontrivial, but we omit the proof.

This finishes the proof for the general monostable case.

Rok: Notice that for FKPP case

$$
f^{\prime}(0)=\sup _{u \in(0,1]} \frac{f(u)}{u} \quad \text {, thus }
$$

$c^{*}=2 \sqrt{f^{\prime}(0)}$, and item ($i i i$) is also proven.
Next time we will prove the theorem for the bistable case, and, may be give a PDE proof of this theorem.

Lecture 20: We want to finish proving theorem:

$$
(T W)_{\infty}\left\{\begin{array}{l}
-u^{\prime \prime}-c u^{\prime}=f(u) \\
u(-\infty)=1, u(+\infty)=0, u^{\prime}(-\infty)=u^{\prime}(+\infty)=0
\end{array}\right.
$$

The (existence of TW solutions)
(i) In the bistable (and combustion) cases there exists a unique $c \in \mathbb{R}$ for which there exists a solution of (TW) ∞.
Moreover, u is unique and decreasing; - sign of c coincides with the sign of

$$
\int_{0}^{1} f(u) d u
$$

Proof (only sketch)
T. Let $S^{i} f(u) d u>0$ (the other case is done

$$
\begin{aligned}
& \left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=-c v-f(u)
\end{array}\right. \\
& \text { fixed points: } \\
& \binom{0}{0},\binom{0}{0},\binom{1}{0} \\
& \alpha=\{0,0,1\}
\end{aligned}
$$

$$
\lambda_{ \pm}=\frac{-c \pm \sqrt{c^{2}-4 f^{\prime}(\alpha)}}{2} ; \quad r_{ \pm}=\binom{1}{\lambda_{ \pm}}
$$

Rok: $f^{\prime}(0)$ and $f^{\prime}(1)$ are negative \Rightarrow $\lambda_{ \pm} \in \mathbb{R}$ and, moreover, $\lambda_{+}>0, \lambda_{-}<0$ thus both 0 and 1 are saddle points.

So the only way to have an orbit from ($\left.\begin{array}{l}0 \\ 0\end{array}\right)$ to ($\left.\begin{array}{l}1 \\ 0\end{array}\right)$ is when the unstable manifold (trajectory) from point ($\left.\begin{array}{l}1 \\ 0\end{array}\right)$ coincides with the stable manifold of point ($\left.\begin{array}{l}0 \\ 0\end{array}\right)$. It is natural that this is a rare situation (despite the FKPP case where ($\left.\begin{array}{l}0 \\ 0\end{array}\right)$ was node and locally all trajectories are attracted by (l).

Idea: find two c st. we have: "blue" is above "red"
"blue" is below "red"
(I)

(II)

Then by continuity there exists c" where
"blue" and "red" intersect and, thus, coincide
I) Take c so It can be proven that trajectory passing through point $\binom{\gamma}{0}$ will recesserily intersect the axis $u=0$ for $v<0$. This is a natural "barrier" between the "blue" and "red" orbits. No proof. Moreover, the set of c with such property is open, and by monotonicity is, say $\left(-\infty, c_{1}\right)$,
(II) Take $c \gg 1$. Notice that the restriction of f on $[\theta, 1]$ is of monostable type, for at least for one c_{2} the "red" orbit will go $\binom{1}{0} \mapsto\binom{0}{0}$ (and as a consequence for all $c>c_{2}$)

As a result there is a segment $\left[c_{1}, c_{2}\right]$, for which there exists an orbit from $\binom{1}{0} \mapsto\binom{0}{0}$
It remains to show that $\left[c_{1}, c_{2}\right]$ consists of 1 point. By contradiction, assume $c_{1}<c_{2}$ such that the unstable "red" trajectory of $\binom{1}{0}$ converges to ($\binom{0}{0}$. Let's call them T_{1}, T_{2}.

- As before, by monotonicity in C, T_{1} is not above T_{2}.
- On the other hand the tangent vector for $T_{1,2}$ at point $\binom{0}{0}$ is $r_{1,2}=\binom{1}{\lambda_{1,2}}$

$$
\lambda_{-}^{1,2}=\frac{-c_{1,2}-\sqrt{c_{1,2}^{2}-4 f^{\prime}(0)}}{2}
$$

Notice that $\lambda_{-}^{1}>\lambda_{-}^{2}$, which gives a contradiction (see picture below):

(!?) as T_{1} is NOT above T_{2}
"PDE" proof of existence of TW solutions.
Step 1: Let $a \geqslant 1$ and consider

$$
(T W)_{a} \quad\left\{\begin{array}{l}
-u^{\prime \prime}-c u^{\prime}=f(u) \quad \text { in }(-a, a) \\
u(-a)=1, u(+a)=0
\end{array}\right.
$$

Proposition 1: $\forall a, c \quad \exists!u=u_{a, c}, \quad 0<u<1, u^{\prime}<0$.
Proof:
$\Gamma \exists$

$$
\begin{aligned}
& u \equiv 0 \text { - subsolution }\} \\
& u \equiv 1 \text { - supersolution }\} \Rightarrow \exists \text { solution } \\
& \text { (ecg. Person's method) }
\end{aligned}
$$

(1) Sliding method:
take 2 solutions: us of (Tv)
Letis prove that $u \leq v$ and $v \leq u$ (and thus, $u \equiv v$)
$u \leq v$ Notice that $\forall h>0 u(x+h)$ also satisfies the equation $-u^{\prime \prime}-c u^{\prime}=f(u)$, as the eq. is translation invariant.
Consider $u(x+h)$ for $0<h<2 a$ and h being close to $2 a$. Then on the interval
 $u(x+h) \leqslant v(x)$ as $u(x+h)$ is close to $u(a)=0$ and $v(x)$ is close to $v(-a)=1$ (and are continuous in x)

Start decreasing h (that is moving the graph $u(x+h)$ to the right) and consider ho s.t:

$$
h_{0}=\inf \left\{h^{*} \in(0,2 a): u(x+h)<v(x) \quad \begin{array}{l}
\forall x \in[-a, a-h] \\
\\
\left.\forall h \in\left(h^{*}, 2 a\right)\right\}
\end{array}\right.
$$

That is the "first moment" when the graphs $u(x+h)$ and $v(x)$ touch, that is

$$
\left\{\begin{array}{c}
u\left(x+h_{0}\right) \leq v(x) \quad \forall x \in[-a, a-h] \\
\exists x_{0} \in[-a, a-h]: \quad u\left(x_{0}+h 0\right)=v\left(x_{0}\right)
\end{array}\right.
$$

- If $h_{0}=0$, then $u \leqslant v$ and $t h i s$ is what we want
- If $h_{0}>0$, then notice that $x_{0} \neq-a$ as $u\left(-a+h_{0}\right)<1=v(-a)$. Also $x_{0} \neq a-h_{0}$ as $u\left(a-h_{0}+h_{0}\right)=u(a)=0<v\left(a-h_{0}\right)$.

So $\exists x_{0} \in(-a, a-h): u\left(x_{0}+h_{0}\right)=v\left(x_{0}\right)$
But this is a contradiction with the strong maximum principle as $u(x+h)$ is a subsolution and v is a solution, so they can not touch in an interior point of the domain. Thus, ho can not be positive.
$v \leqslant u$ Exchanging the positions of u and v in the previous argument, we get $v \leq u$.
Thus, we have proven the uniqueness.
u Let's again use the sliding method, but now for $u(x+h)$ and $u(x)$.
Again for $h \approx 2 a$ we have

$$
u(x+h)<u(x) .
$$

Take

$$
\begin{aligned}
h_{0}=\inf \left\{h^{*} \in(0,2 a): u(x+h)<u(x) \quad\right. & \forall x \in[-a, a-h] \\
& \left.\forall h \in\left(h^{*}, 2 a\right)\right\}
\end{aligned}
$$

- If $h_{0}=0$, then $\forall h \in(0,2 a) u(x+h)<u(x)$, and this gives $u^{\prime} \leq 0$ (only non-strict inequality)
- If ho>0, then by the same argument (strong maximum principle) we get a contradir.

Now let's show that, indeed, $u^{\prime}<0$ (strict ines.) Differentiate the eq. in (TWI:

$$
-u^{\prime \prime \prime}-c u^{\prime \prime}=f^{\prime}(u) \cdot u^{\prime}
$$

Denote $v=u^{\prime}$ and consider $f^{\prime}(u)$ as known function:

Then: $\quad-v^{\prime \prime}-c v^{\prime}=g(\xi) v$
$V_{0} \equiv 0$ is a solution of and $V=u^{\prime} \leq 0$ is also a solution. By strong maximum principle, either $\quad v \equiv 0$ or $v<0$.
$L \quad$ As $u \neq 0 \Rightarrow v \neq 0 \Rightarrow v=u^{\prime}<0$.
We want now to fix C and take limit $a \rightarrow+\infty$ But the theorem says that only for some special a there exist a solution. Why this is happening? For many choices of "O the solution will "run away" and in "almost al" points converge to 1 or 0 :

So in the limit you get zero information as the solution converges to 1 or 0 (steady states that we already know)
"Pinning": let's restrict ourselves only to such solutions that have a prescribed value at 0 :
Proposition 2: \exists ! c s.t. the corresponding u satisfies an extra condition $u_{a, c}(0)=0$, where θ is:

- bistable case: the unstable equil. $\theta \in(0,1)$
- ignition case: $\sup \{u<s: f(u)=0\}$
- monostable case: $\quad \forall \theta \in(0,1)$

Proof

「 For a moment assume no condition $u_{a, c}(0)=Q$
Consider a mapping: $c \mapsto u_{c}$ It is decreasing and continuous. Why decreasing?

- Take a solution u for some value c_{1} Then it is a supersolution for $c_{2}>c_{1}$ (due to sign u'<0)

$$
\begin{aligned}
& \quad-u^{\prime \prime}{\underset{\sim 0}{-u_{0}^{\prime}} c_{2}-f(u)>-u^{\prime \prime}-u^{\prime} c_{1}-f(u)=0}_{\Rightarrow}^{u_{c_{2}}<u_{c_{1}}} \\
& \underset{\text { exercise }}{ }\left\{\begin{array}{llll}
\text { As } & c \rightarrow+\infty & u_{c}(x) \rightarrow 0 & \text { in }(-a, a] \\
\text { As } & c \rightarrow-\infty & u_{c}(x) \rightarrow 1 & \text { in }[-a, a)
\end{array}\right.
\end{aligned}
$$

All the above gives the unique $c: u_{a, c}(0)=0$
Let's prove an apriori bound on c from Prop. 2 (to be able to get limit of c when $a \rightarrow \infty$)
Lemma : Let $m=\sup _{s \in(0,1]} \frac{f(s)}{s}$.

$$
\forall \delta>0 \quad \exists A>0 \quad \text { s.t. } \quad \forall a \geq A \quad c \leq 2 \sqrt{m}+\delta .
$$

Proof:
Consider a problem:

$$
(z)\left\{\begin{array}{l}
-z^{\prime \prime}-c z^{\prime}-m z=0 \\
z(-a)=1, \quad z(a)=0
\end{array} \quad \text { in }(-a, a)\right.
$$

The solution u of $(T \omega) a$ is a sub-solution of (z)

$$
\begin{aligned}
m u & =\sup _{v \in(0,1]} \frac{f(v)}{v} \cdot u \geqslant \frac{f(u)}{u} \cdot u=f(u) \\
-m u & \leq-f(u)
\end{aligned}
$$

Claim: the operator $\mathcal{L}=-\partial_{x_{x}}^{2}-c \partial_{x}-m$ satisfies the maximum principle (MP) in $(-a, a)$ for $c>2 \sqrt{n}$ provided a is large enough.
(no proof for a moment)
Assume by contradiction that $c>2 \sqrt{m}+\delta$
Then by claim the operator $\mathcal{L}=-\partial_{x x}^{2}-c \partial_{x}-m$ satisfies the maximum principle, thus, for $w=u-z$ we have $L \omega \leq 0$ and $w(-a)=\omega(a)=0$ $\Rightarrow w \leq 0 \Rightarrow u \leq z$ for a large enough.

But we can find z explicitly.
Indeed, $z(x)=\frac{e^{r_{+}(x-a)}-e^{r-(x-a)}}{e^{-2 r_{+} a}-e^{-2 r_{-} a}}$, where
r_{+}, r_{-}are the 2 real roots of:

$$
r^{2}+c r+m=0
$$

Notice that $z(0)=\frac{1}{e^{-r_{+} a}+e^{-r-a}} \rightarrow 0$
and thus, $u(0) \rightarrow 0$, which is a contradiction with "pinning" condition $u(0)=0$.

Rok: one can bound c from below: consider $\quad v(x)=1-u(-x)$

$$
\left\{\begin{array}{l}
-v^{\prime \prime}+c v^{\prime}=-f(1-v) \\
v(-a)=1, v(a)=0
\end{array}\right.
$$

$$
\begin{array}{rlrl}
\Rightarrow & -c & \leq 2 \sqrt{m^{\prime}}+\delta & \text { where } \quad m^{\prime}=\sup \left(-\frac{f(1-s)}{s}\right) \\
c \geq-2 \sqrt{m^{\prime}}-\delta & & s \in(0,1]
\end{array}
$$

So if c is too negative, then we $u(0)$ will go to 1 and can not satisfy the "pinning" condition $u(0)=0$.
Step 2:
To we can pass to the limit a $a \rightarrow+\infty$ $c_{a} \rightarrow C, \quad u_{a} \rightarrow u$.
If u_{a}^{\prime} and $u_{a}^{\prime \prime}$ are bounded then by ArzelaAscoli theorem we can take a convergent subseq. and pass to the limit in the eq.

$$
\text { (*) }\left\{\begin{array}{rl}
-u^{\prime \prime}-c u^{\prime} & =f(u) \text { in } \mathbb{R}, \\
u(0)=0 & u \in[9,] \\
u^{\prime} \leq 0
\end{array}\right.
$$

Monostable case We have shown that there exists at least 1 solution of (*). Also we know that $u^{\prime} \leq 0$ and for $\xi \leq 0 \quad u \in[\theta, 1]$, so there exists a limit $u(-\infty)=u_{0}$
Also, $u^{\prime}(-\infty)=0, u^{\prime \prime}(-\infty)=0 \quad u_{0}: f\left(u_{0}\right)=0$
This means that $u_{0}=1$.
Analogously, $u(+\infty)=0$.
Bistable case The same reasoning does not work for the bistable case as there could happen that $u \equiv 0$.

Lecture 21: We finish "PDE" proof for existence of TW solutions for reaction-diffusion eq.

$$
u_{t}=\Delta u+f(u)
$$

and formulate the invasion / extinction criteria for monostable / bistable nonlinear.

- But first let's prove a version of (MP) that we left without proof in the previous
Lemma: Let $\mathcal{L}=-\frac{d^{2}}{d x^{2}}-c \frac{d}{d x}-m$ or $(-a, a)$
Here $c, m \in \mathbb{R}$. Assume $c>2 \sqrt{m}$.

$$
\text { If }\left\{\begin{array}{l}
\mathcal{L} z \leq 0 \\
z(a) \leq 0 \\
z(-a) \leq 0
\end{array} \quad \Rightarrow \quad z(x) \leq 0 \quad \forall x \in(-a, a)\right.
$$

Proof:
Trick (Liouville transform): $\mathscr{L z}=0$. consider $\quad z=e^{-c / 2 x} \varphi$ (this should kill the first order term in 2). Indeed,

$$
\begin{aligned}
\partial_{x} z & =-\frac{c}{2} e^{-\frac{c}{2} x} \varphi(x)+e^{-c / 2 x} \varphi^{\prime}(x) \\
\partial_{x=}^{2} z & =\frac{c^{2}}{4} e^{-c / 2 x} \varphi-c e^{-c / 2 x} \varphi^{\prime}+e^{-c / 2 x} \varphi^{\prime \prime} \\
\Rightarrow & \mathcal{L} z=-\frac{c^{2}}{4} e^{-c / 2 x} \varphi+c e^{-c / 2 x} \varphi^{\prime}-e^{-c / 2 x} \varphi^{\prime \prime} \\
& +\frac{c^{2}}{2} e^{-c / 2 x} \varphi-c e^{-c / 2 x} \varphi^{\prime}-m e^{-c / 2 x} \varphi= \\
& =e^{-c / 2 x} \cdot\left[-\varphi^{\prime \prime}+\varphi\left(\frac{c^{2}}{4}-m\right)\right]
\end{aligned}
$$

Notice that $\operatorname{sign}(z)=\operatorname{sign}(\varphi)$.

If $\exists x_{0} \in(-a, a): \quad \varphi\left(x_{0}\right)>0$ (w.l.0.g. x_{0} is argmax of φ), then $\varphi^{\prime \prime}\left(x_{0}\right) \leq 0$ and we have

$$
\begin{aligned}
&-\varphi^{\prime \prime}+\left(\frac{c^{2}}{4}-m\right) \\
& v_{0}\left.v_{0}\right|_{x_{0}}>0
\end{aligned} \quad(1 ?) \quad L z \leq 0 .
$$

- Travelling wave solutions
satisfy the equation: $(T W)_{\infty}\left\{\begin{array}{l}-u^{\prime \prime}-c u^{\prime}=f(u) \\ u(-\infty)=1, u(+\infty)=0\end{array}\right.$
Monostable case: we have shown that $\exists \lim c_{a}=c$ such that \exists solution of $(T \omega)_{\infty}^{\infty}$ with this c. Let's show that the solution of $(T \omega)_{\infty} \exists$ for $[c,+\infty)$.
The following lemma is true only for monostable case (we use the fact that $f(u)>0, u \in(0,1)$) Lemma: If \exists solution of (TW) ∞ for c, then $\forall c \geqslant c$ there also exists a solution of $(T \omega) \infty$.
Proof:
le Let u_{c} be a solution with c, then u_{c} is a supersolution for $c_{1}>c$ and $\quad u_{c}^{\prime}<0$. So is $u_{c}(\cdot+r), r \in \mathbb{R}$

Introduce a finite-domain approximation:

$$
\left\{\begin{array}{l}
-v^{\prime \prime}-c_{1} v^{\prime}=f(v) \quad \text { in } \quad(-a, a) \\
v(-a)=u_{c}(-a+r) \\
v(+a)=u_{c}(a+r)
\end{array}\right.
$$

$u_{c}(\cdot+r)$ is a supersolution
$(u(a+r)$ is a subsolution (it is constail) Here we use $f(a)>0 \quad \forall a \in(0,1)$

$$
\Rightarrow \exists \text { a solution } v(x) \text { : }
$$

Actually, the sliding method works! and only needs) $\Rightarrow \quad v$ is unique and decreasing

By the same argument as before
$\exists!r$ st. $v(0)=\theta$

By continuity there exists r st. $v(0)=\theta$ Again tending $a \rightarrow \infty$ we get a limit $L \quad v_{a} \rightarrow v$ and get a solution for c_{1}.

Rok: the set of c for which there exists a solution of (TW) ∞ is closed. Indeed, if we have a sequence of solutions $\left(c_{n}, u_{n}\right)$ with $c_{n} \rightarrow c$ w.l.o.g. $u_{n}(0)=\theta$ so we can pass to the limit and get a solution of $(T \omega)_{\infty}$ with c.

Bistable case We pass to the limit as

- C_{a} is bounded
- $u_{a}(0)=\theta$
- $u_{\alpha}^{\prime} \leq 0$

$$
\Rightarrow \quad c_{a} \rightarrow c, u_{a} \rightarrow u: u_{a} \leq 0,\left\{\begin{array}{l}
-u^{\prime \prime}-c u^{\prime}=f(u) \\
u(0)=0
\end{array}\right.
$$

So we need to show that $u \not \equiv \Theta$. It suffices to show that: $u_{a}^{\prime}(0) \nless 0$
Then $u^{\prime}(0)<0$ "then the "problem is reduced to "2 monostable" cases and $u(-\infty)=1$ and $u(+\infty)=0$.

Let's show that $u_{a}^{\prime}(0) \not \underset{a \rightarrow \infty}{\not}$.
Lemma : $\quad \int_{-a}^{0} f\left(u_{a}(x)\right) d x \geqslant \delta>0 \quad \forall a \geqslant 1$.
Proof:
C Consider $\quad \int_{-a}^{0} f\left(u_{a}\right) u_{a}^{\prime} d x=F(\theta)-F(1)$

where $f(z)=\int_{0}^{2} f(u) d u$
As $\left\|u_{a}^{\prime}\right\|_{L \infty} \leq k$ and $\quad \begin{aligned} & f(u)>0 \\ & u \in(\theta, 1)\end{aligned}$
So $\delta^{\prime} \leq\left|\int_{-\infty}^{0} f\left(u_{-}\right) u_{a}^{\prime}\right| \leq \int_{-a}^{0} f(u) d u \cdot \| u_{a}^{\prime} l_{\infty}$

$$
\Rightarrow \quad \int_{-a}^{0} f(u) d u \geq \frac{\delta^{\prime}}{\left\|u_{a}^{\prime}\right\|_{\infty}} \geq \frac{\delta^{\prime}}{K}
$$

$$
-u^{\prime \prime}-c u^{\prime}=f(u)
$$

Integrate this $\int_{-a}^{0}:-\left.u^{\prime}\right|_{-a} ^{0}-\left.c u\right|_{-a} ^{0}=\int_{-a}^{0} f(u) d x \geqslant \delta$

$$
-u^{\prime}(0)+\underbrace{u^{\prime}(-a)}_{\leqslant 0}-c[u(0)-u(-a)] \geqslant \delta
$$

$$
\begin{aligned}
& \Rightarrow \frac{c(1-\theta)-u^{\prime}(0) \geqslant \delta}{\text { path from }-a} \text { to } 0 \text {. } \\
& \text { the }
\end{aligned}
$$

Let's use the other path from o to a :

$$
-u^{\prime \prime}-c u=f(u)
$$

$\begin{gathered}-u^{\prime \prime}-c u=f(u) \quad \\ \text { Integrate this } \\ -\int_{0}^{\prime}(a)+u^{\prime}(0)+c \theta \leq 0\end{gathered} \quad-\left.u^{\prime}\right|_{0} ^{a}-\left.c u\right|_{0} ^{a}=\int_{0}^{a} f(u(u))$

$$
\begin{aligned}
& -u^{\prime}(a)+u^{\prime}(0)+c \theta \leq 0 \\
& u^{\prime}(0) \leq-c \theta+\underbrace{u^{\prime}(a)}_{0} \leq-c \theta
\end{aligned}
$$

Thus, $\quad u^{\prime}(0) \leq-c \theta$
Combining $\left\{\begin{array}{l}u^{\prime}(0) \leq-\delta-c(1-\theta) \\ u^{\prime}(0) \leq-c \theta .\end{array}\right.$
When $\quad|c|<\frac{\delta}{(c-\theta)^{2}}$, then $u^{\prime}(0) \leq-\frac{\delta}{2}$
Otherwise $u^{\prime}(0) \leq-\frac{\delta \theta}{(1-\theta)^{2}}$ again strictly

- Uniqueness of c^{*} for bistable case is a Lconsequence of a sliding method (exercise)

Invasion, extinction and asymptotic speed of
(*) $\begin{cases}u_{t}=\Delta u+f(u) & \text { in } \mathbb{R}^{N} \\ u(0, x)=u_{0}(x), & u_{0} \neq 0, \\ \underbrace{}_{\text {for simplicity }}\end{cases}$
The (invasion for FKPP case)
Assume that $\quad \lim _{s \rightarrow 0^{+}} \frac{f(s)}{s^{1+2}}>0 \quad$ (cs)
Then $\forall u_{0}(x)$ we have $u(t, x) \rightarrow 1$ as $t \rightarrow \infty$
Rok 1: sometimes this is called'hair-trigger effect' - even small amount of species will invade everything (under the cond. (cs)). Gond. (cs) is sharp - there are countter examples when (Cb) is not true.
Thm2 (extinction and invasion for bistable)
(i) $\exists \delta>0$ s.t. if $\int_{\mathbb{R}^{N}}\left(u_{0}-\theta\right)<\delta$, then (extinction)

$$
u(t, x) \rightarrow 0 \text { as } t \rightarrow \infty \quad \forall x \in \mathbb{R}^{N}
$$

(ii) $\exists \eta>0, R>0$ s.t. if $u_{0} \geq \theta+\eta$ on \bar{B}_{R}, (invasion) then $u(t, x) \rightarrow 1$ as $t \rightarrow \infty \quad \forall x \in \mathbb{R}^{N}$

Rok 1: if there are not too many species then you have extinction, but if you have enough species on a big enough domain, you will have invasion.
Rok 2: simpler version of (i): in $u_{0}<\theta-\eta$ then $u \rightarrow 0$ (straightforward)

Rmk3: Take $u_{0}=\mathbb{1}_{B_{R}}$ for bistable case:
R small -extinction
R large - invasion
There is a threshold result: $\exists R^{*}$:
$\forall R<R^{*}$ extinction and $R>R^{*}$ invasion.
[Zlatos''2006-1-din; Du \& Matano'2010-N-dim]
The 3 (Principle of asymptotic speed of propagation) Assume that u_{0} has compact support and that there is invasion. Then,
(1) $\forall c>c^{*}$,

$$
\lim _{t \rightarrow \infty}\left\{\sup _{|x| \geqslant c t} u(t, x)\right\}=0
$$

(2) $\quad \forall c<c^{*} \quad \lim _{t \rightarrow \infty}\left\{\sup _{|x| \leqslant c t}|1-u(t, x)|\right\}=0$

Rok: c^{*}-minimum speed of TW for monosthy
c^{*} - is the unique speed of TW for bistable case

Rok: $\left\{\begin{array}{l}u_{t}=d \Delta u+f(u) \text {, If one considers the } \\ u(0, x)=u_{0}(x) \text {. eq. with diffusion coef.d }\end{array}\right.$ then for Fisher-KPP case $\quad\left[\begin{array}{ll}\text { change } & \text { of } \\ c^{*}= & 2 \sqrt{d f^{\prime}(0)} .\end{array}\right.$

Lecture 22 : Last time we formulated "extinction/survival" and ASP theorem. Let's prove them.
Proof of tho 1:
I Instead of cond. (C_{1}) we will use stronger condition $f^{\prime}(0)>0$
Step 1: subsolution with compact support
Consider an eigenvalue problem:

$$
\left\{\begin{array}{rlrl}
-\Delta \varphi_{R} & =\lambda_{R} \varphi_{R} & & \text { in } B_{R}, \varphi_{R}>0 \\
\varphi_{R} & =0 \quad \text { in } B_{R}
\end{array}\right.
$$

For R large enough and ε small enough $\varepsilon \varphi_{R}(x)$ is a subsolution of $-\Delta z=f(z)$ in $B_{R} \quad \forall \varepsilon \leq \varepsilon_{0}$ due to: $\lambda_{R}=\frac{\lambda_{1}}{R^{2}}<f^{\prime}(0)$
Here we extend φ_{R} by o outside B_{R}
Step 2: Take $\varepsilon>0$ small enough sit.

$$
\varepsilon \varphi_{R}(x)<u(1, x) \quad \forall x \in \mathbb{R}^{N}
$$

This can be done as by the maxi mum principle $u\left(t_{0}, x\right)>0$ for $t \gg 0$.

Let

$$
\begin{array}{ll}
w_{t}-\Delta w=f(w) & \left(E_{q}\right) \\
w(0, x)= \begin{cases}\varepsilon \varphi_{R}(x) & \text { in } B_{R} \\
0 & \text { if }|x| \geqslant R\end{cases}
\end{array}
$$

Then: (a) w increases with t; (b) $w \leq 1$
Indeed, (a): consider an equation on ω_{t} We want to prove $\omega_{t} \geqslant 0$. Differenciate $\left(E_{q}\right)$ w.r.t. t : $w_{t t}-\Delta \omega_{t}=f^{\prime}(\omega) \cdot w_{t}$

Denote $v=\omega_{t}$ and $f^{\prime}(\omega)=a(x, t) \Rightarrow$

$$
\left\{\begin{array}{l}
v_{t}-\Delta v=a(x, t) v \\
v(0, x)=w_{t}(0, x)=\Delta w+f(w)(0, x) \geqslant 0
\end{array}\right.
$$

as $\quad \Delta w+f(w) \geqslant \Delta w+\lambda_{R} w=0$ at ${ }^{\top}$ point $(0, x)$
by the choice $\omega(0, x)=\left\{\begin{array}{l}\varepsilon \varphi_{R} . \\ 0\end{array}\right.$.
Thus, by the maximum principle:

$$
\omega_{t}(t, x)=v(t, x) \geqslant 0 \quad \forall t>0 .
$$

(b) By a maximum principle, $u_{1} \equiv 1$ is a super solution $\Rightarrow u(t, x) \leq 1$.

Thus, $(a)+(b) \Rightarrow w(t, x)$ converges to $w_{\infty}(x)$ - a bounded function, and we have:

$$
\Rightarrow \quad \lim _{t \rightarrow \infty} u(t, x) \geqslant w_{\infty}(x) \quad \forall x \in \mathbb{R}^{N}
$$

Step 3: $w_{\infty}(x)$ is the solution of the problem
(s) $\left\{\begin{array}{l}-\Delta \omega_{\infty}=f\left(\omega_{\infty}\right) \text { in } \mathbb{R}^{N} \\ 0<\omega_{\infty} \leqslant 1\end{array}\right.$

By Schauder estimates, we can prove that locally in any compact $K \subset[0, T] \times \mathbb{R}^{N}$ $\omega(t, x)$ and $\omega_{t}, \omega_{x_{i} x_{j}}$ are uniformly bounded, and by Arzela-Ascoli theorem there exists a convergent subsequence for all derivatives too. So we can write $\left(\omega_{\infty}\right)_{t}-\Delta \omega_{\infty}=f\left(\omega_{\infty}\right)$
As $w_{\infty}=w_{\infty}(x)$, we get $-\Delta w_{\infty}=f\left(w_{\infty}\right)$
For unbounded domains, we want to show: the only entire bounded solutions of (s) are $\omega_{\infty} \equiv 0$ and $\omega_{\infty} \equiv 1$.

In particular, in our case:
Proposition (Liouville-type theorem): $\omega_{\infty} \equiv 1$.
T(1) $\frac{\text { Proof }}{}$ inf $w_{\infty}>0$ Sliding method

Take our subsolution and start sliding (move everywhere) Again by strong maximum principle $\varepsilon_{0} \varphi R$ and wo can not touch anywhere! Thus, $\omega_{\infty} \geqslant \varepsilon_{0}$.
(2) $\inf _{x \in \mathbb{R}^{N}} w \infty=1$. By contradiction,

$$
\exists x_{0}: w_{\infty}\left(x_{0}\right)=\min _{x \in \mathbb{R}^{N}} w_{\infty}(x)
$$

As $-\Delta \omega_{\infty}=f\left(\omega_{\infty}\right)>0$, then $\Delta w_{\infty}<0$ at minimum (!?)
(3) If $\exists x_{n}:\left|x_{n}\right| \rightarrow \infty$ and $w_{\infty}\left(x_{n}\right)$ converges to inf $\omega_{\infty}<1$, then we also have a contradiction. Instead of sequence of points x_{n} take a sequence of functions $\tilde{\omega}_{n}(x)$

$$
\tilde{w}_{n}(x)=w_{\infty}\left(x-x_{n}\right)
$$

There exists a convergent subsequence which converges to $\tilde{\omega}_{\infty}(x)$. Moreover, $\tilde{w}_{\infty}(0)=\inf \omega_{\infty}$ and $-\Delta \tilde{w}_{\infty}=f\left(\tilde{w}_{\infty}\right)$ So by (2) this can not happen.

Proof of the 3 :
(1) Upper bound on ASP. Let's remember a (TW):

$$
\left\{\begin{array}{l}
-\varphi^{\prime \prime}-c^{*} \varphi^{\prime}=f(\varphi) \\
\varphi(-\infty)=1, \varphi(+\infty)=0
\end{array}\right.
$$

We can translate TW solution $\varphi(x-k)$ for k large enough and make: $u_{0}(x) \leqslant \varphi(x-k)$
Claim: $\exists k>0 \quad \forall e \in S^{N-1}|e|=1$ st. $u_{0}(x) \leq \varphi(x \cdot e-k)$
Thus, $\forall t>0, x \in \mathbb{R}^{N} \quad u(t, x) \leq \varphi\left(x \cdot e-c^{*} t-k\right)$
Taking e in the direction of x, we get:

$$
u(t, x) \leq \varphi\left(|x|-e^{*} t-k\right)
$$

Pick $c>c^{*}$:

$$
\sup _{|x| \geqslant c t} u(t, x) \leqslant \varphi\left(\left(c-c^{*}\right) t-k\right) \rightarrow 0 \text { as } t \rightarrow \infty
$$

(2) Lower bound on ASP.

Rok: suppose f is either mono- or bistable. Let g be a bistable on $[\alpha, \beta]$ $\alpha<0<\beta<1$ s.t. $g \leqslant f$.

$$
\text { (1) }\left\{\begin{array}{l}
-u^{\prime \prime}-c^{*} u^{\prime}=f(u) \\
u(-\infty)=t, u(+\infty)=0
\end{array}\right.
$$

$$
\text { (2) }\left\{\begin{array}{l}
-v^{\prime \prime}-c^{\prime} v^{\prime}=g(v) \\
v(-\infty)=\beta, \quad v(+\infty)=\alpha .
\end{array}\right.
$$

Then $c^{\prime}<c^{*}$, and " $c^{\prime} \rightarrow c^{*}$ " as " $g \rightarrow f$ "
In particular, when you approximate a monostable case by bistable cases, you get the smallest speed c^{*}.

Lecture 23: Comments for the last lecture: Upper bound for FKPP case: can be done even more explicitly. Indeed, we have $f(u)<f^{\prime}(0) u$ So we can consider a linear problem

$$
\left\{\begin{array}{l}
\tilde{u}_{t}-\Delta \tilde{u}=f^{\prime}(0) \tilde{u} \\
\tilde{u}(0, x)=u_{0}(x) \in[0,1]-\text { compactly } \operatorname{supp} \\
i t \quad \text { ondicitlu } B_{R}
\end{array}\right.
$$

and solve it explicitly:

$$
\tilde{u}(t, x)=\frac{e^{f^{\prime}(0) t}}{(4 \pi t)^{N / 2}} \int_{\mathbb{R}^{N}} u_{0}(y) e^{-\frac{|x-y|^{2}}{4 t}} d y
$$

So it is clear that if $\tilde{u}(t, x) \rightarrow 0$, then the solution of the non-linear problem also $u(t, x) \rightarrow 0$.

But for $|x| \geqslant 2 \sqrt{f^{\prime}(0)} t$, we have $\tilde{u}(t, x) \rightarrow 0$.
Indeed, $\quad|x-y|^{2}=|x|^{2}-2 x y+|y|^{2} \geq|x|^{2}-2|x| R-R^{2}$
Then $\frac{|x-y|^{2}}{4 t} \geqslant \frac{4 f^{\prime}(0) \cdot t^{2}-2 \cdot 2 \sqrt{f^{\prime}(0)} t-R^{2}}{4 t}=f^{\prime}(0) t+O(1)$
and $\quad e^{f^{\prime}(0) t-\frac{\left(x-\left.y\right|^{2}\right.}{4 t}} \leq e^{o(s)}-$ bounded \Rightarrow

$$
\tilde{u}(t, x) \sim \frac{\text { const }}{\sqrt{t}} \rightarrow 0
$$

We even see that the front is "to the left" of $x=2 \sqrt{f^{\prime}(0)} t$. In fact, there is a logorithmic shift: $|x|=c^{*} t-\frac{3}{2 \lambda^{*}} \ln t+C$ for λ^{*} explicit (in this case $=c^{*} / 2$)

Lemma: Let f be of monostable or bistable and $u_{0} \in[0,1]$. Then up to a subsequence the solution of $u_{t}-\Delta u=f(u)$ converges as $t \rightarrow+\infty$ to a stationary state: $-\Delta u_{\infty}=f\left(u_{\infty}\right)$

Rok 1: There could exist other stationary states (not constants) apart from 0 and f (and θ for the bistable case (egg. in bounded domains) Simple example: $f(u)=u-\theta$ in $[Q-\delta, Q+\delta]$ then $u=Q+\delta \cos x$ solves $-u^{\prime \prime}(x)=f(u(x)), x \in[-\pi, \pi]$
In our example we will only encounter $u \equiv 0, u \equiv 1$ as a possible attracting stationnary states.

Rok 2 : To thm 1: the "hair-trigger" effect for monostable nonlinearity can dissappear for $x \in \Omega$-bounded domain with Dirichlet b.c. $u l_{\partial \Omega}=0$ ("unfriendly" boundary) Fie. if the boundary "is close" to any interior point Ω
(2) Lower bound on ASP.

Rok: suppose f is either mono- or bistable.
Let g be a bistable on $[\alpha, \beta]$

$$
\alpha<0<\beta<1 \quad \text { s.t. } \quad g \leq f .
$$

$$
\text { (1) }\left\{\begin{array}{l}
-u^{\prime \prime}-c^{*} u^{\prime}=f(u) \\
u(-\infty)=1, u(+\infty)=0
\end{array}\right.
$$

$$
\text { (2) }\left\{\begin{array}{l}
-v^{\prime \prime}-c^{\prime} v^{\prime}=g(v) \\
v(-\infty)=\beta, \quad v(+\infty)=\alpha
\end{array}\right.
$$

Then $c^{\prime}<c^{*}$, and $c^{\prime} \rightarrow c^{* \prime \prime}$ as \quad " $g \rightarrow f^{\prime \prime}$
In particular, when you approximate a monostable case by bistable cases, you get the smallest speed c^{*}.

Indeed, consider u and v : "slide" v to

Consider $\quad h_{0}:=\inf \left\{h_{1} \in \mathbb{R}: v(x+h)<u(x), x \in \mathbb{R}\right.$ $\left.\forall h>h_{1}\right\}$
Then $\quad \exists x_{0} \in \mathbb{R}: \quad v\left(x_{0}+h_{0}\right)=u\left(x_{0}\right)$
If $c^{\prime} \geq c^{*}$, then v is a subsolution for (1)
Indeed,

$$
-v^{\prime \prime}-c^{*} v^{\prime}-f(v) \leq-v^{\prime \prime}-c^{\prime} v^{\prime}-g(v)=0
$$

Thus, $\quad v\left(x+h_{0}\right) \leq u(x)$ and $\exists x_{0}: v\left(x_{0}+h_{0}\right) \leq u\left(x_{0}\right)$ and this is a contradiction by strong maximum principle.

In particular, for monostable case $c^{\prime}<c^{*}$ the minimal value of speeds.

So let's change f. We will approximate f by $f_{\varepsilon}: f_{\varepsilon} \leq f$ and $f_{\varepsilon}:[-\varepsilon, 1-\varepsilon] \rightarrow \mathbb{R}$

Consider a TW accosiated with f_{ε} :

$$
\begin{gathered}
-\varphi_{\varepsilon}^{\prime \prime}-c_{\varepsilon} \varphi_{\varepsilon}^{\prime}=f_{\varepsilon}\left(\varphi_{\varepsilon}\right) \text { in } \mathbb{R} \\
\varphi_{\varepsilon}(-\infty)=\left(-\varepsilon, \varphi_{\varepsilon}(+\infty)=-\varepsilon\right.
\end{gathered}
$$

Moreover, $c_{\varepsilon} \leq c^{*}$ and $c_{\varepsilon} \rightarrow c^{*}$ when $f_{\varepsilon} \rightarrow f$.
Fix $c<\gamma<c_{1}<c^{*}$ and take ε small enough st. $\quad c_{1}<c_{\varepsilon}<c^{*}$

Claim: $v=\varphi_{\varepsilon}(|x|-\gamma t)$ is a subsolution of $u_{t}=\Delta u+f(u)$ in $\mathbb{R}^{N} \cdot B_{R}$ for R large enough.
Proof:
Γ Indeed, $\quad v_{t}-\Delta v-f(v)=-\gamma \varphi_{\varepsilon}^{\prime}-\varphi_{\varepsilon}^{\prime \prime}$

$$
\begin{aligned}
& -\frac{N-1}{|x|} \varphi_{\varepsilon}^{\prime}-f\left(\varphi_{\varepsilon}\right) \leq \\
& \leqslant-\gamma \varphi_{\varepsilon}^{\prime}-\frac{\varphi_{\varepsilon}^{\prime \prime}}{\varphi_{\varepsilon}^{\prime}}-\frac{N-1}{|x|} \varphi_{\varepsilon}^{\prime}-f_{\varepsilon}\left(\varphi_{\varepsilon}\right)= \\
& =\left(c_{\varepsilon}-\gamma-\frac{N-1}{|x|}\right) \varphi_{\hat{\imath}}^{\prime}<\hat{0}_{\hat{\imath}}^{\prime}<0
\end{aligned}
$$

$$
\text { is small for }|x|>R \gg 1
$$

- Same is true for $\varphi_{\varepsilon}(|x|-\gamma t+k)$ for \forall translation k as the eq. is translation invariant
- We have "invasion": $\forall \varepsilon>0 ~ \exists T>0$ st.

$$
u(t, x) \geqslant 1-\varepsilon \quad \forall x \in \bar{B}_{R} \quad \forall t \geqslant T
$$

- Choose k large enough st.

$$
|x| \geqslant R
$$

$$
\varphi_{\varepsilon}(|x|+\varepsilon)<0
$$

Compare $u(t+T, x)$ and $\varphi_{\varepsilon}(|x|-\gamma t+k)$ in $\mathbb{R}^{N}, \bar{B}_{R}$.
On $\partial B_{R} u(t+T, x) \geqslant 1-\varepsilon \geqslant \varphi_{\varepsilon}(\ldots)$

So outside B_{R} initially

$$
u(T, x) \geqslant \varphi_{\varepsilon}(|x|+k)
$$

and $\forall t$ on ∂B_{R}

$$
u(t+T, x) \geqslant \varphi_{\varepsilon}(\ldots)
$$

So by MP this is true for all times in $\mathbb{R}^{N}, \overline{B_{R}}$

$$
u(t+T, x) \geqslant e_{\varepsilon}(|x|-\gamma t+k)
$$

But also is true inside B_{R} as

$$
\begin{array}{r}
u(t+T, x) \geqslant 1-\varepsilon \geqslant \varphi_{\varepsilon}(\ldots) \quad \forall t \\
\Rightarrow \quad \forall x \in \mathbb{R}^{N} \quad u(t+T, x) \geqslant \varphi_{\varepsilon}(|x|-\gamma t+k)
\end{array}
$$

Take $|x| \leq c t, c<\gamma<c^{*}$, we have

$$
\begin{aligned}
& u(t, x) \geqslant \varphi_{\varepsilon}\left(c t-\gamma t+\varphi_{\varepsilon}\right. \text { is decreasing } \\
&=\varphi_{\varepsilon}((c-\gamma) t+\underbrace{\partial T+k}_{\text {some }})= \\
& \text { shift }
\end{aligned} \quad 1-\varepsilon \text { as } \begin{gathered}
\text { c- }-\delta<0
\end{gathered}
$$

Thus, for $c<c^{*}$

$$
\lim _{t \rightarrow \infty}\left\{\inf _{|x| \leqslant c t} u(t, x)\right\} \geqslant 1-\varepsilon \quad \forall \varepsilon>0
$$

LAs it is true for $\forall \varepsilon>0 \Rightarrow \geqslant 1 \Rightarrow=1$.
Proof of the 2 (about bistable eq.)
Rok 1: let f be of bistable type: $\underset{0 \text { situ }}{\text { for }}$ and u_{0}-initial data.

- If $0 \leq u_{0} \leq \neq 0 \Rightarrow u \rightarrow 0$ uniformly
- If $\theta \leq \neq u_{0} \leq 1 \Rightarrow u \rightarrow 1$ uniformly pix.

Indeed, if $\theta \leq u_{0} \leq 1 \Rightarrow \theta \leq u \leq 1$ by comparison.
Then we are in a monostable case! Thus, by this (as $\begin{gathered}u \neq \theta) \\ v=0 \\ w e\end{gathered}$ obtain $u \rightarrow 1$. Analogously, for $0 \leq u_{0} \leq \theta$.

The question of interest is what happens if somewhere $u_{0}>Q$ and somewhere $u_{0}<\theta$.
(ii) Let's prove an "invasion" result:
$\exists_{\eta}>0, R>0$ s.t. if $u_{0} \geqslant \theta+\eta$ on \bar{B}_{R}, then $u(t, x) \rightarrow 1$ as $t \rightarrow \infty \quad \forall x \in \mathbb{R}^{N}$
We will follow this scheme (which we already have seen for tho 1)
Step 1 : construct a subsolution $\underline{u}(x)$ with compact supp.
Step 2: take a solution $v: v_{t}-\Delta v=f(v), v(0, x)=\underline{u}(x)$. prove that $\partial_{t} v \geqslant 0, v \leq 1 \Rightarrow$ converges

$$
V(t, x) \rightarrow \underline{v}(x)-a \quad \text { stationary solution }-\Delta \underline{v}=f(\underline{v})
$$

Step 3: $\underline{v}(x) \equiv 1$. As a consequence,

$$
\begin{aligned}
& 1 \geqslant \lim _{t \rightarrow \infty} u(t, x) \geqslant \lim _{t \rightarrow \infty} v(t, x)=\underline{v}(x) \equiv 1 \\
& \quad \Rightarrow u(t, x) \rightarrow 1 \text { as } \quad t \rightarrow \infty
\end{aligned}
$$

Let's start:
Step 1: to construct a subsolution in the 1 we used the estimate $\lambda u \leq f(u)$ for small u and small λ. So we could consider a

linear problem: $-\Delta \varphi=\lambda \varphi$
Here we can not the same So how to construct a subsolution? Consider: (first, 1-dim case) $p=p(r), r \geqslant 0$

$$
\left\{\begin{array}{l}
-p^{\prime \prime}(r)=f(p(r)) \\
p(0)=\gamma>\theta \\
p^{\prime}(0)=0
\end{array}\right.
$$

We are looking for a "radially symmetric" (even) function $p(r)$ that is positive and $P(R)=0$ at some $R>0$.

Write this equation as a system:

$$
\begin{cases}p^{\prime}=s & p(0)=\gamma \\ s^{\prime}=-f(p) & s(0)=0\end{cases}
$$

and draw a phase portrait: $\gamma>0$

$$
-f(\gamma)<0 \text { as }
$$

So for some time (p, s) will be in domain $\{p>0\} \cap\{s<0\}$
P is decreasing and there exist 2 possib.
1)

$$
\begin{array}{ll}
\exists R>0: & P(R)=0 \\
& P^{\prime}(R)<0
\end{array}
$$

and $\forall r \in(0, R) \quad p(R)>0$
or
2) \longrightarrow

$$
\begin{aligned}
\exists R>0: & p^{\prime}(R)=0 \\
& p(R) \in[0, \theta]
\end{aligned}
$$

If Situation 1) happens, then we have found our subsolution:

$$
\begin{array}{r}
\underline{u}(x)=\left\{\begin{array}{cc}
p(|x|), & |x| \leq R \\
0, & |x| \geq R
\end{array}\right. \\
\text { Why it is a } \quad \text { subsolution? }
\end{array}
$$

- $\underline{u}(x) \leq \gamma \leq u_{0}(x)$ on B_{R} if we take $\eta-f-\theta$ $\underline{u}(x)=0 \leq u_{0}(x)$ outside B_{R}
- $\partial_{t} \underline{u}-\underline{u}^{\prime \prime}=f(\underline{u})$ inside and outside B_{R} and has a correct change of derivatives to be a "generalised" subsolution in weak sense.

Let's show that for δ close enough to 1 Situation 2) can not happen.
Take $-P_{R}^{\prime \prime}=f(p)$, multiply by p^{\prime} and intograte: $0=\int_{0}^{R}\left(p^{\prime \prime} p^{\prime}+f(p) p^{\prime}\right) d r=\left.\frac{\left(p^{\prime}\right)^{2}}{2}\right|_{0} ^{R}+\left.F(p(r))\right|_{0} ^{R}$
where $\quad F(p(r))=\int_{0}^{R} f(p(s)) p^{\prime}(s) d s$
Thus, $0=0+\sum_{p(R)}^{\infty} f(u) d u>0(!?)$

$$
p(R) \text { by the choice of } \delta
$$

Step 2: prove that $\partial_{t} \underline{u} \geqslant 0, \underline{u} \leq 1 \Rightarrow$ converges $\underline{u}(t, x) \rightarrow \underline{v}(x)-a \quad$ stationary solution

$$
-\Delta \underline{v}=f(\underline{v})
$$

Is analogous to the proof of the 1. Indeed, consider a solution v :

$$
\left\{\begin{array}{l}
v_{t}-v^{\prime \prime}=f(v) \\
v(0, x)=\underline{u}(x)
\end{array}\right.
$$

Observations : $v(t, x) \geqslant \underline{u}(x)$
[as $\underline{u}(x)$ is a subsolution]

- $\partial_{t} v \geqslant 0$ - the same as before
- $v \leq 1$ as 1 is a supersolution

$$
\Rightarrow v(t, x) \rightarrow \underline{v}(x): \quad-\underline{v}^{\prime \prime}=f(\underline{v})
$$

Step 3: $\underline{v}(x) \equiv 1$. We will prove next time.

Lecture 24: LAST LECTURE!

We are proving the "extinction/invasion" thm for reaction-diffusion eq. with bistable nonlinearity
(*) $\left\{\begin{array}{l}u_{t}=\Delta u+f(u) \\ u(0, x)=u_{0}(x)-\text { compactly supp }\end{array}\right.$

Thm2 (extinction and invasion for bistable)
(i) $\exists \delta>0$ s.t. if $\int_{\mathbb{R}^{N}}\left(u_{0}-\theta\right)_{+}<\delta$, then
(extinction)

$$
u(t, x) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \quad \forall x \in \mathbb{R}^{N}
$$

(ii) $\exists \eta>0, R>0$ s.t. if $u_{0} \geq 0+\eta$ on \bar{B}_{R}, (invasion)
then $u(t, x) \rightarrow 1$ as $t \rightarrow \infty \quad \forall x \in \mathbb{R}^{N}$ Proof:
(ii) First, let's prove "invasion" part.

We will follow the scheme (that we already have seen for thm 1)
Step 1: construct a subsolution $\underline{u}(x)$ with compact supp. Note that $\underline{u}(x)$ depends only on x !

Step 2: take a solution $v: v_{t}-\Delta v=f(v), v(0, x)=\underline{u}(x)$.
Prove that v is a subsolution of (t).
More over, $\partial_{t} v \geqslant 0, ~ v \leqslant 1 \Rightarrow$ converges

$$
V(t, x) \rightarrow \underline{V}(x)-a \text { positive stationary solution }-\Delta \underline{v}=\underline{f}(\underline{v})
$$

Step 3 : $\underline{v}(x) \equiv 1$. As a consequence,

$$
\begin{aligned}
& 1 \geqslant \lim _{t \rightarrow \infty} u(t, x) \geqslant \lim _{t \rightarrow \infty} v(t, x)=\underline{v}(x) \equiv 1 . \\
& \quad \Rightarrow \quad u(t, x) \rightarrow 1 \text { as } t \rightarrow \infty .
\end{aligned}
$$

Last time we already did step 1 for space dimension $N=1$. We looked for a radial function

$$
p=p(r):(1)\left\{\begin{aligned}
-p^{\prime \prime}(r) & =f(p(r)) \\
p(0) & =\gamma>\theta \\
p^{\prime}(0) & =0
\end{aligned}\right.
$$

and chose ∂ s.t. $\exists R_{0}>0: p(r)>0, r \in\left[0, R_{0}\right)$

$$
p\left(R_{0}\right)=0
$$

Before going to steps 2,3, let's generalize this construction to any space dimension, $N \geq 2$. Instead of ODE (1) we need to consider $\left\{\begin{array}{ll}-p^{\prime \prime}(r)+\frac{N-1}{r} p^{\prime}=f(p(r)) \\ p\left(r_{0}\right)=\gamma \\ p^{\prime}\left(r_{0}\right)=0\end{array} \quad\right.$ for some $\quad r_{0}>0$.

If r_{0} is big enough then $\frac{N-1}{r_{0}}$ is small and one can consider system (2) as "a small perturbation" of system (1).
By continuity of solutions of ODE, we conclude that $\exists R: P\left(r_{0}+R\right)=0$

Step 2: consider

$$
\begin{gathered}
v_{t}-\Delta v=f(v) \\
v(0, x)=\underline{u}(x) .
\end{gathered}
$$

By maximum principle, $v(0, x) \leqslant u(0, x)$

$$
\begin{aligned}
v(0, x) & \leq u(0, x) \\
\Rightarrow v(t, x) & \leq u(t, x) \quad \forall t>0
\end{aligned}
$$

Is analogous to the proof of the 1.
Observations : $v(t, x) \geqslant \underline{u}(x)$
[as $\underline{u}(x)$ is a subsolution]

- $\partial_{t} v \geqslant 0$ - the same as before
- $v \leq 1$ as 1 is a supersolution

$$
\Rightarrow v(t, x) \rightarrow \underline{v}(x): \quad-\underline{v}^{\prime \prime}=f(\underline{v})
$$

Step 3: $\underline{v}(x) \equiv 1$. The same as in tho 1:
3.1 inf $\underline{v}(x) \geqslant \gamma=\sup \underline{u}(x)$.

The proof is by "sliding" method.
$\underline{u}(x+h)$ is a subsolution of $\underline{v}(x) \quad \forall h \in \mathbb{R}$
(for the equation). If $\forall h \underline{u}(x+h) \leq \underline{v}(x)$,
 then $\underline{v}(x) \geqslant \gamma$ and we win. By contradiction, Consider $\quad \underline{u}(x+h), h=0$ and start "sliding" for $h>0$ and $h<0$.
Take "the first h." such that you can not move to the right or to the left:
$h_{0}=\min (\sup A, \inf B)$, where

$$
\begin{array}{lll}
A=\{h>0: & \left.\forall h^{2} \in[0, h) \quad \underline{u}(x+h) \leqslant \underline{v}(x)\right\} \\
B=\{h<0: & \forall \tilde{h} \in(h, 0] \quad \underline{u}(x+h) \leq \underline{v}(x)\}
\end{array}
$$

Then for this ho we have a touching point $x_{0} \in \mathbb{R}$ between $\underline{u}\left(x_{0}+h_{0}\right)=\underline{v}\left(x_{0}\right)>0$. By a strong maximum principle $\underline{u}\left(x+h_{1}\right) \equiv v(x)$ which is a contradiction as $\underline{u}\left(x+h_{0}\right)$ has a compact supp, and $v(x)$ does not.
3.2] in $f \underline{v}(x)=1$. By contradiction, either

$$
\exists x_{0} \in \mathbb{R}: \quad \underline{v}\left(x_{0}\right)=\min _{x \in \mathbb{R}} \underline{v}(x)
$$

As $\quad-\Delta \underline{v}=f(\underline{v})>0 \quad(\underline{v} \geqslant d>\theta)$ then $\Delta \underline{v}<0$ at minimum (!?)
And similar as before we treat the case when $\exists x_{n}:\left|x_{n}\right| \rightarrow \infty$ and $\underline{v}\left(x_{n}\right) \rightarrow \inf _{x \in \mathbb{R}} \underline{v}(x)$

The proof of (ii) is finished.
(i) We will prove a little bit weaker version $\forall_{0}<\alpha<\theta \quad \exists \delta>0$ s.t. if $\int_{\mathbb{R}^{N}}\left(u_{0}-\alpha\right)_{+}<\delta$, then $u(t, x) \rightarrow 0$ as $t \rightarrow \infty \quad \forall x \in \mathbb{R}^{N}$
Rok: in the proof we will see that we can take $\delta=(\theta-\alpha) \cdot$ const
thus, at least our approach is valid for $\forall \alpha<\theta$, but not $\alpha=\theta$.
Any ideas on the proof for $\alpha=\theta$ are welcome!

Now our goal is to construct a supersolution that tends to 0 .
To do this, let's construct $\tilde{f}(u) \geq f(u)$

$$
\begin{aligned}
\tilde{f}(u) & = \begin{cases}0, u \in[0, \alpha] \\
s \cdot u, u \in[\alpha, 1], & \text { where }\end{cases} \\
s & =\sup _{u \in[0,1]} \frac{f(u)}{u-\alpha} \text { (see Fig.) }
\end{aligned}
$$

- Now consider the following problem:

$$
\left\{\begin{array}{l}
v_{t}=\Delta v+\tilde{f}(v) \\
v(0, x)=\left(u_{0}(x)-\alpha\right)_{+}
\end{array}\right.
$$

Note that $v(t, x) \geqslant 0$, thus $v_{+}=v$. The function $\bar{u}(t, x)=v(t, x)+\alpha$ is a supersolution to (*). Indeed

$$
\begin{aligned}
& \bar{u}_{t}-\Delta \bar{u}-f(\bar{u}) \geq v_{t}-\Delta v-\underbrace{s v}_{\tilde{f}(v)}=0 \\
& \bar{u}(0, x)=\left(u_{0}(x)-\alpha\right)_{t}+\alpha \geqslant u_{0}(x) \\
& u_{0}(x) \\
& \underbrace{\alpha}(0, x)
\end{aligned}
$$

And we can write explicitly the
answer:

$$
\begin{aligned}
\bar{u}(t, x) & =\frac{e^{s t}}{2 \sqrt{\pi t}} \int_{\mathbb{R}^{N}} e^{-\frac{|x-\xi|^{2}}{4 t}}\left(u_{0}-\alpha\right)+d \xi+\alpha \\
& \leq \frac{e^{s t}}{2 \sqrt{\pi t}} \int_{\mathbb{R}^{N}}\left(u_{0}-\alpha\right)+d \xi+\alpha
\end{aligned}
$$

Take $t=\frac{1}{s} \Rightarrow \bar{u}\left(\frac{1}{s}, x\right) \leq \frac{e \sqrt{s}}{2 \sqrt{\pi}} \int_{\mathbb{R}^{N}}\left(u_{0}-\alpha\right)+d \xi+\alpha$ If $\bar{u}\left(\frac{1}{s}, x\right)<\theta-\varepsilon \quad($ for some $\varepsilon) \Rightarrow \bar{u}(t, x) \rightarrow 0$ (By comparing with solution to $O D E$:

$$
\{\begin{array}{l}
w_{t}=f(\omega) \\
\omega(0)=\theta-\varepsilon
\end{array} \quad \underbrace{}_{\theta-\varepsilon} \quad \Rightarrow \omega \rightarrow 0\}
$$

Thus, if $\quad \int_{\mathbb{R}^{N}}\left(u_{0}-\alpha\right)+d_{\xi}<(\theta-\alpha) \frac{2 \sqrt{\pi}}{e \sqrt{5}} \Rightarrow$

$$
u(t, x) \leq \bar{u}(t, x) \rightarrow 0 \quad \text { as } t \rightarrow \infty \quad \forall x \in \mathbb{R}^{N} .
$$

More sharp result:
(KPP)(937): $\quad f(u)=u(1-u), \quad c^{*}=2 \sqrt{f^{\prime}(0)}=2$
Take $u_{0}(x)=$ II $(-\infty, 0]$.
There exists a function $\sigma^{\infty}(t)=2 t+0(t)$ st.

$$
\lim u\left(t, x+\sigma^{\infty}(t)\right)=U_{c^{*}}(x)
$$

where $U_{C^{*}}(x)$ is a TW solution, nanny

$$
\left\{\begin{array}{l}
-c^{*} U_{c^{*}}^{\prime}-U_{c^{*}}^{\prime \prime}=f\left(U_{c^{*}}\right) \\
U(-\infty)=1, \quad U(-\infty)=0
\end{array}\right.
$$

Bramson' 1983 Proved a sharp position Roquejoffre $]$ of the front:
$\left.\begin{array}{l}\text { Hazel, Nolan } \\ \text { Ryzhik }\end{array}\right\}^{\prime 2013}$

$$
\sigma_{\infty}(t)=2 t-\frac{3}{2} \ln t-x_{\infty}+\infty(1)
$$

We will stop here. Good luck on exam!

[^0]: ${ }^{1}$ This guarantees the convergence of the numerical scheme (3) to a solution of the original PDE (12).

[^1]: ${ }^{1}$ A guru in the field C. Dafermos gives a very intuitively clear explanation how PDE for a balance law $\operatorname{div}(F)=P$ appears from first principles. For those who are interested I advice to see Lecture 1 of his course at IMPA in 2013 (see links at the end of the slides).

[^2]: ${ }^{1}$ A guru in the field C. Dafermos gives a very intuitively clear explanation how PDE for a balance law $\operatorname{div}(F)=P$ appears from first principles. For those who are interested I advice to see Lecture 1 of his course at IMPA in 2013 (see links at the end of the slides).

[^3]: Intuitively formula (2) is very clear. Indeed the left hand side In a discrete analog of $u x x($ if $h=0)$: $u(x-k, t)+u(x+k, t)=$ $=\left(u\left(v-r+1-\cdots(x+1)-(u(x, t)-u(x+k, t)) \sim-u_{x}(x-r)+u_{v}(x) \sim u_{x} x^{(t)}\right]\right.$

