Практические занятия по математическому анализу и ТФКП 2 курс «Современное программирование» IV семестр, весна 2020

Содержание

1	Материалы занятий	2
	Занятие 1, 13.02.2020. Формула Грина. Гармонические функции в \mathbb{R}^2	2
	Занятие 2, 20.02.2020. Дискретно-гармонические функции	3
	Занятие 3, 27.02.2020. Конформные отображения в картинках. Преобразования Мебиуса	6
	Занятие 4, 05.03.2020. Конформные отображения в картинках. Аргумент. Степень и корень	7
	Занятие 5, 19.03.20. Конформные отображения в картинках. Еще больше про аргумент. Преобразование Жу-	
	КОВСКОГО	9
	Занятие 6, 28.03.20. Теорема Руше. Ряды Лорана и вычеты.	11
	Занятие 7, 02.04.2020. Вычеты и интегралы по контурам. Теорема Коши о вычетах.	13
	Занятие 8, 09.04.2020. Интегралы по контурам. Лемма Жордана	14
	Занятие 9, 16.04.2020. Интегралы по контурам. A walk through the forest	15
	Занятие 10, 23.04.2020. Keep on walking	16
	Занятие 11, 30.04.2020. And finally we come (not yet)	17
	Занятие 12, 07.05.2020. Ряды Фурье	18
2	Домашние задания	19
	ДЗ 1. Гармонические функции на плоскости. Функции Грина. Дедлайн: 7 марта 23:59	19
	ДЗ 2. Конформные преобразования. Дедлайн 18 марта в 23:59	
	ДЗ 3. Теорема Руше и простейшие контурные интегралы. Дедлайн 7 апреля в 23:59	24
	ДЗ 4. Контурные интегралы. Дедлайн 14 апреля, 23:59	24
	ДЗ 5. Контурные интегралы. Дедлайн 21 апреля, 23:59	24
	ДЗ 6. Считаем суммы рядов с помощью вычетов. Дедлайн 28 апреля, 23:59	24
	Доп ДЗ по всем темам. Дедлайн 27 мая, 23:59	26
		00
3	Контрольные работы	28
	Подготовка к КР1.	28
	KP1. 26.03.2020	31
	КР1. 11.04.2020. Переписка 1	31
	КР1. 16.05.2020. Переписка 2	32
	КР1. 21.05.2020. Переписка 3	33
	Подготовка к КР2.	34
	KP2. 14.05.2020	34
	KP2. 16.05.2020. Переписка 1	
	КР2. 21.05.2020. Переписка 2	34
4	Матбой по ТФКП	35

1 Материалы занятий

Занятие 1, 13.02.2020. Формула Грина. Гармонические функции в \mathbb{R}^2 .

Криволинейные интегралы. Формула Грина.

- 1. Вычислите криволинейный интеграл $\int\limits_{\gamma} y\,dx + x\,dy$ по кривой γ с началом A(0,0) и концом B(1,1), если:
 - A) γ отрезок AB;
 - Б) γ дуга параболы $y = x^2$;
 - В) γ дуга окружности радиуса 1 с центром в точке (1,0).

Формула Грина — это частный случай формулы Стокса (для 1-формы в \mathbb{R}^2):

$$\int P dx + Q dy = \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy \tag{1}$$

Используя формулу Грина можно связать интеграл от оператора Лапласа по области с интегралом от нормальной производной по границе. Пусть $\gamma:[a,b]\to\mathbb{C}$ — замкнутая, несамопересекающаяся кривая, ориентированная против часовой стрелки. Предположим к тому же, что γ имеет натуральную параметризацию, то есть $\gamma'(t)=(x'(t),y'(t))$ — вектор длины один. Нормалью к γ в точке $\gamma(t)$ называют вектор n(t)=(y'(t),-x'(t)) (попробуйте представить себе картинку!).

2. А) Пусть γ такая, как выше, и Ω — область, ограниченная γ . Пусть $u:\overline{\Omega}\to\mathbb{R}$ — непрерывно дифференцируемая функция. Положим

$$d^*u = u_x dy - u_y dx.$$

Покажите, что

$$\int_{\gamma} \frac{\partial u}{\partial n} \, dS = \int_{\gamma} d^* u.$$

Б) Используя формулу Грина выведете, что

$$\int_{\partial \Omega} \frac{\partial u}{\partial n} \, dS = \int_{\Omega} \Delta u \, dx \, dy$$

В) и еще что

$$\int\limits_{\partial\Omega}v\frac{\partial u}{\partial n}\,dS=\int\limits_{\Omega}v\Delta u\,dx\,dy+\int\limits_{\Omega}\nabla v\cdot\nabla u\,dx\,dy.$$

Г) Используя формулу выше покажите, что

$$\int\limits_{\partial\Omega} \left(v\frac{\partial u}{\partial n} - u\frac{\partial v}{\partial n}\right) dS = \int\limits_{\Omega} \left(v\Delta u - u\Delta v\right) dx\,dy.$$

Гармонические функции в \mathbb{R}^2 .

Напутствие. Пусть $\Omega \subset \mathbb{C}$ — область (открытое множество) и $u \in C^2(\Omega)$. Оператор Лапласа определяется так:

$$\Delta u := u_{xx} + u_{yy}.$$

Функция u называется гармонической, если $\Delta u \equiv 0$; тогда говорят, что u удовлетворяет уравнению Лапласа. Гармонические функции возникают во многих областях математики — начиная с классической матфизики и заканчивая комбинаторикой, сюда же относится современная теория вероятностей. С другой стороны, многие свойства гармонических функций несложно выводятся, образуя красивую и доступную теорию. В размерности 2 с каждой гармонической функцией связана голоморфная — неплохой пример естественного приложения ТФКП. Гармонические функции можно рассматривать во многих разных контекстах (на графах, на многообразиях...), мы немного коснемся случая \mathbb{R}^2 и \mathbb{Z}^2 .

Мы будем использовать z для обозначения комплексной координаты на комплексной плоскости $\mathbb C$. Вещественные координаты x,y связаны с z соотношением z=x+iy.

- 1. Целью этой задачи является показать следующий замечательный факт (**теорема о среднем**): значение грамонической функции в каждой внутренней точке области есть среднее по любому шарику с центром в данной точке (см. формулу (2)).
 - А) Проверьте, что функция $u(z) = \log |z|$ является гармонической функцией на $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.
 - Б) Пусть $D_R(z_0) = \{z \in \mathbb{C} \mid |z z_0| < R\}$ и $u: D_R(0) \to \mathbb{R}$ гармоническая функция. Пусть 0 < r < R. Покажите, что

$$\int_{|z|=r} \frac{\partial u}{\partial n} \, dS = 0.$$

В) Выведите из предыдущих пунктов, что для всяких $R>r_1>r_2>0$ и всякой гармонической функции $u:D_R(0)\to\mathbb{R}$ выполняется

$$\frac{1}{2\pi r_1} \int_{|z|=r_1} u \, dS = \frac{1}{2\pi r_2} \int_{|z|=r_2} u \, dS.$$

Г) Покажите, что

$$\lim_{\varepsilon \to 0} \frac{1}{2\pi\varepsilon} \int_{|z|=\varepsilon} u \, dS = u(0).$$

Д) Теперь пусть $\Omega \subset \mathbb{C}$ — открытое множество и $z_0 \in \Omega$. Пусть $u:\Omega \to \mathbb{R}$ — гармоническая функция. Пусть r>0 таково, что $D_r(z_0) \subset \Omega$

$$u(z_0) = \frac{1}{2\pi r} \int_{|z-z_0|=r} u \, dS.$$

Е) В условиях предыдущего пункта выведите, что

$$u(z_0) = \frac{1}{\pi r^2} \int_{D_r(z_0)} u \, d\lambda_2. \tag{2}$$

2. Принцип максимума для гармонической функции:

- А) Пусть $\Omega \subset \mathbb{C}$ открытое связное множество и $u:\Omega \to \mathbb{R}$ гармоническая функция. Предположим, u достигла своего максимума в точке $x_0 \in \Omega$. Покажите, что $u \equiv \text{const.}$
- Б) Пусть $\Omega \subset \mathbb{C}$ ограниченное открытое множество и $u:\overline{\Omega} \to \mathbb{R}$ непрерывная функция. Предположим, что u гармонична в Ω . Покажите, что

$$\max_{z \in \overline{\Omega}} |u(z)| = \max_{z \in \partial \Omega} |u(z)|.$$

С помощью принципа максимума можно показать, что гармоническая функция однозначно определяется своими значениями на границе. А именно, верна следующая теорема единственности:

- В) Пусть $u, v: \Omega \to \mathbb{R}$ две функции, удовлетворяющие условиям предыдущего пункта. Предположим, что $u|_{\partial\Omega} \equiv v|_{\partial\Omega}$. Покажите, что u(z) = v(z) для всякого $z \in \Omega$.
- 3. Теорема Лиувилля: Пусть $u: \mathbb{C} \to \mathbb{R}$ ограниченная гармоническая функция. Покажите, что $u \equiv \text{const.}$

Занятие 2, 20.02.2020. Дискретно-гармонические функции.

Концепцию дискретной гармоничности исторически связывают с законами Кирхгофа, вернее, с первым из них, который гласит, что сумма токов, направленых к узлу электрической цепи, равна нулю. Пусть G — это некоторый конечный граф (суть электрическая цепь), давайте всегда предполагать, что G связный; каждому ориентированому ребру e сопоставим ток I_e , который через него проходит, так, что $I_{\overline{e}} = -I_e$. Тогда для каждой вершины должно выполняться

$$\sum_{e:t(e)=v} I_e = 0.$$

Пусть теперь U — потенциал электрической цепи, то есть $U:V(G)\to \mathbb{R}$ — такая функция, что для любых смежных вершин v,w выполняется

$$U(v) - U(w) = I_{wv},$$

(для простоты будем считать, что все ребра имеют единичную проводимость). Тогда закон Кирхгофа гласит, что

$$\sum_{w \sim v} (U(v) - U(w)) = U(v) \deg v - \sum_{w \sim v} U(w) = 0.$$
(3)

1. Определим матрицу Δ , занумерованную вершинами G, следующим образом:

$$\Delta = D - A$$

где D — диагональная матрица, у которой $D(v,v) = \deg v$, а A — матрица смежности G. Покажите, что если воспринимать функцию U, как вектор из $\mathbb{R}^{V(G)}$, составленный из значений U, то уравнение (3) соответствует

$$(\Delta U)(v) = 0.$$

Если это условие в вершине v выполняется, то будем говорить, что U дискретно-гармонична в v, а матрицу Δ называть комбинаторным оператором Лапласа. Обратите внимание, что уравнение (3) очень напоминает теорему о среднем для гармонических функций.

2. Правило Кирхгофа позволяет решать следующую задачу: предположим, что есть некоторое выделенное подмножество вершин $\partial G \subset G$, назовем их граничными (в нашей физической метафоре это будут входы и выходы электрической цепи). Остальные вершины будем называть внутренними и обозначать $\mathrm{Int}\,G$. Пусть нам известен потенциал на входе, то есть имеется некоторая функция $f:\partial G \to \mathbb{R}$ такая, что $U|_{\partial G} = f$. Поскольку U удовлетворяет правило Кирхгофа внутри цепи, проблема поиска U во внутренних узлах сводится к дискретной версии задачи Дирихле для оператора Лапласа:

$$\begin{cases} \Delta U|_{\text{Int }G} = 0, \\ U|_{\partial G} = f. \end{cases}$$

Это, по сути, линейная система уравнений, покажем, что она невырождена, если $\partial U \neq \varnothing$ и имеет одномерное ядро в противном случае.

Давайте для простоты говорить, что $U:V(G)\to\mathbb{R}$ — гармоническая, если $\Delta U|_{\mathrm{Int}G}=0.$

- А) Докажите принцип максимума: если $U:V(G)\to\mathbb{R}$ гармоническая, то $\max U$ достигается на ∂G . Замечание: покажите, что U может иметь нестрогие локальные максимумы внутри G и не быть при этом постоянной.
- Б) Покажите, что если $\partial G \neq \emptyset$, то задача Дирихле для дискретного оператора Лапласа имеет единственное решение для любых граничных данных f. Покажите, что если $\partial G = \emptyset$, то единственная гармоничная функция на G это постоянная функция, иными словами, dim ker $\Delta = 1$.
- 3. Первый закон Кирхгофа означает по сути, что ток, идущий через узлы цепи, является потоком. Предположим, что G планарный граф и обозначим через G° двойственный граф. Пусть γ простой цикл на G°, мы будем думать про γ , как про последовательность ребер G, которые он пересекает, то есть $\gamma = \{e_1, \ldots, e_n\}$. Тогда суммарный поток, который проходит через γ , должен равняться нулю: сколько внутрь γ затекло, столько оттуда и вытекло. Формально,

$$\sum_{i=1}^{n} I_{e_i} = 0, (4)$$

где e_i ориентируется так, чтобы оно смотрело наружу относительно γ .

Теперь попробуем это перевести на более математический язык. Скажем, что 1 - форма на графе G, это функция ω на ориентированных ребрах, причем $\omega(\overline{e}) = -\omega(e)$. Дифференциал функции тогда определяется как dU(vw) := U(w) - U(v). Ребро e_i естественно понимать, как нормаль к γ , тогда $dU(e_i)$ — это дискретная версия $\frac{\partial U}{\partial n}$.

A) Докажите, что для всякой $U:V(G)\to\mathbb{R}$

$$\sum_{i=1}^{n} dU(e_i) = \sum_{v \in \text{Int } \gamma} \Delta U(v)$$

и выведите отсюда (4).

Б) Покажите, что для всяких $U,V:V(G)\to\mathbb{R}$

$$\sum_{i=1}^{n} V(t(e_i))dU(e_i) = -\sum_{v \in \text{Int } \gamma} V(v)\Delta U(v) + \sum_{e \in \gamma \cup \text{Int } \gamma} dV(e)dU(e);$$
(5)

тут $t(e_i)$ обозначает конец e_i . Обратите внимание, что dV(e)dU(e) не зависит от ориентации ребра, так что определено на неорентированных ребрах.

4. Из вышеописанных комбинаторных наблюдений, изначально мотивированных физикой, родилась симпатичная математика. Я говорю о так называемой matrix tree theorem, давайте ее сформулируем и докажем. Предположим, что граница G состоит из единственной вершины v_0 , то есть $\partial G = \{v_0\}$, и будем рассматривать только те функции на графе, которые равны нулю в v_0 , скажем, пусть

$$\mathcal{V}_0 = \{ U : V(G) \to \mathbb{R} \mid U(v_0) = 0 \}.$$

Определим оператор $\Delta_0: \mathcal{V}_0 \to \mathcal{V}_0$ правилом

$$(\Delta_0 U)(v) = \begin{cases} (\Delta U)(v), & v \neq v_0, \\ 0, & v = v_0. \end{cases}$$

Поскольку задача Дирихле имеет единственное решение, оператор Δ_0 имеет тривиальное ядро, стало быть, $\det \Delta_0 \neq 0$. Оказывается, $\det \Delta_0$ имеет красивую интерпретацию в терминах графа G:

Теорема 1 (matrix-tree theorem). Определитель $\det \Delta_0$ равен числу остовных деревьев графа G.

А) Зафиксируем любую ориентацию на ребрах E(G), если $e \in E(G)$, то через \vec{e} будем обозначать соответствующее ориентированное ребро. Оператор d_0 на \mathcal{V}_0 , заданный

$$(d_0 U)(e) := (dU)(\vec{e}).$$

Используя формулу (5) для функций $U, V \in \mathcal{V}_0$ и цикла γ , отделяющего v_0 от остальных вершин графа, покажите, что $\Delta_0 = d_0^T d_0$. (Замечание: утверждение $\Delta_0 = d_0^T d_0$ является локальным (для того, чтобы его проверить, достаточно рассмотреть произвольную вершину и ее окрестность), его легко проверить напрямую).

Б) Пусть n < m и X, Y — матрицы размеров $n \times m$ и $m \times n$. Вспомните формулу Коши-Бине:

$$\det XY = \sum_{S \subset [m], |S| = n} (\det X^S) (\det Y_S).$$

В) Про оператор d_0 , действующий на пространстве \mathcal{V}_0 , естественно думать, как про матрицу размера $|E(G)| \times |V(G) \setminus \{v_0\}|$. Имеем

$$(d_0)_{e,v} = \begin{cases} 1, & v = t(\vec{e}), \\ -1, & v = o(\vec{e}), \\ 0, & v \nsim e. \end{cases}$$

Пусть $S \subset E(G)$, причем $|S| = |V(G) \setminus \{v_0\}|$. Покажите, что

$$(\det(d_0)_S)^2 = \begin{cases} 1, & S - \text{это ребра остовного дерева,} \\ 0, & \text{иначе} \end{cases}$$

и докажите теорему.

Занятие 3, 27.02.2020. Конформные отображения в картинках. Преобразование Мебиуса.

Напоминание о комплексных числах. Мы будем использовать стандартные обозначения $z=x+iy, \Re z=x$ и ${\rm Im}\ z=y,$ а также $|z|=\sqrt{x^2+y^2}.$ Сопряжение определяетя как $\overline{z}=x-iy.$

- 1. Покажите, что $|z|^2=z\overline{z},\,|zw|=|z||w|,\,|z^{-1}|=\frac{1}{|z|}=\frac{\overline{z}}{|z|^2}.$
- 2. Любое комплексное число можно записать в виде $z=|z|e^{i\varphi}$, при этом φ называют аргументом z. Такая запись называется *полярной записью*. Очевидно, φ определено только с точностью до 2π .
 - А) Запишите в полярной записи числа $z=i,\,z=1+i,\,z=-1,\,z=2-i.$
 - Б) Покажите, что в плоскости с разрезом $\mathbb{C} \setminus \{x \geq 0\}$ функцию $z \mapsto \varphi(z)$ можно определить так, чтобы она была непрерывной.

Преобразованием Мебиуса называется отображение $\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ вида $z\mapsto \frac{az+b}{cz+d}$. Будем всегда требовать, чтобы $ad-bc\neq 0$.

- 1. Среди преобразований Мебиуса выделяют сдвиг $z\mapsto z+a$, растяжение $z\mapsto \lambda z$ и "инверсию" $z\mapsto \frac{1}{z}$.
 - А) Покажите, что настоящая инверсия это $z\mapsto \frac{1}{z}$. Покажите, что она переводит окружности и прямые в окружности и прямые. Какие окружности перейдут в прямые и какие прямые в окружности?
 - Б) Покажите, что любое преобразование Мебиуса это композиция вышеописанных трех и заключите, что преобразования Мебиуса переводят прямые и окружности в прямые и окружности.
- 2. Двойным отношением точек $z_1, z_2, z_3, z_4 \in \mathbb{C}$ называют выражение $\frac{(z_3-z_1)(z_4-z_2)}{(z_3-z_2)(z_4-z_1)}$.
 - А) Покажите, что преобразования Мебиуса сохраняют двойные отношения.
 - Б) Покажите, что с помощью преобразований Мебиуса можно перевести любые три точки в любые три точки (постройте преобразование Мебиуса, которое переводит z_1, z_2, z_3 в $\infty, 0, 1$).
 - В) Заключите, что преобразование Мебиуса однозначно характеризуется своими значениями в любых трех точках.
 - Γ) Покажите, что действие группы дробно-линейных преобразований на обобщенных окружностях *тивно*, т.е. любую обобщенную окружность можно перевести в обобщенную окружность.
- 3. Преобразования Мебиуса сохраняют углы: отметьте это для себя!
- 4. Рассмотрим преобразование $w(z) = \frac{z+i}{z-2i}$.
 - А) Какие прямые остаются прямыми при этом преобразовании?
 - Б) Куда перейдет ось ординат? А ось абсцисс?
 - В) Найдите образы следующих обобщенных окружностей

i. прямой
$$y = x$$

ііі. окружности
$$x^2 + (y-4)^2 = 1$$

іі. прямой
$$y = x + 2$$

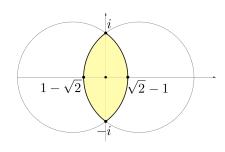
iv. окружности
$$x^2 + (y-1)^2 = 1$$

- 5. Постройте преобразование Мебиуса, переводящее:
 - A) Верхнюю полуплоскость $\{z: \text{ Im } z \geq 0\}$ в единичный диск $\{z: |z| \leq 1\}$
 - Б) Полуокружность $\{z : \text{Im } z \ge 0, \ |z| \le 1\}$ в угол $\{z : \text{Im } z \ge 0, \ \Re z \ge 0\}$.
- 6. Куда отображение $z\mapsto z^2$ переводит

A) угол
$$\{z : \text{Im } z \ge 0, \Re z \ge 0\},\$$

Б) угол
$$\{z : \text{Im } z \ge 0, \Re z \le 0\},$$

- 7. Предложите конформное преобразование, переводящее:
 - А) полуокружность в полуплоскость
 - Б) луночку в полуплоскость (на рис. слева желтая)



Арсенал конформных преобразований:

1. Преобразования Мебиуса:

$$z \mapsto \frac{az+b}{cz+d}, \quad ad-bc \neq 0.$$

Действуют из $\mathbb{C} \cup \{\infty\}$ в $\mathbb{C} \cup \{\infty\}$, переводят любые три точки в любые три точки, а также окружности и прямые в окружности и прямые.

- 2. Степенные отображения: $z \mapsto z^n$ и $z \mapsto z^{1/n}$. Извлечение корня можно задать однозначно, если в области нету контура, обходящего ноль.
- 3. Эспонента и логарифм. Логарифм можно задать однозначно, если в области нету контура, обходящего ноль.

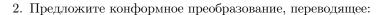
Занятие 4, 05.03.2020. Конформные отображения в картинках. Степень и корень.

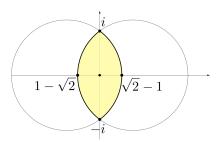
Преобразованием Мебиуса называется отображение $\mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ вида $z \mapsto \frac{az+b}{cz+d}$. Будем всегда требовать, чтобы $ad-bc \neq 0$.

Нули производной и углы. По определению, голоморфная функция f на Ω — это такая функция, что $\frac{\partial f}{\partial \overline{z}}f=0$, а конформное преобразование — это отображение, сохраняющее углы. Конформное преобразование всегда голоморфно или антиголоморфно ($z\mapsto \overline{z}$ — тоже конформно), а если f голоморфна и $f'(z_0)\neq 0$, то f является конформным преобразованием в некоторой окрестности точки z_0 . В тех же точках, где f'(z)=0, отображение f изменяет углы в некоторое целое число раз.



Б) угол
$$\{z : \text{Im } z \ge 0, \Re z \le 0\},\$$





Корень. Любое комплексное число можно записать в виде $z=|z|e^{i\varphi}$ и φ называется аргументом z, мы будем часто писать $\varphi=\arg z$.

1. Пусть $\Omega \subset \mathbb{C}$ — область. Чему равен $\arg z_0$, если

А)
$$\Omega = \mathbb{C} \setminus \{it, \ t \geq 0\}$$
, $\arg 1 = 0$ и $z_0 = -1$ или $z_0 = -i$ или $z_0 = 1 + i$?

Б)
$$\Omega = \mathbb{C} \setminus \{t, \ t > 0\}$$
, $\arg i = -\frac{3\pi}{2}$ и $z_0 = -1$ или $z_0 = -i$ или $z_0 = 1 + i$?

В)
$$\Omega = \mathbb{C} \setminus \{it+2t, \ t>0\}, \ \arg(-1) = -\pi$$
 и $z_0 = -1$ или $z_0 = i$ или $z_0 = 1+i$?

- 2. Пусть $a \in \mathbb{R}$. Определим $z^a := |z|^a e^{ia \arg z}$. Как мы видели выше, вид этой функции зависит от области определения. Куда $z \mapsto \sqrt{z}$ переведет области выше? А $z \mapsto \sqrt[3]{z}$?
- 3. Пусть $w: \mathbb{C} \to \mathbb{C}$ голоморфная функция. Проведите разрез или несколько разрезов так, чтобы дополнение к ним было связно, а arg w(z) на этом дополнении был определен однозначно, если

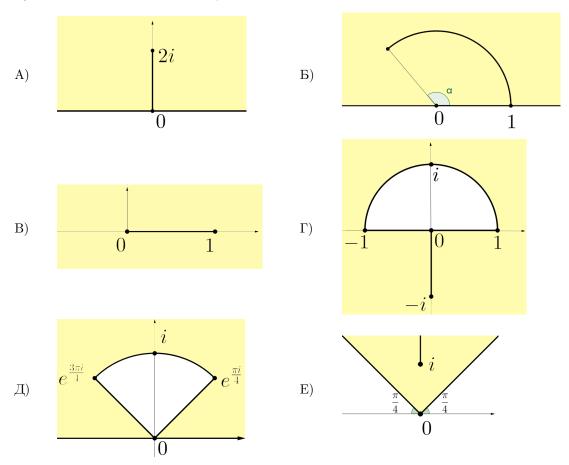
A)
$$w(z) = z - 1$$

Б)
$$w(z) = z + 1$$

B)
$$w(z) = z^2 - 1$$

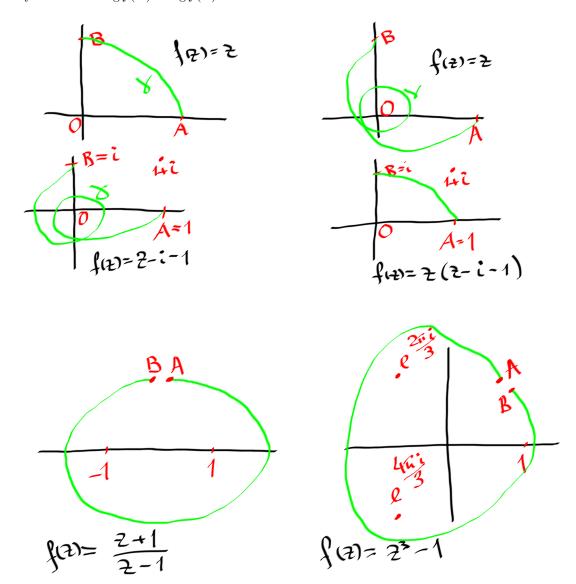
- 4. Пусть $w(z) = z^2 1$ и $\Omega = \mathbb{C} \setminus [-1, +\infty)$. Определите $\arg w(z)$ и $\arg(z-1), \arg(z+1)$ так, чтобы $\arg(w(z)) = \arg(z-1) + \arg(z+1)$.
- 5. Пусть $w(z) = z^2 1$. Покажите, что функция $\sqrt{w(z)}$ может быть однозначно задана в области $\mathbb{C} \setminus [-1, 1]$ условием $\sqrt{w(2)} > 0$. Вычислите $\sqrt{w(i)}$.
- 6. Пусть теперь $w(z) = \sqrt{(z^2 1)(z^2 4)}$.
 - А) Покажите, что w(z) может быть однозначно задана в области $\Omega = \mathbb{C} \setminus ([-2, -1] \cup [1, 2]).$
 - Б) Куда w(z) переводит верхнюю полуплоскость?
- 7. Придумайте конформное отображение, которое переводит круг $B = \{z : |z| < 1\}$ в дополнение отрезка $A = \mathbb{C} \setminus [-1,1]$. Запишите это одной формулой.

- 8. Отобразите конформно закрашенную область в полуплоскость:
 - А) На поле стоит одинокая травинка. Выкорчевайте травинку.
 - Б) Подул сильный ветер и травинка покосилась. Выкорчевайте травинку.
 - В) Ветер стал сильнее и травинка улетела. Поймайте травинку и вернитесь на поле.
 - Γ) «Зонтик» хочет поддержать нас в эту нелегкую питерскую погоду не поддавайтесь, будьте сильны, уберите зонтик.
 - Д) На столе лежит диамант. Возьмите его и подарите своей девушке/парню.
 - Е) Здесь может быть Ваша история.

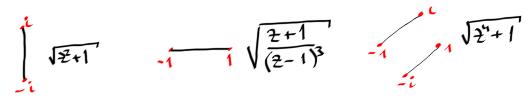


Занятие 5, 19.03.20. Конформные отображения в картинках.

1. В нижеследующих задачах вам даны две точки $A, B \in \mathbb{C}$, выражение f(z), путь γ , соединяющий точки A, B. Нужно найти $\arg f(B) - \arg f(A)$.

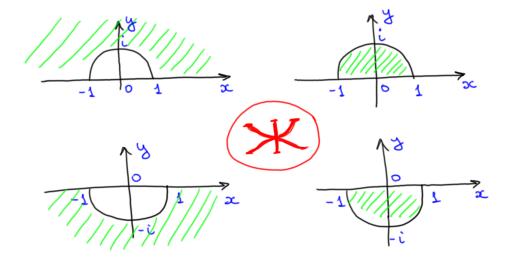


2. Теперь вам даны: плоскость с разрезом (разрезами), выражение f(z). Требуется проверить, можно ли корректно определить ветвь $\sqrt{f(z)}$ вне разреза.

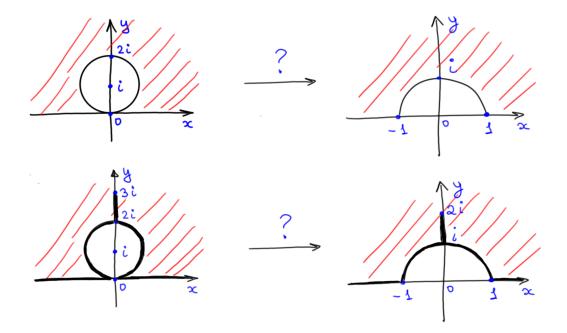


- 3. Предположим, что $\Omega \subset \mathbb{C}$ односвязная ограниченная область и $\partial\Omega$ есть простая замкнутая кривая, заданная посредством параметризации $\gamma:[0,1]\to\mathbb{C}$. Пусть $f:\overline{\Omega}\to\mathbb{C}$ непрерывная функция, голоморфная внутри Ω . Предположим, что $f(z)\neq 0$ для всякого $z\in\partial\Omega$ и рассмотрим некоторую ветвь $\arg f(\gamma(t))$.
 - А) Предположим, что $f(z) \neq 0$ для всякого $z \in \Omega$. Аккуратно проверьте, что $\arg f(\gamma(0)) = \arg f(\gamma(1))$.
 - Б) Предположим, что γ ориентирована против часовой стрелки. Обозначим через N количество нулей функции f в Ω (с учетом кратности). Покажите, что $N<\infty$.
 - B) Покажите, что $\arg f(\gamma(1)) \arg f(\gamma(0)) = 2\pi N$.
- 4. Давайте поизучаем экспоненту и логарифм:
 - A) Пусть z = x + iy. Покажите, что $|e^z| = e^x$ и $\arg e^z = y$.
 - Б) Куда переходят при отображении $z\mapsto e^z$
 - і. горизонтальная полоса $\{z : \alpha < \text{Im}(z) < \beta\}, 0 < \alpha < \beta < 2\pi.$

- іі. вертикальная полоса $\{z\ :\ a<\Re(z)< b\}$
- ііі. горизонтальная полуполоса $\{z : 0 < \text{Im}(z) < \pi, \Re(z) > 0\}.$
- іv. горизонтальная полуполоса $\{z : 0 < \text{Im}(z) < \pi, \Re(z) < 0\}.$
- В) Напомним, что $\text{Ln}(z) = \ln|z| + i\arg(z)$. Примените $\ln(z)$ к области $\{z : 1 < |z| < e, \arg(z) \in [2\pi, 5\pi/2]\}$
- 5. Преобразование $X(z) = \frac{1}{2} \left(z + \frac{1}{z}\right)$ называют преобразованием Жуковского. Покажите, что каждая из данных областей переходит в полуплоскость под действием преобразования Жуковского. В какую именно: верхюю или нижнюю?



6. Придумайте конформное отображение, которое переводит «Начало заката Солнца» в «Солнце наполовину село» (без лучиков и с лучиком — отрезок [2i, 3i] и отрезок [i, 2i]):

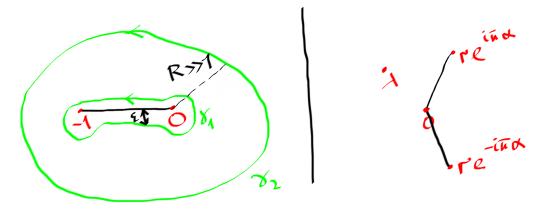


 Hint : используйте весь арсенал конформных отображений: преобразование Мебиуса (в частности, сдвиги, повороты, гомотетии, инверсии), степенные отображения $(z \mapsto z^n \text{ и } z \mapsto z^{1/n})$, экспоненты и логарифмы.

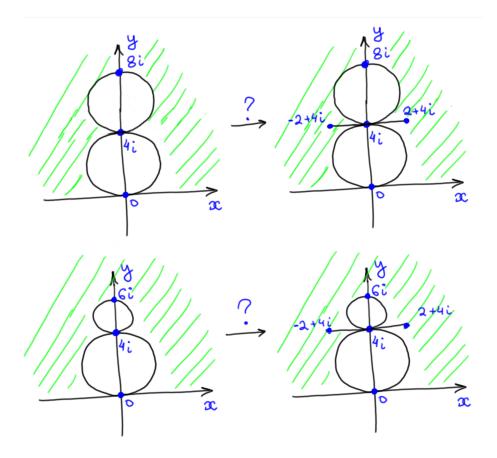
- 7. Пусть $\alpha \in (0,1)$. Рассмотрим функцию $f(z) = z^{\alpha}(z+1)^{1-\alpha}$, заданную в области $\Omega = \mathbb{C} \setminus [-1,0]$.
 - А) Покажите, что граница Ω переходит в объединение двух отрезков $B = [0, re^{\pi \alpha}] \cup [0, re^{-\pi \alpha}]$, где

$$r = (1 - \alpha)^{1 - \alpha} \alpha^{\alpha}.$$

- Б) Пусть $\lambda \in \mathbb{C} \setminus B$. Рассмотрим функцию $g(z) = f(z) \lambda$. Рассмотрим контуры γ_1, γ_2 , как на картинке. Покажите, что приращение $\arg g(z)$ вдоль γ_1 равно нулю, а приращение $\arg g(z)$ вдоль γ_2 равно 2π .
- В) Заключите, что g(z)=0 имеет единственное решение в Ω , и, стало быть, $f:\Omega\to\mathbb{C}\smallsetminus B$ конформное отображение (то есть биекция).



8. «Приделайте снеговику ручки» (придумайте конформное преобразование левой картинки в правую). Рассмотрите 2 случая: когда снеговик симметричный и несимметричный.



Занятие 6, 28.03.20. Теорема Руше. Ряды Лорана и вычеты.

Занятие 6, 28.03.20. Теорема Руше. Ряды Лорана и вычеты.

Теорема Руше: пусть $f,g:\Omega\to\mathbb{C}$ — голоморфные фунции и |f(z)|<|g(z)| для всякого $z\in\partial\Omega$. Тогда число нулей g и f+g в Ω совпадает.

1. Найдите количество корней многочлена $P(z), z \in \mathbb{C}$, в области $D \subset \mathbb{C}$:

A)
$$P(z) = z^5 + 5z + 1$$
, $D = \{|z| < 1\}$

Б)
$$P(z) = 30z^7 + 239z^4 - 23z^2 + 99z + 1$$
, $D = \{|z| < 1\}$

B)
$$P(z) = z^5 - 12z^2 + 14$$
, $D = \{z : \text{Re}(z) > 0\}$

2. Докажите, что при $\lambda > 1$ уравнение

$$ze^{\lambda-z}=1$$

имеет в круге $D = \{z : |z| \le 1\}$ ровно 1 корень.

3. Докажите, что уравнение $z \sin(z) = 1$ имеет только вещественные корни.

Ряды Лорана, особые точки и вычеты

1. Разложите функцию $f(z) = \frac{1}{(1-z)(z+3)}$ в ряд Лорана с центром в нуле в областях:

A)
$$D = \{z : |z| < 1\}$$

$$B) D = \{z : 1 < |z| < 3\}$$

B)
$$D = \{z : |z| > 3\}$$

2. Найти все особые точки функции f(z), определить их тип и найти вычеты в них:

A)
$$f(z) = \frac{z^8}{(z^4+1)(z+1)^2}$$

B)
$$f(z) = \frac{1}{(\sin z)^2}$$

Б)
$$f(z) = \frac{1}{\sin z}$$

$$\Gamma$$
) $f(z) = z^{11}e^{1/z^2}$

3. Положим $\log f := \log |f| + i \arg f$. Покажите, что $e^{\log f} = f$.

4. Пусть γ — простая кривая, соединяющая точки z_0, z_1 и голоморфная функция f задана в окрестности γ и $f(z) \neq 0$ для всякого z. Покажите, что

$$\int_{\gamma} d\log f = i(\arg f(z_1) - \arg f(z_0))$$

(обратите внимание, что $(\log f)' = \frac{f'(z)}{f(z)}$ — однозначно определенная функция и $(\log fg)' = (\log f)' + (\log g)'$).

5. Пусть f — голоморфная функция.

- А) Предположим, что f имеет ноль в точке z_0 кратности d. Покажите, что $(\log f)'$ имеет простой полюс в точке z_0 и найдите вычет.
- Б) Используйте теорему о вычетах, чтобы посчитать приращение аргумента $f(z) = \frac{z^2+2}{z^3-1} \sin z$ вдоль пути $\gamma = \{|z| = 10\}.$

Занятие 7, 02.04.2020. Вычеты и интегралы по контурам.

Ряды Лорана, особые точки и вычеты. Ряд вида $\sum_{n=-\infty}^{\infty} c_n (z-a)^n$ называется *рядом Лорана*, $a, c_n \in \mathbb{C}$. Ряд называется сходящимся в точке z, если в этой точке отдельно сходятся ряды

$$\sum_{n=0}^{\infty} c_n (z-a)^n \qquad \text{ и } \qquad \sum_{n=-1}^{-\infty} c_n (z-a)^n$$

Первый ряд сходится внутри некоторого круга |z-a| < R, а второй ряд сходится вне некоторого круга |z-a| > r, поэтому при r < R ряд Лорана сходится в некотором кольце r < |z-a| < R.

Вычетом функции $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$ в точке a называется ее коэффициент c_{-1} (при 1/(z-a)) и обозначается $\operatorname{res}_{z=a} f(z)$. Вычеты играют важную роль, когда мы хотим считать интегралы по контурам.

1. Найдите все полюса функции f(z) и определите вычеты в них.

A)
$$f(z) = \frac{1}{(z^2+1)\sin z}$$
,

B)
$$f(z) = \frac{1}{z(\sin z)^2}$$
,

B)
$$f(z) = z^{11}e^{1/z^2}$$

Интегралы по контурам

Теорема 2 (Коши о вычетах). Пусть $\Omega \subset \mathbb{C}$ и функция f(z) — непрерывна в замыкании Ω и голоморфна в Ω за исключением конечного числа изолированных особых точек $a_k \in \Omega$. Тогда

$$\oint_{\partial\Omega} f(z) dz = 2\pi i \sum_{k=1}^{n} \mathrm{res}_{z=a_k} f(z)$$

2. Посчитайте интегралы по замкнутому контуру:

A)
$$\oint_{|z|=4} \frac{z^4}{e^z+1} dz$$

B)
$$\oint_{|z|=3} \frac{dz}{(z-1)^2(1-\cos(z))}$$

B)
$$\oint_{|z|=1} \frac{dz}{e^{2/z} - e^{1/z}}$$

3. Найдите интегралы, используя теорему Коши о вычетах:

A)
$$\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2+1)(x^2+2)}$$

B)
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^n}, \ n \in \mathbb{N}$$

$$\coprod_{-\infty}^{+\infty} \frac{\cos x \, dx}{(x^2 - 2ix - 2)^2}$$

B)
$$\int_{0}^{+\infty} \frac{x^6 dx}{(x^4 + a^4)^2}, \ a > 0$$

$$\Gamma) \int_{-\infty}^{+\infty} \frac{(x-1)e^{ix} dx}{x^2 - 2x + 2}$$

E)
$$\int_{0}^{+\infty} \frac{x \sin x \, dx}{x^2 + a^2}, \ a > 0$$

Замечание: тут бывает полезна лемма Жордана: пусть f(z) непрерывна на множестве $\{z: {\rm Im}\,(z)\geqslant 0, |z|\geqslant R_0>0\}$ и пусть

$$\lim_{R\to +\infty} M(R)=0, \quad \text{ где } \quad M(R)=\max_{z\in \Gamma_R} |f(z)|, \quad \Gamma_R=\{z\,:\, |z|=R, \mathrm{Im}\,(z)\geqslant 0\}.$$

Тогда если $\alpha > 0$, то

$$\lim_{R \to +\infty} \int_{\Gamma_R} f(z)e^{i\alpha z} dz = 0.$$

4. Докажите, что $\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{2a} (\operatorname{cth}(a\pi) - \frac{1}{a\pi}).$

5. Найдите сумму $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

Занятие 8, 09.04.2020. Интегралы по контурам. Лемма Жордана.

Интегралы по контурам

Теорема 3 (Коши о вычетах). Пусть $\Omega \subset \mathbb{C}$ и функция f(z) — непрерывна в замыкании Ω и голоморфна в Ω за исключением конечного числа изолированных особых точек $a_k \in \Omega$. Тогда

$$\oint_{\partial \Omega} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z=a_{k}} f(z)$$

1. Найдите интегралы, используя теорему Коши о вычетах:

A)
$$\int_{-\infty}^{+\infty} \frac{(x-1)e^{-ix} dx}{x^2 - 2x + 2}$$

B)
$$\int_{0}^{+\infty} \frac{x \sin x \, dx}{x^2 + a^2}, \ a > 0$$

B)
$$\int_{-\infty}^{+\infty} \frac{\cos x \, dx}{(x^2 - 2ix - 2)^2}$$

Замечание: тут бывает полезна лемма Жордана:

пусть f(z) непрерывна на множестве $\{z: {\rm Im}\,(z)\geqslant 0, |z|\geqslant R_0>0\}$ и пусть

$$\lim_{R\to +\infty} M(R)=0, \quad \text{ где } \quad M(R)=\max_{z\in \Gamma_R}|f(z)|, \quad \Gamma_R=\{z\,:\, |z|=R, \operatorname{Im}\,(z)\geqslant 0\}.$$

Тогда если $\alpha > 0$, то

$$\lim_{R \to +\infty} \int_{\Gamma_R} f(z)e^{i\alpha z} dz = 0.$$

2. Найдите интегралы, используя теорему Коши о вычетах:

A)
$$\int_{0}^{+\infty} \frac{dx}{(x+1)\sqrt{x}}$$

B)
$$\int_{0}^{+\infty} \frac{\log x \, dx}{x^2 + 1}$$

Д)
$$\int_{0}^{2} \frac{\sqrt{x(2-x)}}{x+3} dx$$

$$\mathrm{E} \int_{0}^{+\infty} \frac{dx}{(x^2+4)\sqrt[3]{x}}$$

$$\Gamma$$
) $\int_{0}^{+\infty} \frac{x^{a-1} dx}{1+\sqrt[3]{x}}$, $\Re(x) \in (0, \frac{1}{3})$ E) $\int_{0}^{1} \sqrt{x^3 - x^4} dx$

E)
$$\int_{0}^{1} \sqrt{x^3 - x^4} \, dx$$

Считаем суммы рядов с помощью вычетов

3. Докажите, что
$$\sum_{n=1}^{\infty} \frac{1}{n^2+a^2} = \frac{\pi}{2a} (\operatorname{cth}(a\pi) - \frac{1}{a\pi}).$$

4. Найдите сумму $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

Занятие 9, 16.04.2020. Интегралы по контурам.

Интегралы по контурам

Теорема 4 (Коши о вычетах). Пусть $\Omega \subset \mathbb{C}$ и функция f(z) — непрерывна в замыкании Ω и голоморфна в Ω за исключением конечного числа изолированных особых точек $a_k \in \Omega$. Тогда

$$\oint_{\partial\Omega} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z=a_{k}} f(z)$$

1. Найдите интегралы, используя теорему Коши о вычетах:

A walk through the forest...

- 2. А может ли?
 - А) Пусть $\mathbb{D} = \{z : |z| < 1\}$ и $f : \mathbb{D} \to \mathbb{C}$ голоморфная функция. Может ли f принимать только вещественные значения и не быть постоянной?
 - Б) Пусть $\mathbb{D} = \{z : |z| < 1\}$ и $f : \mathbb{D} \to \mathbb{C}$ голоморфная функция. Может ли $f(\mathbb{D})$ быть неодносвязным (то есть ограничивать некоторое подмножество плоскости)?
 - В) Пусть $f: \mathbb{C} \to \mathbb{C}$ непостоянная голоморфная функция. Может ли f быть ограниченной одновременно и на вещественной, и на мнимой оси?
 - Г) Пусть $f:\{z:0<|z-z_0|<1\}\to\mathbb{C}$ голоморфная функция. Предположим, что f имеет полюс в z_0 . Может ли f не принимать вещественных положительных значений?
- 3. Опишите все голоморфные $f: \mathbb{C} \to \mathbb{C}$, для которых выполняется $|f(z)| \leq |z| + 1$ для всех z.
- 4. Опишите все голоморфные функции $f: \mathbb{C} \to \mathbb{C}$, удовлетворяющие f(z+w) = f(z)f(w) для всяких $z, w \in \mathbb{C}$.
- 5. Пусть $f: \overline{\mathbb{D}} \to \mathbb{C}$ голоморфная функция, где $\overline{\mathbb{D}} = \{z: |z| \leq 1\}$. Предположим, что |f(z)| = 1, если |z| = 1, и $f(z) \neq 0$ для всякого $z \in \mathbb{D}$. Покажите, что f(z) = f(0) для всякого z.
- 6. Опишите все конформные преобразования $f: \mathbb{D} \to \mathbb{D}$.

Занятие 10, 23.04.2020. Keep on walking.

- 1. А может ли?
 - А) Пусть $\mathbb{D} = \{z : |z| < 1\}$ и $f : \mathbb{D} \to \mathbb{C}$ голоморфная функция. Может ли f принимать только вещественные значения и не быть постоянной?
 - Б) Пусть $\mathbb{D} = \{z : |z| < 1\}$ и $f : \mathbb{D} \to \mathbb{C}$ голоморфная функция. Может ли $f(\mathbb{D})$ быть неодносвязным (то есть ограничивать некоторое подмножество плоскости)?
 - В) Пусть $f:\mathbb{C} \to \mathbb{C}$ непостоянная голоморфная функция. Может ли f быть ограниченной одновременно и на вещественной, и на мнимой оси?
 - Г) Пусть $f:\{z:0<|z-z_0|<1\}\to\mathbb{C}$ голоморфная функция. Предположим, что f имеет полюс в z_0 . Может ли f не принимать вещественных положительных значений?
- 2. Опишите все голоморфные $f: \mathbb{C} \to \mathbb{C}$, для которых выполняется $|f(z)| \leq |z| + 1$ для всех z.
- 3. Опишите все голоморфные функции $f: \mathbb{C} \to \mathbb{C}$, удовлетворяющие f(z+w) = f(z)f(w) для всяких $z, w \in \mathbb{C}$.
- 4. Пусть $f: \overline{\mathbb{D}} \to \mathbb{C}$ голоморфная функция, где $\overline{\mathbb{D}} = \{z: |z| \le 1\}$. Предположим, что |f(z)| = 1, если |z| = 1, и $f(z) \ne 0$ для всякого $z \in \mathbb{D}$. Покажите, что f(z) = f(0) для всякого z.
- 5. Говорят, что элемент f кольца \mathcal{R} делится на элемент g, если существует $\varphi \in \mathcal{R}$ такое, что $f = \varphi g$. Для каждой голоморфной функции f обозначим через $\operatorname{ord}_z f$ порядок нуля f в точке z. Покажите, что голоморфная функция f делится на g тогда и только тогда, когда $\operatorname{ord}_z f \geq \operatorname{ord}_z g$ для всякой точки z из области определения.
- 6. Опишите все конформные преобразования $f: \mathbb{D} \to \mathbb{D}$.
- 7. Пусть $f: \mathbb{C} \to \mathbb{C}$ голоморфная функция и P(z) ненулевой многочлен. Пусть $P(f(\frac{1}{n})) = 0$ для всякого $n \in \mathbb{N}$. Покажите, что f постоянна.
- 8. Пусть $\Omega \subset \mathbb{C}$ открытое множество и $f:\Omega \to \mathbb{C}$ голоморфная функция. Положим $u(z)=\Re f(z)$ и $v(z)=\operatorname{Im} f(z)$, то есть f=u+iv. Покажите, что u и v гармонические, то есть удовлетворяют уравнению

$$\Delta h = h_{xx} + h_{yy} \equiv 0.$$

- 9. Пусть $\Omega\subset\mathbb{C}$ открытое множество и $u:\Omega\to\mathbb{R}$ гармоническая функция.
 - A) Покажите, что форма $\omega = u_x dy u_y dx$ замкнута.
 - Б) Предположим, что Ω односвязна. Пусть $z_0 \in \Omega$, определим $v(z) = \int_{z_0}^z \omega$, интеграл берется вдоль любого пути из z_0 в z. Функция v называется *гармонически сопряженной* к u. Покажите, что f(z) = u(z) + iv(z) голоморфна.
- 10. Пусть $\lambda \in \mathbb{R}$ и $u(x,y) = x^2 + \lambda xy y^2$. Найдите голоморфную f(z) такую, что $\Re f(x+iy) = u(x,y)$.

Занятие 11, 30.04.2020. And finally we come (not yet).

Разминка

- 1. Пусть $P, f: \mathbb{C} \to \mathbb{C}$ функция и f(z) голоморфна. Покажите, что f постоянна, если
 - А) P ненулевой многочлен,
 - Б) P ненулевая голоморфная функция.
- 2. Опишите все голоморфные функции $f:\mathbb{C}\to\mathbb{C}$ такие, что

$$f(z+w) = f(z) + f(w) + zw$$

для любых $z, w \in \mathbb{C}$.

3. Пусть $\Omega\subset\mathbb{C}$ — открытое множество и $f:\Omega\to\mathbb{C}$ — голоморфная функция. Пусть r>0, положим $\Omega_r=\{z\in\Omega:\operatorname{dist}(z,\partial\Omega)>r\}$. Покажите, что

$$\sup_{z \in \Omega_r} |f'(z)| \le \frac{1}{r} \sup_{z \in \Omega} |f(z)|.$$

Гармоническая, или голоморфная?.. Да!

4. Пусть $\Omega \subset \mathbb{C}$ — открытое множество и $f:\Omega \to \mathbb{C}$ — голоморфная функция. Положим $u(z)=\Re f(z)$ и $v(z)=\operatorname{Im} f(z)$, то есть f=u+iv. Покажите, что u и v — гармонические, то есть удовлетворяют уравнению

$$\Delta h = h_{xx} + h_{yy} \equiv 0.$$

- 5. Пусть $\Omega\subset\mathbb{C}$ открытое множество и $u:\Omega\to\mathbb{R}$ гармоническая функция.
 - A) Покажите, что форма $\omega = u_x dy u_y dx$ замкнута.
 - Б) Предположим, что Ω односвязна. Пусть $z_0 \in \Omega$, определим $v(z) = \int_{z_0}^z \omega$, интеграл берется вдоль любого пути из z_0 в z. Функция v называется $\mathit{гармонически}$ сопряженной к u. Покажите, что f(z) = u(z) + iv(z) голоморфна.
- 6. Пусть $\mathbb{C}^+ = \{z : \operatorname{Im} z > 0\}$. Найдите ограниченную гармоническую функцию $u : \mathbb{C}^+ \to \mathbb{R}$, непрерывную на $\mathbb{C}^+ \cup \mathbb{R} \setminus \{0\}$ такую, что
 - A) u(x) = 1 если x < 0 и u(x) = 0 если x > 0;
 - Б) u(x) = 1 если a < x < b и u(x) = 0 иначе.
- 7. Пусть $U,V\subset \mathbb{C}$ открытые множества, $f:U\to V$ голоморфная функция и $u:V\to \mathbb{C}$ гармоническая функция. Докажите, что v(z)=u(f(z)) тоже гармоническая.
- 8. Пусть $\mathbb{D} = \{z : |z| < 1\}$ и $\mathbb{T} = \{z : |z| = 1\}$. Пусть $p, q \in \mathbb{T}$. Найдите гармоническую функцию $u : \mathbb{D} \to \mathbb{R}$, непрерывную на $\mathbb{D} \cup \mathbb{T} \setminus \{p, q\}$ такую, что u(z) = 0 если z между p и q и u(z) = 1, если z между q и p.
- 9. Пусть $\Omega \subset \mathbb{C}$ область, ограниченная простой замкнутой кривой. Пусть $z_0 \in \Omega$. Пусть $u:\Omega \cup \partial\Omega \to \mathbb{R}$ непрерывная функция, такая, что
 - u гармонична в Ω
 - если $z \in \partial \Omega$, то $u(z) = \log |z z_0|$.

Функцию $G(z) = -\log|z - z_0| + u(z)$ будем называть функцией Грина в точке z_0 .

- A) Проверьте, что G(z) гармонична в $\Omega \setminus \{z_0\}$.
- Б) Пусть \widetilde{G} гармонически сопряженная функция к G (определенная в $\Omega \smallsetminus \{z_0\}$). Вообще говоря, \widetilde{G} определена только локально при обходе вокруг z_0 ее значение меняется на константу. Покажите, что

$$\widetilde{G}(z) = -\arg(z - z_0) + \widetilde{u}(z),$$

где \widetilde{u} — это гармонически сопряженная к u.

- В) Положим $\Phi(z) = \exp(-G(z) i\widetilde{G}(z))$. Проверьте, что $\Phi(z)$ корректно определенная голоморфная функция на $\Omega \smallsetminus \{z_0\}$.
- Γ) Покажите, что Φ может быть продолжена до голоморфной функции в z_0 .
- Д) Покажите, что $\Phi: \Omega \to \{z: |z| < 1\}$ взаимно-однозначное отображение.

Занятие 12, 07.05.2020. Ряды Фурье.

Определение: ряд вида

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + \sum_{k=1}^{\infty} b_k \sin(kx), \qquad a_k, b_k \in \mathbb{R},$$

называется тригонометрическим рядом. А система функций $\{1,\sin(kx),\cos(kx)\}$ — тригонометрической системой. Пусть $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + \sum_{k=1}^{\infty} b_k \sin(kx)$ и ряд сходится равномерно на \mathbb{R} , тогда

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
 $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$ $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

Такое разложение называется разложением в ряд Фурье функции f(x).

- 1. Разложите функции в ряд Фурье по синусам и косинусам:
 - A) $f(x) = x^2, x \in (-\pi, \pi)$
 - B) $f(x) = x^2 \cdot \operatorname{sign}(x), \quad x \in (-\pi, \pi).$
 - B) $f(x) = x^2, \quad x \in (0, 2\pi)$
 - Γ) $f(x) = e^{ax}$, $x \in (0, 2\pi)$
- 2. Найдите суммы следующих рядов:

A)
$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$$

$$\mathrm{B}) \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3}$$

- A) Разложите $\sin(x)$, $x \in (0, \pi)$ в ряд по $\cos(2\pi x)$
 - Б) Разложите $\cos(x)$, $x \in (0, \pi)$ в ряд по $\sin(2\pi x)$
- А) Покажите, что:

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n}, \quad 0 < x < 2\pi$$

- Б) С помощью этого разложения найдите сумму $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$
- В) Используя равенство Парсеваля, докажите, что $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- 5. Пусть $f \in L^2[0,2\pi]$ и a_n и b_n ее коэффициенты Фурье. Покажите, что

$$\sum_{n=1}^{\infty} \frac{b_n}{n} = \frac{1}{2\pi} \int_{0}^{2\pi} (\pi - x) f(x) \, dx$$

- 6. Покажите, что если у $f,g \in L^1[-\pi,\pi]$ совпадают ряды Фурье, то f=g п.в.
- 7. Используйте равенство Парсеваля, чтобы найти суммы рядов:

A)
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

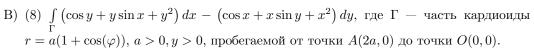
$$\text{B)} \sum_{n=1}^{\infty} \frac{1}{(a^2 + n^2)^2}$$

B)
$$\sum_{n=1}^{\infty} \frac{n^2}{(a^2+n^2)^2}$$

2 Домашние задания

ДЗ 1. Гармонические функции на плоскости. Функции Грина. Дедлайн: 7 марта 23:59

- 1. Посчитайте криволинейные интегралы:
 - А) (3) $\int_{\Gamma} -\frac{x}{y^2} \, dx + \frac{x^2}{y^3} \, dy$, где Γ изображена на рис. справа ((1,1) начало, (2,2) конец).
 - Б) (4) $\int\limits_{\Gamma} x^2 y \, dx xy^2 \, dy$, где $\Gamma = \{(x,y): \, x^2 + y^2 = R^2, \,$ против часовой стрелки $\}$.



Р.S. тут бывает очень полезна формула Грина!

2. Задача о том, как решать уравнение Лапласа, и в частности, восстанавливать гармоническую функцию по значениям на границе

$$\begin{cases}
-\Delta u(z) = f(z), & z \in \Omega \\
u(z) = g(z), & z \in \partial\Omega
\end{cases}$$
(6)

Оказывается, что по заданным функциям $f \in C(\Omega)$, $g \in L^{\infty}(\partial\Omega)$ можно однозначно восстановить функцию $u \in C^2(\Omega)$. Для этого нам понадобится фунция Грина $G(z, z_1)$ — это «кирпичик», из которого складывается решение задачи в общем случае (определение см. ниже). Функция Грина зависит от области Ω и не зависит от f, g. Цель задачи доказать следующую формулу для функции u — решения задачи (6):

$$u(z) = -\int_{\Omega} f(z_1) G(z, z_1) dz_1 + \int_{\partial \Omega} g(z_1) \cdot \frac{\partial G}{\partial n}(z, z_1) dS(z_1).$$
 (7)

Таким образом, зная функцию Грина G, мы можем найти u. Про функцию Грина можно неформально думать так: это такое элементарное решение задачи (6) при $g \equiv 0$ и $f = \delta(z-z_1)$ (дельта-функция Дирака, равна нулю везде, кроме точки z_1), т.е. для любой $z_1 \in \Omega$ выполнено

$$\begin{cases} -\Delta_z G(z, z_1) = \delta(z - z_1), & z \in \Omega \\ G(z, z_1) = 0, & z \in \partial \Omega \end{cases}$$

Неплохим кандидатом для функции G на плоскости является $\frac{1}{2\pi}\log|z-z_1|$. Действительно, по доказанному на практике $\Delta_z\log|z-z_1|=0$ при $z\neq z_1$, а в точке $z=z_1$ у нее явно есть особенность (почему именно нормировка $\frac{1}{2\pi}$ станет понятно из решения задачи). Единственное, $\frac{1}{2\pi}\log|z-z_1|$ не обязательно удовлетворяет граничным условиям. Но это не страшно, давайте слегка его подкорректируем. Рассмотрим корректор $\varphi(z,z_1)$ такой, что при $z_1\in\Omega$ выполнено:

$$\begin{cases} -\Delta_z \varphi(z, z_1) = 0, & z \in \Omega \\ \varphi(z, z_1) = \frac{1}{2\pi} \ln|z - z_1|, & z \in \partial\Omega \end{cases}$$
(8)

Тогда естественный кандидат на функцию Грина G — это $\frac{1}{2\pi} \ln |z-z_1| - \varphi(z,z_1)$.

Определение: функцией Грина для оператора Лапласа Δ в области $\Omega \subset \mathbb{R}^2$ называется

$$G(z, z_1) = \frac{1}{2\pi} \ln|z - z_1| - \varphi(z, z_1),$$

где $\varphi(z, z_1)$ определяется из системы (8).

А) (9) (тут собраны вспомогательные утверждения) Пусть $S_{\varepsilon}(z) = \{z_1 \in \mathbb{R}^2 : |z - z_1| = \varepsilon\}, \ B_{\varepsilon}(z) = \{z_1 \in \mathbb{R}^2 : |z - z_1| \leqslant \varepsilon\}, \$ причем $B_{\varepsilon}(z) \subset \Omega$. Покажите, что для

любой функции $u \in C^2(\Omega)$ и любой функции $f \in C(\Omega)$ выполнено:

$$\begin{split} &\int\limits_{S_{\varepsilon}(z)} \frac{\partial u(z_1)}{\partial n} \cdot \ln|z - z_1| \, dS(z_1) \to 0, \qquad \varepsilon \to 0, \\ &\int\limits_{S_{\varepsilon}(z)} u(z_1) \frac{\partial \ln|z - z_1|}{\partial n} \, dS(z_1) \to u(z), \qquad \varepsilon \to 0, \\ &\int\limits_{\Omega \setminus B_{\varepsilon}(z)} f(z_1) \cdot \ln|z - z_1| \, dz_1 \to \int\limits_{\Omega} f(z_1) \cdot \ln|z - z_1| \, dz_1, \qquad \varepsilon \to 0. \end{split}$$

Существование последнего предела равносильно сходимости интеграла с логарифмом (у подынтегрального выражения есть особенность — утверждение в том, что она суммируемая). Полезно вспомнить рассуждения, которыми мы руководствовались, когда выводили теорему о среднем для гармонической функции.

Б) (6) Примените формулу Грина

$$\int_{\partial\Omega_1} \left(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \right) dS = \int_{\Omega_1} \left(v \Delta u - u \Delta v \right) dx dy.$$

В качестве функции u(z) возьмите решение задачи (6), в качестве функции v(z) возьмите $G(z,z_1)$, считая, что $z_1 \in \Omega$ — это параметр. К сожалению, в качестве Ω_1 не получится взять Ω , т.к. у функции G есть логарифмическая особенность в точке z_1 . Возьмите $\Omega_1 = \Omega \setminus B_{\varepsilon}(z_1)$.

- В) (3) Пользуясь пунктом A) перейдите к пределу по $\varepsilon \to 0$ в формуле Грина из пункта Б). Покажите, что в пределе получается ровно формула (7).
- Р.S. Выглядит это довольно громоздко, но смысл простой решение задачи Дирихле (6) с произвольными граничными данными g и производной правой частью f сводится к поиску функции Грина, которая зависит только от области Ω . Для стандартных областей Ω функцию Грина $G(z,z_1)$ можно найти явно. В следующей задаче мы найдем функцию Грина для полуплоскости и круга.

3. Задача о том, как выглядят гармонические фукнции в полуплоскости и в круге

 $\mathit{Лирика}$: Для того, чтобы найти функцию Грина $G(z,z_1)$ достаточно подобрать подходящий корректор $\varphi(z,z_1)$. В таких областях, как полуплоскость $\mathbb{R}^2_+ := \{(x,y): y>0\}$ и круг $B_1(0,0)$, нам помогут соображения симметрии (в случае полуплоскости — зеркальная симметрия, в случае круга — инверсия).

Определение: будем говорить, что $\tilde{z}=(\tilde{x},\tilde{y})\in\mathbb{R}^2$ симметрична точке $z=(x,y)\in\mathbb{R}^2$ относительно оси OX, если $\tilde{x}=x$ и $\tilde{y}=-y$.

- А) (3) Пусть $z_1 \in \mathbb{R}^2_+$. Докажите, что функция $\varphi(z,z_1) = \frac{1}{2\pi} \ln|z \tilde{z}_1|$ является решением задачи (8) при $\Omega = \mathbb{R}^2_+$. P.S. Таким образом, кандидат на функцию Грина — это $G(z,z_1) = \frac{1}{2\pi} \ln|z - z_1| - \frac{1}{2\pi} \ln|z - \tilde{z}_1|$.
- Б) (8) Рассмотрим гармоническую функцию в верхней полуплоскости \mathbb{R}^2_+

$$\begin{cases}
\Delta u(z) = 0, & z \in \mathbb{R}_+^2 \\
u(z) = g(z), & z \in OX
\end{cases}$$
(9)

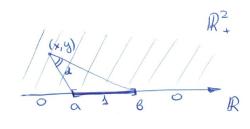
Докажите, что u(x,y) — решение задачи (9) — задается формулой (ее часто называют формулой Пуассона)

$$u(x,y) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{yg(x_1)}{(x-x_1)^2 + y^2} dx_1.$$

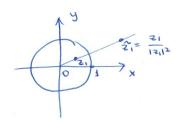
Замечание: тут есть 3 момента: 1) нужно просто подставить функцию Грина из A) в формулу (7) и все получится. 2) формально говоря, формулу (7) для данного случая нужно еще доказать, т.к. в задаче 2 область Ω — ограниченная, а тут нет. Давайте в проверку формулы (7) в случае $f\equiv 0$ для неограниченной области просто поверим (желающие конечно могут доказать за доп баллы!) 3) формула Пуассона работает, если y>0. Нужно еще пояснить, почему $\lim_{y\to 0} u(x,y)=g(x)$.

В) (3) Рассмотрим конкретные граничные данные: $g(x) = \mathbb{1}_{[a,b]}(x)$ — характеристическая функция отрезка [a,b]. Докажите, что гармоническая функция в полуплоскости с такими граничными данными — это функция u, которая в точке $(x,y) \in \mathbb{R}^2_+$ равна величине угла, под которым виден отрезок [a,b] из точки (x,y) (еще этот угол надо разделить на π). Говоря формально,

$$u(x,y) = \frac{1}{\pi} \left(\operatorname{arctg}\left(\frac{b-x}{y}\right) - \operatorname{arctg}\left(\frac{a-x}{y}\right) \right) = \frac{\alpha}{\pi}.$$



Определение: будем говорить, что $\tilde{z}=(\tilde{x},\tilde{y})\in\mathbb{R}^2$ симметрична точке $z=(x,y)\in\mathbb{R}^2$ относительно окружности $S_1(0),$ если $\tilde{z}=\frac{z}{|z|^2}.$ Преобразование $I:\mathbb{R}^2\setminus\{0\}\to\mathbb{R}^2\setminus\{0\}$ такое что $I(z)=\frac{z}{|z|^2}$ еще называют *инверсией*.



- Г) (5) Пусть $z_1 \in B_1(0) \setminus \{0\}$. Докажите, что функция $\varphi(z,z_1) = \frac{1}{2\pi} \ln|z-\tilde{z}_1|$ «почти» является решением задачи (8) при $\Omega = B_1(0)$ (является гармонической функцией, но не удовлетворяет граничному условию). Подправьте функцию $\varphi(z,z_1)$, чтобы она стала решением задачи (8) при $\Omega = B_1(0)$. Выпишите правильную функцию Грина в этом случае.
- Д) (8) Рассмотрим гармоническую функцию в круге $B_1(0)$

$$\begin{cases} \Delta u(z) = 0, & z \in B_1(0) \\ u(z) = g(z), & z \in S_1(0) \end{cases}$$
 (10)

Докажите, что u(z) — решение задачи (10) — задается формулой (ее тоже называют формулой Пуассона)

$$u(z) = \frac{1 - |z|^2}{2\pi} \int_{S_1(0)} \frac{g(z_1)}{|z - z_1|^2} dS(z_1).$$

Замечание: тут есть 2 момента: 1) нужно просто подставить функцию Грина из Γ) в формулу (7) и все получится. 2) однако, есть проблема в интеграле из формулы Пуассона при |z|=1 (он не неопределен). Правильнее определять так:

$$u(z) = \begin{cases} \frac{1-|z|^2}{2\pi} \int_{S_1(0)} \frac{g(z_1)}{|z-z_1|^2} dS(z_1), & |z| < 1, \\ g(z), & |z| = 1 \end{cases}$$

Докажите, что эта функция непрерывна.

ДЗ 2. Конформные преобразования. Дедлайн 18 марта в 23:59

Все матрицы ниже предполагаются обратимыми!

Еще о преобразованиях Мебиуса.

1. Любое преобразование Мебиуса задается матрицей $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ по правилу

$$w(z) = \frac{az+b}{cz+d}.$$

В этом упражнении вы покажете, что преобразование Мебиуса определяет матрицу с точностью до умножения на константу и соответствие между матрицами и преобразованиями Мебиуса является гомоморфизмом групп.

- А) (5) Пусть w_1 и w_2 задаются матрицами A_1 и A_2 . Покажите, что композиция $w_1 \circ w_2$ (то есть преобразование $z \mapsto w_1(w_2(z))$) задается матрицей A_1A_2 (то есть произведением этих двух матриц).
- Б) (7) Покажите, что $\frac{az+b}{cz+d} \equiv z$ тогда и только тогда, когда a=d и b=c=0 (то есть матрица $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ отличается от единичной на константу) и выведите из этого и предыдущего пункта, что $w_1(z) \equiv w_2(z)$ тогда и только тогда, когда матрицы, задающие эти два преобразования, пропорциональны.
- В) (5) Покажите, что если $w(z) = \frac{az+b}{cz+d}$, то $w^{-1}(z) = \frac{dz-b}{-cz+a}$.
- 2. В этом упражнении вы опишете общий вид преобразований Мебиуса, сохраняющих верхнюю полуплоскость. Напомним, что преобразование Мебиуса однозначно описывается тем, какие точки оно переводит в ∞ , 0, 1, и преобразование, переводящее в ∞ , 0, 1 точки z_1, z_2, z_3 вычисляется по формуле

$$w(z) = (z_1, z_2; z_3, z) = \frac{z_3 - z_1}{z_3 - z_2} \cdot \frac{z - z_2}{z - z_1}.$$

- A) Для начала покажем, что преобразование Мебиуса переводит $\mathbb R$ в $\mathbb R$ тогда и только тогда, когда оно задается матрицей с вещественными коэффициентами:
 - і. (5) Пусть $a,b,c,d\in\mathbb{R}$ и $w(z)=\frac{az+b}{cz+d}$. Покажите, что $w(\mathbb{R}\cup\{\infty\})=\mathbb{R}\cup\{\infty\}$.
 - іі. (7) Предположим, что $w(\mathbb{R} \cup \{\infty\}) = \mathbb{R} \cup \{\infty\}$ и $w(z) = \frac{az+b}{cz+d}$. Покажите, что $a,b,c,d \in \mathbb{R}$. Подсказака: как выглядит преобразование, переводящее $x_1,x_2,x_3 \in \mathbb{R}$ в $\infty,0,1$? Вещественная ли у него матрица?
- Б) (10) Покажите, что $w(z)=\frac{az+b}{cz+d}$ переводит верхнюю полуплоскость в верхнюю полуплоскость тогда и только тогда, когда $a,b,c,d\in\mathbb{R}$ и $\det\begin{pmatrix} a&b\\c&d\end{pmatrix}>0$

Указание: попробуйте представить w(z) в виде цепочки сдвигов/растяжений/"инверсий" и воспользуйтесь тем, что определитель произведения есть произведение определителей.

В) (15) Пусть C_1, C_2 — две непересекающиеся окружности на плоскости. Докажите, что найдется преобразование Мебиуса w такое, что $w(C_1)$ и $w(C_2)$ имеют общий центр.

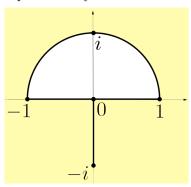
Аргумент и корень. Дисклеймер: мы пока только начали обсуждать, что такое аргумент, и в ближайший четверг изучим это более подробно.

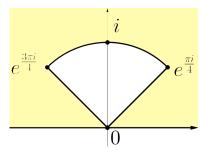
- 3.~(5) Пусть $\Omega=\mathbb{C}\smallsetminus\{t^2+it~:~t\geq 0\}.$ Определим $\arg z$ в Ω условием, что $\arg -1=\pi.$ Найдите $\arg i, \arg(1+\sqrt{3}i), \arg(\sqrt{3}+i).$
- 4. (5) Положим $w(z) = z^2 + 1$ и $\Omega = \mathbb{C} \setminus \{it : t \in (-\infty, -1] \cup [1, +\infty)\}$. Определим $\arg w(z)$ условием $\arg w(0) = 0$. Пусть $\sqrt{w(z)} = \sqrt{|w(z)|} e^{i\arg w(z)/2}$. Вычислите $\sqrt{w(-1)}, \sqrt{w(1+i)}$ и $\sqrt{w(1-i)}$.
- 5. (10) Покажите, что функция $\sqrt[3]{(z-1)^2(z+1)}$ может быть однозначно определена в комплексной плоскости с разрезом $\Omega = \mathbb{C} \setminus [-1,1]$ (функция должна быть непрерывной).

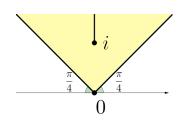
Черно-белая живопись.

- 6. (7) Пусть $0 < \alpha < 1$. Определим функцию $w(z) = z^{\alpha}(z+1)^{1-\alpha}$ в верхней полуплоскости правилом $(re^{i\varphi})^{\alpha} = r^{\alpha}e^{i\alpha\varphi}$, где $0 \le \varphi \le \pi$. Куда w(z) переводит верхнюю полуплоскость?
- 7. (10) Постройте конформное преобразование между $\mathbb{D}=\{z:|z|<1\}$ и $\widehat{\mathbb{C}}\smallsetminus[-1,1]$, где $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$. Выпишите его в явном виде.
- 8. (5) Покажите, что преобразование Мебиуса $z \mapsto \frac{1}{z+1}$ переводит ножку гриба (отрезок [-i,0]) на первой картинке в дугу окружности с центром в $z_0 = 1/2$.

9. (7+10+10) Для каждой картинки ниже постройте конформные преобразование, переводящее желтую область в верхнюю полуплоскость.







Давайте договоримся, что в качестве ответа необходимо привести последовательность картинок и отображений, как следующая картинка получается из предыдущей. Выписывать единой формулой итоговое отображение не нужно.

ДЗ 3. Теорема Руше и простейшие контурные интегралы. Дедлайн 7 апреля в 23:59 Теорема Руше.

Теорема 5 (Руше). Пусть Ω — ограниченная область на плоскости u $f,g:\overline{\Omega}\to\mathbb{C}$ — непрерывные функции, голоморфные в Ω u |f(z)|<|g(z)| для всякого $z\in\partial\Omega$. Тогда функции g u g+f имеют одинаковое число нулей (с учетом кратности) в Ω .

3амечание: обратите внимание, что неравенство |f(z)| < |g(z)| в теореме строгое, а область Ω — ограниченная!

- 1. Сколько корней имеет уравнение
 - А) (5) $z^3 12z + 1 = 0$ в области $\{z : |z| \le 2\}$,
 - Б) (7) $z = 2 e^{-z}$ в области $\{z : \Re z \ge 0\}$ (nodcказка: полуплоскость не является ограниченной областью но ведь можно смотреть на последовательность ограниченных областей, исчерпывающих полуплоскость?).

Интегралы по контурам

Теорема 6 (Коши о вычетах). Пусть $\Omega \subset \mathbb{C}$ и функция f(z) — непрерывна в замыкании Ω и голоморфна в Ω за исключением конечного числа изолированных особых точек $a_k \in \Omega$. Тогда

$$\oint_{\partial\Omega} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z=a_{k}} f(z),$$

где $\partial\Omega$ всегда ориентируется так, чтобы Ω располагалась слева по ходу ориентации.

2. Найдите интегралы, используя теорему Коши о вычетах:

А) (7)
$$\oint\limits_{|z|=1} \frac{dz}{e^{2/z}-e^{1/z}}$$
 (сделай замену $w=\frac{1}{z}!)$

B)
$$(7) \int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^n}, \ n \ge 2, \ n \in \mathbb{N}$$

B) (7)
$$\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2+1)(x^2+2)}$$

$$\Gamma$$
) (7) $\int_{0}^{+\infty} \frac{x^6 dx}{(x^4+a^4)^2}$, $a>0$ (используй четность!)

ДЗ 4. Контурные интегралы. Дедлайн 14 апреля, 23:59.

Найдите интегралы:

1. (7)
$$\int_{-\infty}^{+\infty} \frac{x \cos x \, dx}{x^2 - 2x + 10}$$

2. (7)
$$\int_{0}^{+\infty} \frac{x^{\alpha} dx}{x^{2}+3x+2}$$
, $0 < \alpha < 1$

3. (10, это необязательное задание)
$$\int_{0}^{+\infty} \frac{\log x \, dx}{x^2+1}$$

ДЗ 5. Контурные интегралы. Дедлайн 21 апреля, 23:59.

Найдите интегралы:

1. (7)
$$\int_{0}^{+\infty} \frac{\ln^2(x) \, dx}{(1+x)^2}$$

2.
$$(7) \int_{0}^{2} \frac{\sqrt{x(2-x)}}{x+3} dx$$

3. (7, это необязательное задание) $\int\limits_{-\infty}^{\infty} \frac{e^{\alpha x}}{e^x+1} dx$, $\operatorname{Re}(\alpha) \in (0,1)$

 $У \kappa a з a н u e$: попробуйте проинтегрировать подинтегральное выражение вдоль границы прямоугольника $Q_R = \{x+iy : |x| \leq R, \ y \in [0,2\pi]\}$ и устремить R к бесконечности.

ДЗ 6. Считаем суммы рядов с помощью вычетов. Дедлайн 28 апреля, 23:59.

Напоминание. На лекции было описано, как с помощью теоремы о вычетах можно вычислить сумму обратных квадратов. Давайте вспомним, как это было. Рассмотрим функцию $f(z) = \frac{\operatorname{ctg} z}{z^2}$. Функция f является мероморфной функцией с полюсами в точках вида πn , где $n \in \mathbb{Z}$, имеем

Res_{$$\pi n$$} $f = \begin{cases} \frac{1}{\pi^2 n^2}, & n \neq 0, \\ -\frac{1}{3}, & n = 0. \end{cases}$

Нетрудно показать, что $|\cot z| \le 4e$, если $|z| = R_n = 2\pi n + \frac{\pi}{2}$ (это случайная оценка, не ищите в ней глубокого смысла), отсюда сразу следует, что

$$\lim_{n \to +\infty} \oint_{|z| = R_n} f(z) dz = 0.$$

Вычисляя эти интегралы с помощью вычетов мы получаем тождество

$$-\frac{1}{3} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{\pi^2 n^2} = 0,$$

что влечет $\sum\limits_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

А теперь – дз! **Внимание:** надо сделать любые ∂ee задачи из трех (если сделаете три, то получите баллы за все задачи, конечно).

- 1. (8) Докажите, что $\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{2a} (\operatorname{cth}(a\pi) \frac{1}{a\pi}).$
- 2. (8) Найдите сумму $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.
- 3. (8) Пусть $\Omega \subset \mathbb{C}$ связное открытое множество и $f:\Omega \to \mathbb{C}$ непостоянная голоморфная функция. Покажите, что $f(\Omega) \subset \mathbb{C}$ открытое множество.

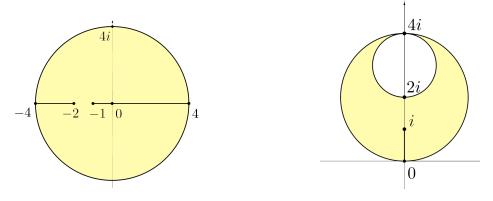
Доп ДЗ по всем темам. Дедлайн 27 мая, 23:59.

Формула Грина

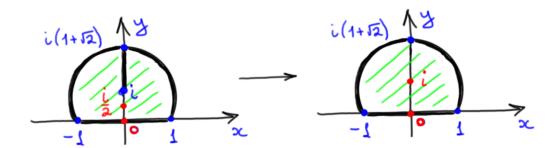
- 1. Найдите интегралы:
 - A) (6) $\int\limits_{\gamma}e^{x}[(1-\cos(y)\,dx+(\sin(y)-y)\,dy)]$, где γ кривая $y=\sin(x)$, пробегающая из точки (0,0) в точку $(\pi,0)$.
 - Б) (8) $\oint_{\gamma} \frac{x \, dy y \, dx}{x^2 + y^2}$, где γ простой замкнутый контур, не проходящий через начало координат (направление против часовой стрелки). *Hint*: поймите, что есть два кардинально разных случая когда контур обходит вокруг 0 и когда не обходит.

Конформные преобразования

2. (7+8) Для каждой картинки ниже постройте конформные преобразование, переводящее желтую область в верхнюю полуплоскость.



3. (10) В карстовой пещере майя на потолке нарос сталактит (отрезок $[i, i(1+\sqrt{2})]$). Уберите сталактит, т.е. постройте конформное отображение из левой картинки в правую с условием, что точка i/2 переходит в точку i, а точка 0 остается на месте.



4. (6) Докажите, что если для дробно-линейного преобразования $w(z) = \frac{az+b}{cz+d}$ след равен нулю (т.е. a+d=0), то $w \circ w = id$.

Теорема Руше

- 5. Найдите число корней уравнений в указанной области:
 - A) (4) $z^6 + 6z + 10 = 0$ в $\Omega = \{z : |z| > 1\}$;
 - Б) (7) $z^4 + z^3 4z + 1 = 0$ в $\Omega = \{z : 1 < |z| < 2\}$.
- 6. (10) Докажите, что уравнение $z\sin(z)=1$ имеет только вещественные корни. *Hint:* найдите число действительных корней этого уравнения на отрезке $[-(n+1/2)\pi, (n+1/2)\pi]$ и сравните его с числом всех корней этого уравнения в круге $|z|<(n+1/2)\pi$.

Контурные интегралы

7. Вычислите следующие интегралы, используя теорему Коши о вычетах:

A) (8)
$$\int_{-\infty}^{\infty} \frac{x \sin(x)}{x^2 - 10ix - 21}$$

B) (8)
$$\int_{0}^{\infty} \frac{x^{\alpha}}{(x+5)(x+10)},$$
$$\alpha \in (-1,1)$$

Д) (10)
$$\int_{-\infty}^{\infty} \frac{e^{\alpha x} dx}{1 + e^x + e^{2x}},$$
$$\operatorname{Re}(\alpha) \in (0, 2)$$

B)
$$(10) \int_{0}^{\infty} \frac{\cos(x)}{(x^2+a^2)^3}$$

$$\Gamma$$
) (8) $\int_{-1}^{1} \frac{\sqrt{1-x^2}}{x^2+1} dx$

Теор задачки по ТФКП

8. Существуют ли голоморфные функции $f:\mathbb{D}\to\mathbb{C}$ такие что (здесь $\mathbb{D}-$ единичный диск):

A) (4)
$$f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^2}, \quad n \in \mathbb{N};$$

B) (8)
$$f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n+1}, n \in \mathbb{N}.$$

9. (15) Пусть $f,g:\mathbb{C} \to \mathbb{C}$ — голоморфные функции, удовлетворяющие следующим функциональным уравнениям:

$$\begin{cases} f^2 + g^2 = 1, \\ f(z+w) = f(z)g(w) + g(z)f(w). \end{cases}$$

Чему равны f и g?

Ряды Фурье

10. А) (6) Покажите, что:

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n}, \qquad 0 < x < 2\pi$$

Б) С помощью 1) найдите суммы следующих рядов:

i. (6)
$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$$

ii. (4)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

Hint: 1) проинтегрируйте верхнюю функцию и угадайте, что надо разложить в ряд Фурье, чтобы посчитать ряды выше

2) воспользуйтесь признаком Дини (см. лекции), чтобы показать, что ряд Фурье сходится к значениям функции

11. (7) Разложите функцию $f(x) = x^3$ в тригонометрический ряд Фурье по синусам и косинусам в $L_2(0, 2\pi)$.

3 Контрольные работы

Подготовка к КР1.

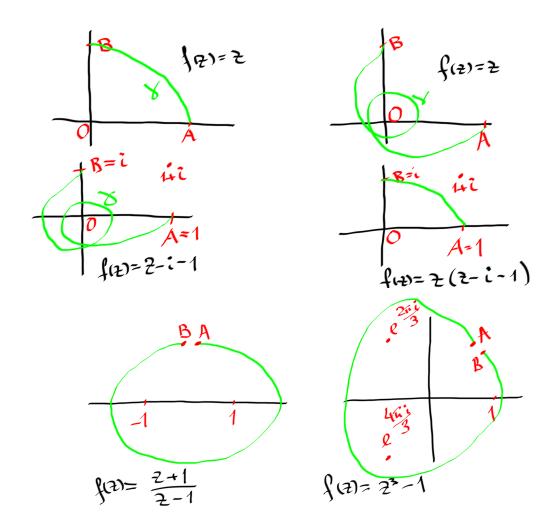
Еще раз про аргумент. На практике мы не успели подробно поговорить про аргумент, давайте сформулируем тут еще раз ключевые моменты.

- 1. если $z \neq 0$, то аргументом z называют любое $\varphi \in \mathbb{R}$, для которого $z = |z|e^{i\varphi}$. Таких φ бесконечно много, друг от друга они отличаются на $2\pi n$.
- 2. через arg z обозначают любую henpepushyo функцию, задающую аргумент в каждой точке. Любую такую функцию называют eemsoo аргумента.
- 3. локально $\arg z$ однозначно задается своим значением в одной точке: если $\arg z_0$ известно, то $\arg z$ однозначно вычисляется для z, близких к z_0 .
- 4. глобально $\arg z$ можно задать не всегда, типичные ситуации, когда можно:
 - А) область определения не содержит контуров, обходящих вокруг нуля.
 - Б) $\gamma:[0,1]\to\mathbb{C}\setminus\{0\}$ путь, тогда можно задать $\arg\gamma(t)$, как функцию от t.
- 5. если arg z_0 известен, то arg z_1 можно поискать следующим образом: z_0 и z_1 соединяются путем γ , затем вычисляется приращение arg z вдоль γ (см. (d).2)).
- 6. также, используя продолжение вдоль пути, можно вычислять $\arg w(z)$ для любой функции w.
- 7. препятствием к тому, чтобы определить $\arg w(z)$ глобально, являются пути, обходящие вокруг нулей w: надо, чтобы приращение $\arg w(z)$ вдоль любой замкнутой петли, содержащей хотя бы один ноль w, равнялось нулю.

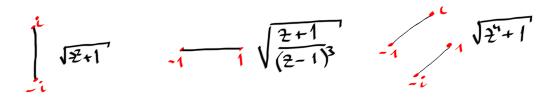
Задачи про аргумент.

1. В нижеследующих задачах вам даны две точки $A, B \in \mathbb{C}$, выражение f(z), путь γ , соединяющий точки A, B. Найдите приращение $\arg f$ вдоль γ , то есть $\arg f(B) - \arg f(A)$.

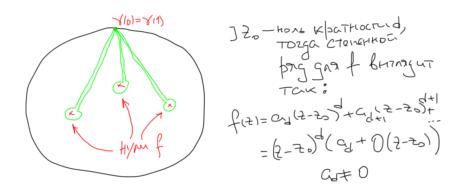
По 3 балла за 4 верхних картинки. По 5 баллов за 2 нижние картинки.



2. Теперь вам даны: плоскость с разрезом (разрезами), выражение f(z). Требуется проверить, можно ли корректно определить ветвь $\sqrt{f(z)}$ вне разреза (напомним, что $\sqrt{f(z)} = \sqrt{|f(z)|}e^{\frac{i}{2}\arg f(z)}$, таким образом, $\sqrt{f(z)}$ задано корректно, если корректно задано $e^{\frac{i}{2}\arg f(z)}$). По 5 баллов за каждый пункт.



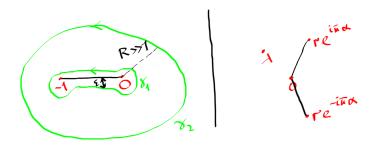
- 3. (если вы можете решить эту задачу, вы все очень хорошо понимаете!) Предположим, что $\Omega \subset \mathbb{C}$ открытое множество, ограниченное замкнутой кривой без самопересечений. Пусть $\gamma:[0,1] \to \mathbb{C}$ параметризация этой кривой. Пусть $f:\mathrm{Cl}(\Omega) \to \mathbb{C}$ непрерывная функция, голоморфная внутри Ω . Предположим, что $f(z) \neq 0$ для всякого $z \in \partial \Omega$ и рассмотрим некоторую ветвь $\arg f(\gamma(t))$.
 - А) (5) Пусть n количество нулей f внутри Ω . Покажите, что $n < \infty$ (hint: множество нулей голоморфной функции не может иметь точку сгущения, используйте это!)
 - Б) (10) Пусть d_k кратность k-го нуля f и положим $N = \sum_{k=1}^n d_k$. Предположим, что γ ориентирована против часовой стрелки. Покажите, что $\arg f(\gamma(1)) \arg f(\gamma(0)) = 2\pi N$ (hint: продеформируйте γ так, как на картинке ниже!).



- 4. (если вы можете решить эту задачу, вы все очень хорошо понимаете!) Пусть $\alpha \in (0,1)$. Рассмотрим функцию $f(z) = z^{\alpha}(z+1)^{1-\alpha}$, заданную в области $\Omega = \mathbb{C} \setminus [-1,0]$.
 - А) (7) Покажите, что граница Ω переходит в объединение двух отрезков $B = [0, re^{\pi\alpha}] \cup [0, re^{-\pi\alpha}]$, где

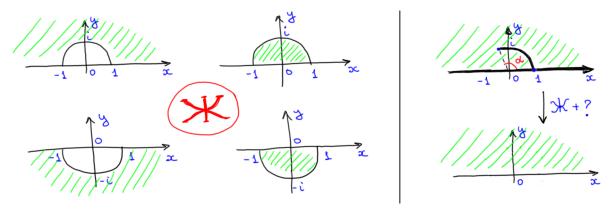
$$r = (1 - \alpha)^{1 - \alpha} \alpha^{\alpha}.$$

- Б) (5) Пусть $\lambda \in \mathbb{C} \setminus B$. Рассмотрим функцию $g(z) = f(z) \lambda$. Рассмотрим контуры γ_1, γ_2 , как на картинке. Покажите, что приращение $\arg g(z)$ вдоль γ_1 равно нулю, а приращение $\arg g(z)$ вдоль γ_2 равно 2π .
- В) (5) Заключите, что g(z)=0 имеет единственное решение в Ω , и, стало быть, $f:\Omega\to\mathbb{C}\smallsetminus B$ конформное отображение (то есть биекция).

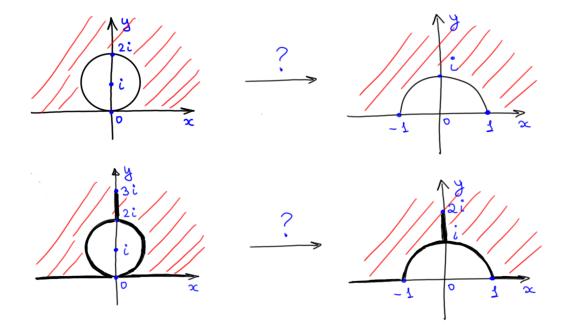


Еще про живопись.

- 1. Давайте поизучаем экспоненту и логарифм:
 - А) (1) Пусть z = x + iy. Покажите, что $|e^z| = e^x$ и $\arg e^z = y$.
 - Б) Куда переходят при отображении $z\mapsto e^z$
 - і. (3) горизонтальная полоса $\{z: \alpha < \text{Im}(z) < \beta\}, 0 < \alpha < \beta < 2\pi.$
 - іі. (3) вертикальная полоса $\{z : a < \Re(z) < b\}$
 - ііі. (3) горизонтальная полуполоса $\{z : 0 < \text{Im}(z) < \pi, \Re(z) > 0\}.$
 - iv. (3) горизонтальная полуполоса $\{z : 0 < \text{Im}(z) < \pi, \Re(z) < 0\}.$
 - В) (3) Напомним, что $\text{Ln}(z) = \ln |z| + i \arg(z)$. Примените $\ln(z)$ к области $\{z : 1 < |z| < e, \arg(z) \in [2\pi, 5\pi/2]\}$
- 2. Преобразование $X(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$ называют преобразованием Xуковского.
 - А) (5) Покажите, что каждая из данных областей переходит в полуплоскость под действием преобразования Жуковского. В какую именно: верхюю или нижнюю?



- Б) (5) Примените преобразование Жуковского K(z) к «косой травинке» (убедитесь, что оно-таки взаимнооднозначно в этой области!). Преобразуйте получившуюся область в верхнюю полуплоскость.
- 3. Придумайте конформное отображение, которое переводит «Начало заката Солнца» в «Солнце наполовину село» (верхнее -8 баллов; нижнее -10 баллов выкинуты отрезки [2i, 3i] и [i, 2i]).



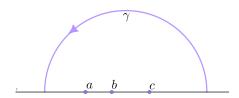
 Hint : используйте весь арсенал конформных отображений: преобразование Мебиуса (в частности, сдвиги, повороты, гомотетии, инверсии), степенные отображения $(z\mapsto z^n\ u\ z\mapsto z^{1/n})$, экспоненты и логарифмы.

KP1. 26.03.2020

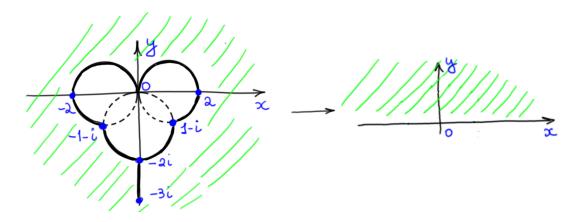
- 1. Пусть $w:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ преобразование Мебиуса такое, что $w\circ w=\mathrm{id}$. Пусть $C\subset\widehat{\mathbb{C}}$ обобщенная окружность и D=w(C). Предположим, что $C\cap D=\{x,y\}$ и $x\neq y$. Покажите, что w(x)=y.
- 2. Пусть a < b < c точки на вещественной прямой и рассмотрим функцию w(z) в верхней полуплоскости, заданную уравнением

$$w(z) = \sqrt{\frac{z-a}{(z-b)(z-c)}} + \sqrt{\frac{z-b}{(z-c)(z-a)}} + \sqrt{\frac{z-c}{(z-a)(z-b)}},$$

где корень задан условием $\sqrt{x} > 0$ если x > 0. Покажите, что $w(z) \neq 0$ для любого z = x + iy при y > 0 и найдите преращение аргумента w(z) вдоль пути γ как на картинке (γ ориентирован справа налево):



3. Придумайте конформное преобразование, которое переводит Микки Мауса в полуплоскость.



4. Вычислите интеграл:

$$\int_{0}^{\infty} \left(e^{x} \frac{\sin(y)(x^{2} - x + 1)}{(1 + x^{2})\sqrt{1 + x^{2}}} - 7y + 1 \right) dx + e^{x} \frac{\cos(y)}{\sqrt{1 + x^{2}}} dy,$$

где γ — верхняя дуга окружности $x^2+y^2=ax$, соединяющая точки A(a,0) и начало координат (обход против часовой стрелки).

КР1. Переписка 1. 11.04.2020

- 1. Пусть $w(z) = \frac{az+b}{cz+d}$ преобразование Мебиуса, причем $a,b,c,d \in \mathbb{R}$ и $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} < 0$. Покажите, что найдутся две различные точки $x_1,x_2 \in \mathbb{R} \cup \{\infty\}$ такие, что $w(x_1) = x_1$ и $w(x_2) = x_2$.
- 2. Рассмотрим функции φ и ψ в области $\Omega = \{z : \operatorname{Im} z \geq 0\}$, заданные правилом

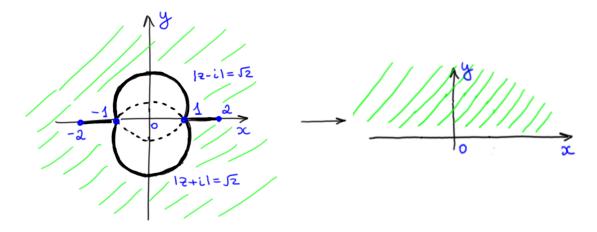
$$\varphi(z) = \frac{z(z-1)(z-2)}{z-3}, \qquad \psi(z) = \frac{(z-1)(z-2)(z-3)}{z}.$$

Положим

$$\arg \phi(-1) = \arg \psi(-1) = 0 = \arg \left(\sqrt{\psi(-1)} + \sqrt{\varphi(-1)}\right).$$

Найдите $\arg\left(\sqrt{\psi(10)} + \sqrt{\varphi(10)}\right)$.

3. Придумайте конформное преобразование, которое переводит Снеговика с ручками в полуплоскость.



4. Вычислите

$$\oint\limits_{\gamma} \left(\sqrt{x^2 + y^2} \, dx + y(xy + \ln(x + \sqrt{x^2 + y^2})) \, dy \right),$$

где γ — эллипс $(x-a)^2+y^2/4=a^2$ (направление против часовой стрелки).

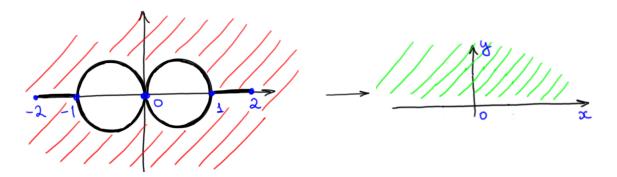
КР1. Переписка 2. 16.05.2020

1. Пусть f — непостоянная мероморфная функция на $\mathbb C$. Определим Шварциан f через

$$Sf = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2.$$

Докажите, что Sf=0 тогда и только тогда, когда f — преобразоание Мебиуса.

- 2. Пусть |a| > 1. Рассмотрим функцию $f(z) = a + \cos z$. Пусть $Q_R = \{x + iy : x \in [-R, R], y \in [0, R]\}$ большой такой прямоугольник. Оцените приращение аргумента f вдоль границы Q_R и покажите, что f имеет бесконечное число нулей в верхней полуплоскости.
- 3. Придумайте конформное преобразование, которое переводит Очки в полуплоскость.



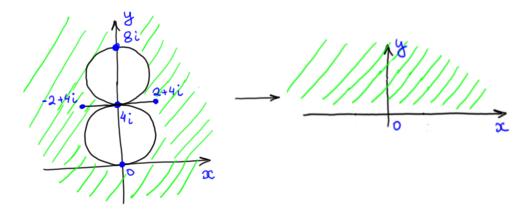
4. Вычислите интегральчик:

$$\int\limits_{\gamma} \frac{xy^2 \, dx - x^2 y \, dy}{x^2 + y^2},$$

где γ — четвертинка лемнискаты Бернулли, а именно, $\gamma=\{(r,\varphi):r^2=a^2\cos(2\varphi),\varphi\in(0,\frac{\pi}{4})\}$. Здесь (r,φ) — полярные координаты. Кривая γ направлена от точки a^2 до точки 0.

КР1. Переписка 3. 21.05.2020

- 1. Пусть z_1, z_2, z_3, z_4 четыре точки на плоскости. Вам разрешено один раз применить преобразование Мебиуса и один раз применить z^2 . Можно ли перевести таким образом z_1, z_2, z_3, z_4 в вершины описанного четырехугольника?
- 3. Придумайте конформное преобразование, которое переводит Снеговика с ручками в полуплоскость.



4. Вычислите интеграл:

$$\int_{\gamma} \left(e^x \frac{\sin(y)(x^2 - x + 1)}{(1 + x^2)\sqrt{1 + x^2}} - 7y + 1 \right) dx + e^x \frac{\cos(y)}{\sqrt{1 + x^2}} dy,$$

где γ — четвертинка лемнискаты Бернулли, а именно, $\gamma=\{(r,\varphi):r^2=a^2\cos(2\varphi),\varphi\in(0,\frac{\pi}{4})\}$. Здесь (r,φ) — полярные координаты. Кривая γ направлена от точки a^2 до точки 0.

Подготовка к КР2.

1. (8) Вычислите интеграл:

$$v.p. \int_0^\infty \frac{x \sin(x)}{x^2 - \pi^2} dx$$

Подсказка: тут полезно вспомнить лемму о полувычете (смотрите лекции)!

- 2. (8) Пусть $a \in \mathbb{C}$ и $n \in \mathbb{N}$. Покажите, что уравнение $1+z+az^n=0$ имеет хотя бы один корень в диске $\{z: |z| \leq 2\}$. Подсказка: чему равно произведение корней этого уравнения?
- 3. (8) Пусть $f:\mathbb{C}\to\mathbb{C}$ голоморфная функция, причем $f(z)\neq 0$ для всякого z и выполняется $|f(x+iy)|\leq e^y$ и f(0)=1. Чему равна f?
- 4. (8) Разложите $f(x) = (\cos x)^n$ в тригонометрический ряд Фурье (на промежутке $[-\pi, \pi]$). Подсказка: замените все функции на экспоненты.

KP2. 14.05.2020

1. Посчитайте интеграл:

$$\int_{-2}^{4} \ln \left(\frac{2+x}{4-x} \right) \frac{dx}{\sqrt[3]{(4-x)^2(2+x)}}$$

- 2. Сколько корней имеет уравнение $z^7 5z^4 + z^2 2 = 0$ в области $\{z : |z| \ge 1\}$?
- 3. Пусть $\Omega \subset \mathbb{C}$ непустое связное открытое множество и $f:\Omega \to \mathbb{C}$ голоморфная функция. Предположим, что для каждого $z \in \Omega$ найдется $n \in \mathbb{N}$ такое, что $f^{(n)}(z) = 0$. Докажите, что f многочлен.
- 4. Пространство $L^2(0,\pi)$ можно очевидным образом отождествить с подпространством $L^2(-\pi,\pi)$, состоящим из четных функций. Используйте это, чтобы показать, что функции $\cos(kx),\ k\in\mathbb{N}_0$, образую ортогональный базис в $L^2(0,\pi)$ и разложите $f(x)=\sin(x),\ x\in(0,\pi)$, в ряд по этому базису.

KP2. Переписка 1. 16.05.2020

1. Посчитайте интегральчик-интеграл:

$$\int_0^\infty \frac{\ln(x)}{(x+1)(x^2+1)} \, dx.$$

- 2. Сколько корней имеет уравнение $z^7 + 15z^3 + 8 = 0$ в области $\{z \ : \ 2 \geq |z| \geq 1\}$?
- 3. Пусть $\Omega \subset \mathbb{C}$ связное открытое множество и $u:\Omega \to \mathbb{R}$ гармоническая функция. Предположим, что существует $z_0 \in \Omega$ и $\varepsilon > 0$ такие, что u(z) = 0 для всех z из ε окрестности z_0 . Докажите, что u(z) = 0 для всех z.
- 4. Пространство $L^2(0,\pi)$ можно очевидным образом отождествить с подпространством $L^2(-\pi,\pi)$, состоящим из нечетных функций. Используйте это, чтобы показать, что функции $\sin(kx)$, $k \in \mathbb{N}$, образуют ортогональный базис в $L^2(0,\pi)$ и разложите f(x)=1, $x \in (0,\pi)$, в ряд по этому базису.

KP2. Переписка 2. 21.05.2020

1. Посчитайте интегральчик:

$$\int_{-1}^{1} \frac{\sqrt[5]{(1+x)(1-x)^4}}{x^2+1} \, dx;$$

- 2. Докажите, что для всякого $\lambda \in \mathbb{C}$ такого, что $|\lambda| < 1$, уравнение $e^z(z-1) = \lambda$ имеет ровно один корень в правой полупоскости.
- 3. Предположим, что $u:\mathbb{C} \to \mathbb{R}$ гармоническая функция и u(z) < 0 для всякого z. Докажите, что u постоянная функция.
- 4. Предположим, что $f \in L^2(-\pi,\pi)$, причем $\int_{-\pi}^{\pi} f(x) dx = 0$ и $f \perp \cos^n(x)$ для всякого $n \in \mathbb{N}$. Покажите, что f(-x) = -f(x) п.в.

4 Матбой по ТФКП

1. Будем говорить, что многочлен с вещественными коэффициентами от двух переменных $P \in \mathbb{R}[x,y]$ — гармонический, если $\frac{\partial^2 P}{\partial x \partial x} + \frac{\partial^2 P}{\partial y \partial y} = 0$; иными словами, P является гармонической функцией.

Пусть $u,v:\mathbb{C} \to \mathbb{R}$ — гладкие функции. Предположим, что для всякого гармонического многочлена P функция P(u(z),v(z)) — гармоническая. Положим f=u+iv. Докажите, что f — голоморфная, или антиголоморфная функция.

UPD: из условия выше выводится, что $\partial f(z)\overline{\partial}f(z)=0\ \forall z$ (и, вроде как, это эквивалентно условию), и именно это я имел в виду под "f — голоморфная, или антиголоморфная функция". Однако, сформулировал я это довольно неуклюже: кажется, в настоящем варианте задачи требуется доказать

$$\partial f(z) = 0 \ \forall z$$
 ИЛИ $\overline{\partial} f(z) = 0 \ \forall z$.

Оказалось, что при условии непрерывной дифференцируемости $\partial f(z)\overline{\partial}f(z)=0\ \forall z$ влечет это утверждение! Однако, я не придумал этому элементарное доказательство :(

2. Пусть $f,g:\mathbb{C} \to \mathbb{C}$ — голоморфные функции, удовлетворяющие следующим функциональным уравнениям:

$$\begin{cases} f^2 + g^2 = 1, \\ f(z+w) = f(z)g(w) + g(z)f(w). \end{cases}$$

Чему равны f и g?

3. Пусть $z_1, \ldots, z_n \in \{z : |z| = 1\}$ — попарно различные точки и $f : \mathbb{C} \setminus \{z_1, \ldots, z_n\} \to \mathbb{C}$ — рациональная функция с простыми полюсами в z_1, \ldots, z_n и регулярная в остальных точках \mathbb{C} . Пусть

$$f(z) = \sum_{k=0}^{+\infty} a_k z^k$$

степенной ряд для f в нуле. Обозначим через $\varphi(N)$ число ненулевых коэффициентов среди a_0,\dots,a_N . Покажите, что

$$\limsup_{N\to +\infty} \frac{N}{\varphi(N)} \le n.$$

- 4. Пусть P(z) многочлен степени n и z_1, \ldots, z_n его корни. Обозначим через Δ выпуклую оболочку z_1, \ldots, z_n . Покажите, что все корни P'(z) содержатся в Δ .
- 5. Для двух точек A, B на плоскости обозначим через AB расстояние между ними. Пусть A_1, \dots, A_n фиксированы (и различны), рассмотрим множество

$$Lem = \{A : AA_1 \cdot AA_2 \cdot \dots \cdot AA_n = 1\}.$$

Докажите, что Lem разбивает плоскость не более, чем на n+1 компоненту.

6. Пусть $f:[0,1] \to \mathbb{R}$ — дважды непрерывно дифференцируемая функция. Рассмотрим функцию

$$F(z) = \int_0^1 f(t)\sin(zt) dt.$$

Пусть 0 < |f(1)| < |f(0)|. Покажите, что F имеет бесконечное число нулей и лишь конечное их число — вещественные.